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Introduction

Methods developed in statistical physics have proved to be useful in research
fields outside physics such as computer science, statistics, economy and molec-
ular biology. In this thesis, the variational method, developed in statistical
physics, is used to approach combinatorial optimization and phylogeny recon-
struction.

In statistical physics the aim is to describe global behavior of a system, by
using models for the behavior of the parts that are the building blocks of the
system. This can for example be to average over atom behavior to predict
global features of a gas, or a solid compound. The variational approach is
used to approximate the behavior of the included parts of a problem. The
approximation is optimized with respect to its parameters to describe an actual
behavior as close as possible.

The variational approximation has been proven to be useful when approaching
hard combinatorial optimization (CO) problems. A CO problem is defined by
a number of discrete variables and a cost is associated with each combination of
values (a state) of these variables. The goal is to find the state with minimum
cost. It is suitable to use computers to solve CO problems, and most of the
research have been performed after the introduction of the computers in the
middle of the last century. To some of the CO problems, efficient computer
algorithms have been introduced to find optimal solutions, while for others,
efficient algorithms are still lacking, despite the immense amount of research
that has been directed towards these problems. The question of whether it is
possible to find efficient algorithms is still open, and the activity of research in
the field is substantial. For some purposes it suffices to have a fast algorithm
that finds a cost close to the optimal. In this thesis an algorithm of this type,
deterministic annealing (or mean-field annealing), is described and developed,
and it is applied to a number of combinatorial optimization problems.

Another problem where the variational method can be used is in phylogeny
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reconstruction. When building a phylogenetic tree, the goal is to infer the
history of evolution that leads to present species. The underlying assumption
is that all species have evolved from one ancestor and the differentiation is due
to some kind of branching (e.g. an animal group has been geographyly divided).
DNA sequences from different species can be used along with a model for how
sequences change by mutation. It is then possible to infer the most likely
history for the data according to the model. This approach is called maximum
likelihood and a novel approximation to this approach, based on the variational
method, is presented in this thesis.

In the next section a short introduction to spin systems is given and the sta-
tistical physics description of these systems is presented. The variational ap-
proach is introduced, leading to the mean-field approximation of the spin vari-
ables, which is the central part of the algorithms in the thesis. After that,
the problems studied are described, and the methods used in this research are
introduced. First combinatorial optimization is described and then phylogeny
reconstruction. The introduction concludes with a short presentation of the
papers that the thesis is based on.

Spin Systems

The magnetic properties of particles such as electrons and atoms are often
described using spin variables. In statistical physics lots of work has been
done on investigating spin systems, as simple models of single spins generate
interesting global behavior of the system [10].

A simple model of a spin is a variable, s, with a discrete number of possible
states, indicating the direction of the spin. An Ising spin can be in only two
states (s = ±1) and will be used in the following discussion as an example. In
a spin system a number of spins interact according to some simple connections.
The energy of the system can be formulated as a Hamiltonian function

H(s) =
∑

ij

Jijsisj , (1)

where a nonzero Jij indicates the interaction between spin i and j. If all
nonzero connections J are negative we have a ferromagnetic system and it is
energetically favorable for the spins to align so that connected spins have the
same value (results in a negative contribution to the energy). If all nonzero J
are positive we have the opposite situation (anti-ferromagnetic) and connected
spins prefer to be in different states. In both these situations it is often no
problem to find the lowest energy state, but if there are connections of both
signs the system may be frustrated, and spins receive ambiguous information
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of what state is energetically favorable. This type of system is called a spin
glass and it has the characteristics of having lots of local energy minima with
values close to the global minimum.

There is more to a spin system than the spin interactions. A more accurate de-
scription of a spin system results if the system is placed in a heat bath, such that
a constant temperature, T is obtained and energy is allowed to fluctuate be-
tween the system and the heat bath. The probability that a system is in a state
s is then assumed to follow the Boltzmann distribution, p(s) = e−H(s)/T /Z,
where Z =

∑
s e−H(s)/T is the normalizing partition function and the sum-

mation is over all possible states. A low energy state always has a higher
probability to be present, but the temperature regulates to what extent this is
obeyed. A high temperature results in a more equal probability for states with
different energy, while a low T results in low energy states being much more
probable. In the limit of zero temperature, only the lowest energy states have
a finite probability.

The Boltzmann distribution is the distribution that minimizes the free energy,
F , defined by

F = −T log(Z) =< H > −TS. (2)

Here Z is the partition function and < H >=
∑

s H(s) exp(−H(s)/T )/Z is the
average energy. S is the entropy and is defined by

S = −
∑
s

p(s) log(p(s)), (3)

and it can be seen as a measure of the disorder of the system. As there is a factor
T in front of the entropy term, this is dominating for higher temperatures, while
it is less important for lower T resulting in the characteristics described above
of more energy sensitivity for low T .

The variational approach

As the distribution that minimizes F for a given Hamiltonian H is the Boltz-
mann distribution, p(s) = exp(−H(s)/T )/Z, a distribution built from another
Hamiltonian H0, then yields a larger value for the free energy, i.e.

F ≤ Fv =< H >0 −TS0 = F0+ < H −H0 >0, (4)

where < H >0, S0 and F0 are connected to the distribution from H0. For
complicated systems computational complications may occur when using the
correct Boltzmann distribution. Then a simpler distribution (from H0) can be
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used and optimized with respect to parameters in H0 to minimize the gap be-
tween F and Fv. This is exactly the variational method that will be frequently
used in this thesis [3].

After some manipulating it is possible to show that

Fv − F = T
∑
s

p0(s) log
(

p0(s)
p(s)

)
(5)

where p, p0 are the respective probability distributions and the sum is over all
possible states. This is a nonnegative convex function of the p0 variables. It is
zero only when there is equality between p and p0.

The Mean-Field Approximation

A particularly simple form of H0 is a linear function of the spin variables,

H0 =
∑

i

cisi. (6)

Such an additive H0 is convenient because it leads to a factorized probabil-
ity distribution p =

∏
i pi, where each spin has an independent distribution.

As every Hamiltonian, in the case of Ising spins, can be written as a multi-
linear function of the spins, a factorized distribution makes it possible to use
< H(s) >0= H(< s >0), where

vi ≡< si >0=
e−ci/T − eci/T

e−ci/T + eci/T
= tanh

(
−ci

T

)
. (7)

An optimal Fv = H(v)− TSv with respect to vi is found by

0 =
∂Fv

∂vi
=

∂H

∂vi
+ T

∂

∂vi

(∑

i

[
1 + vi

2
log

(
1 + vi

2

)
+

1− vi

2
log

(
1− vi

2

)])

(8)
leading to the mean-field equations ([10])

vi = tanh
(
−ci

T

)
(9)

ci =
∂H(v)

∂vi
. (10)

This is the main result of this section as the mean-field equations are the
corner stones of the algorithms presented in this thesis, where they are used
in an iterative manner. The rest of the section is devoted to other types of
spin variables, used for problems where the variables can assume more than
two values.
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Potts spins

In problems where a variable (spin) can be in more than two states, Potts spin
encoding is suitable [13]. Each spin state can be encoded as a principal vector
(e.g. s = (0, 1, 0, 0), where the spin is in state two out of four). Any function
of Potts spins can be formulated as a multi-linear function of the spins, as in
the case of Ising spins. For a linear variational Hamiltonian H0 =

∑
ia ciasia,

the thermal average of a spin component is

via ≡< sia >0=
e−

cia
T

∑
b e

cib
T

, (11)

and the normalization
∑

a via = 1 is obvious, leading to the interpretation of
via as the probability of spin i being in state a. The corresponding variational
free energy is defined by

Fv = H(v)− TSv = H(v) + T
∑

ia

via log(via). (12)

An extremal value is now defined by ∂Fv/∂via = λi, where λi is a Lagrange
multiplier for the constraint

∑
a via = 1. This yields

∂Fv

∂via
=

∂H

∂via
+ T + T log(via) = λi, (13)

and the resulting mean-field equations

via =
e−cia/T

∑
b e−cib/T

(14)

cia =
∂H(v)
∂via

. (15)

Assignment Spins

An assignment is a matching between two sets and can be encoded as an
assignment (or permutation) matrix. This is a matrix with (0,1) elements and
where each row and each column have exactly one element equal to one. An
element of value one then represents a matching between a row and a column
representing the two sets. In a mean-field formulation there will be weighted
averages of more than one spin, and this is represented by doubly stochastic
matrices defined by having nonnegative elements constrained to form row sums
and column sums equal to one.
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A number of difficulties compared to Ising and Potts spins emerge in the case
of assignment spins. First, the most general function of the spins is not multi-
linear in the spin components and hence it is not evident that the best vari-
ational Hamiltonian to be used is a linear one. Also there is no one-to-one
mapping from doubly stochastic matrices to a weighted sum of permutation ma-
trices. Consider for example the 3×3 matrix where all elements are equal to 1

3 ,
which is obviously a doubly stochastic matrix. It can represent the uniform av-
erage of the symmetric permutation matrices, 1

3

(
1 0 0
0 1 0
0 0 1

)
+ 1

3

(
0 1 0
0 0 1
1 0 0

)
+

1
3

(
0 0 1
1 0 0
0 1 0

)
, but equally well the uniform average of the antisymmetric per-

mutation matrices, 1
3

(
1 0 0
0 0 1
0 1 0

)
+ 1

3

(
0 1 0
1 0 0
0 0 1

)
+ 1

3

(
0 0 1
0 1 0
1 0 0

)
, or the uni-

form average of all possible permutations.

There is of course the possibility to encode assignments by Potts spins, where
each possible assignment represents an element. Then we are back with a more
computationally convenient formulation, but this is not very useful for large N
as there are N ! possible assignments, compared to the N2 elements used in a
permutation matrix encoding.

Assuming a linear Hamiltonian in the spin elements,

H =
∑

ia

ciasia (16)

the thermal averages can be written as

< sia >= via =
MiaPia

P
, (17)

where Mia = exp(−cia/T ) and P (Pia) is the permanent (sub-permanent) of
the matrix M . The permanent [6] of a matrix M is defined by

P =
N !∑
π

∏

i

Miπ(i), (18)

where π is a permutation and π(i) is the column matched to row i in permu-
tation π. The sub-permanent Pia is the permanent of the matrix where row i
and column a are removed.

This does not lead to simple mean-field equations for a nonlinear Hamiltonian,
and the peculiarities associated with assignment spins are discussed in paper
3.
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Combinatorial Optimization

Now it is time to introduce the group of problems to which the deterministic
annealing algorithm can be applied. One of the main contributions of this
section is the description of how these problems can be encoded as spin systems.
But first we start with an example to get a feeling for these kinds of problems.

Imagine a pile of (jigsaw) puzzle-pieces, and that the pieces may belong to
different puzzles. Your task is to decide which pieces to use and try to make a
complete puzzle. If you succeed it is easy to show as there is a puzzle in front
of you, but if you fail you cannot really tell whether there is no complete puzzle
among the pieces, or if you were just not able to find it.

This is the essence of the hard optimization problems studied in this thesis. A
combinatorial optimization (CO) problem [9] is defined by a number of discrete
variables and a cost associated with each possible state the variables can be in.
The goal is then to find the state with the lowest possible cost.

In some CO problems the cost consists of penalties from constraints on a subset
of variables that are not allowed to attain certain values at the same time. In
these problems the question is whether there are values for the variables that
fulfill all constraints. A positive answer to this question is easily proven by
showing the state that fulfills the constraints, but a negative answer is usually
much harder to prove. In other CO problems a cost is defined as a function
of the variable state and the goal is to find the lowest cost. Without loss
of generality the problem can be reformulated as a question of whether there
is a state with a cost lower than a certain value. Then again it is easy to
prove solvability by showing the state (and the cost connected to it), while
non-solvability usually is harder to prove.

Computer scientists have grouped different types of problems into different
classes depending on the difficulty of the problems [9]. Problems are more
tractable if there exists an algorithm that solves the problem in a time polyno-
mial in the size of the input, N (the number of variables, constraints,...). This
in contrast to problems where algorithms use exponential time in the problem
size. Problems with polynomial algorithms are in a class called P , while prob-
lems with exponential algorithms having the feature of an easy (polynomial
time) proof of a solution (as described above) are in a class called NP . As
the classes are defined by if there is an algorithm that solves the problem in
a polynomial time the question whether P = NP is still open, although most
people believe that there are problems in NP that are not in P . Further there
is a class of problems within NP that is called NP -complete. Any problem
in NP can be transformed in polynomial time to these problems. Hence NP -
complete problems are at least as hard as every other NP -problem, and more
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important: if any NP -complete problem is solved in an efficient way (for exam-
ple in polynomial time) all problems in NP can be solved using the algorithm.
NP -complete problems have hence attracted much attention by researchers
and the problems studied in this thesis are such problems. The practical use of
NP -complete problems is huge, and they appear in e.g. scheduling problems,
routing problems and VLSI construction.

Constraint Satisfaction Problems

In a constraint satisfaction problem the cost is connected to constraints of
subgroups of the variables not allowed to be in certain states simultaneously
and the aim is to find out whether there is a state where no constraint is
broken. Two NP -complete problems of this type are studied in this thesis.
The first problem is the SAT problem, which was the first problem that was
proven to be NP -complete. Actually we will discuss a form of SAT written
on a special form (conjunctive normal form) called a KSAT problem. There is
no limitation in studying only KSAT problems since any SAT instance can be
written in this form. The other problem studied is the graph coloring problem,
where discrete variables with more than two values are used.

KSAT

A KSAT problem [1] consists of N boolean (two-state) variables xi = (True, False)
and the constraints are built up from clauses of the type (ai or aj or ak), where
the literals a represent a boolean variable or its negation. A clause is broken if
all included literals are in the wrong state and fulfilled otherwise. A problem
consists of a number, M , of these clauses and all of them must be fulfilled for
a solution. The number of variables in each clause can be different and if it
is constant we name the problem 2SAT, 3SAT and so forth. An interesting
feature is that 2SAT is in P , while if there are three or more variables in each
clause, the problem is NP-complete. Two problems that appear quite similar
have totally different characteristics. While one of them is quite easy to solve,
the other one is notoriously hard to solve.

A suitable cost function can be formulated for each clause m, using Ising spins
(si = ±1) for the variables. It is defined as

Hm =
Km∏

i∈m

1
2
(1− Cmisi), (19)

where Km is the number of literals in the clause and the matrix C defines
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which variables appear in the clause. Cmi is 1 if xi is present in clause m, -1 if
its negation is, and 0 otherwise. The factor 1

2 (1 − Cmisi) becomes zero if the
correct version of a variable is present yielding Hm = 0, but if all variables are
wrong, Hm becomes one. The total cost is formulated as

H(s) =
M∑
m

Km∏

i∈m

1
2
(1− Cmisi), (20)

and it counts the number of broken clauses. This cost function can be written
as

H(s) = const +
N∑

i

hisi +
N∑

i

N∑

j

Jijsisj + . . . , (21)

and the resemblance of a spin system (eq. 1) is evident.

Graph Coloring

A special version of the graph coloring problem [9] is if you have a map of
the world and want to color the countries in such a way that two countries
with a common border have different colors. Of course this is a simple task
if there is an infinite palette of colors, but if there are only a small number
of colors available it might not be so trivial. A definition of the more general
problem is that there are N nodes with discrete variables, xi, that can have
C values, where C is the number of colors that can be used. Then nodes are
connected by L links and the variables on the connected nodes cannot have the
same value. If there are two connected nodes with the same variable value a
constraint is broken. The main difference from KSAT is that here the variables
are allowed to have more than two values, while the constraints are built up
by two variables. A graph coloring problem where two colors may be used is
special as it is solvable in polynomial time.

The penalty for a constraint between node i and node j can be defined, using
Potts spins s of size C, as

Hij =
C∑
c

sicsjc, (22)

and the total cost function is then

H(s) =
1
2

∑

ij

Jij

C∑
c

sicsjc =
1
2

∑

ij

Jijsisj , (23)
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where Jij is one if nodes i and j are connected and zero otherwise. This cost
again counts the number of constraints broken and is nothing but an anti-
ferromagnetic Potts spin system.

Finding Hard Instances

As discussed above the problem groupings are defined from the time complex-
ity of exact algorithms. It is always possible to find instances of NP -complete
problems that are easily solved and hence the definitions are for worst case
scenarios. It is then interesting to investigate problem instances that are par-
ticularly hard. Of course we want to use NP -complete problems, and thus this
thesis deals with 3SAT and 3-coloring. But also depending on the number of
constraints in comparison with the number of variables, differences in difficulty
are apparent [4, 7]. A common way to test an algorithm is to create a testbed
of random instances from a defined rule of generating problems. For example
random instances of graph coloring can be defined by generating L distinct
links connecting two random nodes out of the N available. The average diffi-
culty of the problems can be related to the parameter γ = 2L

N . The possibility
of a graph being 3-colorable decreases with the number of links added, but the
decision problem, where we ask whether a graph is 3-colorable, is most difficult
around a value of γ where about half of the generated graphs are colorable. If
the number of links are few it is easy to show that a graph is 3-colorable, and
if the number of links are large it is easy to find a contradiction among the
constraints.

This kind of behavior is apparent for a number of combinatorial optimization
problems, and in this thesis the behavior of the algorithms are explored in the
region where the hardest problems appear.

Nonlinear Assignment

In an assignment problem two sets of entities are to be mapped onto each
other in an one-to-one fashion. An example is if there are N taxi cars that
are given N customers and the distance between each car and each customer
is known. The goal is to assign a customer to each car in such a way that
the total distance traveled by the cars to the customers is as small as possible.
This is a linear assignment problem as the cost (total distance) is a sum of
the distances each individual car has to travel. A linear assignment problem
is solvable in polynomial time. A classic example of a nonlinear assignment
problem is the traveling salesman problem (TSP) [9], where a person is to visit



Deterministic Annealing 11

a number of cities and come back to the starting point in such a way that each
city is visited exactly once and the total distance is to be minimized. Here
each city can be mapped onto the position in the route. The cost is the total
distance of the route and the cost of a city being in a certain place in the route
depends on which cities that come before and after in the route. This is a
quadratic assignment problem, which is NP -complete. Using an assignment
spin {sia}, where i is the position in the route and a is the city, a cost function
can be defined as

H(s) =
N∑

iab

Dabsiasi+1b, (24)

where D is the distance matrix between cities. If city a is chosen at position i
in the route and city b is chosen at position i+1, Dab is added to the cost, and
the total cost will be the sum of the distances in the route. Position N + 1 in
the route is the same position 1 (i.e. periodic boundaries).

Deterministic Annealing

In the previous section cost functions were defined as Hamiltonians of spin
systems, and the corresponding optimization problem is solved by finding the
global minimum of these functions, but as these spin systems all have a very
rugged energy landscape this is not an easy task. If an algorithm just tries
to minimize the energy in each step (by e.g. gradient descent in each spin
variable), it will most probably get stuck in a local minimum. Some kind of
approach to avoid local minima as much as possible must be used.

An algorithm that is often used is simulated annealing [5], where an artificial
temperature is introduced to simulate that the system is in a heat bath. In
this algorithm the spin system evolves by simple random spin flips which are
accepted/rejected in such a way that the Boltzmann distribution is generated.
The algorithm starts at a high temperature, where almost all states are equally
probable and hence most flips are accepted and the number of visited states
is large. Then the temperature is slowly lowered (annealed) and the algorithm
favors low energy states more and more. If the annealing is performed slowly
enough, the algorithm will find the global minimum with a probability one.
However this is too slow to be practically useful, and simulated annealing is
most often used as a heuristic algorithm, i.e. an algorithm that finds a low
energy state but does not prove that it is the global minimum.

The deterministic annealing (mean-field annealing) [11] is somewhat related to
simulated annealing, but it differs in that instead of a stochastic update with
rejection, it has a deterministic update scheme for the spin averages v, based on



12 Introduction

the mean-field equations. It starts at a high temperature, where the mean-field
equations have a fixed point for all spin values equally probable, then the spin
variables, v, are updated while annealing the temperature, and energetically
more favorable states become more probable. At low temperatures the spins
saturate, v → s, and freeze in a locally stable state which is proposed as a
solution. At high temperature the energy landscape can be seen to be more
smooth and local minima are avoided. The feature of starting in ”all” states
at a high temperature, and then feeling its way down to more energetically
favorable states is appealing in contrast to most optimization algorithms that
starts in one state and then searches the neighborhood of this state. The
mean-field annealing algorithm is described in figure 1. For problems encoded
by assignment spins, some complications appear, as discussed in paper 3.

• Initiate the mean-field spins v to a value close to uniform (i.e. 0 for
Ising spins and 1/K for K-state Potts spins) with a small random
noise, and T to a high value.

• Repeat the following (a sweep), until the mean-field variables have
saturated, i.e. v has become close to s:

– Update each spin according to the mean-field equations.

– Decrease T slightly (typically by a few percent).

• Extract the resulting solution candidate, using vi → si, where si

is the spin value closest to vi.

Figure 1: A mean-field annealing algorithm.

