Condensed matter systems out of equilibrium

Theory and numerical implementations

Daniel Karlsson Mathematical Physics, Lund University

COMPUTE 2012

The division of Mathematical Physics

Solid State Theory:

- Claudio Verdozzi (COMPUTE contact)
- Carl-Olof Almbladh
- Ulf von Barth
- Ferdi Aryasetiawan
- Phd students:
 - Alexey Kartsev
 - Daniel Karsson
 - Valeria Vettchinkina
 - Marc Puig von Friesen
 - 2 new PhD students coming soon
- Common research area:

Condensed matter systems in and out of equilibrium

Other groups:

S. Reimann (Mesoscopic Physics) A. Wacker (Quantum Transport) P. Samuelsson (Quantum Information) S. Åberg (Nuclear Structure) I. Ragnarsson (Nuclear Structure) T. Brage (Atomic physics)

Condensed matter systems out of equilibrium at the nanoscale

Numerous applications:

- Quantum transport
- Cold atoms in optical lattices
- Spin transport
- Quantum information
- Transient effects

0

Major challenge:

Strongly correlated systems out of equilibrium

The Hubbard model: Our favourite toy model

- Strongly correlated lattice model
- Fermions tunnel to different sites, experience contact interaction
- Can describe metals, spin physics, electron transport etc.

 Simple enough to solve exactly for small systems: Numerical experiments possible

Solving the model

Time independent Schrödinger equation: $\mathbf{H} \psi = E \psi$ Energies / eigenstates: Diagonalizing Hamiltonian matrix **H**

Time dependent Schrödinger equation: Time propagate using various algorithms $i\frac{d\psi}{dt} = \mathbf{H}(t)\psi$

Method 1: Exact Diagonalization

- Basic variable: Wave function
- Method: Solve by finding a basis and calculate ground state / time propagate with diagonalization.

- Advantages: Exact, Can benchmark other methods, get results of physical interest in few body problems
- Limitations: Only small systems manageable

Lanczos algorithm avoids having to diagonalize the full matrix, useful for low lying states

4 states / site :

65536

 $| 0 \uparrow 0 \downarrow >$, $| 1 \uparrow 0 \downarrow >$, $| 0 \uparrow 1 \downarrow >$, $| 1 \uparrow 1 \downarrow >$

67108864

16777216

by using symmetries

Can be reduced by a factor of ~50

 $H = \begin{pmatrix} \beta_1 & \beta_2 & \alpha_2 & \beta_3 \\ & \beta_2 & \alpha_3 & \ddots & \\ & & \beta_3 & \alpha_3 & \ddots & \\ & & \ddots & \ddots & \beta_{m-1} \\ & & & & \beta_{m-1} & \alpha_{m-1} \\ & & & & & \beta_m \end{pmatrix}$

Method 2: Time Dependent Density Functional Theory

- Basic variable: Density
- Method: Solving non-interacting single-particle equations for ground state and dynamics
 Price: Density dependent effective potential => self-consistent procedure

- Advantages: Computationally inexpensive.
 Easy to implement.
- Limitations: Approximations hard to improve. No history dependence (Adiabatic approximation)

Method 3: Non-Equilibrium Green functions

Basic variable:

Single-particle Green function

 Method: Solve self-consistent integral equations involving self-energy

$$G(12) = -i\langle T_C\left[\hat{\psi}_H(1)\hat{\psi}_H^{\dagger}(2)\right]\rangle$$

$$(i\partial_{t_1} - h(t_1)) G(t_1, t_2) = \delta(t_1, t_2) + \int_C \Sigma(t_1, t) G(t, t_2) dt$$

Non-interacting

Self-energy: Interactions

- Advantages: Can treat infinite systems, can be improved systematically
- Limitations: Computationally expensive. t
 Two times: time propagation on square

Example of group work

- Benchmarking new effective potentials for use in 3 dimensions.
- Potential applications: Cold atoms
- Able to assess strengths and weaknesses of TDDFT and Green functions.

No approximation captures all the physics: Need to go beyond existing methods

Computational times:

Method 1: Exact diagonalization ~1 hour

Method 2: TDDFT ~1 minute

Method 3: Green function ~1 day

Summary of group work

- In short, we do
 - Development of new effective (exchangecorrelation) potentials for use in TDDFT
 - Development of many-body methods to obtain new self-energies
 - Application to dynamics of ultracold atoms in optical lattices

Computational Outlook

0

- Treat larger matrices
- Longer time propagations
- Self-consistency calculations for larger systems
- Solve non-linear equations more efficiently
- Parallelization feasible route?

