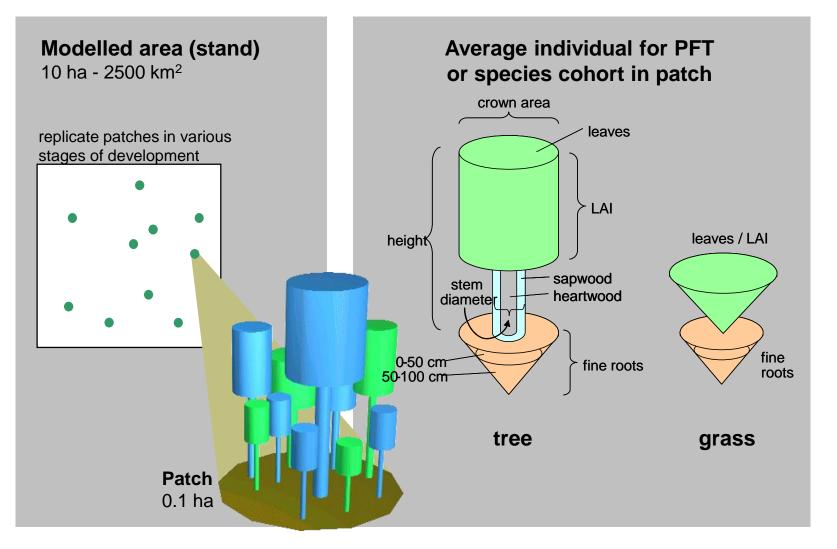


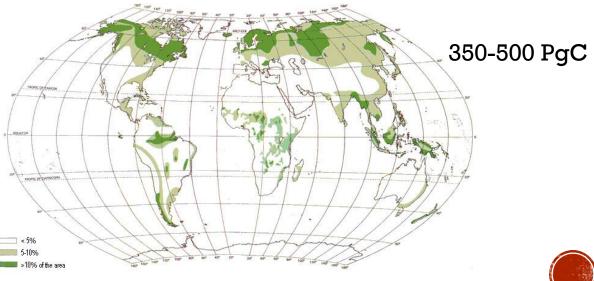
Nitin Chaudhary Physical Geography Department Lund University

BACKGROUND


- Bachelors in Environment Sciences (2004)
- Masters in Environmental Management (2006)
- M.Phil in Natural Resource Management (2007)
- 2 Year work experience (2007-2009)
- Second Master's Lund (2009-2011) ERASMUS MUNDUS
- PhD position Lund (2011-2017)
- Postdoc in Oslo (2018-2020)
- Researcher in Lund (ongoing) awarded FORMAS ECR grant