Information-Based Hamiltonian

For constraint satisfaction problems, the Hamiltonian is built up only from
penalties from broken constraints. As a single broken constraint is enough for
the problem to be unsolved it might be useful to use a nonlinear penalty so that
constraints that are nearly broken in the mean-field spin formulation receives
more attention. This is the inspiration for formulating a nonlinear cost function
based on ideas from information theory.

The probabilities of different spin states can be formulated by the mean-field
variables. In the case of Potts spins the probability, p(sa) of a spin s being in
the state a is given by the corresponding component va. For Ising spins the
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probabilities can be encoded as ps=±1 = 1
2 (1 ± v). The average information

resource residing in a spin is given by

S = −
∑

i

pi log(pi), (25)

where pi is the probability of the spin being in state i. In the case of an Ising
spin, a completely random spin (ps=±1 = 1

2 ) yields S = log(2), representing an
unused resource of one bit of information. A definite value of the spin (s = ±1)
yields S = 0, and no information is available. The average information available
in all spins is then equivalent to the entropy for a spin system.

As the probabilities of different spins are independent in the mean-field formu-
lation, the expected amount of information needed to satisfy a constraint can
be formulated as a simple function of the mean-field spins

Im = − log(P (m)
sat (v)) = − log(1− P

(m)
unsat(v)). (26)

The probability, P
(m)
unsat(v), of a constraint m being broken is given by Hm(v)

as defined in equations (19,22) for KSAT and graph coloring, and hence

Im = − log(1−Hm). (27)

In analogy with the free energy for a system with a cost function defined by a
Hamiltonian a new variational information-based “free energy” can be formu-
lated as

F = I(v)− TS(v), (28)

and the deterministic annealing algorithm can be adjusted for this F . This free
energy can be seen as a balance between information residing in the spins and
information “needed” to satisfy the constraints, and the artificial temperature,
T , is a factor determining the weight between the two terms. At a high tem-
perature the spins are holding as much information as possible, while at low
temperatures the clauses become more and more important to satisfy. As I is
built up from logarithms, the value tends to infinity when an argument tends
to zero (the constraint is broken). Hence some care has to be taken to yield
smooth dynamics of the spin during update. Instead of using the derivatives
of I with respect to a spin v, a difference update is used [8], which for Ising
spins yields

∂H

∂vi
→ ∆I

∆vi
=

1
2

(
I|vi=1 − I|vi=−1

)
, (29)

and for Potts spins,

∂H

∂via
→ ∆I

∆via
=

(
I|via=1

)
+ const, (30)
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where the constant is a-independent and hence does not affect the update of
the spin. With these adjustments, the mean-field annealing algorithm can be
used as described above in figure 1.

Phylogeny Reconstruction

We now leave the world of combinatorial optimization and introduce another
problem where the variational approach is practicable.

It is a common assumption that existing species of today all descend from a
single ancestor, and that differences have emerged via evolution. An important
problem is then to reconstruct this phylogenetic history.

The study of molecular sequences such as DNA has become the main tool used
to reconstruct evolutionary history [12]. The key feature of the algorithms
is to use the information found in the differences in homologous sequences
from different species. This information is then used when trying to infer the
phylogenetic relationships between the species. When an evolutionary tree is
defined, one assumes that branching events occur where populations of a species
are split into two or more groups that no longer interacts. In between branch
points the different species evolve independently and in the end we have the
differentiated species now present. The goal in phylogeny reconstruction is to
find the topology (branching pattern) and the geometry (evolutionary distances
between the branch points) for the most probable tree. Several algorithms have
been developed to infer evolutionary trees from DNA sequences [12]. In this
thesis a variational approximation to one of the most theoretically appealing
methods, maximum likelihood, is presented.

Maximum Likelihood

A common way of describing the world is to introduce a model that predicts the
behavior of nature, and usually experimental data is used to tune the model.
The aim is to maximize the probability, P (M |S), of a model, M , given the data,
S, with respect to all possible models. This probability is often impossible to
find out, but using Bayes’ theorem it can be seen to be related to the likelihood,
P (S|M), which is computable for a given model. Bayes’ theorem is defined by

P (M |S) =
P (M)P (S|M)

P (S)
, (31)

where P (S) can be seen as a model independent normalization factor and does
not interfer with the model optimization. P (M) is the prior, and it is often
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suppressed when optimizing the model. This is justified if the data set is large,
as the effect of the prior then is small compared to the likelihood, or if all models
are considered equally probable, yielding a constant prior. The likelihood is
then used as a measure of performance for the model. It is maximized by
adjusting the parameters of the model to find the best possible fit to the data.

In this thesis maximum likelihood will be used to fit a model for phylogenetic
trees to DNA-sequence data [2]. An evolutionary model consists of a model for
sequences mutation and for the branching pattern. The model for branching is
often suppressed by optimizing with respect to the mutation model for a fixed
topology, and then comparing the result for all possible topologies.

Mutation Models

A DNA sequence is built up of the four nucleotides adenine (A), cytosine (C),
guanine (G) and thymine (T). In the models studied here, each site in the se-
quence is assumed to evolve independently from the others, but with a common
stochastic model. The model used here defines probabilities of substitutions
between nucleotides, while insertions-deletions are not considered. It is as-
sumed that the substitutions follow a stationary stochastic process and hence
the frequencies of different nucleotides are constant. It is also assumed that the
model is time reversible, and then no actual time direction is present leading to
an unrooted tree with evolutionary “distances” between the nodes (see figure
2).

Figure 2: An unrooted phylogenetic tree with 5 leaves (species) and 3 ancestor
nodes.

Among such models, the Jukes-Cantor (JC) model is the simplest. It assumes
that each nucleotide is equally probable and substitutions between nucleotides
are symmetric. It defines the substitution probability between nucleotides i
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and j as

Tij =
1− e−t

K
+ e−tδij =

1− a

K
+ aδij , (32)

where K is the number of different nucleotides (four for DNA), t is the evolu-
tionary distance, and δij equals 1 if i = j and 0 otherwise. There is a single
parameter a = e−t for a link between two nodes. If t → 0, Tij becomes the iden-
tity matrix and no substitutions appear, while when t → ∞ the substitution
to any nucleotide (including itself) is equally probable.

Calculating the Likelihood

Assume that a tree topology and aligned homologous sequences (figure 3) for N
species are given. At each site in the sequences there is an observed combination
of nucleotides S = (s1, s2, . . . , sN ) for the species, and an unknown combination
of nucleotides I = (i1, ...iN−2) for the internal (ancestor) nodes. The single-
site probability for the combination of nucleotides (SI) can be calculated for a
given model. It can be done by starting from a proper nucleotide probability
at one node (1/K for JC), defined as a root, and then propagate along the
links using the substitution probabilities, T , until the observed nucleotides at
the leaves are reached. For JC the probability of the nucleotide combination
SI becomes

PSI =
1
K

∏

[kl]

(
(1− a[kl])

K
+ a[kl]δij

)
, (33)

where [kl] denotes the link between node k and l. The total single-site likeli-
hood, PS , is given by summing over the unknown internal nucleotides

PS =
∑

I

PSI . (34)

The total likelihood is then the product of the PS for the independent sites of
the sequences. Two sites where exactly the same nucleotides are observed at
the leaves will contribute equally to the likelihood and hence a grouping over
distinct S can be used. An alignment of N sequences of length M can be seen
as M independent experiments that results in a distribution of the outcome as

QS =
MS

M
(35)

where MS is the number of times S is present in the aligned sequences. The
probability of the observed multiplicities MS is given by

∏
S PMS

S multiplied
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by the combinatorial factor (M !/
∏

S MS !) that for long sequences can be ap-
proximated by

∏
S Q−MS

S , yielding a normalized likelihood of

L =
∏

S

(
PS

QS

)MQS

. (36)

Note that the normalization is model independent and that for this definition,
L equals one if the model fits perfectly to data (P = Q), and a value less
than one otherwise. It is more convenient to work with the logarithm of the
likelihood and hence the free energy per site, F , is defined as

F =
− log(L)

M
=

∑

S

QS log
(

QS

PS

)
. (37)

The maximization of L corresponds to a minimization of F , and F is a convex
nonnegative function which equals zero only if P = Q.

H ...CCCATGGTGGGAGGAGAGACTGAG...
C ...CCCATGGTGGCAGGAGAGACTGAG...
G ...CCCATGGTAGGAGGAGAGACTGAG...
O ...CCTATGGTGGGAGGAGAGACGGAG...

Figure 3: Part of aligned sequences from human (H), chimpanzee (C), gorilla
(G) and orangutan (O). At each site a combination S = (sH , sC , sG, sO) is
observed.

An optimal F with respect to a single link parameter a is found at ∂F/∂a = 0,
which yields an expression of a solvable by using some iterative scheme, e.g.
the Newton-Raphson method.

The link parameters are updated one at a time until convergence, and an
(locally) optimal F is found along with the optimal geometry (link parameters).
Then free energies obtained from different topologies are compared and the one
with lowest F is chosen as the most likely topology.

A Variational Approach to Phylogeny Reconstruc-
tion

The optimization of the link parameters in the maximum likelihood approach
requires an iterative procedure. In this section a variational nucleotide distri-
bution for the unknown ancestors is introduced and a scheme for optimizing
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the parameters of the model and the variational distribution is described. For
JC, the parameters are all updated using explicit equations.

If the sequences of the ancestors were known we would use

F̂ =
∑

IS

QIS log
(

QIS

PIS

)
(38)

to optimize the model parameters. Using QIS = QSQI|S we can rewrite this
as

F̂ = F +
∑

S

QS

∑

I

QI|S log
(

QI|S
PI|S

)
= F +

∑

S

QSGS , (39)

where GS is defined by

GS =
∑

I

QI|S log
(

QI|S
PI|S

)
, (40)

and it is of the form of equation (5) describing the relation between the varia-
tional and the Boltzmann distributions for a system in a heat bath. G(S) can
be interpreted as the variational free energy for the approximation of PI|S by
QI|S . A perfect fit yields GS = 0 and then F̂ = F .

A possibility is to assume that QI|S is factorized over the N − 2 internal nodes

QI|S =
N−2∏

k

vkik|S , (41)

where k is the label for internal nodes and ik is the nucleotide at the node. This
is equivalent to a mean-field approximation that is optimized by the mean-field
equations for each v. Using this formulation, F̂ evaluates to

F̂ = const +
∑

S

QS

∑

k

∑

i

vki|S log vki|S −
∑

S

QS

∑

[kl]

∑

ij

vki|Svlj|S log T
[kl]
ij ,

(42)
and it is to be optimized with respect to the link parameters (included in T [kl])
for the model and with respect to each vkik|S . For each S, the variational
parameters, vk|S , are used to optimize the relevant part of F̂ ,

∑

k

∑

i

vki|S log(vki|S)−
∑

[kl]

vki|Svlj|S log
(
T

[kl]
ij

)
, (43)

which is done using mean-field equations. Optimality with respect to a single
link parameter a[kl]is given by ∂F̂/∂a[kl] = 0 and the relevant part of F̂ is

−
∑

S

QS

∑

ij

vki|Svlj|S log T
[kl]
ij = −

∑

ij

< vki|Svlj|S >Q log T
[kl]
ij , (44)
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where <>Q is a weighted average in the QS distribution.

For the Jukes-Cantor model, this results in explicit updating equations for the
variational parameters as well as for the model parameters. The link parame-
ters a are updated according to

a[kl] =
K < vkvl >Q −1

K − 1
, (45)

for a link between nodes l and k, and the variational parameters for internal
nodes are updated using the mean-field equation

vki ∝
∏

l∈NN

(
1 + (K − 1)a[kl]

1− a[kl]

)vjk

, (46)

where NN indicates the neighboring nodes. The equations (45,46) are the
core in a variational maximum likelihood algorithm to infer the geometry (link
lengths) for a given topology and assuming a JC model. It updates link param-
eters and variational parameters iteratively, until convergance, and an optimal
free energy F is found (along with an optimal geometry). Again free energies
of different topologies are compared to find the most likely topology.

The Papers

In this section a short introduction is given to the papers presented in the
second part of this thesis. The first three papers deal with the deterministic
annealing algorithm. In the first two, constraint satisfaction problems are ap-
proached, and in the third, nonlinear assignment. In paper IV, the variational
approximation to maximum likelihood is introduced.

Paper I

In this paper the information-based deterministic annealing algorithm for Ising
spins is introduced. Differences compared to the conventional mean-field ap-
proach are discussed. It is numerically explored on a testbed of K-SAT prob-
lems and it is shown to outperform the conventional mean-field annealing algo-
rithm. The performance of the information-based annealing algorithm is seen
to be comparable to the KSAT-dedicated heuristic Gsat+Walk.
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Paper II

The information-based deterministic annealing algorithm is extended to be
able to deal with constraint satisfaction problems where the variables are non-
Boolean. The Potts spin encoding is employed and the numerical experiments
are on a testbed of graph coloring problems. The performance is compared to
those of a biased simulated annealing algorithm, a problem-dedicated simple
heuristic, DSATUR, and the conventional mean-field annealing algorithm. The
information-based deterministic annealing algorithm and the biased simulated
annealing algorithm are shown to perform best.

Paper III

This paper deals with nonlinear assignment problems, and a proper variational
approach, where the problem cost function is approximated by a cost linear in
the assignment matrices, is investigated. It leads to an iterative scheme to min-
imize the variational free energy, which can be used in a deterministic annealing
algorithm. It uses a time exponential in the size of the assignments, and its
practical usefulness is then limited (at least for single-assignment problems).
Also improvements to existing Potts-based mean-field-inspired heuristics are
proposed, and the traveling salesman problem is used to numerically confirm
this.

Paper IV

In this paper the variational approximation scheme for maximum likelihood is
introduced. It is applied to phylogeny reconstruction from DNA-sequences. It
is tested on artificial problems of different sequence lengths (including infinite
length). The performance is comparable to that of the original maximum
likelihood approach when the sequences are relatively similar. For dissimilar
sequences the variational method deteriorates somewhat. The method is also
applied to real DNA-sequences from primates and is shown to yield a result
consistent with those obtained by standard algorithms.
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A novel artificial neural network approach to constraint satisfaction problems
is presented. Based on information-theoretical considerations, it differs from a
conventional mean-field approach in the form of the resulting free energy. The
method, implemented as an annealing algorithm, is numerically explored on a
testbed of K-SAT problems. The performance shows a dramatic improvement
to that of a conventional mean-field approach, and is comparable to that of
a state-of-the-art dedicated heuristic (Gsat+Walk). The real strength of the
method, however, lies in its generality – with minor modifications it is appli-
cable to arbitrary types of discrete constraint satisfaction problems.
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1.1 Introduction

In the context of difficult optimization problems, artificial neural networks
(ANN) based on the mean-field approximation provides a powerful and versatile
alternative to problem-specific heuristic methods, and have been successfully
applied to a number of different problem types [5, 9].

In this paper, an alternative ANN approach to combinatorial constraint satis-
faction problems (CSP) is presented. It is derived from a very general information-
theoretical idea, which leads to a modified cost function as compared to the
conventional mean-field based neural approach.

A particular class of binary CSP that has attracted recent attention is K-SAT
[8, 2]; many combinatorial optimization problems can be cast in K-SAT form.
We will demonstrate in detail how to apply the information-based ANN ap-
proach, to be referred to as INN, to K-SAT as a modified mean-field annealing
algorithm.

The method is evaluated by means of extensive numerical explorations on suit-
able testbeds of random K-SAT instances. The resulting performance shows
a substantial improvement as compared to that of the conventional ANN ap-
proach, and is comparable to that of a good dedicated heuristic – Gsat+Walk
[10, 3].

The real strength of the INN approach lies in its generality – the basic idea
can easily be applied to arbitrary types of constraint satisfaction problems, not
necessarily binary.

1.2 K-SAT

A CSP amounts to determining whether a given set of simple constraints over
a set of discrete variables can be simultaneously fulfilled.

Most heuristic approaches to a CSP attempt to find a solution, i.e. an assign-
ment of values to the variables consistent with the constraints, and are hence
incomplete in the sense that they cannot prove unsatisfiability. If the heuristic
succeeds in finding a solution, satisfiability is proven; a failure, however, does
not imply unsatisfiability.

A commonly studied class of binary CSP is K-SAT. A K-SAT instance is
defined as follows: For a set of N Boolean variables xi, determine whether an
assignment can be found such that a given Boolean function U evaluates to
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True, where U has the form

U = (a11ORa12OR . . . a1K) AND (a21OR . . . a2K) AND . . . AND (aM1OR . . . aMK) , (1.1)

i.e. U is the Boolean disjunction of M clauses, indexed by m = 1 . . . M , each
defined as the Boolean conjunction of K simple statements (literals) amk, k =
1 . . . K. Each literal represents one of the elementary Boolean variables xi or
its negation ¬xi.

For K = 2 we have a 2-SAT problem; for K = 3 a 3-SAT problem, etc. If
the clauses are not restricted to have equal length the problem is referred to
as a satisfiability problem (SAT). There is a fundamental difference between
K-SAT problems for different values of K. While a 2-SAT instance can be
exactly solved in a time polynomial in N , K-SAT with K ≥ 3 is NP-complete.
Every K-SAT instance with K > 3 can be transformed in polynomial time into
a 3-SAT instance [8]. In this paper we will focus on 3-SAT.

1.3 Conventional ANN Approach

1.3.1 ANN Approach to CSP in General

In order to apply the conventional mean-field based ANN approach as a heuris-
tic to a Boolean CSP problem, the latter is encoded in terms of a non-negative
cost function H(s) in terms of a set of N binary (±1) spin variables, s =
{si, i = 1, . . . , N}, such that a solution corresponds to a combination of spin
values that makes the cost function vanish.

The cost function can be extended to continuous arguments in a unique way,
by demanding it to be a multi-linear polynomial in the spins (i.e. containing
no squared spins). Assuming a multi-linear cost function H(s), one considers
mean-field variables (or neurons) vi ∈ [−1, 1], approximating the thermal spin
averages 〈si〉 in a Boltzmann distribution P (s) ∝ exp(−H(s)/T ). They are
defined by the mean-field equations

vi = tanh(ui/T ) (1.2)

ui = −∂H(v)
∂vi

, (1.3)

where ui is referred to as the local field for spin i. Here, T is an artificial
temperature and v denotes the collection of mean-field variables.

The equations (1.2,1.3) can be seen as conditions for a local minimum of the
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mean-field free energy F (v),

F (v) = H(v)− TS(v) , (1.4)

where S(v) is the spin entropy,

S(v) = −
∑

i

1 + vi

2
log

(
1 + vi

2

)
− 1− vi

2
log

(
1− vi

2

)
. (1.5)

The conventional ANN algorithm consists in solving the mean-field equations
(1.2, 1.3) iteratively, combined with annealing in the temperature. A typical
algorithm is described in figure 1.1.

• Initiate the mean-field spins vi to random values close to zero, and
T to a high value.

• Repeat the following (a sweep), until the mean-field variables have
saturated (i.e. become close to ±1):

– For each spin, calculate its local field from (1.3), and update
the spin according to (1.2).

– Decrease T slightly (typically by a few percent).

• Extract the resulting solution candidate, using si = sign(vi).

Figure 1.1: A mean-field annealing ANN algorithm.

1.3.2 Application to K-SAT

When applying the ANN approach to K-SAT the Boolean variables are encoded
using ±1-valued spin variables si, i = 1 . . . N , with si = +1 representing True,
and si = −1 False. In terms of the spins, a suitable multi-linear cost function
H(s) is given by the following expression,

H(s) =
M∑

m=1

∏

i∈Mm

1
2

(1− Cmisi) , (1.6)

where Mm denotes the set of spins involved in the mth clause. H(s) evaluates
to the number of broken clauses, and vanishes iff s represents a solution. The
M × N matrix C defines the K-SAT instance: An element Cmi equals +1
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(or −1) if the mth clause contains the ith Boolean variable as is (or negated);
otherwise Cmi = 0.

The cost function (1.6) defines a problem-specific set of mean-field equations,
(1.2,1.3), in terms of mean-field variables vi ∈ [−1, 1]. In the mean-field an-
nealing approach (figure 1.1), the temperature T is initiated at a high value,
and then slowly decreased (annealing), while a solution to (1.2,1.3) is tracked
iteratively. At high temperatures there will be a stable fixed point with all
neurons close to zero, while at a low temperature they will approach ±1 (the
neurons have saturated) and an assignment can be extracted.

For the K-SAT cost function (1.6) the local field ui in (1.3) is given by

ui =
∑
m

1
2
Cmi

∏
j∈Mm

j 6=i

1
2

(1− Cmjvj) , (1.7)

which, due to the multi-linearity of H does not depend on vi; this lack of
self-coupling is beneficial for the stability of the dynamics.

1.4 Information-Based ANN Approach: INN

1.4.1 The Basic Idea

For problems of the CSP type, we suggest an information-based neural network
approach, based on the idea of balance of information, considering the variables
as sources of information, and the constraints as consumers thereof.

