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Introduction

Our universe is quite a complex and interesting place to live in. Consider for
example a straw of grass. With the resolution of the human eye it does not
look too exciting. Still, it is too complicated to be understood by present day
science. It seems however, that inside the cells and molecules, in the atoms, the
description becomes simple again – in principle. This is the electromagnetic
domain, habitated by electrons and atomic nuclei. Almost anything going on
here can be described in terms of some relatively short equations,

∂µF
µν = ejν . (1)

(The notation here is illusive, this is actually four equations since ν has four
different values.) The only problem is that we cannot really solve them, it
requires too much work. Zooming in inside the nucleus, the simple equations
are no longer enough, another force has entered the stage. It is called the
strong force, or the color force, or QCD. Never mind what it is called. What is
important is that it is more complicated than electromagnetism, it is stronger,
and it keeps nuclei and their constituents, the protons and neutrons, together.
These entities are themselves not fundamental, they consist of still smaller
objects called quarks, but the quarks are – as far as is known – elementary and
contain no smaller parts. This is also the case for the electron.

In fact, at distances which are roughly 1/100 of the proton size, the elec-
tromagnetic force seems to change nature, become more complex and similar
to the strong force, it transforms into the electroweak force. But this is not
particularly important for the straw of grass. Neither does it matter that the
quarks and the electrons have heavier cousin particles. Nature, for some rea-
son, made (at least) three kinds of ”electrons”: one light (the ordinary), one
heavier and one which outweights a proton. Similarly, the quarks have heavier
cousins. As if this was not enough there are oppositely charged ”electrons” and
”quarks”, the antiparticles. But none of these are major inhabitants of grass.
There is also a set of three extremely light, and extremely weakly interacting,
particles called the neutrinos. These are frequent visitors not only of grass, but
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also of our own bodies, but, since they fly through the universe almost without
interacting, we do not notice.

These are all the particles that have been discovered. As for the forces
we have the strong force, the short distance version of the electromagnetic
force called electroweak force (alternatively described as the ”weak” and the
electromagnetic forces), and last, and often least, the gravitational force.

All in all there are thus a few players on the stage; but imagine, from expres-
sions not much more complicated than eq. (1), grass, with all its complexity,
seems to grow. To a non-physicist the equations may look horrible, but if they
are to be read as the main recipe for grass and all other living things on earth,
anyone must agree that it looks simple, very much more simple than a cell
or a protein or even an atom. This is a triumph of science. There may be
many steps in the growth of grass which are not understood, but it seems that
fundamentally it all looks quite simple. Complexity grows from simplicity.

All pieces in the puzzle have, however, not been laid. Gravity is a trouble-
some piece, not easily fitted with the other pieces. Furthermore, for the funda-
mental particles, it is ridiculously weak. This may also seem a bit strange. The
strong force, and the electroweak force are, despite their names, fairly equal in
strength, the strong force is only something like 10 times stronger. For any two
fundamental particles gravity is however many orders of magnitude weaker.

There are also problems with the electroweak model and particles having
masses at all. For this fact to fit in, special treatment is needed. The standard
solution is to introduce a new kind of field and an associated particle, named
the Higgs boson, after one of it’s inventors.

Further simplifying, and, if possible, making all pieces fit into one theory, is
the goal of fundamental theoretical physics. But theories that have been con-
structed must make predictions and ultimately be confronted with experimental
data. This is in itself a complex and tedious work and here phenomenological
descriptions are important.

This thesis deals mainly with predicting observables for attempts to solve
two different theoretical problems. The first papers (paper I and II) deal with
a special way of detecting the Higgs boson. The other papers deal with pre-
dictions from the so called ADD model (after Arkani-Hamed, Dvali and Di-
mopoulos) which is an attempt to explain why the known particles interact so
weakly gravitationally.

Whereas the papers and the specific paper introductions are necessarily
written for physicists, the more general introduction is intended for a much
wider audience. It does contain equations and special words, and to understand
it completely a few years of physics university education is needed. I hope
however, that interested readers without this background should get a taste of
theoretical physics by simply skipping all the non-understood equations (this
may well be all equations) and strange words.
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Some Principles of Physics

It is a too little stressed fact that much of what is known in physics can actually
be obtained from the simple concept of invariance. I would have liked to know
this in high school.

The intuitively most obvious invariance is probably the translational in-
variance. Things work the same way if we move them to another place in
space. Indeed it would be utterly surprising if the kitchen clock started to turn
backwards just because it was moved to another kitchen wall!

But translational invariance in fact implies that momentum is conserved.
This is not too hard to get a feeling for. Imagine that momentum was not
conserved, such that cups of coffee could start flying around on the table as
they pleased. As cups change speed only if a force is acting on them, this would
mean that some force would push the coffee cups around. But then (in a sense
to be strictly defined later) the force would break translational invariance. So,
as there is translational invariance along the table surface, cups stand still.
Cups of coffee do occasionally end up on the floor. This is because there is
a force pulling them downwards since translational invariance is broken by
the gravitational field we live in. Gravity on the surface of the earth does,
however, only break translational invariance vertically, giving vertical forces
and vertically falling coffee cups. It does not break translational invariance
horizontally and cups do not fall horizontally.

The above argument is incomplete since it pre-assumes that things change
speed when a force is acting them. This observation, originally due to Newton,
can in fact be derived by instead postulating that objects follow trajectories
which minimizes something called an action. The action is the time integral
of an object called a Lagrangian, which for a particle of mass m at position x
moving around with some velocity ẋ in a potential V (x) is given by

L =
mẋ2

2
− V (x). (2)

Actions and Lagrangians are extremely important creatures in theoretical physics.
It is, strictly speaking, the Lagrangian which should stay the same (be invari-
ant) for physicists to say that there is translational invariance. The action for
the above Lagrangian is

S =

∫ t2

t1

Ldt =

∫ t2

t1

(

mẋ2

2
− V (x)

)

dt (3)

and all non-relativistic and non-quantum mechanical things in the world move
between any two times t1 and t2 in a way which minimizes the action. Since the
action has the property that it changes only a little if the path taken changes
only a little, the special paths, minimizing the action, are given by those paths
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which do not change (to first approximation) the action when they are varied
slightly. This turns out to give the equations

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (4)

As L = mẋ2/2 − V (x) we have

d

dt
mẋ+

∂

∂x
V (x) = 0 (5)

and since the force is precisely −dV (x)/dx this is just Newton’s second law,
stating that the mass times the acceleration is the force.