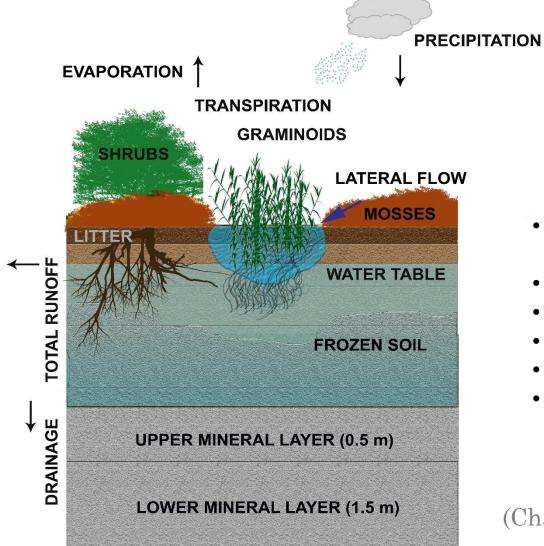
COMPUTE PHD STUDENT

LPJ-GUESS – DGVM



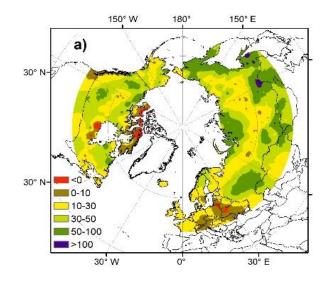
DGVM = Dynamic global vegetation model

MY RESEARCH

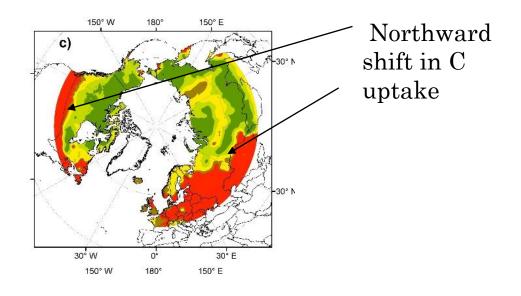

- LPJ-GUESS- integerate peatland and permafrost functionalities
- To enhance the current understanding of the processes involved in the long-term peat accumulation and its internal dynamics
- how these systems are influenced by small-scale heterogeneity, vegetation dynamics and underlying permafrost.

Stordalen Mire, Sweden

LPJ-GUESS PEATLAND



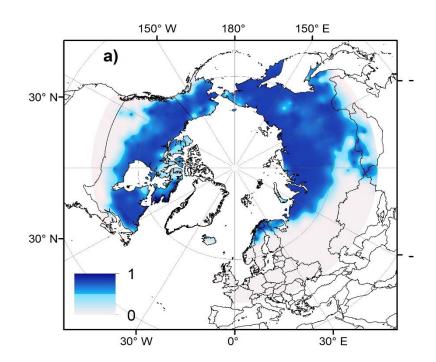
- Differential rate of peat accumulation
- Spatial heterogeneity
- Multiple peat layers
- Peat hydrology
- Frozen soil
- Lateral flow


CARBON ACCUMULATION RATES

Similar to observed range

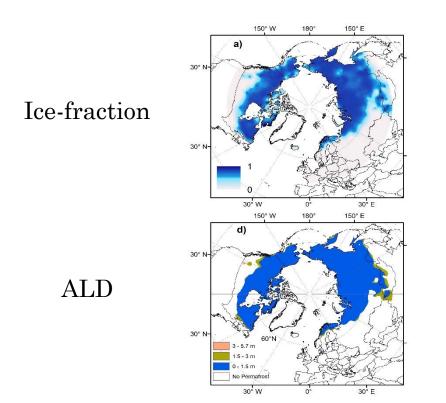
2100

RCP8.5

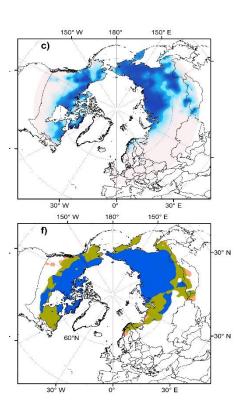

(Chaudhary et al. 2020)