This suggests constructing an objective function (or free energy) F of the gen-
eral form

F = const.× (information demand)− const.× (available information) , (1.8)

that is to be minimized. The meaning of the two terms can be made precise in
a mean-field-like setting, where a factorized artificial Boltzmann distibution is
assumed, with each Boolean variable having an independent probability to be
assigned the value True. We will give a detailed derivation below for K-SAT.
Other problem types can be treated in an analogous way. We will refer to this
type of approach as INN.
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1.4.2 INN Approach to K-SAT

Here we describe in detail how to apply the general ideas above to the specific
case of K-SAT.

The average information resource residing in a spin is given by its entropy,

S(si) = −Psi=1 log Psi=1 − Psi=−1 log Psi=−1 , (1.9)

where P are probabilities. If the spin is completely random, Psi=1 = Psi=−1 =
1
2 and S(si) = log(2), representing an unused resource of one bit of information.
If the spin is set to a definite value (si = ±1), no more information is available
and S(si) = 0.

For a clause the interesting property is the expected amount of information
needed to satisfy it. For the mth clause, this can be estimated as

Im = − log P sat
m = − log

(
1− Punsat

m

)
, (1.10)

in terms of the probability P sat
m for the clause to be satisfied in a given proba-

bility distribution for the spins.

Of the 2K distinct states available to the K spins appearing in the clause,
only one corresponds to the clause being unsatisfied. Then, for a totally unde-
termined clause (all K spins having random values), we have Punsat

m = 2−K ,
yielding Im = − log

(
1− 2−K

)
. For a definitely satisfied clause, on the other

hand, we must have Punsat
m = 0, giving Im = 0. Finally, a broken clause

corresponds to Punsat
m = 1, leading to Im →∞.

Assuming a mean-field-like probability distribution, with each spin obeying
independent probabilities

Psi=±1 =
1± vi

2
, (1.11)

in terms of mean-field variables vi = 〈si〉 ∈ [−1, 1], the probabilities used above
for the clauses become

Punsat
m =

∏

i∈Mm

1
2

(1− Cmivi) . (1.12)

The unused spin information is given by the entropy S of the spins (eq. (1.5))
and the information I needed by the clauses is

I(v) =
M∑

m=1

− log

(
1−

∏

i∈Mm

1
2

(1− Cmivi)

)
. (1.13)
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We now have the necessary prerequisites to define an information-based free
energy, which we choose as F (v) = I(v)−TS(v) (in analogy with ANN), which
is to be minimized. Demanding that F have a local minimum with respect to
the mean-field variables yields equations similar to the mean-field equations
(1.2,1.3), but with H(v) replaced by I(v):

ui = − ∂I

∂vi
. (1.14)

Note that for discrete arguments, vi = ±1, the infomation demand I will be
infinite for any non-solving assignment.

1.4.3 Algorithmic Details

Based on the analysis above, we propose an information-based annealing algo-
rithm similar to mean-field annealing, but with the multi-linear cost function
H (1.6) replaced by the clause information I (1.13).

Note that the contribution Im to I from a single clause m is a simple function
of the corresponding contribution Hm to H,

Im = − log (1−Hm) . (1.15)

As a result, the effective cost function I is not multilinear, and measures have
to be taken to ensure stability of the dynamics. The resulting self-couplings
can be avoided by instead of the derivative in (1.14) using the difference,

ui = −1
2

(
I|vi=1 − I|vi=−1

)
, (1.16)

which coincides with the derivative for a multilinear I [7].

The resulting INN annealing algorithm is summarized in figure 1.2. At high
temperatures, information is expensive, and the neurons stay fuzzy, vi ≈ 0.
As T is decreased, information becomes cheaper and the more useful neurons
begin to saturate. As T → 0, all neurons are eventually forced to saturate,
yielding a definite spin state, vi ≈ si = ±1.
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1. Choose a suitable high initial temperature T , such that the equi-
librium neurons are close to zero.

2. Do a sweep: Update all neurons according to (1.2,1.16).

3. Lower the temperature T by a fixed factor µ.

4. If the stop-criteria are not met, repeat from 2.

5. Extract a solution by means of si = sign(vi).

A typical µ value is 0.95 - 0.99, and suitable stop-criteria are that all
neurons are either saturated (|vi| > 0.99) or redundant (|vi| < 0.01).

Figure 1.2: The INN annealing algorithm for K-SAT.

1.5 Numerical Explorations

1.5.1 Testbeds

For performance investigations, we have considered two distinct testbeds. One
consists of uniform random K-SAT problems with N and α = M/N fixed ([1]).
For every problem instance, each of the M clauses is independently generated
by chosing at random a set of K distinct variables (among the N available).
Each selected variable is negated with probability 1

2 .

For this ensemble of problems, the fraction unsatifiable problems increases with
the parameter α. In the thermodynamic limit (N →∞) there is a sharp satis-
fiability transition at a K-dependent critical α-value α

(K)
c [4, 6]. For problems

where α < α
(K)
c almost all generated problems are satisfiable and for α > α

(K)
c

almost all are unsatisfiable. For 3-SAT, αc ≈ 4.25 [1, 6].

We have used a set of N -values between 100 and 2000, and for each N a set
of α-values between 3.7 and 4.3. For each N and α, 200 problem instances are
generated.

In addition, testbeds consisting purely of satisfiable instances are useful to
gauge the efficiency of a heuristic. Such a testbed can be generated by filter-
ing out unsatisfiable instances (using a complete (exact) algorithm) from the
uniform random distribution described above.

For a second testbed, we have collected a set of instances of this type from



1.5 Numerical Explorations 33

SATLIB1, consisting in satisfiable random problems for different N between 20
and 250, with α fixed close to αc. For natural reasons, this testbed does not
include very large N .

1.5.2 Comparison Algorithms

To gauge the performance of the INN algorithm, we have in addition to the
conventional ANN algorithm also applied a state-of-the-art dedicated heuristic
to our testbeds. A wealth of algorithms has been tested on SAT problems. For
a survey, see e.g. [3]. A local search method proven to be competitive is the
gsat+walk algorithm which we will use as a second reference algorithm.

Gsat+walk starts with a random assignment and then uses two types of local
moves to proceed. A local move consists in flipping the state of a single variable
between True/False. The first type of move is greedy; the flip that increases
the number of satisfied clauses the most is chosen. The second type of move
is a restricted random walk move. A clause among those that are unsatisfied
is chosen at random, and then a randomly chosen variable in this clause is
flipped.

1.5.3 Implementations details

In order to have a fair comparison of performances, we have chosen the param-
eter values such, that the three algorithms use approximately equal CPU time
for each problem size.

ANN

For ANN a preliminary initial temperature of 3.0 is used, which is dynamically
adjusted upwards until the neurons are close to zero (

∑
i v2

i < 0.1N), in order
to ensure a start close to the high-T fixed point.

The annealing rate is set to 0.99. At each temperature up to 10 sweeps are
allowed in order for the neurons to converge, as signalled by the maximal change
in value for a single neuron being less than 0.01. At every tenth temperature
value, the cost function is evaluated using the signs of the mean-field variables,
si = sign(vi); if this vanishes, a solution is found and the algorithm exits.
If no solution has been found when the temperature reaches a certain lower

1http://www.informatik.tu-darmstadt.de/AI/SATLIB
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bound (set to 0.1), the algorithm also exits; at that temparature, most neurons
typically will have stabilized close to ±1 (or occasionally 0). Neurons that wind
up at zero are those that are not needed at all or equally needed as ±1.

INN

For the INN approach, the same temperature parameters as in ANN are used
except for the low T bound, which is set to 0.5. Because of the divergent nature
of the cost function I (1.13) and the local field ui (1.16), extra precaution has
to be taken when updating the neurons – infinities appear when all the neurons
in a clause are ±1 with the wrong sign: vi = −Cmi. When calculating ui, the
infinite clause contributions are counted separately. If the positive (negative)
infinities are more (less) numerous, vi is set to +1 (-1); otherwise, vi is randomly
set to ±1 if infinities exist but in equal numbers, else the finite part of ui is
used.

This introduces randomness in the low temperature region if a solution has not
been found; the algorithm then acquires a local search behaviour increasing its
ability to find a solution. In this mode the neurons do not change smoothly
and the maximum number of updates per temperature sweep (set to 10) is
frequently used, which explains why INN needs more time than the conventional
ANN for difficult problem instances. Performance can be improved, at the cost
of increasing the CPU time used, with a slower annealing rate and/or a lower
low-T bound. Restarts of the algorithm also improves performance.

gsat+walk

The source code for gsat+walk can be found at SATLIB 2. We have attempted
to follow the recommendations in the enclosed documentation for parameter
settings. The probability at each flip of choosing a greedy move instead of a
restricted random walk move is set to 0.5. We have chosen to use a single
run with 200 ×N flips per problem, instead of several runs with less flips per
try, since this appears to improve overall performance. Making several runs or
using more flips per run will improve performance at the cost of an increased
CPU consumption.

2http://www.informatik.tu-darmstadt.de/AI/SATLIB
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1.5.4 Results

Here follow the results from our numerical investigations for the two testbeds.
All explorations have been made on a 600 MHz AMD Athlon computer running
Linux.

The results from INN, ANN and Gsat+Walk for the uniform random testbed
are summarized in figures 1.3, 1.4, and 1.5.

In figure 1.3 the fraction of the problems not satisfied by the separate algorithms
(fU ) is shown as a function of α for different problem sizes N . The three
algorithms show different transitions in α above which they fail to find solutions.
For INN and gsat+walk the transition appears slightly beneath the real αc,
while for ANN the transition is situated below α = 3.7.
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Figure 1.3: Fraction unsatisfied problems (fU ) versus α for ANN (A), INN (B)
and gsat+walk (C), for N = 100 (+), 500 (×), 1000 (∗), 1500 (�) and 2000
(�). The fractions are calculated from 200 instances; the error in each point is
less than 0.035.

The average number of unsatisfied clauses per problem instance (H) is pre-
sented in figure 1.4 for the three algorithms. H is shown as a function of α
for different N . This can be used as a performance measure also when an
algorithm fails to find solutions 3.

The average CPU-time consumption (t) is shown in figure 1.5 for all algorithms.
The CPU-time is presented as a function of N for different α in order to show
how the algorithms scale with problem size.

3Finding a maximal number of satisfied clauses for a SAT instance is referred to as
MAXSAT [8].
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Figure 1.4: Number of unsatisfied clauses H per instance versus α, for ANN
(A), INN (B) and gsat+walk (C), for N = 100 (+), 500 (×), 1000 (∗), 1500
(�) and 2000 (�). Average over 200 instances.
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Figure 1.5: Log-log plot of used CPU-time t (given in seconds) versus N , for
ANN (A), INN (B) and gsat+walk (C), for α = 3.7 (+), 3.9 (×), 4.1 (∗) and
4.3 (�). N ranges from 100 to 2000. Averaged over 200 instances.

The results (fU , H, t) for the solvable testbed for all three algorithms are
summarized in table 1.1.

1.5.5 Discussion

The first point to be made is the dramatic performance improvement in INN
as compared to ANN. This is partly due to the divergent nature of the INN
cost function I, leading to a progressively increased focus on the neurons in-
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num ANN INN gsat+walk
N M inst. fU H t fU H t fU H t

20 91 1000 0.23 0.25 0.01 0.08 0.08 0.01 0.00 0.00 0.01
50 218 1000 0.61 0.76 0.04 0.19 0.21 0.05 0.01 0.01 0.02
75 325 100 0.84 1.30 0.07 0.41 0.44 0.11 0.05 0.05 0.05

100 430 1000 0.84 1.49 0.09 0.32 0.36 0.13 0.07 0.07 0.09
125 538 100 0.88 1.72 0.11 0.39 0.41 0.18 0.10 0.10 0.13
150 645 100 0.89 2.07 0.14 0.34 0.40 0.23 0.16 0.17 0.19
175 753 100 0.98 2.60 0.17 0.51 0.61 0.39 0.27 0.28 0.33
200 860 100 1.00 3.06 0.20 0.60 0.81 0.52 0.32 0.34 0.39
225 960 100 0.97 3.15 0.22 0.52 0.67 0.51 0.35 0.37 0.46
250 1075 100 0.99 3.53 0.25 0.58 0.77 0.65 0.39 0.44 0.53

Table 1.1: Results for the solvable 3-SAT problems close to αc. fU is the
fraction of problems not satisfied by the algorithm, H is the average number of
unsatisfied clauses (1.6) and t is the average CPU-time used (given in seconds).
The third column (num inst.) is the number of instances in the problem set.

volved in the relatively few critical clauses on the virge of becoming unsatisfied.
This improves the revision capability which is beneficial for the performance.
The choice of randomizing vi to ±1 (which appears very natural) in cases of
balancing infinities in ui contributes to this effect.

A performance comparison of INN and gsat+walk indicates that the latter
appears to have the upper hand for small N . For larger N however, INN seems
to be quite comparable to gsat+walk.

1.6 Summary and Outlook

We have presented a heuristic algorithm, INN, for binary satisfiability prob-
lems. It is a modification of the conventional mean-field based ANN annealing
algorithm, and differs from this mainly by a replacement of the usual multilin-
ear cost function by one derived from an information-theoretical argument.

This modification is shown empirically to dramatically enhance the perfor-
mance on a testbed of random K-SAT problem instances; the resulting per-
formance is for large problem sizes comparable to that of a good dedicated
heuristic, tailored to K-SAT.

An important advantage of the INN approach is its generality. The basic
philosophy – the balance of information – can be applied to a host of different
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types of binary as well as non-binary problems; work in this direction is in
progress.
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A novel artificial neural network heuristic (INN) for general constraint satisfac-
tion problems is presented, extending a recently suggested method for binary
problems. It employs a particular non-polynomial cost function, based on the
information balance between multi-state Potts variables and constraints. Im-
plemented as an annealing algorithm, the method is numerically explored on a
testbed of Graph Coloring problems. The performance is comparable to that of
dedicated heuristics, and clearly superior to that of a conventional mean-field
ANN approach. An appealing feature of the method is its versatility, inherited
from ANN; it is applicable to a wide range of discrete constraint satisfaction
problems.
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2.1 Introduction

Artificial Neural Networks (ANN) have provided a versatile heuristic approach
to combinatorial optimization and constraint satisfaction [7, 14, 4].

In a recent paper [9], an improved ANN approach (INN) to binary constraint
satisfaction problems (CSP) was presented, based on information-theoretical
considerations. Numerical explorations on a testbed of K-sat instances showed
a substantially improved performance as compared to a conventional ANN
method. This improvement can be understood, at least partly, as being due to
a progressively increased sensitivity to the breaking of constraints, stemming
from the nonlinearity of the cost function of INN.

In this paper we provide an extension of the binary INN approach to gen-
eral constraint satisfaction by utilizing an encoding in terms of Potts spins,
and present an annealing algorithm based on this approach. Like the binary
method, it is derived from an analysis of the information balance between
variables and constraints. The result is a powerful general-purpose heuristic
method, that can be applied to a large class of constraint satisfaction problems.

As a specific application example we have chosen Graph Coloring (GC) [13],
and we provide a detailed discussion of the implementation of INN for this
problem type.

The method is numerically explored for GC with three colors on a large testbed
of random graphs with varying edge densities.

Like for the binary K-sat problems, a remarkably improved performance is
observed, as compared to a conventional ANN approach. To gauge the perfor-
mance, we have applied two dedicated heuristics to the testbed; a biased sim-
ulated annealing approach, SAU [8], and a simple search heuristic, DSATUR
[1, 3].

The structure of the paper is as follows: In Section 2, we present a general
derivation of the method for a generic CSP, based on information analysis. In
Section 3, we show in detail the specific application of the method to GC, and
discuss algorithmic details. Section 4 contains a description of the numerical
explorations and the testbeds, as well as a presentation and a discussion of the
results. Finally, Section 5 contains a brief summary and our conclusions.
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2.2 INN for Non-binary (Potts) Systems - Gen-
eral Derivation

In this section we will, in the context of a general CSP, explain the ideas behind
the INN method, which are based on analyzing the information content in the
constraints to be satisfied.

In a CSP a set of N discrete variables is given; we assume each variable to
have C possible states (defining a C-state Potts variable [15]), yielding a state
space of size CN . Further, a set of M constraints is given, restricting the state
space to a smaller set of admissible states (solutions). We assume that each
constraint involves a function of a subset of size K of the N variables.

We have limited the discussion to fixed C and K for simplicity only – the
method can easily be adapted to problem types with varying C as well as K.

The important question is whether such a CSP is solvable, i.e. whether the state
space contains any solutions. Finding a solution suffices to prove solvability,
while proving non-solvability is in general harder.

In heuristic approaches to CSP one uses some method to attempt to find a
solution. ANN and its modified version INN are such methods.

In what follows, we will label each variable by an integer i ∈ {1, 2, . . . N}.
The state of each variable (Potts spin) is encoded in terms of a C-dimensional
vector si = {si1, si2, . . . siC}, with the cth state given by the cth principal
vector, sic = 1; sic′ = 0, c′ 6= c. The state of the entire set of variables is
denoted by s = {s1, s2, . . . sN}.

2.2.1 Conventional MF ANN Approach

In the conventional ANN approach, the problem at hand is encoded in terms
of a non-negative cost function E over the state space, such that E(s) vanishes
iff s is a solution. Normally, E is chosen as a polynomial in s, such that each
term is the product of components from distinct Potts spins (multilinearity).

The state space is placed in a virtual heat bath represented by a Boltzmann
distribution over the state space, such that the probability of a state s is pro-
portional to exp(−E(s)/T ), where T is an artificial temperature. At high T all
states are about equally probable, while as T → 0, the support of the distribu-
tion shrinks to contain only the states with the lowest cost (the solutions for a
solvable problem), all equally probable.
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The Mean Field Approximation

One then considers the mean field (MF) approximation vi to the thermal
averages 〈si〉 of the state vectors si, defined by a self-consistent set of equations
for the MF spins vi, the MF equations, given by

vic =
exp (uic)∑
d exp (uid)

, (2.1)

uic = − 1
T

∂E/∂vic. (2.2)

Note that an MF spin vi is constrained to the convex hull of the set of allowed
states for the corresponding Potts spin si. In particular,

∑
c vic is automatically

equal to 1, and vic can be interpreted as the probability for the ith Potts spin
to be in its cth state.

Variational MF Derivation

The MF approximation can be derived from a variational principle, where
the true Boltzmann distribution ∝ exp(−E/T ) is approximated by one with
independent probabilities for each spin, defined by the components of vi. These
are optimized by minimizing a free energy, given by

F (v) = T
∑

ic

vic log (vic) + E(v), (2.3)

with the restriction that vic ≥ 0 and
∑

c vic = 1. The first term amounts to
−TS(v), where S is the entropy of v. At an extremal value we must have
∂F/∂vic = λi, where λi is a Lagrange multiplier for the unit-sum constraint on
vi. This yields

T log(vic) + T + ∂E/∂vic = λi, (2.4)

which leads to the MF equations (2.1,2.2).

MF Annealing

The MF equations (2.1,2.2) are solved iteratively, updating one spin at a time,
while the temperature is slowly decreased from an initial high value (with all
vic ≈ 1/C). As T becomes low enough, the fuzzy MF variables will eventually
converge towards a sharp state, vi → si, which defines the output of the
algorithm. If this defines a solution, the CSP is proven solvable.
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2.2.2 INN Approach

INN can be seen as an information-based modification of ANN, where a very
specific cost function is chosen, based on an information-theoretical analysis
of the constraints, which for each constraint typically leads to the negative
logarithm of a polynomial function yielding unity if the constraint is satisfied,
and zero if not. This yields a divergent cost for a non-solution, which in an
MF setting leads to a sensitivity to softly broken constraints that progressively
increases with severity.

INN cost function

To construct such a cost function, we make the assumption (inherent in the MF
approximation) that the Boltzmann distribution at each temperature factorizes
into a product of single-spin distributions,

P (s) =
∏

i

pi(si). (2.5)

Each single-spin distribution pi is completely defined by an MF spin vi, with
the probability for spin i to be in state c given by vic. Thus, v can be seen as
a parameterization of P .

Now, assume the mth constraint is defined by a function fm of a subset Ωm of
the spins as

fm (si, i ∈ Ωm) = 0. (2.6)

Then, the probability distribution P , parameterized by v, gives a well-defined
probability Um(v) that the constraint be unsatisfied; this will be a polynomial
in the involved MF spins vi, i ∈ Ωm, with the degree given by the number K
of involved spins. Specifically, it amounts to

Um(v) =
∑

c1,...,cK

vi1,c1 . . . viK ,cK
Θc1...cK

, (2.7)

where Θ is zero if the state combination (c1, . . . , cK) for the K spins (i1, . . . , iK)
in Ωm solves the constraint, and unity otherwise.

The amount of information required to force a constraint to be satisfied can
be estimated as − log(1− Um), and as a cost function we take the sum of this
over the set of constraints, i.e.

I(v) = −
∑
m

log(1− Um(v)), (2.8)
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which is thus an estimate of the total amount of information needed for solving
the problem.