So, we have seen that from minimizing a combination of kinetic (mẋ2/2)
and potential (V (x)) energy called action we can find the trajectories that
particles follow, or, alternatively formulated, we have derive Newton’s second
law.

Now we can also see from eq. (5) that when the action is translationally
invariant, such that it does not depend on position, momentum is conserved
(since then ∂V (x)/∂x = 0).

If x is the height of a falling cup of coffee, ∂L/∂x = ∂V/∂x is however not
0, so the momentum is changed, but if x describes the position on the table
surface ∂L/∂x is 0, so the cup is not moving around on the table surface.

The implication of momentum conservation from translational invariance is
only one example of a general principle called Noether’s theorem, which states
that for each symmetry the Lagrangian has, there is a corresponding conserved
quantity. Time invariance (that things function the same today as yesterday)
turns out to imply energy conservation. If a system is rotationally invariant,
then angular momentum is conserved.

There are also other “non-spatial” – or internal – invariances. Electric
charge conservation (that no net electric charges can be created from uncharged
material) can be thought of as arising from a kind of “rotational” or phase

invariance in a space which has nothing to do with our ordinary dimensions.
The strong color force also comes with conserved quantities associated with
(more complex) internal rotational-like invariances.

Even the unification of the electromagnetic and the weak force is thought
of in terms of invariances, which in this case, are broken in a special way.
This special breaking, called spontaneous symmetry breaking is the cause of
the Higgs boson and will be discussed in the next section, since the first papers
in this thesis deals with a special way of detecting it. Gravity however, is not
associated with internal invariances but with invariances in space-time itself.
In this respect it differs from all the other known forces.

To understand anything about the fundamental forces it is necessary to also
introduce the concept of a field. A field is something which exists in space with
different values in different points, like the gravitational field which is weaker on
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the moon surface than on the earth surface. As a field exists in many points it
can have contributions to the Lagrangian from the whole space. Furthermore,
fields are often relativistic, meaning that the simple time derivative squared
ẋ2, has to be replaced by a more complicated combination of derivatives

φ̇2 =

(

∂φ

∂t

)2

→
(

∂φ

∂t

)2

−
(

∂φ

∂x

)2

≡ (∂µφ∂µφ). (6)

The combination (∂µφ∂µφ) means (∂φ/∂t)2 − (∂φ/∂x)2, this is just a way of
writing. The reason for the replacement is that the Lagrangian has to be
relativistically invariant, again illustrating the importance of invariances. In
fact Einstein preferred the name “theory of invariance” rather than “theory
of relativity”. For a simple field φ with just one value in each point (fields in
nature often have many values in each point) and a mass m, we then have the
Lagrangian

L =

∫ (

1

2
(∂µφ∂µφ−m2φ2) − V

)

dx. (7)

For the electroweak and the color fields, there are additional complications
since the internal (non-spatial) degrees of freedom must be taken into account
as will be seen in the following section.

To postulate that things should move along paths which minimizes the
action may seem like a fairly simple but arbitrary assumption. But, it turns
out that this can actually be obtained as a special case of the more fundamental
quantum mechanics. Quantum mechanics is much like wave mechanics (apart
from the troublesome and confusing issue of measurements) and waves, such as
on a sea, are present everywhere, sometimes bulging upwards and sometimes
downwards. Quantum mechanics is very exciting because you never know what
will happen! The only thing that can be calculated is the probability with which
something will happen. This probability turns out to be something like the
height of the wave (the amplitude) squared. A quantum mechanical electron
takes all paths through space. The probability for a particle to go from a place
x1 to a place x2 in the time t2 − t1 is something like

∣

∣

∣

∣

∫

paths

eiS(path)

∣

∣

∣

∣

2

. (8)

The notation here is somewhat unusual, what is meant is that eiS(path) should
be computed for each path, starting in (t1, x1) and ending in (t2, x2), and
the results should be summed (each point in space is therefore summed over
many times as it is passed by many paths). For most choices of space-time
points (t1, x1) and (t2, x2) the contribution from different paths will cancel
since their contributions have different phases. If the action S is very large,
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such that the phase in the exponent is rapidly oscillating, this cancellation
will typically be even worse. There are, however, some paths through space
with the property that if you vary them slightly, the action S(path) does not
change to first approximation. If the action is large these will be the important
paths. But these are just the classical paths! We have just found, by assuming
that quantum mechanical particles take all paths, that when the action is large,
particles do indeed follow paths which minimize (actually extremize) the action,
what we postulated before. So, what happens is that “everything happens”,
all paths are taken, and in the special case of large non-relativistic objects, this
gives Newton’s second law.

If nature takes all paths, does it also obey all possible invariances? Here
the answer is no. There is, for example, no such thing as size invariance. If
the chestnut trees outside my window grew twice as large, the branches would
have 4 times as large cross sections, and be something like be 4 times as strong,
but they would be 8 times as heavy. These would be fragile trees. Looking at
the equation eq. (2) we also see that the first terms does in itself break size
invariance (since it does change if make all distances twice as large).

If the potential V (r) is a gravitational potential

V (r) = −GN
m1m2

r
(9)

this terms would also break size invariance in the Lagrangian. Rescaling space
would give 8 times as heavy masses, giving a factor 64 for both masses. This
would only be compensated by a factor 2 from doubling r. From this we
conclude that if the diameter of the earth was twice as large the trees would
probably not be twice as large as well. It is more likely that they would be a
half as large!

It is often claimed that gravity is an extremely weak force. This statement
is unfortunate, since the mass at which gravity should be compared to the
other forces, has to be specified in order for the statement to be meaningful,
as gravity gets stronger with increasing mass. Gravity is certainly not weak
for earthly trees (compared to other forces acting on typical earthly trees),
but it is weak for two electrons interacting with each other (compared to the
electro-magnetic force).