For more information, see some of our articles Verdozzi et al, Chem. Phys. **39**, 1 (2011) Karlsson et al, Phys. Rev. Lett. **106**, 116401 (2011)

 $size = \binom{N_{\uparrow}}{L}\binom{N_{\downarrow}}{L}$

Planned future research activity

Theoretical and computational research in non-equilibrium dynamics at the nanoscale.

Motivation

The variety of fascinating behaviors of matter in non-equilibrium

* Topology and low-dimensionality can enhance electronic correlations novel physical behavior in a small systems coupled to a changing

environment

* Inter-particle interactions tunable experimentally.

Promise of novel, groundbreaking technologies.

* Future nanodevices will operate under ever faster fields

Today's marginal transient effects: center stage features.

Major theoretical challenge:

Describing strong electronic correlations away from equilibrium *Essential feature: cannot be described effectively via non-interacting entities.* How ?

* Insight from models:-

Even this field is at a very initial stage

* However for a quantitative study of the transient device response: *Ab-initio level required* TDDFT schematics I : Runge–Gross Theorem (RGT)

$$\begin{bmatrix} i\frac{\partial}{\partial t} - (\hat{T} + \underline{\hat{V}_1(t)} + \hat{W}) \end{bmatrix} \Psi_1(t) = 0$$
$$\begin{bmatrix} i\frac{\partial}{\partial t} - (\hat{T} + \underline{\hat{V}_2(t)} + \hat{W}) \end{bmatrix} \Psi_2(t) = 0$$
$$\Psi_1(t_0) = \Psi_2(t_0) = \Psi_0$$
$$\hat{V}_1(t) \neq \hat{V}_2(t) + C(t) \Rightarrow n_1(t) \neq n_2(t)$$

 $O\left[n,\Psi_{0}\right]\left(t\right)=\langle\Psi\left[n\right]\left(t\right)|\hat{O}|\Psi\left[n\right]\left(t\right)\rangle$

Kadanoff-Baym dynamics

• Basic quantity $G(12) = -i \langle T_C \left[\hat{\psi}_H(1) \hat{\psi}_H^{\dagger}(2) \right] \rangle$ *Total energy, one-particle averages, Excitation energies with* ± 1 *particle*

- Dyson Equation in time $(i\partial_{t_1} h(t_1)) G(t_1, t_2) = \delta(t_1, t_2) + \int_C \Sigma(t_1, t) G(t, t_2) dt$
- Conserving approximations: $\Sigma = \Sigma[G]$ functional derivative of generating functionals
- Example of Many–Body approximations: TMA

$$\sum_{TMA} + \sum_{+} + \sum_$$

GWA and BA: negative double occupancy. TMA. Always positive (Theorem)
 500 Strategy Stems & conserving MBA:s artificially damped dynamics (Puig, CV, Almbladh, CV)

Scaling of Diagonalization basis state $|b\rangle = |n_{1}\rangle A |n_{N_{-}}\rangle A |n_{1}\rangle \cdots A |n_{N_{-}}\rangle$

TDDFT–DMFT, exact and KBE dynamics in small 3D

a 125-site cluster with one fiferacting impurity

 $5\times5\times5$ in the center

Interaction and perturbation only in the center by symmetry, a 10-site end TDDFT time propagation

- TDKS equations

$$(\hat{t} + \hat{v}_{KS}(\tau)) \varphi_{\kappa}(\tau) = i \partial_{\tau} \varphi_{\kappa}(\tau) ,$$

$$v_{KS}(i,\tau) = v_H(i,\tau) + v_{xc}(i,\tau) + v_{ext}(i,\tau)$$

- with

- In the ALDA

 $v_{xc}(i,\tau) \xrightarrow{occ} v_{xc}^{DMFT}(n_i(\tau))$ $n_i(\tau) = \sum_{i} |\varphi_{\kappa}(i,\tau)|^2$

Open Problems

the premier choice to deal with system out of equilibrium

Which systems and which physics -II

-Topic 3: European Spallation Source (ESS)

- New ESS: probing non equilibrium processes (structural + magnetic)
- Calculations can be important complementary tool to such experiments

Topic 4: Non-equilibrium behavior of Cold atoms trapped in optical lattices-

- Ideal benchmarking ground for methodological developments
- Dynamics of the coexisting phases & quantum entanglement
- Time-dependent collapse/segregation of fermionic and bosonic mixtures

Also, collaborations within and outside ETSF