As a comparison, the polynomial E(v) =
∑

m Um(v) defines a possible con-
ventional ANN cost function, corresponding to a Boltzmann distribution over
the state space given by PE(s) ∝ ∏

m exp(−Um(s)/T ) with a penalty factor of
exp(−1/T ) for each broken constraint.

The INN cost function I formally corresponds to the more radical Boltzmann
distribution

PI(s) ∝
∏
m

(1− Um(s))
1
T , (2.9)

which, since 1−Um(s) yields 1 for a solution and 0 for a non-solution, vanishes
for all non-solutions and yields a uniform non-zero weight for all solutions,
independently of T (the T dependence appears only in the MF equations).

INN MF Annealing

When using the INN cost function in place of the conventional ANN one in
the MF equations (2.1,2.2), a slight modification is needed due to its non-
polynomial nature, in order to avoid instabilities [12]. Eq. (2.2), which is
relevant for a multilinear polynomial cost function, has to be replaced by

uic = − I(v)|vi=ĉ

T
(2.10)

(plus an unimportant constant), where ĉ denotes the state where vic = 1 while
the other components vanish. This amounts to using cost differences rather
than derivatives, and is equivalent to (2.2) for a multilinear cost function.

Due to the singular behavior of the logarithm in eq. (2.8) and thus in eq.
(2.10) for small arguments, it may happen that one or more components of
ui become divergent (−∞) within the numerical resolution, which is the case
when a constraint is close to becoming fully broken for a particular choice of
state ĉ, which typically happens at a low T .

If not all components are divergent, there is no problem: The corresponding
components of vi will become zero. However, in cases where all components
would become divergent, a regularization method has to be devised.

To that end, a counter nic is assigned to each state c of the variable, initialized
to zero, and incremented for each constraint that would make a singular contri-
bution (which is skipped) to uic. In cases where all the counters are non-zero,
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only the states with the lowest count are considered, and the corresponding
components are set to equal values summing up to one, while the others are
set to zero. Thus, the finite contributions are ignored in this case.

This seems to be a reasonable choice, preserving the deterministic property
of the MF equations, as opposed to the stochastic choice made in [9]. The
deterministic variant appears to perform slightly worse, but is considerably
faster, due to better convergence properties.

In practice, when evaluating the INN cost function in eq. (2.10) it is faster to
take the logarithm of a product than to sum the logarithms. It may happen
that the product vanishes numerically, yielding a divergent logarithm; this is
treated as an extra divergent contribution, and the corresponding counter is
incremented.

With these modifications, INN annealing proceeds just like conventional ANN
annealing: The modified MF equations are solved iteratively in a serial manner,
with annealing in T , etc. However, due to the nonlinearity of the logarithm in
the INN cost function (2.8), constraints on their way to becoming unsatisfied
are detected on an earlier stage, leading to a better revision capability for INN
as compared to ANN, and a substantially improved performance.

Variational Interpretation

Formally, the modified MF approximation can be seen as the result of the
minimization of a variational free energy,

F (v) = −TS(v) + I(v), (2.11)

where the first term can be interpreted as a measure of the unused information
resources associated with the MF spins. At high T , all states are about equally
probable, and vic ≈ 1/C. The information content −S is then high, amounting
to log(C) per spin (one bit for C = 2). As T is lowered, a specific state is
chosen for each spin, and the information resources are used up, −S → 0.

Thus, in the INN approach, the spins can be seen as information resources,
that are gradually used to satisfy the constraints, seen as information con-
sumers.1 At high T (typically above a well-defined critical temperature, Tc),
the resources are intact, but as T is decreased, an increasing pressure is applied
towards spending them.

1This might seem as an abuse of the notion of information, but we think the point is clear.
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2.3 Application to Graph Coloring

Now we leave the general discussion in favor of an application to a specific
problem type, for which we have chosen Graph Coloring (GC).

In GC, a graph of N nodes and M edges is given, and a set of C colors. To
each node a specific color is to be assigned, such that each edge connects nodes
of distinct colors. Thus, there is one constraint for each edge, involving K = 2
variables.

2.3.1 INN for Graph Coloring

We assign a Potts spin si to encode the coloring of each node i, i = 1, . . . , N ,
and employ the (modified) MF approximation, yielding MF spins vi.

The scalar product si · sj yields unity if the nodes i, j are in the same state,
and zero if not. The analogous expression with MF spins, vi ·vj , measures the
probability that the nodes are in the same state, which is precisely what we
need for Um, so let

Um(v) = vim · vjm , (2.12)

where im, jm label the two nodes connected by the edge m.

Let J denote the connection matrix for the graph, i.e. Jij = 1 if i, j are
connected, zero otherwise. Then the INN cost function I = −∑

m log(1−Um)
can be expressed as

I = −1
2

∑

i,j

Jij log (1− vi · vj) . (2.13)

The INN MF equations become vic = exp(uic)/
∑

d exp(uid), with

uic =
1
T

∑

j

Jij log (1− vjc) , (2.14)

where care has to be taken to regularize singular contributions, as discussed
in Sec. 2.2.2. Note that a component of ui gets a singular contribution from
an edge only in the limit of the corresponding component of vj being unity
(within the numerical resolution), which is more likely to happen at low T .
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Critical T Discussion

The MF equations have a trivial solution for

vic =
1
C

, (2.15)

which is a fixed point of the dynamics. By means of a linearization around this
fixed point, the dynamics for infinitesimal deviations εic = vic − 1/C becomes

εic = − 1
T (C − 1)

∑

j

Jij

(
εjc − 1

C

∑

d

εjd

)
, (2.16)

which is stable at high T , and becomes unstable at a critical temperature Tc

given by − λ
C−1 , where λ is the largest (in absolute value) negative eigenvalue

of J . Tc serves as a suitable initial temperature in the annealing algorithm,
and can easily be estimated. For a graph with at least one edge, 1/(C − 1) is
a strict lower bound for Tc.

2.4 Numerical Explorations

2-coloring (C = 2) is known to be of polynomial complexity, and we will focus
on 3-coloring (C = 3), which is NP-complete [13].

Problem difficulty depends on the edge density γ = 2M/N . For 3-coloring,
there exists a critical edge density γc ≈ 4.6 [6], such that in the large-N limit all
problems are solvable below γc, and unsolvable above. (Such phase transitions
are known to exist in many classes of CSP [5, 11].)

Although the problem of finding a solution becomes increasingly difficult with
increasing γ, the decidability problem is most difficult around γc; at low γ a
solution is easy to find, while at higher γ, it is easier to prove unsolvability.

2.4.1 Testbeds

To probe the performance of INN annealing as applied to 3-coloring, we have
chosen a testbed of random graphs, with edge densities in the neighborhood of
γc. To be specific, we have used γ values between 3.4 and 4.6 in steps of 0.2, and
in addition 4.1 and 4.3. Problem sizes probed are N = 250, 500, 1000, 2000. For
a given edge density and problem size, the edge count is given as M = γN/2,
and a set of 200 random problem instances are generated by for each instance
choosing at random M of the N(N − 1)/2 possible edges.
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Preprocessing

A simple preprocessing is made on the graphs before they are handed to the
algorithms. Nodes with less than C = 3 neighbors are removed from the
graph, since they can be trivially colored. This is done recursively until the
remaining nodes have at least C neighbors. In table 2.1 the average sizes of
the graphs after preprocessing is shown for some original values of N and γ.
The preprocessing can be expected to improve speed about equally much for

γ = 3.6 γ = 4.2 γ = 4.6
N M N ′ M ′ M N ′ M ′ M N ′ M ′

250 450 130 259 525 181 414 575 201 496
500 900 253 506 1050 361 827 1150 401 990

1000 1800 509 1020 2100 720 1649 2300 799 1973
2000 3600 1025 2055 4200 1437 3293 4600 1596 3943

Table 2.1: Average problem size reduction due to preprocessing. N , M and
γ are the original problem parameters, while N ′ and M ′ denote the reduced
node and edge counts.

the different algorithms, which is confirmed by empirical test runs. These also
indicate a comparable performance improvement in the form of a small change
(slightly larger for ANN) in the position in γ of the (algorithm-dependent)
apparent phase transition.

2.4.2 Algorithmic Details for INN

The temperature is initially set close to an estimate of the critical temperature
Tc, obtained by iterating x → (const×1−J)x a few dozen times, with a suitable
random initial vector x. A schematic description of the algorithm is given in
fig. 2.1. For the annealing factor we have made experiments with different
values. Slower annealing tends to improve the quality for large and difficult
problems, but at the cost of more CPU time used. There is also a limit where
slower annealing does not improve the quality anymore, and a restart of the
algorithm gives a better payoff. The presented results are consistently based on
an annealing rate of 0.99, and we have allowed for a maximum of ten updates of
all spins per temperature, to allow the spins to converge (maxic |∆vic| < 0.1).

At every tenth temperature we check for two stop criteria. First, a temporary
sharp configuration s is extracted from v, and if s is a solution the algorithm
stops. The second criterion applies if the spins are saturated (

∑
i

∑
c v2

ic >
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1. Set T ≈ Tc, and initialize v close to the high-T fixed point, vic =
1/C, with small random deviations (a few %).

2. For each node i in turn:
(a) Compute ui using eq. (2.10).
(b) Update vi according to eq. (2.1). (In case of singular compo-

nents in ui, this pair of steps is modified as discussed in Sec.
2.2.2).

3. If any of the stop criteria is met, go to 5.
4. Lower T by a fixed annealing factor, and go to 2
5. Extract a candidate solution by for each node i choosing a color

corresponding to the largest component of vi.

Figure 2.1: The INN annealing algorithm for GC.

0.9N) and stable (maxic |∆vic| < 0.01). In addition, if no solution has been
found until T < 0.3 the algorithm aborts.

2.4.3 Comparison Algorithms

The performance of INN annealing has been compared to that of three other
algorithms: 1) conventional ANN annealing, 2) a biased simulated annealing
algorithm, SAU [8], and 3) a heuristic, DSATUR [1, 3], all applied to the same
testbed.

Comparing different algorithms is quite difficult, as they have different time
scales at which they are most efficient. Also, each algorithm has different
optimal parameter settings for different N and γ. Despite this, we have for
each algorithm for simplicity used the same parameter settings on the entire
testbed.

We have chosen a set of suitable parameters (without attempting to fine-tune
them) for the INN algorithm first, and then tried to roughly optimize the
settings for the other algorithms, given that they are allowed to use about the
same time as INN.
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Conventional ANN annealing

A suitable ANN cost function, corresponding to (2.13) is

E =
1
2

∑

i,j

Jijvim · vjm , (2.17)

yielding the MF equations (2.1) with

uic = − 1
T

∑

j

Jijvjm
. (2.18)

T is initialized close to the critical temperature, given by (C−1)/C times that
for INN. We have used an annealing rate of 0.99, and the same stop criteria
as in INN, except for the stop temperature, which is set to 0.1 instead of
0.3 (lower than for INN, where the non-linear cost function makes the spins
saturate faster).

SAU

A number of simulated annealing [10] approaches have been devised for graph
coloring problems [8, 2]. For 3-coloring it is appropriate to use one with a fixed
number of colors where the goal is to minimize the number of broken edges.
In such an approach each node in the graph is assigned a variable, ci = 1, .., C
representing the color of the node. A cost analogous to eq. 2.17, defined as

E =
1
2

∑

i,j

Jijδcicj , (2.19)

can be used. Local moves are selected by choosing a node and a new random
color from the C − 1 available. To guide the search into low cost states a
virtual temperature parameter, T , is introduced and moves are accepted with
a probability p = min (exp (−∆E/T ) , 1), where ∆E = Enew − Eold. If the
temperature is high all moves are accepted, while at low temperature uphill
moves (increased cost) are rejected.

In [8], an algorithm of this type is described, which we will refer to as SAU.
There, a restricted move class is used, where only nodes contributing to the
cost (as opposed to all nodes) are allowed as candidates for a color change; this
is empirically more efficient.

This move class is not symmetric, and corresponds to a kind of biased simu-
lated annealing, which does not necessarily yield an emulation of a Boltzmann
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distribution. Also, ergodicity seems to be broken: All possible states can not
be reached from any initial state; this does not have to be a disadvantage.

The algorithm starts in a random state and at a high temperature to allow for
uphill moves. A certain number (2N) of attempted moves (accepted or not)
define an iteration; between iterations the temperature is decreased by a fixed
factor (0.97). This is repeated until a solution is found, or the cost has not
changed over a certain number (10) of iterations. The annealing is beneficial
to avoid local minima.

DSATUR

The DSATUR algorithm is designed to answer the question how many colors
are needed to color a graph; it always succeeds, and returns the number of colors
used. If this is less than or equal to C, a solution to C-coloring is implied.

DSATUR starts with all nodes uncolored, and selects nodes to color one by
one. The order in which nodes are selected is dynamically determined by the
number of colors that can not be used because of already colored neighbor
nodes. In each step the node with the smallest number of available colors is
selected; if several, a random selection is made.

This algorithm was presented by D. Brélaz [1], and we have used a program
made by J. Culberson [3] available from the World-Wide Web 2. In [3] a set
of similar algorithms was presented, with varying rules for ordering the nodes.
Our choice of DSATUR among these was based on preliminary experiments
indicating that DSATUR performed best on the class of problems used in our
testbed.

2.4.4 Results

Here follows a discussion and evaluation of the testbed results for INN and the
comparison algorithms.

In figures 2.2 to 2.5 we present, for each algorithm, (A) the fraction unsolved
problems, fU , as a function of edge density γ for different problem sizes, and
(B) the average CPU time used as a function of problem size N , for different
edge densities.

The time presented is the total time used, including reruns, until a solution is

2http://web.cs.ualberta.ca/~joe/Coloring/
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found or the maximum allowed number of reruns is done. The time resolution
is a mere 1/100 of a second, which means that the shorter times tend to be
somewhat underestimated.

Parameter settings are as described above, and up to ten restarts are allowed
for each algorithm on a problem, except for the faster DSATUR algorithm
where up to 80 restarts are allowed. All experiments have been made on a 600
MHz AMD Athlon computer running Linux.
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Figure 2.2: INN results from 200 instances for each N and γ. (A) Fraction
unsolved problems (fU ) versus γ, for N = 250 (+), 500 (×), 1000 (∗), 2000
(�). The statistical error in each point is less than 0.035. (B) Average CPU
time (in seconds) used versus N , for γ = 3.6 (+), 3.8 (×), 4.0 (∗), 4.2 (�), 4.4
(�) and 4.6 (◦).

Discussion

As can be seen in figures 2.2 - 2.5, each algorithm seems to show a more or less
distinct critical γ, above which it fails to find solutions. In all cases it is situated
below the established value of γc ≈ 4.6, and can be used as a measure of the
performance. This indicates that INN and SAU are the best algorithms for
difficult problems (for lower γ where all problems are solved by either method,
DSATUR wins on speed).

A closer look at the INN and SAU results reveals a tendency for SAU to perform
slightly better in the lower γ range, while INN seems to have the upper hand
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Figure 2.3: Conventional ANN results. (A) Fraction unsolved problems (fU )
versus γ. (B) Average CPU time (in seconds) used versus N . Notation as in
figure 2.2.
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Figure 2.4: SAU results. (A) Fraction unsolved problems (fU ) versus γ. (B)
Average CPU time (in seconds) used versus N . Notation as in figure 2.2.

for higher γ. To some extent, this is an effect of the chosen amount of CPU
time allowed, and a different choice might slightly change the outcome; both
INN and SAU would benefit from a slower annealing rate, requiring more time.
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Figure 2.5: DSATUR results. (A) Fraction unsolved problems (fU ) versus γ.
(B) Average CPU time (in seconds) used versus N . Notation as in figure 2.2.

As for CPU time consumption, DSATUR seems to be very fast in solving the
easier problems for small N , although the differences in time may be some-
what overestimated due to the finite time resolution. On the other hand, the
DSATUR time rises faster with increasing N , and for large N the time con-
sumption is comparable to that of the other algorithms.

Our overall conclusion is that INN and SAU have comparable performances
and are the overall winners. They are consistently superior to ANN, and beat
DSATUR for the large/difficult problems, where it matters the most.

Solution rates

When comparing performances for heuristics for finding a single solution to a
problem, a single simple quality measure is desirable.

A possible candidate would be the instantaneous solution rate, r(t) = −U̇(t)/U(t),
where U(t) is the fraction of the problem instances in an ensemble that are not
solved within time t (in case of reruns, this is the total accumulated time).
Suitably binned in time, r(t) provides information on the time-scales at which
a heuristic is most efficient. For a random search (where U decreases expo-
nentially), r(t) will be a constant. However, for a typical heuristic, and with
limited statistics, it will fluctuate too much to be useful for producing a stable
number to be used for comparing performances between algorithms.
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Instead, we consider the average solution rate R(t), which will have a smoother
time-dependence. It is defined as

R(t) = − log U(t)
t

, (2.20)

and can be interpreted roughly as the fraction solved problems per unit of time,
averaged between 0 and t. It will also yield a constant for a random search, and
can be expected to be a slowly varying function of t, after an initial transient,
for a typical heuristic.
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Figure 2.6: Average solution rates for N = 2000, for INN (+), ANN (×), SAU
(∗), and DSATUR (�), at (A) γ = 4.1, (B) γ = 4.2, (C) γ = 4.3.

Figure 2.6 shows the average solution rates R(t) for the testbed problems with
N = 2000 and γ = 4.1, 4.2, 4.3, for the four algorithms. The rates are based
on an expected U(t) for the respective problem ensemble, computed as U(t) =
(nU (t)+1)/(n+2), where nU (t) is the number of unsolved problems remaining
at t, of a total of n = 200 for each γ value.

For all three γ values, INN and SAU appear much superior to ANN and
DSATUR. For γ = 4.1, the rates for INN and SAU are about equal, after
the initial transients have died out. For γ = 4.2, the INN rate settles to about
a factor 2.5 higher than the SAU rate; for γ = 4.3, there appears to be a factor
of about 4 in favor of INN.

The precise ratios should not be taken too seriously; they will depend on an-
nealing rates and precise stop criteria, etc. However, figure 2.6 does confirm
very clearly the qualitative conclusion from figs. 2.2 and 2.4, that INN per-
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forms somewhat better than SAU for the higher γ values, and that both beat
ANN and DSATUR clearly.

2.5 Summary and Conclusions

We have presented a modified ANN annealing heuristic, INN, for generic CSP,
generalizing a previously described method for binary CSP. It is based on an
analysis of the balance of information between constraints and mean-field vari-
ables, yielding a very specific non-polynomial cost function.

The method was applied to a testbed of random graph 3-coloring problems,
and the performance was shown to be in parity with a good dedicated heuris-
tic, SAU, and much superior to that of a conventional ANN approach with a
polynomial cost function.

The improvement compared to traditional ANN can be attributed to the strong
non-linearity of the particular cost function used in INN, which boosts the
ability to recognize and avoid bad solutions on an early stage, and yields an
improved revision capability.

The method shares with ANN the appealing feature of not being tailored for a
specific application, but can be applied to a large class of constraint satisfaction
problems.

For constrained optimization problems, we suggest a hybrid method, where the
constraints are handled by a non-linear information-based cost function, while
the proper object function is treated with a traditional polynomial ANN cost
function. Work to explore this avenue is in progress.
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For combinatorial optimization problems that can be formulated as Ising or
Potts spin systems, the Mean Field (MF) approximation yields a versatile and
simple ANN heuristic, Deterministic Annealing.
For assignment problems the situation is more complex – the natural analog
of the MF approximation lacks the simplicity present in the Potts and Ising
cases.
In this article the difficulties associated with this issue are investigated, and
the options for solving them discussed. Improvements to existing Potts-based
MF-inspired heuristics are suggested, and the possibilities for defining a proper
variational approach are scrutinized.
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3.1 Introduction

Many mathematical methods originating from theoretical physics have found
use in completely different contexts, among them the variational approach to
the thermodynamics of complicated systems, lying at the basis of e.g. the
mean field approximation to spin systems. This has been successfully used in
heuristic methods in the context of combinatorial optimization, for problems
that allow a simple formulation in terms of Ising or Potts spins. For other kinds
of combinatorial optimization problems, in particular assignment problems, a
similar approach is more difficult to achieve; the related difficulties is the focus
of this paper.

In an instance of a combinatorial optimization problem, a cost function is
defined in terms of a set of discrete variables, and the object is to find an
optimal state – a particular state of the variables that minimizes the cost
function; in other words the ground state, if the cost function is interpreted
as a Hamiltonian. In cases where the variables are of a binary nature, such a
problem thus amounts to finding the ground state of an Ising spin system (spin
glass) with a given Hamiltonian.

For a small problem instance, an exact method can be used to solve it exactly.
In addition to more problem-specific methods, Branch-and-Bound [9] provides a
generic class of exact methods, where an intelligent (as opposed to exhaustive)
tree-search of the phase-space is performed, disregarding parts that can be
ruled out beforehand. Another interesting approach is Simulated Annealing
[5], where a standard Monte-Carlo method is used to simulate the immersion
of the system in a heat bath, starting at a high temperature, which is slowly
lowered (annealing) in the course of the simulation. In the limit of very slow
annealing, this stochastic method is guaranteed to yield the ground state as
T → 0 [1].