In a sense gravity is actually about as strong as the other forces. This is
because a special mass, at which the gravitational strength could be measured,
does exist. This is the mass for which the corresponding black hole radius rSch

equals the quantum mechanical uncertainty in position, rSch = ∆x. (In quan-
tum mechanics the place where a particle occurs can not be predicted, but one
can say that it is likely that the particle appears within the length interval ∆x.)
For this special mass (which obviously does not depend on the electromagnetic
force) the gravitational force is about as strong as the electromagnetic force,
or the strong force. In physics language, this is because αem ∼ αstrong ∼ 1.
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A better formulation of the weakness of gravity is to say that the funda-
mental particles are extremely light compared to the mass at which gravity
becomes as strong as the other forces. In this sense gravity is extremely weak,
and this is known as (a version of) the hierarchy problem as it seems so unnat-
ural. (Having very light particles is not forbidden in any sense, it just seems
strange that the particle masses are such that fundamental particles interact
much less gravitationally than via the other known forces.) The ADD model, to
be discussed later, is an attempt to solve this problem, and the papers (III-VI)
in this thesis deal with various observational effects of the ADD model.

The Higgs Mechanism

In the previous section the role played by symmetries, or invariances, in physics
was stressed. It was mentioned than there are non-spatial, or internal, symme-
tries which are essential for the fundamental forces (except gravity). These are
symmetries in the particles or fields themselves. Imagine a completely round
white ball, it looks the same regardless of how it is rotated. If we paint a round
red dot on it this is no longer true. Now, when the ball is rotated the red dot
will (typically) move around, such that the rotational invariance is broken, see
fig. 1. It is, however, possible to rotate the ball in such a way that the red dot
is kept still, so the rotational invariance is not completely gone, only mostly.
To be more specific, without the dot, it is possible to rotate the ball around
three completely different axes, but with the dot, the ball only looks the same
while rotated around the axis which goes through the red dot, and the center
of the ball.

These rotational invariances are properties of the ball itself, and not of
the space in which it lives. Of course a ball has a spatial extension, and
here the analogy is incomplete. For the fundamental particles the internal
symmetries live in completely different spaces which have nothing to do with

Figure 1: Without a dot the rotational symmetry is perfect, but with the dot
only one rotational invariance remains.
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our 3-dimensional space.
The strong force lives in a space in which eight (completely) different ro-

tations can be made. This space has, in a sense, more than three dimensions,
and is complex (in literate and pictorial meaning). To be precise, it is an
SU(3)-space. The strong force “has no red dots” meaning that all rotational
symmetries are perfect, there is no special direction. If the fields in the La-
grangian of the strong force are rotated, the Lagrangian does not change, and
the equations governing the motion, corresponding to equation eq. (5), do not
change either.

For the combination of the electromagnetic and the weak force, the elec-
troweak force, the situation is more complex. Here the internal space is a
combination of a space in which only one rotation can be made (a U(1)-space),
and a space in which three different rotations can be made (an SU(2)-space).
For a field φ, living in this space, its rotated version can be written

eiαaτa

eiβ/2φ (10)

where the first exponent performs the rotation in the SU(2)-space, and the
second generates the simpler U(1) rotation. The field φ is really a 2-component
complex field (it has 2 ∗ 2 values in each point) and the τ :s (there are three
of them corresponding to three different rotations) are really 2 × 2 complex
matrices. A factor 1 + iετ (for a small ε) “multiplied” with φ generates a
small rotation of φ. When many infinitesimal rotations are put together, the
expression turn into an exponent and it results in a finite “large” rotation.

Since the Lagrangian is supposed to be unchanged by all of these rotations,
it must, in particular, be unchanged by every infinitesimally small rotation.
Furthermore, the rotations in the internal (SU(2) × U(1)) space can differ
from point to point in ordinary space, or be local. In order to ensure that the
Lagrangian stays constant under local transformation the derivative ∂µ has to
be replaced,

∂µ → Dµ = ∂µ − igAa
µτ

a − i

2
g′Bµ, (11)

by the covariant derivativeDµ. Here the τ :s are again the generators of rotation
in SU(2)-space, the A:s and the B are combinations of physical fields and the
constants g and g′ are coupling constants.

With this replacement the variation under rotation in ∂µφ is compensated
for by the variation in the A:s and the B such that the Lagrangian density
containing the pieces

1

2
(Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2, (12)

stays invariant. In this Lagrangian density, the first terms (Dµφ)†(Dµφ) is just
the replacement of ∂µφ∂µφ in eq. (7) and is fixed as soon as the invariances
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are chosen, whereas the other terms, µ2φ†φ − λ(φ†φ)2, correspond to the po-
tential V (x). The choice V (x) = −µ2φ†φ + λ(φ†φ)2 may seem arbitrary, but
for believers in renormalizable quantum field theory it is completely general.
Comparing eq. (12) to eq. (7), it is tempting to interpret the constant µ2 in
front of the (field)2-term as a (mass)2, but it comes with the wrong sign (if
µ2 > 0), this would correspond to a negative mass squared.

As opposed to the (SU(3)) symmetry of the strong force, the (U(1)×SU(2))
symmetry of the electroweak force is broken. It is broken by the field φ which
tries to minimize the potential V (x) = −µ2φ†φ+λ(φ†φ)2 in eq. (12) (much like
a ball rolling down a slope minimizes the gravitational potential). To under-
stand this, consider the potential as a function of φ. φ has 2 ∗ 2 components,
φ = (φ1 + iφ2, φ3 + iφ4), and in terms of these four components the potential
can be written

−µ2(φ2
1 + φ2

2 + φ2
3 + φ2

4) + λ(φ2
1 + φ2

2 + φ2
3 + φ2

4)
2. (13)

If all φ:s except φ3 are 0 and λ > 0, the potential, as a function of φ3 has the
shape shown in fig. 2.

This means that (if all other fields are 0)

Φ3

VHΦL

Figure 2: The potential as a
function of φ3. Nature sponta-
neously have to choose one of the
φ:s which minimizes the poten-
tial.

there are two minimal values of the poten-
tial as a function of φ3. The other φ:s enter
the potential in the same way, and the to-
tal potential only depends on the length of
φ. Viewed in the (φ1, φ2, φ3, φ4)-space, the
potential is therefore minimal at a certain
length v =

√

µ2/(2λ) of φ. As things, and
fields, tend to stay at the places with low-
est potential (since they are pulled there), φ
will have approximately this absolute value.
But there are many possible φ:s with the
same length, as φ can point in many direc-
tions. Which direction should nature choose? Well, no direction is better
than any other, so it just has to choose one spontaneously, hence spontaneous

symmetry breaking.
This spontaneous choice of direction is much like the spontaneous choice of

magnetization direction in a piece of iron. Initially no direction is special, but
by accident a few more atoms start pointing in one direction, and then it is
favorable for the other atoms choose this direction as well. The symmetry is
spontaneously broken and the piece of iron turns into a magnet.

