Splitting methods

Tony Stillfjord

Lund University Centre for Mathematical Sciences Numerical Analysis

August 21, 2012

Numerical Analysis

Our group

My work

Numerical Analysis

"Numerical analysis aims to construct and analyze quantitative methods for the automatic computation of approximate solutions to mathematical problems."

— Gustaf Söderlind

"Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics."

- Kendall E. Atkinson

"Numerical analysis is the study of algorithms for the problems of continuous mathematics."

- Lloyd N. Trefethen

Numerical Analysis topics

Numerical linear algebra

Solving systems of equations Computing eigenvalues Matrix factorizations, functions of matrices

Approximation theory

Interpolation, extrapolation Numerical integration

Optimization

Min/max of real-valued functions Possibly with constraints

Differential equations ODEs, PDEs Integral equations DAEs, SDEs, DDEs

Research areas at Numerical Analysis in Lund

Main focus: Differential equations

We work with

- Adaptivity (Gustaf Söderlind)
- DAEs (Claus Führer)
- Multistep methods (Carmen Arévalo)
- Integral equations (Johan Helsing)
- Real-time simulation (Christian Andersson)
- Splitting methods (Eskil Hansen, Erik Henningsson, Tony Stillfjord) and more

My work: Laplacian example

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} u(t,x) &= \Delta u(t,x), \quad x \in [0,1], \quad t \in [0,1] \\ u(t,0) &= u(t,1) = 0 \\ u(0,x) &= f(x) \end{aligned}$$

Easy and fast to solve by Fast Fourier Transform (FFT) techniques

But what about this?

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} u(t,x) &= \Delta u(t,x) + g(u), \quad x \in [0,1], \quad t \in [0,1] \\ u(t,0) &= u(t,1) = 0 \\ u(0,x) &= f(x) \end{aligned}$$

g(u) non-linear, but "nice", non-stiff

FFT-techniques do not work (or complicated and specific)

A typical problem

$$rac{\mathrm{d}}{\mathrm{d}t}u(t) = Au(t) + Bu(t), \quad t \in [0, 1],$$

 $u(0) = \eta$

Abstract evolution equation

Space dependency and boundary conditions hidden in the operators \boldsymbol{A} and \boldsymbol{B}

Full problem difficult/expensive

Sub-problems $\frac{\frac{d}{dt}u(t) = Au(t)}{\frac{d}{dt}u(t) = Bu(t)}$ easy/cheap

Splitting methods: Lie splitting

Iterate between the subproblems

$$\begin{split} & \frac{\mathrm{d}}{\mathrm{d}t} v(t) = A v(t), \quad t \in [0, \Delta t], \qquad & \frac{\mathrm{d}}{\mathrm{d}t} w(t) = B w(t), \quad t \in [0, \Delta t], \\ & v(0) = \eta \qquad \qquad & w(0) = v_1 \end{split}$$

 $ightarrow \mathbf{v_1} \approx \mathbf{v}(\Delta t)
ightarrow \mathbf{w_1} pprox \mathbf{w}(\Delta t)$

$$\dot{u} = Au + Bu$$

 $u_1 = w_1 \approx u(\Delta t)$

Splitting methods: Lie splitting

Iterate between the subproblems

$$\begin{split} & \frac{\mathrm{d}}{\mathrm{d}t} v(t) = A v(t), \quad t \in [0, \Delta t], \qquad & \frac{\mathrm{d}}{\mathrm{d}t} w(t) = B w(t), \quad t \in [0, \Delta t], \\ & v(0) = w_1 \qquad \qquad & w(0) = v_2 \end{split}$$

 $ightarrow v_2 pprox v(\Delta t)
ightarrow
ightarrow w_2 pprox w(\Delta t)$

$$\dot{u} = Au + Bu$$
$$u_2 = w_2 \approx u(2\Delta t)$$

Splitting methods: Lie splitting

Iterate between the subproblems

$$\begin{split} & \frac{\mathrm{d}}{\mathrm{d}t} v(t) = A v(t), \quad t \in [0, \Delta t], \qquad & \frac{\mathrm{d}}{\mathrm{d}t} w(t) = B w(t), \quad t \in [0, \Delta t], \\ & v(0) = w_{n-1} \qquad & w(0) = v_n \end{split}$$

 $ightarrow v_n \approx v(\Delta t)
ightarrow w_n pprox w(\Delta t)$

$$\dot{u} = Au + Bu$$
$$u_n = w_n \approx u(n\Delta t) = u(T)$$

Splitting methods: convergence

For bounded operators A and B (think fixed spatial discretization), Use Taylor expansion to prove convergence with order

$$||u_n - u(n\Delta t)|| \leq C(\Delta t)^p$$

But $C \rightarrow \infty$ as discretization becomes finer !

Taylor expansion does not work for unbounded operators

Until recently: Only order theory for classical splitting methods (i.e. for bounded operators)

In our group (Eskil Hansen)

Under certain conditions (linear maximal dissipative operators, etc.):

Order is preserved for classical splitting methods:

 $||u_n - u(n\Delta t)|| \leq C(\Delta t)^p$

C independent of spatial discretization mesh width!

IMEX Euler

$$egin{aligned} & rac{\mathrm{d}}{\mathrm{d}t}u(t) = Au(t) + Bu(t), \quad t \in [0,1], \ & u(0) = \eta \end{aligned}$$

A (non-linear) unbounded dissipative operator, like $\Delta(|u|^m u)$ B Lipschitz continuous operator

Solve
$$\frac{d}{dt}u(t) = Au(t)$$
 by Implicit Euler
Solve $\frac{d}{dt}u(t) = Bu(t)$ by Explicit Euler

 \rightarrow Same order as Implicit Euler for full problem (\leq 1) (Eskil Hansen and Tony Stillfjord 2012)

Delay Differential Equations

Now trying to prove similar results for splitting DDEs, for example

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}t}u(t) = Au(t) + u(t-1), \quad t\in[0,1], \ &u(0) = \eta \ &u(au) = f(au), \quad au\in[-1,0] \end{aligned}$$

Thank you