PERMAFROST DISTRIBUTION

Modelled - 2000



Source: IPA



PERMAFROST DISTRIBUTION

(A) 2000

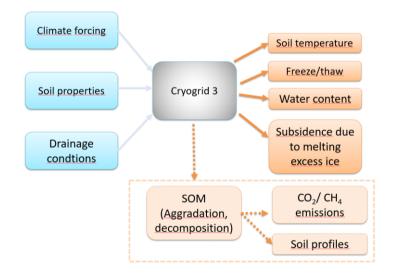
(B) 2100

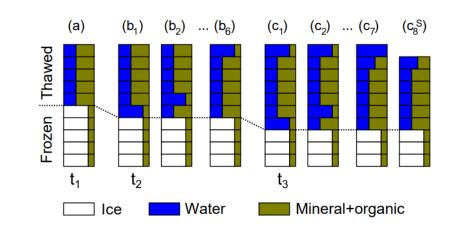
RCP8.5

MY MODEL UNIQUELY COMBINES THE REPRESENTATION OF SPATIAL HETEROGENEITY

Schemes Models	Peatland	Permafrost	DGVM	Multiple annual peat layers	Spatial heterogeneity	Single site	Global/Reg ional application
Our Model	~	\checkmark	✓	~	✓	√	✓
Wu et al. (2016)	√	×	×	×	×	v	v
Alexandrov et al. (2016)	\checkmark	×	×	×	×	×	\checkmark
Tang et al. (2015b)	\checkmark	\checkmark	\checkmark	×	×	✓	\checkmark
Stocker et al. (2014)	\checkmark	×	✓	×	×	×	\checkmark
Morris et al. (2012)	\checkmark	×	×	×	\checkmark	\checkmark	×
Schuldt et al. (2013)	\checkmark	×	✓	×	×	✓	\checkmark
Kleinen et al. (2012)	\checkmark	×	\checkmark	×	×	\checkmark	✓
Heinemeyer et al. (2010)	\checkmark	×	×	√	×	\checkmark	×
Frolking et al. (2010)	\checkmark	×	×	\checkmark	×	\checkmark	×
Wania et al. (2009a)	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark
Ise et al. (2008)	\checkmark	×	×	×	×	\checkmark	×
Bauer (2004)	\checkmark	×	×	√	×	\checkmark	×
Hilbert et al. (2000)	\checkmark	×	×	×	×	\checkmark	×
Clymo (1984)	\checkmark	×	×	×	×	✓	×
Ingram (1982)	\checkmark	×	×	×	×	\checkmark	×

MY JOURNEY AS COMPUTE PHD STUDENT

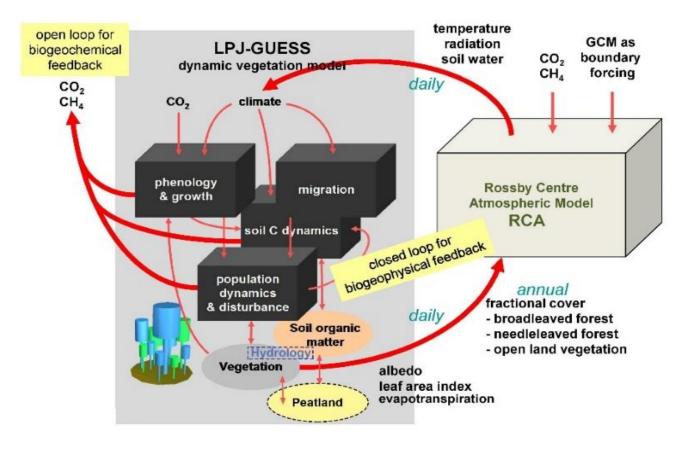

- Getting a PhD position is not easy and passing it with good grades is also a uphill task especially for international students
- Adapt to a new cultural and educational environment
- Lack the support system family and friends
- A constant hidden pressure of producing research articles which make you sometime feel stressful
- Then there are skill issues programming, writing etc.
- COMPUTE Seminars, courses, workshops, travel grant etc.



POSTDOC IN OSLO

- 2 OPTIONS -
- Permafrost Modelling and Regional ESM

CRYOGRID PERMAFROST MODEL


OUTCOME

- New environment gives you new outlook
- You can learn new skills
- Make new contacts
- Good support system for early career researcher
- Sharpen my proposal making skills
- Networking and career workshops

MY RECENT FORMAS PROJECT IN LU

Integrating peatland dynamics in Regional ESM – RCA-GUES

 LPJ-GUESS is now ready to couple with Earth System Models (ESMs) – (RCA-GUESS and EC-EARTH) to examine the role of peatland-mediated (biogeochemical and biogeophysical) feedbacks to climate change

CONCLUSIONS

- Our model has **the most comprehensive representation** of peatland structure and function for the large scale applications
- The model captures realistic **vegetation**, **physical and hydrological dynamics** essential for peatland functioning
- The model has a unique representation of the small-scale spatial heterogeneity
- LPJ-GUESS can predict reasonable **long-term carbon accumulation rates** and the **permafrost distribution** across the pan-Arctic
- Peatlands could become strong C source in some regions while C sink in some other in the future but overall the peatland continue sequestering C at reduce rates

THANK YOU