So, nature accidentally chooses a direction. This can be φ1 = v, φ2 = v,
φ3 = v, φ4 = v, or any combination of φ1, φ2, φ3 and φ4 which satisfy |φ| = v.
Let us consider φ3 = v.

It is now straightforward to take the expression eq. (11) and plug it in in
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eq. (12) using φ = (0, v). From the (Dµφ)†(Dµφ) term we have the piece

1

2
(0, v)

(

gAa
µτ

a +
1

2
g′Bµ

)(

gAbµτ b +
1

2
g′Bµ

)(

0
v

)

(14)

from the extra terms in the covariant derivative. If we use the standard repre-
sentation of the generators (τ i = σi/2 where σi are the Pauli matrices) some
matrix calculations turn this into

1

2

v2

4

(

g2A1
µA

1µ + g2A2
µA

2µ + (−gA3
µ + g′Bµ)(−gA3µ + g′Bµ)

)

. (15)

Using the definitions

W±
µ ≡ 1√

2
(A1

µ ∓ iA2
µ), Z0

µ ≡ 1
√

g2 + g′2
(gA3

µ − g′Bµ) (16)

it can also be expressed

1

2

v2

4

(

g2|W+|2 + g2|W−|2 + (g2 + g′2)|Z0|2
)

. (17)

If we interpret W± and Z0 as physical fields, we see, by comparing to eq. (7),
that (field)2-terms, |W+|2, |W−|2 and |Z0|2, are just mass terms (and the
spatial components have a positive (mass)2 as desired), so, there seems to be
three physical massive fields, W+, W− and Z0. But we started out with four
fields (three A:s and one B), there should be one more. There is, but this field,

Aµ ≡ 1
√

g2 + g′2
(g′A3

µ + gBµ) (18)

has no mass. It is interpreted as the photon (light) field. The massive W±

and Z0 are “interaction fields” much like the photon, but since they are heavy
(as 100 protons roughly), much energy is needed to produce them and they
were not discovered until 1983. As seen from the constants in front of |W±|2
and |Z0|2 in eq. (17) the masses of W+ and W− differ from the mass of Z0

in a way which depends on the coupling constants g and g′. This means that
once these constants are determined, the mass ratio between W± and Z0 is a
prediction of the theory. This prediction has been tested to about 1% accuracy,
and it agrees well with experiments. This way of giving masses to W± and Z0

is called the Higgs mechanism.
So far large parts of the presentation of the Higgs mechanism has been way

above the head of several of my imagined readers. But the mechanism can
partially be quite well understood pictorially as well.

The φ-field has four different values (components), and can be imagined in
a four dimensional space. It is hard to imagine a four-dimensional space, and
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hard to try to draw it on a two dimensional paper, so instead imagine a two
dimensional space. In fig. 3 two of the components of φ are therefore shown,
and the potential as a function of them.

The favorable φ:s are the φ:s in the val-

Figure 3: The potential as a
function of φ3 and φ2.

ley, but there are many combinations of φ3

and φ2 which lie in the valley. Nature can
not choose all φ:s in the valley, but sponta-
neously chooses one, in this case φ3. φ3 is
the “ground state” of nature, correspond-
ing the magnetization direction in a mag-
netic piece of iron. There are however small
fluctuations around the ground state. If
the field is “sitting” in the point φ3 = v,
φ2 = 0, and changes slightly by “walking
up hill” it would cost energy, so this exci-

tation is associated with a massive field, it
is in fact associated with the famous Higgs
boson. Similarly, “walking” in the φ2 direc-
tion, along the minimum, does not cost energy, so it is tempting to think of
this as corresponding to a massless excitation. Before the symmetry breaking,
there where four different rotational directions (one B and three A:s). With
the choice φ = φ3, three rotational invariances are gone, the only rotational
symmetry being left is rotation around the φ3-axis. Each destroyed invariance
gives a massless excitation. (This is a famous theorem, the Goldstone theo-
rem.) But in this case the massless excitation is (for reasons which I can not
explain pictorially) associated with the W± and Z0 masses rather than fields
in themselves.

The essence of this section, is that due to the spontaneously chosen non-zero
value of φ, the W± and Z0 bosons have acquired masses. Other particles (the
fermions, e.g. the electors and quarks) also obtain their masses via interaction
with the field φ, but in this case via the excitement of φ, the Higgs boson.

The ADD Model

The ADD model, invented in 1998 by Arkani-Hamed, Dvali and Dimopoulos, is
an attempt to explain why the particle masses are so low compared to the mass
at which gravity becomes comparable in strength to the other forces. This is
done by assuming extra, curled up, dimensions in which only gravity is allowed
to propagate. The other forces and all particles are restricted to live on a
thin 3+1 dimensional surface, called brane, in the total 3 (ordinary spatial)+1
(time)+n (extra)-dimensional space.

For the gravitational field, moving freely in all dimensions, the world will,
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Figure 4: In the ADD scenario, our ordinary world is just a thin surface (brane)
in a 3 + n dimensional world. In this figure, the case of 1 compactified and 1
ordinary extended dimension is shown. The brane where the standard model
fields, and hence we, live, is represented by the gray line. At short distances
the gravitational field will behave 3+1 dimensionally, (1+1 dimensionally in
the picture). At distances large compared to the compactification radius, the
only effect of the extra dimensions will, however, be a weaker gravitational
field, as the field lines are spread into the extra dimensions.

at distances small compared to the compactification radius R, seem to be 3+n-
dimensional, as the gravitational field has 3 +n space dimensions to spread in.
At large distances, much larger than the compactification radius, the curled up
dimensions will, however, not be noticed, apart from the fact that the gravita-
tional field is weakened by spreading into the extra dimensions, and the world
will appear to only have 3 spatial dimensions. It is this weakening of the grav-
itational field which is thought to explain the weakness of gravity. The more
extra dimensions there are, the more spread and weaker is the gravitational
field.