For a large system, however, finding the exact ground state can be a very time-
consuming task. For a large class of problems (NP-hard), the expected time
required scales worse than any polynomial in the system size, and the quest for
the exact ground state must be given up. Instead, one has to resort to more or
less dedicated heuristics, to meet the more modest goal of finding states with
as low a cost as possible.

Problems that can be formulated in terms of Potts or Ising spins admit a
versatile heuristic method, Deterministic Annealing, based on the iterative so-
lution of the equations associated with the mean field (MF) approximation
of the system at hand, combined with a slow decrease in temperature. With
the MF variables interpreted as neuron activities, the resulting dynamics at
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each temperature is that of a generalized Hopfield (or connectionist) network
[3]. Deterministic (MF) annealing has been successfully applied to a range of
problem types, see e.g. [12, 2, 4, 7].

The MF approximation is most conveniently derived from a variational ap-
proach, where the proper Boltzmann distribution based on the true Hamilto-
nian is approximated by a factorized distribution, constrained to be the product
of individual single-spin distributions, each of which can be parameterized by
the corresponding single spin average. The optimal parameters of the approx-
imating distribution minimize an associated free energy.

Thus, the minimization of the cost function in a discrete phase space is replaced
by the minimization of an effective cost function in a continuous parameter
space, which in suitable coordinates (the spin averages) interpolates between
the discrete states of the original phase space. This gives an advantage as
compared to a local optimization method confined to the discrete space, due
to the possibility of taking shortcuts.

A somewhat different type of optimization problems is given by assignment
problems, where an optimal matching (assignment) between two sets of objects
is desired, as defined by a given cost function. While certain subclasses of
assignment problems, like e.g. linear assignment where the cost is linear in
the assignment matrix, can be solved exactly in polynomial time, the generic
assignment problem is a non-polynomial one.

For nonlinear assignment problems, an obvious generalization of the MF-based
deterministic annealing approach is lacking, mainly due to the absence of a sim-
ple and natural analog of the MF approximation. While a linear cost appears
to be the most sensible choice for a variational Ansatz, it does not lead to the
simplicity usually associated with the MF approximation. Nevertheless, it is
possible to exploit the linear Ansatz to define dedicated deterministic anneal-
ing schemes for non-linear assignment, and we will investigate the difficulties
and peculiarities involved in connection with this. A major drawback with this
approach, however, is that the time required is exponential in the problem size,
and so its practical usefulness is limited.

A popular alternative, to avoid the complexity of such an approach, is to tweak
MF annealing as defined for Potts systems to make it apply to assignment prob-
lems. We will discuss two common methods of this type, Potts-plus-Penalty
[11] and SoftAssign [13], point out their strong and weak points, and where
appropriate suggest improvements to the existing state of the art.

To illustrate the implementation on a specific problem type, and to gauge the
effect of the suggested improvements, a suitable subset of the methods will be
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applied to a small testbed of simple applications.

The article is structured as follows: In Sec. II, the basic idea of variational
methods in general is described. In Sec. III, MF Annealing for a Potts system
is derived from a variational MF approximation, and briefly described. Sec. IV
contains a general discussion of assignment problems, and defines some nota-
tion. The polynomial problem of Linear Assignment is briefly discussed there.
In Sec. V, we discuss the definition of proper deterministic annealing methods
dedicated to assignment problems. Sec. VI contains a discussion of existing
tweaked Potts-based MF approaches, and suggestions for improvements. In
Sec. VII we compare some of the suggested methods on a few simple test
problems. Finally, Sec. VIII contains our conclusions.

3.2 MF in General – Variational Approach

The MF approximation, as it is used in MF annealing for binary and Potts
systems, is most conveniently derived from a general variational principle.

Given a complicated cost function H(s) of the variables of interest, s, the idea
is to approximate its associated Boltzmann distribution ∝ exp(−H/T ) (at a
fixed artificial temperature T ) with one derived from a simpler cost function
HV (s, λ) (e.g. a linear one), with a set of free parameters λ (the coefficients in
the linear case). The parameter values are then determined by minimization
of the associated free energy FV (λ),

FV (λ) = 〈H〉 − TS ≡ −T log Z + 〈H −HV 〉 , (3.1)

where 〈·〉 stands for an expectation value in the approximating distribution,
and Z denotes the corresponding partition function

∑
s exp(−HV (s)/T ). S is

the associated entropy, given by −∑
s p(s) log p(s), with p(s) the probability

of state s, p(s) ≡ exp(−HV (s)/T )/Z.

The variational free energy is bounded from below by the true free energy,
F = −T log(Z0) = −T log

∑
s exp(−H(s)/T ). The condition for an extremum

of FV with respect to parameter variations δλ is

δFV ≡ 〈δHV (H −HV )〉c = 0, (3.2)

where 〈ab〉c stands for the connected expectation value (or cumulant) 〈ab〉 −
〈a〉 〈b〉. Thus, for each parameter λa, we must have

〈
∂HV

∂λa
(H −HV )

〉

c

= 0. (3.3)
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Although (3.3) may permit multiple solutions, including saddle-points or local
minima, it is commonly used in the search for an optimal set of parameter
values.

Note that since the expectation values involve the variational Boltzmann dis-
tribution ∝ exp (−HV /T ) and hence depend on the temperature T , so will the
optimal parameter values.

A particularly simple special case results when the variational cost function
depends linearly on the parameters,

HV (s;λ) ≡
∑

a

λaEa(s). (3.4)

Then, eq. (3.3) for an extremum takes the simple form

∑

b

〈EaEb〉c λb = 〈EaH〉c . (3.5)

This has the form of a matrix equation, 〈EE〉c λ = 〈EH〉c, and a straight-
forward strategy for finding a solution is given by iteratively updating the
parameters according to

λ → 〈EE〉−1
c 〈EH〉c , (3.6)

followed by the corresponding updates of the expectation values 〈EE〉c , 〈EH〉c,
which depend on the parameters via the Boltzmann distribution.

3.3 MF Annealing for Potts systems

In order to understand the problems associated with defining a determinis-
tic annealing approach to assignment-based problems, it is instructive to first
review how simpler types of systems are treated.

A simple q-state multiple-choice variable (Potts spin) is conveniently repre-
sented by a q-dimensional vector s, with the allowed states represented by the
q principal vectors (1, 0, 0, . . .), (0, 1, 0, . . .), etc., with the position of the sin-
gle nonvanishing component indicating which state is “on”. These vectors are
linearly independent, and point to the corners of a regular q-simplex.

As a result, any single-spin cost function can be written as a linear function
in s, H(s) = C · s, where Ca is the cost associated with state a. For a system
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of N Potts spins, it follows that an arbitrary cost function can be written in a
multilinear form,

H(s) = a +
∑

i,a

biasia +
1
2

∑

i,a

∑

j 6=i,b

cia,jbsiasjb + . . . , (3.7)

where sia denotes the a-th component of the i-th spin. Solving the associated
optimization problem corresponds to finding the ground state of the system,
i.e. the combination of states of the N Potts spins that minimizes H(s).

The MF approximation to such a system results from a variational approach,
corresponding to an optimal approximation of the non-linear cost H(s) in terms
of a linear one,

HV (s) =
∑

i

Ci · si =
∑

ia

Ciasia. (3.8)

The coefficients Cia constitute the parameters, and are to be chosen so as to
minimize the variational free energy FV . It is convenient to express FV in terms
of the spin averages in the variational distribution, the (mean field spins) vi,
with components in [0, 1] amounting to

via(C) ≡ 〈sia〉V =
exp (−Cia/T )∑
b exp (−Cib/T )

. (3.9)

In the MF approximation, via corresponds to the probability for spin i to be
in state a, consistently with the identity

∑
a via = 1. The MF spins thus

interpolate between the discrete states of the original spins; in terms of them
the variational free energy evaluates to

FV (v) = T
∑

ia

via log via + H(v), (3.10)

which can be minimized with respect to the normalized MF spins by adding a
Lagrange parameter λi for the normalization of each MF spin vi. The condition
for a extremum, equivalent to eq. (3.3) amounts to

dH(v)/dvia + T (1 + log via) = λi, (3.11)

which, together with the normalization that fixes the λi values, gives the vari-
ational coefficients C up to an unimportant constant in terms of v as

Cia(v) =
∂H(v)
∂via

. (3.12)

Eqs. (3.9) and (3.12) define the MF equations.
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The MF approximation corresponds to neglecting the correlations between the
different spins, since the linear variational Ansatz used is the most general
factorized distribution PV (s) =

∏
i pi(si), where the different Potts spins obey

independent distributions.

MF annealing corresponds to solving the MF equations iteratively, starting
with a high T , where a fixed point with via ≈ 1/N will dominate, and slowly
lowering T . At low enough T , the MF spins will be forced on shell, i.e. for
via ≈ sia ∈ 0, 1, and a suggested solution can be extracted.

3.4 Assignment Problems – General Discussion

3.4.1 Notation

When it comes to permutation/assignment problems, we have to distinguish
between single assignment problems and multiple assignment problems, the
latter being based on several assignments.

To begin with, we will consider the simpler case of a single assignment, where
an optimal matching between two sets of N objects is desired, i.e. for each
object i in the first set, an object a in the second set is to be chosen, such
that different i are assigned to different a. There are obviously N ! ways to
accomplish this.

A compact way to describe an assignment is by means of the associated as-
signment matrix, i.e. an N × N doubly stochastic matrix s with elements in
{0, 1}, such that sia = 1 if i is assigned to a, and 0 otherwise (for a somewhat
different encoding of assignment problems as used in deterministic annealing,
see [7]). Obviously, we must have precisely one unit element in each row as
well as in each column of s, consistently with

∑
a

sia = 1,
∑

i

sia = 1. (3.13)

Then, a given single assignment problem can be described in terms of a cost
function H(s), which is to be minimized.

Note, however, that, in contrast to e.g. the Potts case, the most general cost
function for single assignment (for N > 2) is not linear in s (see Appendix);
in the worst case a polynomial of degree N − 1 is needed.

Alternatively, the cost function can be viewed as an explicit function over the
permutation group PN : Each group element g is associated with an individual
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cost Cg, defining an element of an N !-dimensional cost vector ~C. The relation
to the formulation in terms of the assignment matrices s is Cg = H(sg), where
sg is the particular assignment matrix representing g.

3.4.2 Thermodynamics for a single nonlinear assignment

The thermodynamics af a system consisting of a single N ×N assignment with
an arbitrary cost function is not difficult to express, when formulated in terms
of a cost vector ~C over group space. The assignment then acts as a single
N !-state Potts spin, that can be described by an N !-dimensional vector ~S with
precisely one unit component, while the rest is zero: Sg ∈ {0, 1}, ∑

g Sg = 1.

At an artificial temperature T , the probability of a particular state g amounts
to

Vg = 〈Sg〉 =
exp (−Cg/T )∑
h exp (−Ch/T )

. (3.14)

As T → 0, the distribution gets increasingly concentrated at the state (group
element) with the lowest cost.

When viewed this way, the difficulty lies entirely in the huge number of states
involved if N is large. In order to compute one component of ~V , one has to
know the costs for all the N ! states. For a generic cost function, the associated
computational complexity is non-polynomial in the size N of the system.

Thus, for a generic large assignment problem, one has to make do with some
kind of heuristic.

3.4.3 Linear assignment

Certain classes of assignment problems can be solved exactly in polynomial
time. One such class is linear assignment, where the cost function is constrained
to be linear in the assignment matrix s,

H(s) =
∑

ij

cijsij , (3.15)

defining an N ×N cost matrix c.

This problem corresponds essentially to a linear programming one, and can
be solved in polynomial time, using e.g. the so called Hungarian algorithm
[6, 9], based on the fact that the addition of terms to c depending on row or
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column alone, cij → cij + ai + bj , is equivalent to adding a constant to the
cost function, H(s) → H(s)+

∑
i ai +

∑
j bj . This is used to iteratively modify

the cost matrix until it takes a form where it has zeros on a set of elements
corresponding to the optimal assignment, and non-negative values elsewhere.

Unfortunately, this doesn’t help when computing thermal averages at a finite
T ; this is still a non-polynomial task. Thus, e.g., the expectation value of sij is
given in terms of a matrix M , obtained from c by elementwise exponentiation,

Mij = exp(−cij/T ), (3.16)

as

vij ≡ 〈sij〉 =
MijPij(M)

P (M)
. (3.17)

Here, P (M) is the permanent [8] of M ; it has some similarities to the deter-
minant, being the sum of all the possible products of N elements in M , one
in each row and one in each column, but with no minus signs in contrast to
the case for the determinant. Similarly, Pij(M) is the subpermanent of M , ob-
tained by removing row i and column j from M , and computing the permanent
of the remaining (N − 1)× (N − 1) matrix.

The expression for vij in eq. (3.17) can be derived from

〈sij〉 = −T

Z

∂Z

∂cij
, (3.18)

where Z is the partition function,

Z =
∑

g

exp


−

∑

ij

cijsij(g)/T




=
∑

g

exp


−

∑

ij∈g

cij/T




=
∑

g

∏

ij∈g

exp (−cij/T ) =
∑

g

∏

ij∈g

Mij = P (M), (3.19)

where the restriction ij ∈ g in the sum over ij means that row i and column j
are matched in s(g) (so sij(g) = 1). The derivative of Z = P (M) with respect
to Mij yields Pij(M), which completes the proof of eq. (3.17).

The combination MijPij(M), appearing in eq. (3.17), gives the sum of those
terms in the permanent that contain the element Mij . Summing this over i or
j yields P (M), ensuring that eq. (3.17) yields a doubly stochastic matrix v.
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Similarly, the expectation value of the product of two elements of s becomes

〈sijskl〉 = δikδjl
MijPij(M)

P (M)
+

MijMklPik,jl(M)
P (M)

, (3.20)

where Pik,jl(M) is a subpermanent obtained as the permanent of the submatrix
where rows i, k and columns j, l are removed, if i 6= k and j 6= l; else it is zero.
Thus MijMklPik,jl(M) sums up the terms in P (M) that contain MijMkl.

As an aside, replacing the permanents by determinants in the expression (3.17)
for v would lead to the combination Dij(M)/D(M), exactly corresponding to
the j, i element of the matrix inverse of M . The elementwise product with
M would yield a doubly (quasi-)stochastic v, where row and column sums are
equal to one, albeit with elements of both signs.

However, while the determinant of a matrix can be calculated in polynomial
time, the permanent in general can not, in spite of their similarity – the com-
putational time required to compute a generic N×N permanent is exponential
in N (roughly ∝ 2N using e.g. Ryser’s method [15, 8]).

3.5 Proper Variational Method for a Single Non-
linear Assignment

For a large generic single assignment problem, an exact solution is out of reach,
and one has to make do with heuristic methods. One possibility then is to
consider a deterministic annealing approach based on approximating the true
cost function by a variational one that is simpler.

3.5.1 Linear Ansatz for HV

The most natural Ansatz for the variational cost function HV is a linear one,

HV (s) =
∑

ij

cijsij , (3.21)

with the coefficients cij as free parameters.

The equation (3.3) for a minimum of the variational free energy then yields:
∑

kl

〈sijskl〉c ckl = 〈sijH〉c . (3.22)
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In analogy with eq. (3.6), this is a matrix equation, from which c can be formally
extracted as

c = 〈ss〉−1
c 〈sH〉c . (3.23)

Note that the N2×N2 matrix 〈ss〉c is not fully invertible; it always has 2N−1
zero-modes corresponding to the addition of redundant terms to c depending
on row or column index alone. These merely yield row and column factors in
the exponentiated matrix M , and are of no importance for expectation values.

If H is a low-order polynomial in s, a solution to eq. (3.22) can in principle be
computed iteratively in analogy to the iterative solution of the Potts MF eqs.
(3.9, 3.12), by repeating the two steps

1. Calculate the expectation values appearing in eq. (3.22); they depend
on the present c via M and its permanent (and subpermanents), where
Mij = exp (−βcij), in analogy to eqs. (3.17,3.20).

2. Obtain an updated cost matrix c by means of eq. (3.23), suitably regularized
with respect to the zero-modes of 〈ss〉c. 1

This can be turned into an annealing approach, by starting with a high T
(low β), and decreasing T slightly after every step, until the “MF variables”
vij ≡ 〈sij〉 have stabilized sufficiently close to zero or one.

A major drawback of this approach is that it is only feasible if N is not too
large, since the computation of expectation values involves the computation of
permanents, which requires a time exponential in N .

3.5.2 Quadratic H

The simplest non-linear function of s is quadratic, so assume H to be a given
quadratic plus linear function in s,

H(s) =
1
2

∑

ijkl

Aijklsijskl +
∑

ij

Bijsij , (3.24)

involving a symmetric tensor A, Aijkl = Aklij , which can be assumed to vanish
for i = k or j = l.

The variational eq. (3.22) corresponding to a linear HV (s) becomes
∑

kl

〈sijskl〉c ckl =
1
2

∑

klmn

〈sij (sklsmn)〉c Aklmn

1In cases of instability, the change in c can be decreased by e.g. a factor of 1/2.



76 Deterministic Annealing and Nonlinear Assignment

+
∑

kl

〈sijskl〉c
(∑

mn

Aklmn 〈smn〉+ Bkl

)
. (3.25)

Denoting the first term on the RHS of eq. (3.25) by Fij , the effective cost
matrix c can be formally extracted as c = B+A 〈s〉+〈ss〉−1

c F , using a suitably
regularized matrix inverse.

3.5.3 Group theoretical aspects

It is instructive to view an assignment problem from a group-theoretical point
of view, where the relevant group of course is the permutation group of N
elements, denoted by PN .

Like any functions over group space, H and HV can be expressed in a unique
way as linear combinations of the matrix elements of the irreducible represen-
tation matrices of PN (see Appendix for details).

Requiring HV to be linear in s means that its expansion is constrained to
contain only elements from the trivial and the fundamental irreducible repre-
sentations, e and f ; thus, it can be written in a unique way in the form

HV (g) = A +
∑

ij

Biju
f
ij(g), (3.26)

where f stands for the fundamental representation. This leads to the probabil-
ity Vg ∝ exp(−HV (g)/T ), such that

∑
g Vg = 1, for a particular group element

g. The corresponding version of the variational eq. (3.3) becomes

A +
∑

kl

Bkl

∑
g

Vgu
f
kl(g) =

∑
g

VgH(g), (3.27)

A
∑

g

Vgu
f
ij(g) +

∑

kl

Bkl

∑
g

Vgu
f
ij(g)uf

kl(g)

=
∑

g

Vgu
f
ij(g)H(g), (3.28)

corresponding exactly to respectively the trivial and the nontrivial parts of
eq. (3.22). The trivial part A can be eliminated from (3.27) and inserted into
(3.28), yielding

∑

kl

(∑
g

Vgu
f
ij(g)uf

kl(g)−
∑

g

Vgu
f
ij(g)

∑

h

Vhuf
kl(h)

)
Bkl

=
∑

g

Vgu
f
ij(g)H(g)−

∑
g

Vgu
f
ij(g)

∑

h

VhH(h), (3.29)
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which is nothing but a disguised version of eq. (3.22); the sums over g with Vg

as a weight correspond to averages.

For the special case (3.24) of a quadratic H(s), the corresponding H(g) is
constrained to include elements from e, f and two additional representations,
a and s (see Appendix), in its irrep expansion, with dimensions da = (N −
1)(N − 2)/2 (if N > 2), and ds = N(N − 3)/2 (if N > 3), respectively.

Although the above analysis illuminates the linear variational approach from a
group-theoretical point of view, the resulting formulation is not of an immediate
practical interest for large N , since it (at least formally) requires the complete
enumeration of the N !-dimensional group space.

3.5.4 Proper variational methods for multiple nonlinear
assignment

Here we will briefly discuss the possibilities for treating systems of several
distinct assignments in a variational approach.

General additive Ansatz

In the case of a generic cost function of several assignments, the most natural
choice is to consider a generic additive Ansatz for a variational cost function,
corresponding to a factorized Boltzmann distribution. In principle, this corre-
sponds to the MF approximation to a system of N !-state Potts variables, and
can be treated as such. This can be useful, even for large systems (many distinct
assignments), as long as the individual assignments are of low dimensionalities.

Linear Ansatz

A further simplification results from requiring that the variational cost function
not only be additive in the different assignments, but also that the contribution
from each assignment be linear.

