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Numerical Analysis

“Numerical analysis aims to construct and analyze
quantitative methods for the automatic computation of
approximate solutions to mathematical problems.”

— Gustaf Söderlind

“Numerical analysis is the area of mathematics and
computer science that creates, analyzes, and implements
algorithms for solving numerically the problems of
continuous mathematics.”

— Kendall E. Atkinson

“Numerical analysis is the study of algorithms for the
problems of continuous mathematics.”

— Lloyd N. Trefethen
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Numerical Analysis topics

Numerical linear algebra
Solving systems of equations
Computing eigenvalues

Matrix factorizations, functions of matrices

Approximation theory
Interpolation, extrapolation

Numerical integration

Optimization
Min/max of real-valued functions

Possibly with constraints

Differential equations
ODEs, PDEs
Integral equations

DAEs, SDEs, DDEs
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Research areas at Numerical Analysis in Lund

Main focus: Differential equations

We work with

• Adaptivity (Gustaf Söderlind)

• DAEs (Claus Führer)

• Multistep methods (Carmen Arévalo)

• Integral equations (Johan Helsing)

• Real-time simulation (Christian Andersson)

• Splitting methods (Eskil Hansen, Erik Henningsson, Tony Stillfjord)

and more
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My work: Laplacian example

d

dt
u(t, x) = ∆u(t, x), x ∈ [0, 1], t ∈ [0, 1]

u(t, 0) = u(t, 1) = 0

u(0, x) = f (x)

Easy and fast to solve by Fast Fourier Transform (FFT) techniques
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But what about this?

d

dt
u(t, x) = ∆u(t, x) + g(u), x ∈ [0, 1], t ∈ [0, 1]

u(t, 0) = u(t, 1) = 0

u(0, x) = f (x)

g(u) non-linear, but “nice”, non-stiff

FFT-techniques do not work (or complicated and specific)
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A typical problem

d

dt
u(t) = Au(t) + Bu(t), t ∈ [0, 1],

u(0) = η

Abstract evolution equation

Space dependency and boundary conditions hidden in the
operators A and B

Full problem difficult/expensive

Sub-problems
d
dt
u(t) =Au(t)

d
dt
u(t) =Bu(t)

easy/cheap
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Splitting methods: Lie splitting

Iterate between the subproblems

d

dt
v(t) = Av(t), t ∈ [0,∆t],

v(0) = η

→ v1 ≈ v(∆t)

d

dt
w(t) = Bw(t), t ∈ [0,∆t],

w(0) = v1

→ w1 ≈ w(∆t)

u̇ = Au + Bu
u1 = w1 ≈ u(∆t)
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Splitting methods: Lie splitting

Iterate between the subproblems

d

dt
v(t) = Av(t), t ∈ [0,∆t],

v(0) = w1

→ v2 ≈ v(∆t)

d

dt
w(t) = Bw(t), t ∈ [0,∆t],

w(0) = v2

→ w2 ≈ w(∆t)

u̇ = Au + Bu
u2 = w2 ≈ u(2∆t)
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Splitting methods: Lie splitting

Iterate between the subproblems

d

dt
v(t) = Av(t), t ∈ [0,∆t],

v(0) = wn−1

→ vn ≈ v(∆t)

d

dt
w(t) = Bw(t), t ∈ [0,∆t],

w(0) = vn

→ wn ≈ w(∆t)

u̇ = Au + Bu
un = wn ≈ u(n∆t) = u(T )
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Splitting methods: convergence

For bounded operators A and B (think fixed spatial discretization),
Use Taylor expansion to prove convergence with order

‖un − u(n∆t)‖ ≤ C (∆t)p

But C →∞ as discretization becomes finer !

Taylor expansion does not work for unbounded operators

Until recently: Only order theory for classical splitting methods
(i.e. for bounded operators)
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In our group (Eskil Hansen)

Under certain conditions (linear maximal dissipative operators,
etc.):

Order is preserved for classical splitting methods:

‖un − u(n∆t)‖ ≤ C (∆t)p

C independent of spatial discretization mesh width!
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IMEX Euler

d

dt
u(t) = Au(t) + Bu(t), t ∈ [0, 1],

u(0) = η

A (non-linear) unbounded dissipative operator, like ∆
(
|u|mu

)
B Lipschitz continuous operator

Solve d
dt u(t) = Au(t) by Implicit Euler

Solve d
dt u(t) = Bu(t) by Explicit Euler

→ Same order as Implicit Euler for full problem (≤ 1)
(Eskil Hansen and Tony Stillfjord 2012)
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Delay Differential Equations

Now trying to prove similar results for splitting DDEs, for example

d

dt
u(t) = Au(t) + u(t − 1), t ∈ [0, 1],

u(0) = η

u(τ) = f (τ), τ ∈ [−1, 0]
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Thank you
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