This can actually be expressed fairly easily in formulae as well by rewriting
the gravitational coupling constant GN (the constant in eq. (9)) as GN =
1/M2

P (4). Here the units are chosen such that the speed of light and the natural

constant ~ both are 1. M2
P (4) is then (roughly) the mass at which gravity

becomes as strong as the other forces, referred to as the Planck mass. The 4
in MP (4) is there just to denote that this is the Planck mass as perceived from
3+1 dimensions. As we soon will see, there is another mass with the same role
in the 3 + 1 + n-dimensional space. Now, in terms of MP (4) the gravitational
law eq. (9) can (in natural units) be rewritten as

V (r) = − 1

M2
P (4)

m1m2

r
, r � R. (19)

For sufficiently short distances the gravitational law will however behave 3+n-
dimensionally and have the form
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V (r) = − 1

M2+n
P

m1m2

rn+1
, r � R (20)

for some fundamental (3+n-dimensional) Planck mass MP . When gravity has
expanded into the full volume of the extra dimensions this extrapolates to

V (r) ≈ − 1

M2+n
P (4)R

n

m1m2

r1
(21)

giving the relation

M2
P (4) ≈M2+n

P Rn, (22)

as seen by comparing eq. (21) to eq. (19). From this we conclude that, by having
a large compactification radius R, we can have a large observed Planck mass
MP (4), even though the fundamental Planck scale MP is small, presumably
comparable to the heavier fundamental particles. We also see quantitatively
that the more extra dimensions we have, the smaller needs R to be, in order
to obtain the same low fundamental Planck scale MP .

If this is the explanation of the seemingly light particle masses then gravity
will change behavior, and faster turn stronger with decreasing distance for dis-
tances small compared to R. This should in principle be possible to measure
directly in gravitational experiments. Experiments have also been performed
leading to various restrictions of the fundamental Planck scale MP for vari-
ous numbers of extra dimensions. Due to the difficulties of measuring gravity
at extremely small distances there are however better ways of trying to ver-
ify/exclude the ADD scenario. In particular the Large Hadron Collider (LHC),
presently under construction at CERN on the Swiss-French border close to
Geneva, will supply the possibility of measuring gravitational scattering and
even black holes, provided the fundamental Planck mass really is of the same
order of magnitude as the heaviest particle masses.

About the black holes possibly created at LHC, it should immediately be
said that these decay extremely rapidly via Hawking evaporation, in 10−27 sec-
onds or so, and are no threatening, all-swallowing, vacuum cleaners. Actually,
all black holes decay. It is just that it takes extremely long time, longer that
the lifetime of the universe, for star-remnant black holes to decay. As the typ-
ical emitted quanta of a black hole has a wavelength of roughly the black hole
radius, and the energy is inversely proportional to the wavelength, stellar-mass
black holes emit only low energy quanta and are extremely cold.

Mini black holes, such as the imagined collider black holes, are instead
extremely hot, and because of this, they loose energy and disappear quickly.
Their extreme temperatures also make it possible for them to radiate massive
particles: electrons, W:s and so on. It is this radiation, and not the black holes
themselves, which possibly will be detected at LHC.
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The Papers

This thesis is based on work on two fairly different topics. The first two papers
concern exclusive diffractive production of the Higgs boson, more specifically,
how the cross section is affected by uncertainties in the parton distribution
functions. Necessary background information is presented in the following sec-
tion at a level intended for a physicist with basic knowledge of field theory and
QCD.

The other papers deal with various phenomenological consequences of the
ADD [1] scenario. Two of the papers (IV and V) aim at a better theoretical
understanding of gravitational scattering in the ADD model, whereas the other
papers (III and VI) are simulations of what could be seen at colliders such as the
LHC, provided the ADD model is correct. Also here the paper introductions
are intended for a physicist.

Paper I and II

LHC will be a proton-proton collider, but Feynman diagrams describing pro-
duction of, for example the Higgs boson, are written in terms of amplitudes
involving quarks. Each proton consist, not only of three quantum-number-
carrying valence quarks, but also of a sea of virtual qq̄-pairs and gluons. These
quarks and gluons also contribute to various cross sections when two protons
collide.

Because of this it is necessary to introduce parton densities describing the
probability to find a certain quark or gluon, parton, in the proton. To a first
approximation the density of a particular parton depends only on its momen-
tum fraction, x, of the total proton momentum. It does not depend on the
momentum transfer scale, Q2. In other words, to a first approximation, the
proton looks the same regardless of how hard it is smashed. This is known as
Bjorken scaling. To a second approximation this is no longer true, the proba-
bility of finding a certain quark or gluon depends on the momentum transfer
Q2.

While the approximate, Q2-independent, parton distribution functions can
not be found from first principles, as they depend on non-perturbative low
energy QCD, the variation with Q2 can (in some phase space regions) be pre-
dicted from QCD. This was first done in the limit of large Q2 by Dokshitzer,
Gribov, Lipatov, Altarelli and Parisi and is therefore known as the DGLAP
equation [2–5]. It is based on the fact that due to the phase space available for
emission, emissions ordered in transverse momenta, k⊥, dominate.

This means that the emitted partons in fig. 5 have increasing k2
⊥ closer to

the hard interaction with momentum exchange Q2. This makes it possible to
write down an equation describing how the parton densities change with Q2.
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What is found is a weak logarithmic evolution with Q2, in rough agreement
with Bjorken scaling. As all color-charged particles are confined in hadrons,
the fact that the Q2 evolution of measured parton densities could be described
by this equation, was actually an important piece of evidence for QCD.

Another phase space region, where a

proton
k0

q1

k1

q2

k2

q3

qn+1

kn

Q2

Figure 5: A diagram illustrating
the parton density evolution.

momentum transfer evolution equation can
be written down, is the region of small mo-
mentum fraction and infinite collision en-
ergy. Here the emitted partons are instead
strongly ordered in momentum fraction x.
This is the domain of the BFKL equation
(Balitsky, Fadin, Kuraev and Lipatov) [6].

It is possible to interpolate between the
DGLAP and the BFKL-equation, and this
is done by the CCFM-equation (Ciafaloni,
Catani, Fiorani and Marchesini) [7, 8].

The papers I and II are however mainly
based on parton densities from the Linked
Dipole Chain (LDC) model [9], which is a
Monte Carlo implementable reformulation
and generalization of the CCFM-equation.

For exclusive Higgs Production the situation is still more complicated. The
incoming state is pp (for LHC) and the outgoing state is p + H + p, only.
This is very untypical, most often when protons collide at LHC-energies (∼14
TeV) they will break into hundreds of particles since the strong color force will
tear them apart once one parton has interacted. In order to prevent this from
happening, it must be ensured that the total parton exchange between the two
protons is colorless.