A possible strategy then is to update the cost matrix for one assignment
at a time according to eq. (3.23), considering the single-assignment averages
associated with other assignments as constant, and recomputing the single-
assignment averages associated with the updated cost matrix before moving on
to update the next assignment.
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Multilinear cost, linear Ansatz

A particularly simple special case of the above is when the exact cost function
is a multilinear function of the assignments matrices s. For the case of two
assignments, s(1) and s(2), this means a cost function H of the form

H(s(1), s(2)) =
∑

ij

∑

kl

Aij,kls
(1)
ij s

(2)
kl

+
∑

ij

B
(1)
ij s

(1)
ij +

∑

ij

B
(2)
ij s

(2)
ij . (3.30)

Then an additive variational cost function automatically will be linear

HV (s(1), s(2)) =
∑

ij

C
(1)
ij s

(1)
ij +

∑

ij

C
(2)
ij s

(2)
ij . (3.31)

The resulting updates then amount simply to

C
(1)
ij =

∑

kl

Aij,kl

〈
s
(2)
kl

〉
+ B

(1)
ij ,

(3.32)

C
(2)
kl =

∑

ij

Aij,kl

〈
s
(1)
ij

〉
+ B

(2)
kl ,

where variational expectation values are understood, computable in terms of
permanents and sub-permanents of the respective cost matrices.

The generalization to several assignments is straightforward.

3.6 Potts-based MF Heuristics for Nonlinear As-
signment

Although a proper variational approach as described above appears to be the
natural choice for constructing a deterministic annealing approach for assign-
ment problems, a major problem is the computational complexity involved in
the required computation of permanents and subpermanents. Indeed, for cer-
tain problem classes an instance can be solved exactly in the time it takes to
compute a single permanent. This implies that these methods have a rather
limited applicability.

Instead, alternative methods based on Potts spins have been used to construct
faster deterministic annealing methods for non-linear assignment problems.
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3.6.1 Potts plus Penalty

One such method is based on viewing the assignment matrix s as an array of
N -state Potts spins, one for each row. Then the row condition,

∑
a sia = 1, is

automatically fulfilled. One then adds to H a penalty term for breaking of the
column normalization, and treats the result using Potts MF annealing, based
on the modified cost function

H(s) +
α

2

∑
a

(
1−

∑

i

sia

)2

, (3.33)

with the penalty strength α suitable adjusted. (Of course, one might equally
well consider the columns as Potts spins and add penalties for the rows.)

This approach, in what follows referred to as PPP for Potts plus Penalty, has
been successfully applied to a number of different problems [12]. The problem
with a soft penalty is that it involves a delicate tuning of the coefficient α; too
small, and improper assignments result, where two rows are mapped to the
same column; too large, and the cost is too dominated by the penalty term,
with a consequent deterioration in performance.

In PPP, the MF spins are preferably updated in a serial manner, one row
at a time. This leads to the most stable MF dynamics, provided H is put
in multilinear form. It is easy to see then that the Potts free energy (3.10)
becomes a Lyapunov function of the dynamics at a fixed temperature. This
ensures that the MF dynamics is well-behaved in the high-T domain, with
the trivial high-T fixed point losing stability in a controlled manner. It also
guarantees that PPP turns into a form of local optimization in the low-T limit,
ensuring the stability of an optimal assignment.

3.6.2 SoftAssign

An obviously ugly feature of the PPP approach is the asymmetry in the treat-
ment of rows and columns of s. This can be cured in a slightly more ad-
vanced Potts-inspired method, the SoftAssign (or “Double Potts”) approach
[13], which can be derived as a somewhat ad hoc improvement to PPP as fol-
lows.

In PPP, the resulting MF average is given by vij = aiMijbj , where Mij is given
by exp(−(∂H/∂vij)/T ) and the column factor bj comes from the penalty term,
bj = exp(α(1−∑

i vij)/T ). In contrast, the row factor is the usual automatic
Potts normalization factor, ensuring the exact normalization of rows.
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The idea in SoftAssign is to skip the penalty, and freely choose positive row
and column factors so as to force the exact normalization of both rows and
columns. This leads to the following problem: Given a matrix M with non-
negative elements, find vectors of row and column factors, a and b, such that
the result,

vij ≡ aiMijbj , (3.34)

is a doubly stochastic matrix.

This in fact determines v uniquely, which can be seen by defining xi = log ai,
yj = log bj (ai, bj are assumed positive), and noting that the correct x, y mini-
mize the strictly convex function f(x, y) ≡ ∑

ij exiMije
yj −∑

i (xi + yi).

However, the proper row and column factors can not be obtained as simple,
closed expressions in the matrix elements of M . Instead, the desired doubly
stochastic matrix v is usually obtained by iteratively modifying M , alternat-
ingly normalizing rows and columns until the resulting matrix is sufficiently
close to being correctly normalized:

i) Mij → Mij∑
k Mik

,

ii) Mij → Mij∑
k Mkj

,

iii) Go to i).

This procedure, which is due to Sinkhorn [16], is guaranteed to yield conver-
gence to a unique doubly stochastic matrix v.

For a nonlinear problem, we can obviously identify the derivatives ∂H/∂vij

with the elements of an estimated effective cost matrix, obtained by linearizing
the cost-landscape in the vicinity of the present point. Note that, for a lin-
ear assignment problem, SoftAssign leads to exactly the same initial M as in
eq. (3.17); but that a different doubly stochastic matrix v is derived from it in
eq. (3.34).

As an aside, the SoftAssign approach can formally be associated with the min-
imization of an entity reminiscent of a free energy,

F (v) = T
∑

ij

vij log vij + H(v), (3.35)

with v constrained to be doubly stochastic, e.g. by means of adding suitable
Lagrange terms (with Lagrange multipliers associated with the row and column
factors). Although F (v) is superficially highly analogous to the Potts free
energy in eq. (3.10), SoftAssign does not correspond to a proper variational
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approch to approximating the true H(s), mainly because the first term is not
−T times the proper entropy. Nor does v correspond to the expectation value
of s in an approximating Boltzmann distribution.

Note that for SoftAssign (unlike the case with a proper variational approach),
the resulting dynamics is sensitive to the precise formulation of H(v) as an
extrapolation of H(s) to continuous arguments v.

Nevertheless, SoftAssign seems theoretically more appealing than PPP, in treat-
ing rows and columns in a symmetric manner, and in guaranteeing a doubly
stochastic v, and it has also been successfully applied to various types of prob-
lems [2], although the method does have some weak points as will be discussed
below.

Weak points with SoftAssign

In the SoftAssign approach, the iterative Sinkhorn procedure for normalizing
v is problematic at low T . This can be seen by assuming one has reached a
stage where the matrix is close to being doubly stochastic:

Mij = (1 + αi)vij(1 + βj), (3.36)

where v is the desired doubly stochastic matrix, while αi, βj are assumed small.
To linear order in α, β, one step of row normalization corresponds to α → −vβ
in matrix notation, while one step of column normalization yields β → −v>α.
Together, this gives β → v>vβ.

Hence, the asymptotic rate of convergence is determined by the eigenvalues of
the positive-definite matrix U = v>v. At a high temperature, U will be close
to a uniform matrix with 1/N everywhere, while at a low T , it will be close to
the identity matrix. Consider a simple Ansatz for U : Uij = (1− a)δij + a/N ,
with 0 ≤ a ≤ 1. The limit a → 1 corresponds to high T , while a → 0 emulates
low T . U can also be written as U = (1 − a)1 + aP , where 1 is the identity
matrix, and P is the projection matrix onto the uniform vector.

U has two distinct eigenvalues: a single unit eigenvalue with a uniform eigen-
vector (1, 1, . . . , 1), and an (N−1)-fold degenerate value 1−a with eigenvectors
in the transverse space. The unit eigenvalue is to be expected, reflecting the
irrelevance of shuffling a global factor between a and b.

What is worse is that as T → 0 (a → 0), also the other eigenvalue, 1− a, tends
towards unity. This is not a special feature of this particular Ansatz for v,
but a generic phenomenon: As v approaches a proper assignment matrix, v>v
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approaches the identity matrix. This means that the normalization procedure
inevitably runs into convergence problems in the limit of low T .

Another drawback as compared to PPP is that in SoftAssign, the elements
of the assignment matrix v have to be updated in synchrony, and there is no
obvious simple way to update it, say, one row at a time. As a result, stability
is not guaranteed at low T even for a good solution, unless the cost function
H is carefully tuned.

Speeding up the iterative normalization

In order to improve convergence for the normalization procedure in SoftAssign
at low T , it appears important to initialize the multiplicative row and column
vectors a and b carefully, so as to leave as little as possible for the slow iterative
procedure to do.

Obviously, to avoid overflow on the computer upon implementation of eq. (3.16),
the effective cost matrix will have to be modified with suitable row and column
additions, cij → cij +αi +βj , to ensure that the smallest elements be zero and
the rest positive. This can be done, e.g., by first subtracting from the elements
in each row the lowest element in that row, and then subtracting from the
elements in each column the lowest element in that column.

This measure does not suffice, however, to guarantee a proper starting point.
Consider N = 3 and the cost matrix c =

(
1 0 0
0 1 1
0 1 1

)
. At zero T this yields

M =
(

0 1 1
1 0 0
1 0 0

)
, and the normalization procedure will be caught in an

eternal loop, alternating forever between the two states
(

0 1/2 1/2
1 0 0
1 0 0

)
and(

0 1 1
1/2 0 0
1/2 0 0

)
. In fact, this M is not normalizable with finite row and column

factors!

Obviously, it is not enough to ensure at least one zero in each row and each
column of c. The zeros must be arranged such that at least one combination
of them will correspond to a one-to-one matching between rows and columns.
Finding such a modification with otherwise non-negative elements corresponds
precisely to solving the associated (effective) linear assignment problem.

Thus, we suggest using e.g. the Hungarian method to transform c to the proper
form, in order to guarantee a normalizable M for T → 0.

Even this step will not guarantee a fast convergence. As a second example,
consider N = 2 and an effective cost matrix c =

(
0 0
2 0

)
, obviously in the
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proper form. The corresponding M at T = 0 will be
(

1 1
0 1

)
. If this is handed

to the normalization procedure at a low T , the approach to the final doubly
stochastic matrix, v =

(
1 0
0 1

)
, will be merely harmonic.

The situation is considerably improved, by in addition carefully balancing the
cost matrix c, to ensure also a maximal number of non-zero elements (while
maintaining a sufficient set of zeros), with the smallest of these being as large
as possible. This can be done in polynomial time, using a recursive procedure.
For the N = 2 case above, the balancing step will yield c =

(
0 1
1 0

)
, giving

M =
(

1 0
0 1

)
at zero T , and convergence is immediate.

Still, there will be cases for N > 2 where the procedure will be caught in a
slowly converging sequence – this is inevitable, due to the unit eigenvalues at
zero T –, but in this way the most obvious traps are avoided.

An additional improvement is possible when using the Hungarian algorithm for
preprocessing the cost matrix, by exploiting that it gives a preferred matching.
This can be used to modify the normalization process to improve the conver-
gence rate by updating of matched row-column pairs simultaneously. Especially
in the low T region, where the matched elements unambiguously define a se-
lected assignment, and the corresponding elements of v will be close to unity
and the rest small, this noticeably speeds up the normalization.

Thus, the normalization constraints for a coupled row-column pair i, j of a
modified M read

ai


∑

k 6=j

Mik + Mijbj


 = 1,

(3.37)

bj


∑

k 6=i

Mkj + aiMij


 = 1,

and are simultaneously satisfied by ai = x/Ai and bj = x/Bj , where Ai =∑
k 6=j Mik, Bj =

∑
k 6=i Mkj and

x =

√
AiBj (4Mij + AiBj)−AiBj

2Mij
. (3.38)

Each matched row-column pair of M in turn is updated in this manner and the
process is repeated until the result is close to being a doubly stochastic matrix.
We will refer to this normalization scheme as coupled normalization.
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Ensuring a stable dynamics

The second major problem with SoftAssign is the lack of a guarantee for the
stability of a solution in the low-T limit; this problem never appears e.g. in a
properly handled system of Potts MF spins with serial updating.

To remedy this, we will have to exploit the freedom of adding terms to H which
are trivial on shell, but nevertheless affect the MF dynamics. One would at
least like to ensure that in the low-T limit, SoftAssign turns into some form of
local optimization.

One possibility then is to demand that H(v) be transformed into a concave
function of v (in the subspace consistent with v being doubly stochastic). This
guarantees that the energy in eq. (3.35) for T → 0 will have a local minimum
in the corner corresponding to an optimal assignment.

A crude way to ensure concavity is to add a negative quadratic diagonal term
− (α/2)

∑
ij s2

ij to H, with a large enough coefficient α. For a quadratic H
in particular, concavity also ensures that the SoftAssign free energy (3.35)
becomes a Lyapunov function of the dynamics at a fixed temperature [14].
A disadvantage with this method is that also non-solutions will be stabilized.
Empirically, a smaller diagonal addition often suffices to stabilize the dynamics.

A more advanced possibility is to employ problem-specific modifications of H,
adding suitable terms to ensure the stability of a good solution. It is therefore of
interest to analyze what kinds of generic additions are possible without altering
the on-shell costs (or merely adding a constant). We will refer to such terms
as being redundant.

Linear redundant terms: Based on decomposing the defining representation
of the permutation group PN , given by s, into the direct sum of the trivial
1-dimensional irrep e and the fundamental (N − 1)-dimensional one f (see
Appendix), the only possible linear redundant additions are given by combina-
tions of row or column sums of s; in SoftAssign, such additions merely lead to
a modification of the initial row or column factors a, b in eq. (3.34), and have
no effect on the resulting doubly stochastic matrix v.

Combinations of quadratic and linear terms: The possibilities here stem from
the decomposition of the reducible representation of PN defined by the sym-
metric direct product of the defining representation (⇔ e + f) with itself, as
discussed in the Appendix. The contributions stemming from the trivial direct
product of the e part with itself or with f give nothing useful, corresponding
to quadratic terms involving row or column sums of s, completely equivalent
to the corresponding linear terms with the row or column sums replaced by 1.
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The possibly interesting terms come from f×f = e+f+s+a. As discussed in the
Appendix, the symmetric part of this consists of a part a, antisymmetric in both
row and column indices, yielding no redundant terms, and a part containing
e + f + s, symmetric in both row and column indices, which yields quadratic
terms that vanish on shell, or equal a constant, or a linear combination of
the elements of s. In a slighly disguised form, they correspond to the on-shell
identities

s2
ij − sij = 0,

sijsil = 0, for j 6= l, (3.39)
sijskj = 0, for i 6= k.

Group theory certifies that these identities suffice to generate all possibly useful
redundant additions to H(s), that are at most quadratic in s. Although such
additions to H are identically zero on shell (v → s), as additions to H(v)
they will alter the properties of the dynamics in SoftAssign, in terms of a
modification of the expression for the effective cost matrix c = ∂H(v)/∂v.

Thus, the addition of a term proportional to the square of an element vij minus
the element itself, modifies only the corresponding element of c, by an addition
proportional to 2vij − 1. Adding the product of two elements of s in the same
row i but in different columns j, l affects the corresponding two elements of
the effective cost matrix, with an addition to cij proportional to vil, and vice
versa. Analogously, adding to H a term involving the product of two elements
in the same column j but in different rows i, k yields the addition to cij of a
term proportional to vkj and vice versa.

TSP-specific modifications

In certain quadratic problems, such as the travelling salesman problem (TSP),
where a set of N sites is to be cyclically visited in an optimal order, the cost
function has the particular structure

H(s) =
1
2
Tr

(
sDs>X

)
, (3.40)

with D, X a pair of symmetric N ×N matrices, vanishing on the diagonal.

For TSP, D is the pair-distance matrix, with Dab defining the distance between
sites a, b, while X defines the cyclic tour sequence neighborhood, Xij = δi,j+1+
δi,j−1, such that H measures the total tour length.

Concavity in the subspace consistent with s being doubly stochastic, of the
direct product matrix A = D ×X, then corresponds to one of D or X being
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positive-semidefinite, and the other negative-semidefinite, each in the subspace
orthogonal to e = (1, 1, 1 . . . 1). This can be ensured by suitable diagonal
additions to D and X separately,

D → D + α1, X → X + γ1, (3.41)

with α and γ of opposite signs. The diagonal additions to D and X implies
adding terms to H of the form discussed in the previous subsection. All vanish
on shell except for the α× γ term, which evaluates to a simple constant.

For the case of TSP, often D is already negative-definite in the transverse sub-
space, and a suitable addition to X suffices. X is easily diagonalized by means
of a discrete Fourier transform, with the spectrum given by λk = 2 cos(2πk/N),
for k = 1, . . . , N − 1. Thus, γ = 2 is required to make the modified X positive-
semidefinite. In practice, however, γ = 1 will suffice to stabilize the dynamics
in most cases; in the low-T limit this is just enough to secure the stability of
assignments locally optimal with respect to local changes in the ordering of
visited sites.

3.7 Tests on Simple Applications

In order to illustrate the ideas discussed in the previous section, we will here
test the various improvements to the SoftAssign algorithm, as applied to a set
of small single-assignment problems.

The effects of the improvements to the normalization algorithm at low tem-
peratures are illustrated using the linear assignment problem. For TSP, the
use of a problem-specific stabilizing term is compared to employing a negative
quadratic term − (α/2)

∑
ij s2

ij .

The SoftAssign algorithm used is described in Fig. 3.1.2 All experiments have
been performed on an 800MHz PentiumIII computer running Linux.

3.7.1 Speeding up the iterative normalization

As discussed in section 3.6.2, the Sinkhorn normalization of M , eq. (3.35), runs
into trouble when the temperature is low and the corresponding v is close to
an on-shell assignment matrix.

2For a more thorough description of SoftAssign in general, we refer to [13]



3.7 Tests on Simple Applications 87

• Initiate the elements of v to random values close to 1/N , and T to
a high value.

• Repeat the following (a sweep), until the v matrix has saturated (i.e.
become close to a (0,1)-matrix):

– Calculate the effective cost matrix by means of cij = ∂H/∂vij ,
possibly modify it with suitable row/column additions, and let
Mij = exp(−cij/T ).

– Normalize M with the proper row and column factors to yield a
doubly stochastic matrix, defining an updated v.

– Decrease T slightly (typically by a few percent).

• Extract the resulting solution candidate.

Figure 3.1: A SoftAssign algorithm

To probe the efficiency of each normalization scheme, we use random linear
assignment, eq. (3.15), where the costs cij ∈ [0, 1] are uniform random numbers.
We investigate the number of iteration steps needed before row and column
sums of the modified M matrix are in the range 1±∆max with ∆max a small
number, and measure the time used by the normalization scheme. This is done
at a set of decreasing temperatures such that vij ≈ 1/N, ∀i, j for the higher
values of T , while v is nearly on shell for the lower T values.

We compare the following schemes described in section 3.6.2.

1. Plain Sinkhorn. Preprocess c by first for each row subtracting the smallest
element, and then doing the same for each column. Then the Sinkhorn row
and column normalization (eq. (3.35)) is applied on the resulting M .

2. Hungarian+Sinkhorn. Preprocess c using the Hungarian algorithm. Then
normalize M using Sinkhorn.

3. Hungarian+Balancing+Sinkhorn. Preprocess c using the Hungarian and
the balancing algorithms. Sinkhorn normalization of M .

4. Hungarian+CoupledNorm. Preprocess c as in 2, then apply the coupled
row-column normalization described in section 3.6.2.

5. Hungarian+Balancing+CoupledNorm. Same preprocessing of c as in 3,
then coupled row-column normalization.
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Figures 3.2 and 3.3 show statistics from 100 linear assignment problems of
size N = 100. The data is binned for different values of the saturation,
Σ = (1/N)

∑
ij v2

ij , representing different temperature regions. At high tem-
peratures the saturation is close to 1/N , while it approaches one in the low
temperature region. The annealing is continued until the saturation becomes
larger than 0.999, but is also aborted when the number of normalization steps
exceeds a maximal value of 20000 iteration steps for three consecutive tem-
peratures (which only happened for the plain Sinkhorn approach as discussed
below); these data points are not included when calculating the averages in
Figs. 3.2 and 3.3.

The results illustrate the efficiency of the different normalization methods used
on M , and the effect of preprocessing of the cost matrix c. As can be seen in Fig.
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Figure 3.2: Number of normalization iterations used versus saturation. The
data consist of averages from runs on 100 random linear assignment prob-
lems, binned into different values of the saturation. The normalization proce-
dure is continued until all row and column sums are within 1 ± ∆max with
∆max = 0.01. The plot shows Plain Sinkhorn (+), Hungarian+Sinkhorn
(2), Hungarian+CoupledNorm (¯), Hungarian+Balancing+Sinkhorn (×), and
Hungarian+Balancing+CoupledNorm (*).

3.2 the number of iterations needed with plain Sinkhorn grows by several orders
of magnitude in the low temperature region, where the saturation approaches
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1. What is not revealed in the figure is that the plain Sinkhorn scheme failed
to normalize M at low temperatures in all of the tested problem instances –
because of the limited resolution on the computer, small elements in M become
zero where the corresponding elements in v should be one. The Sinkhorn
scheme then gets stuck in an eternal loop, failing to produce a doubly stochastic
v. The failure occurred at high enough temperatures that the saturation was
below our limit of 0.999, and the algorithm had to be aborted as described
above.

