

Self-assembly of spherical magnetic colloids

COMPUTE retreat 2012

Alexei Abrikossov

SIGI

What is a colloid?

"A colloid is a substance microscopically dispersed evenly throughout another substance.[1]" - Wikipedia

"A colloid is a mixture of one substance spread out evenly inside another substance. They can be in two different phases or states of matter." - Wikipedia Simple English

Examples off colloids

- Milk
- Paint,Ink
- Foam
- Pollen
- Hair spray
- Styrofoam

Image: Wikipedia

The colloid particle

- "Big Particle" 1 nm to 1 μ m in diameter
- Easier to see than atoms and molecules
- Brownian motion
- Can be designed
- Lots of different shapes

Self-assembly of colloids

Image: S. Sacanna

Model for Simulations

Image left: S. Sacanna Image right: Per Linse

The use of Monte Carlo

- •Equilibrium properties
- •Trial moves
- Cluster moves

Results

Without an external field

With an external field

Radial distribution function

LUNDS UNIVERSITET

Angular distribution function

Without an external field

Angular distribution function

With an external field

Perpendicular field

Top image: S.Sacanna

Experiments vs Simulations

a) Dimer

- b) Trimer
- c) Two dipole particle
- d) Zipper chain formation in an external field
- e) Break up of a trimer in an external perpendicular field

Image experimental part: S.Sacanna

Conclusion

- •Colloid self-assembly is a big and interesting area of research with many potential applications
- •Relatively "simple" models are able to describe the systems studied
- •By using computer simulations we are able to understand the experiments better

Acknowledgments

Stefano Sacanna and Per Linse Swedish Research Council (VR) Organizing Molecular Matter (OMM)