The Feynman diagram under consideration is shown in fig. 6. Two gluons
fuse via the heavy quark triangle sub-diagram into a Higgs boson. As we are
interested in processes when, apart from the Higgs, there are only two protons
in the outgoing state, another gluon must be exchanged in order to assure no
net color flow. (The protons must be color singlets also after the interaction.)

In order for the protons not to break by the momentum recoil, the transverse
momentum transfer must also be small, as indicated in the figure by the k⊥
going around in a loop. Several types of interaction could spoil the diffractive
nature of this process. Firstly, the spectator partons could undergo additional
scattering reducing the probability for a diffractive event. Also, the gluons
participating in the interaction can radiate, both at energies below the loop
momentum |k⊥| and at energies above it. Radiation with transverse momen-
tum below |k⊥| is, however, suppressed since such radiation would not resolve
the individual exchanged gluons, but would instead only “see” a color singlet.
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Radiation with transverse momentum between the momentum scale |k⊥| and

the hard scale
√

Q2 ∼MHiggs is, on the other hand, a significant threat. This
is taken into account by a non-emission probability factor, or Sudakov form-
factor, which is the probability that no radiation is emitted between the scales
|k⊥| and

√
Q. The probability to emit radiation above MHiggs is again sup-

pressed, since this radiation would violate the DGLAP evolution, expected to
be valid here.

What is needed is therefore not the

p

p

k⊥
H

x2

x1x1′

x2′

Figure 6: The basic diagram for
exclusive production of the Higgs
boson.

gluon distribution function fg(x,Q
2) in it-

self, but the unintegrated off-diagonal gluon
distribution function fg(x, x

′, k2
⊥, Q

2 ≈
M2

Higgs). This is said to be unintegrated

since it depends on two momentum scale k2
⊥

and M2
Higgs. (The lower momentum scale

k2
⊥ is not integrated out.) Off-diagonal here

means that the momentum fractions x and
x′ need not be the same.

As the reader may understand, a pro-
cess like this comes with large uncertainties,
both from the various theoretical approxi-
mations, and from experimental lack of pre-
cision in the, four-argument, unintegrated,
off-diagonal parton distribution functions.
These uncertainties are the topics of paper I and II. In particular it turns out
that the uncertainty in the gluon distribution associated with the typical lower
momentum scale k2

⊥ is large.

Paper III

As earlier mentioned black holes could be produced at the LHC if the ADD
model is a correct description of our universe. For the most natural funda-
mental Planck masses (MP (4) ∼ 1TeV, removing the hierarchy rather than just
reducing it) black holes will be copiously produced at the LHC. Their decay
products, all the standard model particles, will be spread in the detectors and
measured.

There is however a completely new phenomena implied by black hole pro-
duction, namely the absence of standard model (in particular QCD) scatter-
ing. If two partons come inside their common Schwarzschild radius, this (is
believed to) cause the partons to form a black hole. But, this also means that
the partons, which otherwise would have undergone a (e.g.) QCD scattering
are trapped in the black hole and do not contribute to the QCD cross section.
This disappearance of QCD cross section is the topic of paper III.
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Since short distance scattering corresponds to high p⊥ scattering it is the
high transverse momentum events which are to be turned into black hole events,
and consequently the high transverse momentum events which are expected to
be missing.

This would be a rather spectacular signal. No standard beyond standard
model interaction is expected to “eat” cross section. (There could occasionally
be negative interference, but generally the cross section is expected to increase
if other interactions, such as supersymmetry, are turned on.)

The problem is that, to see this drop in cross section, one has to search in
the background radiation emitted from black holes, and this turns out to be a
rather overwhelming background.

Paper IV and V

If gravity can trap partons in black holes, then it should surely be strong
enough to scatter them as well. In the ADD scenario, gravitational scattering
events can therefore be expected at the LHC. But how will this gravitational
scattering behave?

Considering the fact that semi-classical black hole decays are simulated,
and that direct gravitational measurements has been a way of excluding large
enough extra dimensions, I expected the gravitational scattering to resemble
classical scattering in the 1/rn+1 potential from eq. (20). What I found in the
papers investigating gravitational scattering was instead a contact like inter-
action, having a fairly even angular distributions and not appearing classically
at all.

This scattering behavior is derived from the field theory obtained by lin-
earizing the metric and deriving the Feynman rules [10, 11]. The extra dimen-
sional metric perturbations, the Kaluza–Klein (KK) modes, can then occur as
internal, as well as external, lines in the Feynman diagrams. As translational
invariance is broken in these dimensions by the brane we live on, momentum
in the extra dimensions is not conserved. Internal KK modes can therefore oc-
cur with all allowed momenta ml̄ , and this leads to the divergent propagator
integral

∑

l̄

1

−m2
l̄
+ k2

∼ Rn

∫

mn−1

−m2 + k2
dm (23)

where m = |ml̄| and the factor R comes from the density of KK modes. But,
we can not have infinite amplitudes and cross sections and the authors of the
original papers, where the Feynman rules where derived, imposed a cut-off for
this integral without careful physical motivation.

But does momentum non-conservation really imply that we shall sum over
all momenta? If the standard model fields lived on an infinitely thin brane,
this does correspond to a flat distribution in momentum space (the Fourier
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transform of a δ-function is a constant), but on the other hand, the summation
of KK modes has been performed in [12] after Fourier transforming from k-
space to r-space in our ordinary coordinates. The result of the integrals, when
evaluated in this order, is the expected 1/rn+1 potential.

In paper IV, I argue that the fact that the standard model particles live on a
finite brane leads to the expected 1/rn+1 potential at distances small compared
to the compactification radius but large compared to the brane width.

The conclusion that the authors of the initial Feynman diagram papers have
missed the importance of keeping the particles on the brane seems unavoidable
to me. In fact, the terms which are important for classical scattering, “infrared
terms”, are referred to in [11] with the sentence: “The infrared contributions
could be experimentally isolated only if the coefficients ck turns out to be small
(because of some “miraculous” cancellation of divergences in the fundamental
theory)...”

This statement is simply false, and a few years later the same authors recov-
ered classical gravitational scattering [13] (from the “infrared contributions”)
using the method of eikonalization. There was, however, still no remark on a
finite brane size. Instead the troublesome terms (infinities) where subtracted
using dimensional regularization and argued to consistently disappear in the
eikonal procedure.

I do find it very surprising that it seems as if the condition that the standard
model particles live on a brane, implemented via a Fourier transform, is not
present in the literature, or at least, is not well spread. However, I have seen
no signs of it, and I therefore include paper IV in this thesis.