This problem can be avoided by either interrupting the annealing at an earlier
stage, and extracting a solution from the unsaturated v matrix, or by adding
additional redundant terms to the Hamiltonian, at the cost of a lower perfor-
mance. However, to guarantee that an arbitrary cost matrix yields a doubly
stochastic v, preprocessing of the cost matrix is essential.

Using a Hungarian preprocessor on the cost matrix ensures that the initial M
has element values equal to one on a permutation, and values between zero and
one on the other elements. This guarantees that at least the selected permuta-
tion survives in the normalizing process, and a doubly stochastic matrix v will
always result. Though this sounds appealing, our tests reveal that this does
not substantially decrease the number of Sinkhorn iterations as compared to
the plain Sinkhorn approach, as seen in Fig. 3.2.

To avoid the extreme increase of the number of normalization iterations in the
low temperature region one can apply balancing of the cost matrix c, or use
the coupled normalization approach, both described in section 3.6.2. Applying
either one (or both) of the methods decreases the number of normalization
iterations. This is evident in Fig. 3.2, especially in the low temperature region
where the saturation approaches one.

Applying the Hungarian and balancing methods to the cost matrix c leads to
an increased time used to produce an initial M , which is revealed in Fig. 3.3.
The total time for the algorithm is dominated by the time spent on Hungarian
and balancing. This time is nevertheless far exceeded by the time required with
the plain Sinkhorn approach in the low temperature region.

The Hungarian method is known to scale in time with problem size as O(N3)
[9], and the balancing routine empirically appears to behave similarly. This
is to be compared to the time it takes to calculate the effective cost matrix,
which e.g. for TSP is also an O(N3) procedure, while for generic quadratic
assignment it scales as O(N4).
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Figure 3.3: Time used for normalization, including preprocessing of the cost
matrix, versus saturation. The data consists of averages from runs on 100
random linear assignment problems, binned into different values of the sat-
uration. The normalization procedure is continued until all row and col-
umn sums are within 1 ± ∆max with ∆max = 0.01. The plot shows Plain
Sinkhorn (+), Hungarian+Sinkhorn (2), Hungarian+CoupledNorm (¯), Hun-
garian+Balancing+Sinkhorn (×), and Hungarian+Balancing+CoupledNorm
(*). All times are measured in seconds.

3.7.2 Stable dynamics in TSP

One of the most studied combinatorial optimization problems is TSP. Deter-
ministic annealing has been applied to it using both PPP and SoftAssign [10, 2]
and we refer to these articles for a more thorough description of the imple-
mentation on TSP. Here we will use TSP as an example where the choice of
stabilizing term needed by SoftAssign indeed influences the performance.

The standard assignment-matrix Hamiltonian for TSP is given in equation
eq. (3.40). In addition to this an extra stabilizing term is needed. We have
compared the addition of a generic stabilizer in the form of a diagonal quadratic
term,

HA = −α

2

∑

ia

s2
ia, (3.42)
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as proposed in the literature [2], with a problem-specific stabilizer as discussed
in section 3.6.2(X → X + γ1),

HB =
γ

2

∑

iab

siasibDab. (3.43)

Throughout our experiments we have used the values 1.0 for both α and γ.
The α value is slightly smaller than the value 1.4 used in [2]. A γ value of
1.0 ensures the stability with respect to local changes of the ordering of visited
sites as discussed in section 3.6.2, but does not always suffice to produce a
proper assignment. When this happens (in about 1% of the tested problems)
the algorithm is restarted, initialized with a new v. Typically, one restart is
sufficient to find a proper assignment matrix.

We studied random TSP problems where the sites were uniformly generated in
the two-dimensional unit square. In Fig. 3.4 the tour lengths from 500 problems
of size 100 are shown.

The generic stabilizer (eq. (3.42)) works by enhancing already large spin ele-
ments. Due to this, v saturates faster (towards an assignment matrix) in the
course of the annealing. Since this effect is not as pronounced with the problem-
specific stabilizer (eq. (3.43)), equal annealing parameters will not lead to equal
time used by the algorithms. Instead, parameters are chosen such that the re-
spective performances are not too far from optimal and the times used are
comparable. We have used a slower annealing, T → T/1.01, for the generic
stabilizer, and also allowed it to use up to 5 sweeps per temperature if the max-
imal change in a spin components is larger than 0.01. An even slower annealing
would not lead to a considerably better performance, in spite of the increase
in time. With the problem-specific stabilizer, we have used the annealing rate
T → T/1.05, with one sweep per temperature.

With the generic stabilizer, the average tour length was 9.53 and the aver-
age time used 1.53 s. With the problem-specific one, corresponding values
where 8.39 and 3.74 s (including possible restarts). Thus, performance-wise,
the problem-specific stabilizer is superior, while the increase in time used can
be attributed to the slower saturation – this might be avoided by adding a
small generic stabilizer term.

3.8 Conclusions

We have investigated the possibilities of defining a deterministic annealing ap-
proach to nonlinear assignment problems, in anology to existing algorithms for
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Figure 3.4: Tour lengths for 500 random two-dimensional Euclidean TSP prob-
lems of size 100, using (A) the generic stabilizer (3.42) with α = 1.0, (B) the
problem-specific stabilizer (3.43) with γ = 1.0.

Ising and Potts systems.
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We have analyzed a proper variational approach, where the problem cost func-
tion is approximated by a variational cost, linear in the assignment matrices.
For a single assignment problem this allows for an iterative scheme to minimize
the variational free energy at a given temperature. Combined with annealing,
this can be used as a deterministic annealing algorithm.

As an aside, the generalization to multiple assignment problems is straightfor-
ward. Assuming additive linear contributions to the variational cost from the
different assignments leads to a mean-field-like approximation with a factor-
ized Boltzmann distribution, and the variational parameters for the individual
assignments can be updated in a serial manner.

A major problem with the proper variational approach, however, is that it
requires the calculation of permanents, which needs exponential time (in prob-
lem size). This implies that considering this as a general heuristic for large
nonlinear assignment problems is not feasible.

Abandoning the quest for a proper variational method for nonlinear assign-
ment, we have also studied Potts-based methods as a more promising alter-
native, although per se not tailored for assignment problems. The currently
most appealing method of this type is the SoftAssign algorithm, and we have
proposed some improvements to it.

The Sinkhorn normalization procedure used in SoftAssign runs into conver-
gence problems at low temperatures. We present arguments why this is un-
avoidable, and propose proper adjustments of the effective cost matrix to re-
duce the effect. The application of a Hungarian preprocessing to the effective
cost matrix guarantees that the Sinkhorn procedure always produces a dou-
bly stochastic matrix. An additional balancing of the cost matrix decreases
the number of iteration needed by the normalization. In addition we devise
an alternative normalization procedure which is easily implemented when a
Hungarian preprocessing is used. It is superior to the Sinkhorn procedure at
low temperatures. We have experimentally confirmed these statements by im-
plementation of SoftAssign on random instances of linear assignment. With
other problem ensembles, however, we have experienced varying effects of the
improvements, in some cases they appear essential, while in others they are
more or less superfluous.

Another problem with the SoftAssign approach is the lack of guarantee for
stability in the low temperature region: Solutions may not be stable. This
problem can be resolved by adding to the Hamiltonian a stabilizer – a redundant
term that affects the dynamics without altering the on-shell cost. We have used
arguments from group theory to determine the possible types of redundant
additions that are at most quadratic in the spin components. As an example
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we discuss how such redundant terms can be used for the travelling salesman
problem, and propose a TSP-specific stabilizing term different from the generic
one normally used with SoftAssign. In numerical experiments we show that
this enhances the performance.
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[12] C. Peterson and B. Söderberg. Neural optimization. In M. A. Arbib,
editor, The Handbook of Brain Research and Neural Networks, (2nd edi-
tion), pages 617–622. Bradford Books/The MIT Press, Cambridge, Mas-
sachusetts, 1998.

[13] A. Rangarajan, S. Gold, and E. Mjolsness. A novel optimizing network
architecture with applications. Neural Computation, 8(5):1041–1060, 1996.



96 Deterministic Annealing and Nonlinear Assignment

[14] Anand Rangarajan, Alan Yuille, Steven Gold, and Eric Mjolsness. A
convergence proof for the softassign quadratic assignment algorithm. In
Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Ad-
vances in Neural Information Processing Systems, volume 9, pages 620–
626. The MIT Press, 1997.

[15] H. J. Ryser. Combinatorial Mathematics. Mathematical Association of
America, Washington DC, 1963.

[16] R. Sinkhorn. A relationship between arbitrary positive matrices and dou-
bly stochastic matrices. Annals of Mathematical Statistics, 35:876–879,
1964.



3.A Basic Group Theory for PN 97

3.A Basic Group Theory for PN

Here we will briefly review elements of the basic group theory for the permu-
tation group of N elements, G ≡ PN .

3.A.1 Representations and irreps

G has a finite number of inequivalent irreducible representations, or irreps; the
squares of their dimensions sum up to the size V of the group, V ≡ N !. If r
labels an irrep, let dr be its dimension, and let the associated dr × dr matrices
be denoted ur(g). We have

∑
r d2

r = V .

A D-dimensional reducible representation {U(g)} can be decomposed into the
direct sum of (not necessarily distinct) irreps {rµ} as

Uij(g) =
∑

µ

∑

k,l

Pµ
ikPµ

jlu
rµ

kl (g), (3.44)

or, in matrix form, U(g) =
∑

µ Pµurµ(g)Pµ>, where Pµ is a (g-independent)
D × drµ matrix that projects out the part of a vector that belongs to the
associated irrep r = rµ. It can be seen as a submatrix of an orthogonal D×D
matrix V , used to similarity transform U to an explicitly blocked form UB ,
U(g) = V UB(g)V >.

The ortogonality of V implies the following properties for the matrices Pµ:
∑

µ

PµPµ> = 1D, (3.45)

Pµ>P ν = δµν1drµ
, (3.46)

where 1d denotes the d× d identity matrix. Inverting the similarity transform,
eq. (3.44) is equivalent to

∑

ij

Pµ
ikP ν

jlUij(g) = δµνu
rµ

kl (g), (3.47)

or, in matrix form, Pµ>U(g)P ν = δµνurµ(g), expressing the similarity trans-
form of U to blocked form, with µ, ν labeling respectively the row and column
block.

The assignment matrices s define a particular N -dimensional representation
(the defining representation) of PN . It is reducible if N > 1, being the direct
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sum e+f of two irreps, where e is the trivial one-dimensional irrep with ue ≡ 1,
while f is a non-trivial (N − 1)-dimensional irrep, the fundamental represen-
tation. For the e part, e.g., the corresponding N × 1-dimensional projection
matrix is given by P e

ik = 1/
√

N .

3.A.2 Irrep Expansion

Due to the identity
∑

r d2
r = V , there are as many distinct matrix elements in

the inequivalent irreps as there are elements in the group. As is well known,
these elements form a complete orthogonal basis in group space, as expressed
by

∑

g∈G

ur
ij(g)us

kl(g) =
V

dr
δr,sδi,kδj,l (orthogonality), (3.48)

∑
r

dr∑

i,j=1

dru
r
ij(g)ur

ij(h) = V δg,h (completeness). (3.49)

Thus, any function F over the group can be expressed in a unique way as a
linear combination of the irrep elements,

F (g) =
∑

r

∑

ij

Cr
iju

r
ij(g), (3.50)

where C are coefficients, and ur(g) is the orthogonal matrix representing the
group element g in the irrep r. Due to the completeness, eq. (3.50) can be
inverted to yield the coefficients uniquely as

Cr
ij =

dr

N !

∑
g

ur
ij(g)F (g). (3.51)

Linear expressions in s

eq. (3.47) can be interpreted as follows: Independently of the group element g,
certain linear combinations of the elements of the matrix U(g) representing g in
a reducible representation R, will be identical to the elements of the orthogonal
matrix ur(g) corresponding to an irrep r that appears in R; certain other
linear combinations (corresponding to µ 6= ν) will vanish. Together, these span
a complete basis in the space of all possible linear combinations. This can be
used to identify the redundant linear or quadratic expressions in the assignment
matrix s.
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A linear function of the assignment matrix s can have non-vanishing coefficients
only for r = e and r = f in its expansion (3.50).3 Separating the e and f parts
of s yields

sij = 1/N +
∑

kl

P f
ikuf

klP
f
jl. (3.52)

The different versions of eq. (3.47) then yield a set of identities,

∑

ij

sij(g) = N, (3.53)

∑

ij

sij(g)P f
jl = 0, (3.54)

∑

ij

P f
iksij(g) = 0, (3.55)

∑

ij

P f
iksij(g)P f

jl = uf
kl(g). (3.56)

The first three of these express in a slightly disguised form the constraints of
unit row and column sums in s.

Quadratic expressions in s.

A quadratic expression in s means a linear combination of products Uik,jl ≡
sijskl, defining the direct product representation (e + f)× (e + f), considering
the pair of row indices {i, k} as a composite row index, and the pair of column
indices {j, l} likewise as a composite column index.

It is reducible, and the corresponding version of eq. (3.47) reads

∑

ik,jl

Qµ
ik,msij(g)skl(g)Qν

jl,n = δµνurµ
mn(g). (3.57)

The non-trivial part comes from f × f , which reduces to e + f + s + a (for
N > 2), where s and a are two new irreps, of dimensionalities ds = N(N−3)/2
and da = (N − 1)(N − 2)/2.

Due to the obvious symmetry of U , Uik,jl ≡ Uki,lj , it is natural to divide the
resulting irreps in two sets, according to the symmetry with respect to swapping
the index pair ik in Qµ

ik,m. Thus, the symmetric part of f× f contains e+ f +s,
while the antisymmetric part contains a alone.

3Which shows that the most general cost function is not linear in s.
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With opposite symmetry type in the row and column parts, the LHS of eq. (3.57)
vanishes identically. Thus, the interesting parts require µ, ν to correspond to
the same type of symmetry. The antisymmetric part contains only the non-
trivial part µ = ν = a, yielding ua. In the symmetric part, the µ = ν = s
part similarly yields us, while the remaining combinations yield products of
elements of s for which the RHS will either vanish (µ 6= ν), or yield a constant
(µ = ν = e), or a linear combination of the elements of s (µ = ν = f); the LHS
then defines candidates for redundant quadratic additions to a cost function.
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A novel type of approximation scheme to the maximum likelihood (ML) ap-
proach is presented and discussed in the context of phylogenetic tree recon-
struction from aligned DNA sequences. It is based on a parameterized ap-
proximation to the conditional distribution of hidden variables (related e.g. to
the sequences of unobserved branch point ancestors) given the observed data.
A modified likelihood, based on the extended data, is then maximized with
respect to the parameters of the model as well as to those involved in the
approximation. With a suitable Ansatz the proposed method allows for sim-
pler updating of the parameters, at the cost of an increased parameter count
and a slight decrease in performance. The method is tested on phylogenetic
tree reconstruction from artificially generated sequences, and its performance
is compared to that of ML, showing that the approach is competitive for rea-
sonably similar sequences. The method is also applied to real DNA-sequences
from primates, yielding a result consistent with those obtained by other stan-
dard algorithms.
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4.1 Introduction

Several different types of algorithms have been proposed for inferring phyloge-
netic trees from sequence data of species (see e.g. [10, 8]). The theoretically
most appealing of these are based on the maximum likelihood (ML) approach,
introduced in this context by Felsenstein [1], and implemented into standard
computer packages [2, 13]. In ML, a more or less simple, stochastic model
is assumed for sequence branching and independent site evolution, resulting
in a tree graph expressing the phylogenetic relationship between the observed
species. The topology (structure) and geometry (arc lengths) of the tree, and
possible additional model parameters, are to be chosen so as to maximize the
likelihood, defined to be proportional to the probability of the model to produce
the observed sequences.

In practice, the maximization of likelihood with respect to the model param-
eters is a complicated task. Typically, it is done by optimizing one parameter
at a time while keeping the others fixed. This is repeated until some criterion
for convergence is met. However, even with the simplest evolution models,
each single-parameter optimization step requires an iterative procedure, and
the method can be quite time-consuming.

In this article, an alternative approach is proposed, where the observed data
is extended by means of a simple Ansatz for the conditional probability distri-
butions of the unobserved branch-node sequences. The conventional likelihood
L is replaced by an alternative likelihood L̂ < L, associated with the extended
data. The maximization of L with respect to the model parameters is then
replaced by the maximization of L̂ with respect to these, as well as to the
parameters of the factorized Ansatz.

Depending on the complexity of the Ansatz, this will decrease performance to
some degree, as measured by the achieved value of L, and introduce additional
parameters to optimize. This is compensated for by allowing for a simpler
updating of model parameters. With a suitable Ansatz, also its parameters
allow for a simple updating scheme.

The method contains elements both from ML and from the variational ap-
proach [3], as used in statistical physics, and will be referred to as a variational
maximum likelihood approach (VML).
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4.2 Background

Before presenting the VML approach in some detail in the nect section, we will
here introduce notation, and give some theoretical background. We will briefly
discuss independent-site Markov models for the evolution and the associated
maximum likelihood approach. We will also briefly review variational methods
as used in statistical physics, in particular the specific example given by the
mean-field (MF) approximation [9].

4.2.1 Stochastic Independent-Site Mutation Models

We will consider a class of simple stochastic models for the evolution of DNA se-
quences, where individual sites in the sequence mutate at random according to
an identical model, but independently from each other; deletions and insertions
are neglected. Speciation is assumed to occur in the form of branching events,
where a species bifurcates in two,1 which continue to evolve independently.

In such a model, a specific set of observed species is assumed to have evolved
from a common ancestor, by means of successive bifurcations, and subsequent
periods of independent random mutations. Their phylogenetic relationship
takes the form of a phylogenetic tree, with the observed species at the leaves,
while each branch point corresponds to an unobserved ancestor subject to a
speciation event.

There is a priori no reason to assume that the mutation rate is the same in
different branches, nor constant in time on a single branch. If it were, one
would expect constraints between the evolutionary distances along the different
branches in the tree. This also makes the position in the tree of the common
ancestor ambiguous, in particular if the assumed model is invariant under time
reversal.

Thus, one is led to consider unrooted trees without a definite temporal ordering
along branches. Assuming interior nodes of order three, a tree with N leaves
will have N−2 internal nodes and 2N−3 links, and allow for (2N−5)!! distinct
leaf-labeled topologies. Figure 4.1 shows a schematic phylogenetic tree for five
observed species, connected via three unobservable ancestors.

Consider a set of N aligned homologous DNA sequences, corresponding to a
set of N species. Then at each site in the sequences, a combination S =
(s1, . . . , sN ) is observed, where each si is one of the four symbols A, C, G, or

1Multifurcations can be seen as sequences of several bifurcations
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Figure 4.1: A phylogenetic tree.

T, corresponding to an alphabet of size K = 4. For a given tree topology,
the set of N − 2 branch point species corresponds to an unknown combination
I = (i1, . . . , iN−2) at the same site.

In a model of the above described type, the probability for a definite aggregate
symbol combination (SI) = (x1, . . . , x2N−2) is given by a product of single link
factors,

PSI =
∏

[kl]

T [kl]
xk,xl

, (4.1)

with [kl] denoting a link between nodes k and l. The entries in a link factor
T [kl] depend on the specific mutation model, as well as on the link-specific
parameters, such as evolutionary distance. Different models put more or less
severe constraints on the link factors.

With a given topology, and with given link factors defining PSI , the probability
of the observed single-site combination S becomes

PS =
∑

I

PSI . (4.2)

4.2.2 Maximum Likelihood

In a situation where aligned homologous sequences from a set of N species are
given, each individual site can be viewed as an independent experiment, the
outcome of which is the ordered set S of observed symbols of the considered
species at that particular site. The observation of the full sequences, assumed to
have a common length M , thus corresponds to repeating the same experiment
M times and gathering statistics of the outcome. The statistical information
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can be collected into an observed distribution Q over the single-site observations
S,

QS =
MS

M
, (4.3)

where MS is the number of sites where the single-site combination S appears.
Obviously, we have

∑
S QS = 1.

To these experimental data, the parameters of a model is to be fitted. As-
suming the model to yield the probability PS for a single-site combination S,
the probability that the model produce the observed multiplicities MS is given
by

∏
S PMS

S , multiplied by the proper combinatorial factor M !/
∏

S MS !, that
takes into account the number of distinct ways to realize the observed multiplic-
ities (by permuting sites). In the limit of very long sequences the combinatorial
factor is dominated by

∏
S Q−MS

S , which we use to define a suitably normalized
likelihood as

L =
∏

S

(
PS

QS

)MQS

, (4.4)

associated with a model yielding the probabilities P , given the observed distri-
bution Q.

Note that the approximation of the combinatorial factor only affects the nor-
malization of the likelihood in a way that is independent of P , and so is harm-
less. Although somewhat unconventional, this normalization is very natural
since it gives a unit likelihood for a perfect fit, i.e. for P = Q.