While the result in [13] is sensible, and for large enough energies gives back
classical scattering, the method used contains several questionable steps due to
infinite amplitudes. By keeping a finite brane width throughout the calculations
several unresolved questions in [13] are clarified in paper V, an the infinite
integrals from [13] turns finite and calculable. The physical scattering picture
obtained in the end, is actually a contact-like interaction at energies small
compared to the inverse brane width. At large enough energies the classical
scattering behavior is recovered.

Paper VI

In this paper the overall collider phenomenological picture emerged in paper
V is investigated. This is done using event simulations, and we vary the rel-
ative sizes of the fundamental Planck scale and the inverse brane width. In
particular, we argue that a finite brane thickness may prevent black holes from
being formed as they may not be localized well enough in the extra dimensions.
If this is the case, then the only indication of the ADD scenario at the LHC
could be an increase in the number of energetic jets and the presence of missing
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transverse momenta due to on shell (undetectable) KK-production. We focus
on the first observable.

The consequences of the fact that gravity is colorless are also investigated.
This is in contrast to QCD and also to main contributions to cross sections
in most popular scenarios beyond the standard model. As QCD is a confining
force, this has implications for the number of particles between the jets and
could thus be used to discriminate between gravitational scattering (and other
colorless scatterings) and colorful (standard model, or beyond) scattering.
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1.1 Introduction

To detect the Higgs at hadron colliders such as the Tevatron or the LHC is far
from a trivial task. Especially if it is rather light and predominantly decays into
bottom quarks, the background from standard QCD processes is huge, making
the expression “needle in a haystack” seem like a severe understatement. Look-
ing for Higgs signals in the relatively clean environment of diffractive events
is therefore an appealing prospect, provided the cross sections are sufficiently
high. Several suggestions for what kind of diffractive processes could be used
and how to calculate the corresponding cross section for the Higgs and the
background have been made [1–8].

The cleanest and maybe the most promising process is usually referred to
as central exclusive Higgs production, pp→p+H+p (where the + symbolizes a
large rapidity gap). It was first suggested in [1,2] and has lately been developed
further by Khoze, Martin and Ryskin (KhMR)1 [5]. This process has several
advantages. If the protons are scattered at small angles with small energy loss
and they are detected in very forward taggers, the centrally produced system
is constrained to be in a scalar state, which reduces the background from e.g.
normal QCD production of b-jets. By matching the mass of the central system
as measured with the central detectors, with the mass calculated from the
energy loss of the scattered protons, it is possible to exclude events with extra
radiation outside the reach of the detectors.

There is currently much discussion about which, if any, of the suggested
diffractive Higgs processes could be detected at the LHC, and how to reliably
calculate them. For a recent review we refer the reader to [10]. In this paper
we will only concern ourselves with the model by KhMR and concentrate on
one of its weaknesses, namely the uncertainty in their prediction due to the
poorly constrained unintegrated gluon densities.

To calculate the central exclusive Higgs cross section, KhMR starts off with
the standard gg→H cross section and adds the exchange of an extra gluon to
ensure that no net colour is emitted by the protons. Then one must make sure
that there is no additional radiation what so ever in the event, which gives rise
to so-called soft and hard gap-survival probabilities. The soft survival proba-
bility ensures that the protons do not undergo any additional soft rescatterings,
while the hard survival probability ensures that the there is no additional ra-
diation from the exchanged gluons. Since the probability to emit really soft
gluons diverges, it is necessary to introduce some natural cutoff, in order for
the latter survival probability to remain finite. This is accomplished by letting
the exchanged gluons have finite transverse momenta so that soft gluons cannot
resolve the individual colour flows in the total colour singlet exchange. These

1We shall here refer to their calculation as KhMR to distinguish it from the KMR proce-
dure for obtaining unintegrated gluon densities from integrated ones by Kimber, Martin and
Ryskin [9].
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transverse momenta must compensate each other so that the net transverse
momenta of the scattered protons are zero. This means that the two gluons
emitted from each proton are highly correlated and it is necessary to introduce
so-called off-diagonal, or skewed, parton densities (odPDFs), which in addition
must be k⊥-unintegrated (oduPDFs2). With this formalism it is then assumed
to be possible to factorize3 the central exclusive production of any scalar reso-
nance, R, into the standard partonic gg→ R cross section multiplied by a gluon
luminosity function which includes both the additional gluon exchange and the
gap-survival probabilities. In this way we can turn any hadron collider with
forward taggers into a kind of colour-singlet gluon collider with variable center
of mass energy.

There are several uncertainties associated with this process. Both theoreti-
cal ones, such as how to calculate the soft survival probability, and experimental
ones, such as how well the scattered protons can be measured. In this paper we
will concentrate on another theoretical uncertainty, namely how well we know
the oduPDFs which enters to the fourth power in the cross section. The quoted
PDF uncertainty in [5] is a factor of two4, which may seem large, but we will
here argue that the uncertainty may be even larger.

The factor of two uncertainty was obtained by using a particular procedure
to obtain the gluon oduPDF from the standard diagonal integrated gluon PDF,
and then using different parameterizations for the latter. The problem with this
estimate is that the diagonal integrated gluon PDF is fairly well constrained
experimentally, while the diagonal unintegrated one is not, and the off-diagonal
unintegrated even less so. In this paper we will use an alternative way to obtain
the gluon uPDF, based on the so-called Linked Dipole Chain model [13, 14],
which is a reformulation of the CCFM [15, 16] evolution for uPDFs. With
the LDC model the uPDFs can in principle be better constrained since it is
possible to compare with less inclusive experimental data, looking at details
of the hadronic final states of events. Especially observables such as forward
jet rates in DIS should be sensitive to the actual k⊥-distribution of gluons in
the proton. Unfortunately it turns out to be extremely difficult to reproduce
such observables, even with the LDC. This is why we will here not be able
to constrain the prediction for the central exclusive production, but on the
contrary conclude that the uncertainties are larger than one might expect.

The outline of this paper is as follows. First we recapitulate in section
1.2 the main points of the calculation of Khoze, Martin and Ryskin. Then in

2Throughout this paper we shall use the following abbreviations: PDF refers to the stan-
dard diagonal integrated parton (gluon) density, uPDF is the diagonal k⊥-unintegrated den-
sity, odPDF is the off-diagonal integrated and oduPDF is the off-diagonal k⊥-unintegrated
density.