Maximizing L corresponds to minimizing its negative logarithm divided by the
sequence length M , to be referred to as the free energy per site, F ,

F =
∑

S

QS log
(

QS

PS

)
≥ 0. (4.5)

In terms of F , the likelihood is given by L = exp(−MF ). The free energy is
related to the mutual entropy between Q and P ; it is a strictly convex, non-
negative function of the probabilities PS , and hence of PSI , vanishing only if P
and Q are identical. Thus, if a model is capable of producing a P that exactly
matches Q it will yield a vanishing F ; otherwise a strictly positive F will result.

4.2.3 Variational Method - General Principles

Consider a situation where a complicated theoretical probability distribution Q
over a set of variables S is given, and for simplicity one wishes to approximate
it in an optimal way by a simpler, parameterized Ansatz P of a certain form.
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In the variational approach [3], one considers an associated variational free
energy G, defined by

G =
∑

S

PS log
(

PS

QS

)
, (4.6)

which is to be minimized with respect to the parameters in P . Note that G
is a non-negative convex function of P , with a unique vanishing minimum for
P = Q.

G has a very similar appearance to the free energy F of the ML approach, eq.
(4.5). Note however, that while both are to be minimized with respect to P
for fixed Q, the roles of P and Q are interchanged in the expression for G.

4.2.4 The Mean-Field Approximation

The distribution over symbols considered in the reconstruction of phylogenetic
trees is highly analogous to the thermal distributions encountered in the sta-
tistical physics of spin systems.

In the context of spin systems, a common application of the variational ap-
proach is the Mean-Field (MF) approximation [9], where a given spin distribu-
tion is approximated by one that is factorized over the distinct spin variables.
Thus, for a set of K-state spins S = (s1 . . . sN ), a given distribution QS is to
be approximated in an optimal way by a factorized distribution PS =

∏N
i=1 vi

si
,

as defined by the minimization of the free energy

G(v) =
∑

i

∑
s

vi
s log vi

s −
∑

S

log QS

∏

i

vi
si

. (4.7)

The expression − log QS can be interpreted as a cost function (or Hamiltonian)
HS , in terms of which G can be written as

G(v) =
∑

i

∑
s

vi
s log vi

s + 〈HS〉v , (4.8)

where the first term is the negative of the entropy, while the second expresses
the average cost. Minimization of G with respect to each single-spin distribu-
tion vi yields the MF equations,

vi
s ∝ exp

(−∂〈H〉v/∂vi
s

)
, (4.9)

where the constant of proportionality is fixed by the normalization,
∑

s vi
s = 1.

(Locally) optimal distributions can be found by an iterative updating scheme
based on eq. (4.9).
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4.3 Variational Maximum Likelihood

We are now prepared to formulate the hybrid approach VML, where an ap-
proximation to the likelihood is maximized. It contains elements both of ML
and of the variational approach.

4.3.1 General Idea

When applying ML to a stochastic mutation model as described in section
4.2.1, the factorization in PSI cannot be fully exploited, since it is lost in PS

due to the summation over the hidden symbols I.

If, in addition to the observed sequences at the leaves of the tree, also the corre-
sponding sequences of the unknown ancestors at branchpoints were known, one
could apply ML to the extended distribution QSI , corresponding to minimizing
a modified free energy F̂ ,

F̂ =
∑

SI

QSI log
(

QSI

PSI

)
. (4.10)

This would simplify the maximization of likelihood considerably due to the
factorization of P , corresponding to a decomposition of F̂ as the sum of terms,
each associated with a single link. As a result, the parameters at a single link
would be determined by the minimization of an expression like

∑

ij

qij log
qij

pij
, (4.11)

where i, j correspond to the respective symbols at the two nodes connected by
the link, while q and p denote their joint marginal distribution as derived from
QSI and PSI respectively.

To take advantage of the factorization property of PSI , we now propose an
approximative approach, generically described as follows.

VML:

• Choose a parameterized Ansatz for the conditional distribution QI|S of the
hidden symbols, given the observed ones.

• QSI is now determined by QS and QI|S . Consider the corresponding free
energy F̂ , as given by eq. (4.10).
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• The minimization of F̂ with respect to the model parameters in P is straight-
forward, yielding an optimal value of F̂ , associated with this particular
Ansatz.

• Minimize the resulting free energy also with respect to the Ansatz parameters
in QI|S .

Thus, in VML, F̂ is to be minimized both with respect to the parameters of
the model defining PSI , and the parameters in the Ansatz defining QI|S .

Note that F̂ approximates F from above, which can be seen by rewriting it as

F̂ = F +
∑

S

QS

[∑

I

QI|S log
(

QI|S
PI|S

)]
≥ F. (4.12)

It has the obvious form
F̂ = F +

∑

S

QSGS , (4.13)

where for each S, GS can be interpreted as a variational free energy for the
approximation of PI|S by QI|S .

With a general enough Ansatz for QI|S , it would match PI|S at optimality,
making the second term above vanish. Thus, in such a case, min F̂ = min F .
The resulting approach would be an exact reformulation of conventional ML.

4.3.2 Factorized Ansatz

Here we will consider another possibility as an example, by employing a par-
ticular Ansatz for QI|S , constrained to be factorized over the internal nodes,

QI|S =
∏

k

vk
ik|S , (4.14)

where k runs over the N − 2 internal nodes. Then, the modified free energy F̂
can be simplified to read

F̂ =
∑

S

QS log QS+
∑

S

QS

∑

k

∑

i

vk
i|S log vk

i|S−
∑

S

QS

∑

[kl]

∑

ij

vk
i|Svl

j|S log T
[kl]
ij ,

(4.15)
where [kl] labels a link connecting two nodes k, l, while T [kl] is the correspond-
ing link factor. If k refers to an external node, vk

i|S is to be interpreted as
δi,sk

.



4.3 Variational Maximum Likelihood 111

For each S, the corresponding Ansatz probabilities v minimize

∑

k

∑

i

vk
i log vk

i −
∑

[kl]

∑

ij

vk
i vl

j log T
[kl]
ij , (4.16)

where the “|S” has been stripped off for clarity. This has the precise form of a
variational free energy for the MF approximation, cf. eq. (4.8). The condition
for a local minimum of F̂ with respect to vk yields the MF equations (4.9),
which in this case can be written as

vk
i|S ∝

∏

l∈Nk

∏

j

(
T

[kl]
ij

)vl
j|S

, (4.17)

normalized such that
∑

i vk
i = 1. Here, Nk stands for the set of nodes that are

neighbors to k. Eq. (4.17) can be used for iteratively updating v.

There is an obvious ambiguity in the link factors, associated with factors de-
pending on a single internal symbol – such factors can be exchanged between
the link factors associated with the three links surrounding it, without affect-
ing their product. For a fixed link [kl], we can use this freedom to force the
corresponding link factor T [kl] to equal the marginal two-symbol distribution
pkl, derived from PIS by summing over the remaining nodes.

Then the part of F̂ relevant for a link factor pkl can be written in the form of
eq. (4.11). This means that pkl should be chosen to optimally fit (in the ML
sense) the corresponding marginal two-symbol distribution qkl, as determined
by QIS . For a parameter a in pkl, optimality thus implies

∂F̂

∂a
≡

∑

ij

qkl
ij ∂pkl

ij/∂a

pkl
ij

= 0, (4.18)

if the optimal value of a is in the interior of its allowed interval.

One might fear that the optimization of the link factors in the form of pair-
distributions might yield inconsistent results for two neighboring links, since
both pair-distributions determine the marginal distribution pk for their com-
mon node k. This is no problem – both are consistent with an identical pk,
minimizing (if not fixed by the model) its own relevant part of F̂ , given by

∑

i

qk
i log

(
qk
i

pk
i

)
. (4.19)
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4.4 Application to the JC model

While the above considerations are somewhat abstract, we will in this section
be very concrete and give a detailed description for one of the simplest muta-
tion models, the Jukes-Cantor JC model [6]. It is highly constrained: For an
arbitrary alphabet size K, a link factor (as above taken as the corresponding
marginal pair probability) must take the form

pij =
1

K2
(1− a + Kaδij) , (4.20)

with a single free parameter a ∈ [0, 1] per link, given by a = exp(−t), with t an
associated evolutionary distance. For each single node k, this yields a uniform
marginal single-symbol distribution, pk

i = 1/K. For a given topology, the full
PSI becomes

PSI =
1
K

∏

[kl]

(
(1− a[kl])

K
+ a[kl]δij

)
. (4.21)

4.4.1 ML approach for JC

In the ML approach one would for the JC model consider the free energy F of
eq. (4.5), with PS as given by summing PSI in eq. (4.21) over I. F is to be
minimized both with respect to the topology, as given by the structure of the
tree, and with respect to its geometry, as defined by the link parameters a.

Thus, for a fixed topology, the link parameters a are chosen so as to minimize

F =
∑

S

QS log(QS)−
∑

S

QS log

(∑

I

PSI(a)

)
. (4.22)

For the update of a single link parameter a = a[kl], it is advantageous to write
F as

F = const.−
∑

S

QS log


∑

ij

uS
i

(
1− a

K
+ aδij

)
vS

j


 (4.23)

= const.−
∑

S

QS log


1− a

K

∑

i

uS
i

∑

j

vS
j + a

∑

i

uS
i vS

i


 , (4.24)

where uS
i and vS

j represent probabilities associated with the observed symbols
S in the two subtrees joined by link [kl], and fixed symbols i, j at the nodes k, l
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attached to the link. They do not depend on a, and differentiation of F with
respect to a yields

∂F

∂a
= −

∑

S

QS

a− zS
, (4.25)

which should vanish at minimum. This expression has singularities (simple
poles) at S-dependent positions zS , given by

zS = −
∑

i uS
i

∑
j vS

j

K
∑

i uS
i vS

i −
∑

i uS
i

∑
j vS

j

, (4.26)

guaranteed to lie outside the interval [−1/(K − 1), 1].

Thus, for a in the physical interval [0, 1], ∂F/∂a is strictly increasing; if it has
a zero in this interval, this defines the optimal value of a (for fixed values of the
other parameters); otherwise it is positive on the whole interval [0, 1], in which
case a = 0 is the optimal value, or negative, in which case a = 1 is optimal.
An optimum in the interior of [0, 1] has to be found by some iterative method,
such as Newton-Raphson, or binary search.

In this way, one parameter at a time can be locally optimized for fixed values
of the others, eventually leading to a (local) minimum of F for the chosen
topology; this value is taken as a measure of F for that topology.

The optimization with respect to tree topology can be done in different ways.
To strictly ensure that the best topology is found, a search of all possible topolo-
gies must be performed. Often, though, one settles for a neighborhood search,
where an initial topology is chosen at random, or better, by means of some
heuristic, and an optimization if performed with respect to link parameters,
yielding a value of F for the chosen topology. Then, neighboring topologies,
obtained e.g. by rearranging the tree around one of the shorter links (i.e. one
with a large a), are investigated. If one of these yields a lower F , it is chosen
as the new present topology, and its neighbours are checked. When no more
improvements can be made in this way, the present topology is considered op-
timal. For a more detailed discussion of heuristic topology optimization, see
e.g. [10].
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4.4.2 VML approach for JC

For the JC model, the VML method becomes particularly simple. At optimal-
ity, each internal single-node distribution vk must satisfy

vk
i ∝

∏

l∈Nk

(
1 + (K − 1)a[kl]

1− a[kl]

)vl
i

, (4.27)

with normalization such that
∑

i vk
i = 1. Similarly, for fixed values of the other

parameters, the optimal value for a link parameter a[kl] is given by

a[kl] =
K

∑
S QS

∑
i vk

i|Svl
i|S − 1

K − 1
=

K
〈
vk · vl

〉
Q
− 1

K − 1
, (4.28)

which is automatically in the interval [− 1
(K−1) , 1], since vk · vl ∈ [0, 1]. A

negative value can be corrected to yield zero.

In this way, one parameter at a time can be locally optimized for fixed values of
the others, eventually leading to a (local) minimum of F̂ for the chosen topol-
ogy; this value is taken as a measure of F̂ for that topology. The optimization
with respect to topology can be performed in the same way as in ML.

4.4.3 Note on more general models

The JC model is the simplest random independent site mutation model. It
has been extended by allowing for differentiation in transition rates, as well as
for different single-node probabilities [7, 11, 1, 5]. Also more general models
generated from arbitrary rate matrices (reversible or not) have been studied
([12, 4]).

In analogy to the proper ML approach, VML can be applied equally well to
any of these models. The actual updating equations will of course change, but
will still be based on eqs. (4.17, 4.18).

4.5 Numerical Explorations

In this section we present the results of some simple computer experiments to
gauge the performance of VML by comparing it to standard ML. We have con-
sistently used JC for transition probabilities, both when generating sequences
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for the testbed problems and as the underlying model in the algorithms used
to infer the trees.

First, we have probed the method for a homogenous (all a equal) tree with
infinite sequence length, and varying a. In the next test we used randomly
generated trees, where we compared the achieved values for F obtained by the
methods when given the correct (generated) tree topology, and also checked
whether the tree with correct topology has the lowest F . Finally we used
DNA-sequences from primates to check whether the preferred topology from
VML is the one achieved by standard methods.

4.5.1 Infinite Sequence Test

If random sequences are generated, e.g. according to the JC model, for a
tree with given topology and geometry, the single-site distributions QS will
approach the corresponding model probabilities PS in the limit of infinitely
long sequences. Thus, for each of the KN possible S, the JC model yields

QS =
∑

I

1
K

∏

[kl]

(
1− a[kl]

K
+ a[kl]δik,il

)
. (4.29)

Given these data and the correct topology, we expect the ML algorithm to be
able to produce the correct link lengths and a vanishing F within numerical
limitations. Being based on maximizing an approximation to the real likeli-
hood, the VML algorithm can be expected to perform slightly worse on such
data.

We have probed VML and ML with infinite-sequence data for four species2,
based on a tree where the five link parameters were all set equal to a common
value a0. Figure 4.2 A shows the resulting values of F as a function of the
input parameter a0. When applied to the correct topology, ML clearly gives
an essentially perfect fit as expected. VML is seen to perform well for short
links (a0 ≈ 1), and slightly worse for longer links (smaller a0), though still
not far from optimal. For an incorrect topology both algorithms produced
F values well above the ones achieved for the correct topology, showing that
either algorithm identifies the correct topology. The resulting individual link
parameters were essentially exactly a0 for the ML algorithm when probed on
the correct topology. For VML the resulting link parameters tend to deviate
somewhat for cases with smaller a0 as shown in figure 4.2 B.

2For three species the mean-field approximation becomes exact.
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Figure 4.2: Infinite sequence results for N=4. A) The free energy per site (F )
versus link lengths of generated tree (a0) plotted for ML (correct topology (∗),
wrong topology (�)) and VML (correct topology (+), wrong topology (×)). B)
Link lengths resulting from the VML algorithm applied on the correct topology
(alink) versus link lengths of generated tree (a0). Links a and b connects one
pair of species, c and d the other pair, and e is the link between the internal
nodes.

4.5.2 Tests with Artificial Sequences

We have used testbeds with artificial sequences generated according to the JC
model on random trees for varying numbers of species, N , and sequence lengths,
M . The random trees were defined by first generating a random topology, then
setting link parameters according to a specific probability distribution. Finally,
sequences were generated based on JC on this tree.

A random tree topology is defined by starting with two nodes connected by
a single link. Then a new node is connected to an existing link chosen at
random; this is repeated until there are N external nodes. This results in
an equal probability for each possible leaf-labeled topology. Link parameters
are independently generated as a := Rt0 , with R a distinct uniform random
number in [0, 1], while t0 is a common parameter, setting the temporal scale
of the generated links. The motivation for using this probability distribution
is that the time associated with a link will follow an exponential distribution,
corresponding to a constant branching rate. For t0 we have used values between
0.05 and 0.3, corresponding to an average a between 0.95 and 0.77. The a-
distributions are shown in figure 4.3. Finally, sequences are generated randomly
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according to the JC model.

0 0.2 0.4 0.6 0.8 1
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a)

a
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t0=0.30

Figure 4.3: Link parameter distributions (p(a)) for the studied test sets.

Inferring the Geometry

The ML and VML algorithms were used to infer the geometry of each tree
given the correct topology and the external sequences, and the free energy,
F , was used as a measure of the quality of the obtained geometry. We have
probed different numbers of species, N = {4, 8, 12, 16}, link distributions, t0 =
{0.05, 0.1, 0.3}, and sequence lengths, M = {250, 500, 1000}, and constantly
used the alphabet size K = 4 for the sequences.

In figure 4.4 the achieved F values are plotted versus N for different values of
M and t0. As can be seen in the figure, the difference between ML and VML
is hardly noticable. However there is a small difference, as shown in figure 4.5.

As in the case with infinite sequence lengths we can again see that the dif-
ference increases for trees where longer links are used. A larger M results in
lower values of F for both algorithms, and the difference has a quite small
M -dependence.

Topology Inference

We also tested the ability to identify the correct topology, in the sense that
it yields the lowest free energy compared to other topologies. The tests were
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Figure 4.4: Average of free energy per site < F > versus number of species N
for ML and VML. Each data point is the average of 100 randomly generated
trees. K = 4 for all runs. The plots shows M = 250 (ML(×) and VML(+)),
M = 500 (ML(�),VML(∗)) and M = 1000 (ML(◦),VML(�)). Link parameters
are generated using a := Rt0 where R is a uniform random number in [0,1]. A)
t0 = 0.05, B) t0 = 0.1 and C) t0 = 0.3.

performed on trees with four species, and link parameters were generated as
above, using t0 between 0.05 and 0.3. Sequences of length M = {250, 500, 1000}
and K = 4 were used.

The fraction, fu, of trees where the correct topology does not yield the lowest
free energy was measured for ML and VML, and the result is shown in table
4.1. For both algorithms, longer sequences result in a lower fu, as expected.
VML seems to perform slightly worse than ML, and the tendency that the
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Figure 4.5: The average of the difference in F versus N for the same data set as
in figure 4.4. The plots show the difference for M = 250 (+), M = 500 (×) and
M = 1000 (∗). The errorbars indicate the standard deviation. A) t0 = 0.05,
B) t0 = 0.1 and C) t0 = 0.3.

difference between the algorithms increase with link length is again present.

4.5.3 Primate Sequence Test

VML was also applied to real DNA data, using five homologous primate se-
quences obtained from the Silver Project3. The aligned sequences are from the
aromatic L-amino acid decarboxylase (AADC) gene, and 711 nucleotide posi-

3http://sayer.lab.nig.ac.jp/~silver/
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M=250 M=500 M=1000
t0 fvml

u fml
u fvml

u fml
u fvml

u fml
u

0.05 0.09 0.09 0.05 0.04 0.03 0.03
0.075 0.07 0.07 0.04 0.04 0.03 0.02
0.1 0.06 0.06 0.05 0.05 0.03 0.03
0.15 0.07 0.07 0.03 0.02 0.03 0.03
0.2 0.09 0.08 0.06 0.04 0.04 0.03
0.25 0.12 0.10 0.09 0.04 0.07 0.04
0.3 0.11 0.07 0.09 0.07 0.07 0.04

Table 4.1: Fraction of trees where the correct (generated) tree does not have
the lowest free energy (fu). 500 trees for each link parameter (t0) and sequence
length (M) are tested and standard ML and VML are compared. All tests are
performed with N = 4 and K = 4.

tions are used from two humans, a chimpanzee, a gorilla and an orangutan.

As there are only five sequences, all possible (15) topologies have been inves-
tigated. VML and ML both favor the tree shown in Figure 4.6 as the most
likely tree. The topology is identical to the one proposed along with the data,
obtained with a neighbour-joining method. Both ML and VML yielded a free
energy per site of F = 0.04867, and the link lengths inferred are those given
in the figure. Also local search implementations of both the ML and VML

Human1

Human2

Chimpanzee
Gorilla

Orangutan

0.0014

0.0001

0.0056 0.0042

0.0042
0.0056

0.0155

Figure 4.6: Preferred topology for ML and VML. The inferred link lengths
given as expected number of substitutions per site, h = K−1

K (1 − a), are the
same for the two methods.
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methods were tested. A local search implementation starts from a random
topology, checks the two neighbouring topologies around the shortest internal
link, and changes topology if any of the new topologies result in a lower F .
This is continued until no improvement can be found. For each choice of an
initial topology, the local search variants of ML and VML found the topology
shown in figure 4.6.

4.6 Summary and Conclusions

We have proposed and explored a novel hybrid approach, VML, where the
variational mean-field approximation is combined with the maximum likelihood
principle for the reconstruction of phylogenetic trees based on DNA sequences.

The method consists in maximizing an approximation from below to the actual
likelihood L. Results for cases with reasonably similar sequences are compa-
rable to those of a standard ML approach, while for dissimilar sequences the
method deteriorates somewhat.

The advantage of VML is that it may allow for simpler update equations for the
link parameters as compared to standard ML. This is especially apparent with
the Jukes-Cantor model, where the link parameters can be directly updated,
whereas in standard ML an iterative procedure has to be used.

The VML approach defines a generic class of methods, and is applicable to all
possible models where ML can be used. This includes different mutation models
as well as models with differentiated rates at different sites in the sequences.
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