3There is to our knowledge, however, no formal factorization theorem for off-diagonal,
unintegrated parton densities.

4In later papers the quoted uncertainty is factor 2.5 up or down [11,12]
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section 1.3 we briefly describe the Linked Dipole Chain model and explain how
we use it to obtain the central exclusive luminosity function. In section 1.4 we
present our results and compare them with the calculation of Khoze, Martin
and Ryskin, leading us to the conclusions presented in section 1.5.

1.2 Central exclusive production

p

p

k⊥
H

x2

x1x1′

x2′

Figure 1.1: The basic diagram for exclusive production of the Higgs boson.

The general idea for central exclusive production of a scalar particle such
as the Higgs boson5 is that two gluons with no net quantum number fuse
into a Higgs via the standard heavy quark triangle diagram, whereas another
semi-hard gluon guarantees that there is no net colour flow between the pro-
tons. This is shown in figure 1.1, where it is also indicated that the exchanged
semi-hard gluon should also compensate the transverse momentum k⊥ of the
gluons producing the Higgs, so that the protons are scattered with little or no
transverse momenta.

Several types of radiation can destroy the diffractive character of the inter-
action. An additional gluon or quark which destroys the color singlet can be
emitted by one of the gluons. For additional gluons of q⊥ > k⊥ this will be
taken care of by a hard survival probability given by a Sudakov form factor
(see eq. (1.5) below) which guarantees that no gluon or quark with q⊥ between
k⊥ and the hard scale given by M is emitted.

In principle there is also a probability of emitting a gluon of transverse
momentum squared less then k⊥ and this probability diverges for small q⊥.
However, the k⊥ here acts as an effective cut off since a gluon with a wavelength

5We will in the following talk only about the Higgs, but note that the formalism is valid
for the production of any scalar system of particles.
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larger than 1/k⊥ will not be able to resolve the individual colour flow of the
two gluons, but will only see a color singlet being exchanged. The assumption
is that the typical k⊥ will be larger than a GeV or two due to the Sudakov
suppression, and rather than having a continuous suppression of softer gluons,
k⊥ can be used as a sharp cutoff.

Another process which reduces the number of diffractive events is additional
soft rescattering of the spectator partons. This is taken care of by a soft survival
probability, S2, the value of which can be be estimated by several different
models. Here we will use the same estimates as in [5] where S2 is taken to be
0.045 for the Tevatron and 0.02 for LHC.

Finally we must make sure that the protons remain intact, which gives
us a suppression depending on the momentum transfer to each the protons,
t = (pi − pf )2:

P = eb(pi−pf )2 ,

which will be integrated over. Assuming that possible shrinkage effects can be
neglected it simply gives a suppression factor 1/b2, and we will here use the
same value as in [5]: b = 4 GeV−2.

The exclusive cross section of pp→ ppH is then assumesd to factorize into
the form

σ =

∫

σ̂gg→H (M2)
δ2L

δyδ lnM2
dyd lnM2

where σ̂ denotes the basic gg → H cross section and

L(M, y) =
δ2L

δyδ lnM2
= S2[

π

(N2
c − 1)b

(1.1)

∫ M2/4 dk2
⊥

k4
⊥

fg(x1, x
′
1, k

2
⊥,M

2/4)fg(x2, x
′
2, k

2
⊥,M

2/4)]2

with x1,2 = e±yM/Ecm, is the luminosity function for producing two gluons
attached to the central process at rapidity y and mass M of the Higgs. In
principle one should be using an off-shell version of σ̂ (see eg. [17]) which then
would have a k⊥ dependence, hence breaking the factorization, but we shall
find below that the main contribution comes from rather small k⊥ and at least
for large masses the factorization should hold.

The equation for the luminosity contains the off-diagonal unintegrated gluon
densities, f(x, x′, k2

⊥, µ
2). These should be interpreted as the amplitude related

to the probability of finding two gluons in a proton carrying equal but opposite
transverse momentum, k⊥, and carrying energy fractions x and x′ each, one of
which is being probed by a hard scale µ2. To obtain these density functions
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in [5] the two step procedure presented in [18] was used. First they obtain the
odPDF from the standard gluon PDF, in the here relevant limit of x′ � x:

H(x, x′, µ2) ≈ Rgxg(x, µ
2). (1.2)

The Rg factor depends on the x-behavior of the PDF, so that for xg(x, µ2) ∝
x−λ [19],

Rg =
22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
≈ 1 + 0.82λ+ 0.56λ2 + O(λ3) (1.3)

This factor can be taken approximately constant and we will then use the
values quoted in [5]: 1.2 for the LHC and 1.4 at the Tevatron. We note,
however, that it could also be taken to depend on both x and µ2 by using6

λ = d lnxg(x, µ2)/d ln(1/x).
In the next step it is assumed that the oduPDF can be obtained from the

odPDF in the same way as the uPDF can be obtained from the standard PDF.
In the latter case one can use the KMR prescription introduced in [9], where

G(x, k2
⊥, µ

2) ≈ d

d ln k2
⊥

[

xg(x, k2
⊥)T (k2

⊥, µ
2)
]

, (1.4)

which then corresponds to the probability of finding a gluon in the proton with
transverse momentum k⊥ and energy fraction x when probed with a hard scale
µ2. T is here the survival probability of the gluon given by the Sudakov form
factor,

− lnT (k2
⊥, µ

2) =

∫ µ2

k2
⊥

dq2⊥
q2⊥

αS(q2⊥)

2π

∫
µ

µ+k
⊥

0

dz [zPg(z) + nfPq(z)] . (1.5)

To get the oduPDF one then starts from eq. (1.2) and get by analogy in the
limit x′ � x

fg(x, x
′, k2

⊥, µ
2) ≈ d

d ln k2
⊥

[

Rgxg(x, k
2
⊥)
√

T (k2
⊥, µ

2)

]

, (1.6)

where the square root of the Sudakov comes about because only one of the two
gluons are probed by the hard scale.

In figure 1.2 we show our calculation of the luminosity function for central
rapidity at the LHC using eq. (1.1). We use both a constant Rg = 1.2 and a
varying one according to eq. (1.3) and we find that the treatment of Rg does
make a difference. The latter alternative is closer to the result [5], but it is not
exactly the same due to differences in the handling of the αS in the Sudakov and

6Which was actually done in [5] to obtain the luminosities [20].



31

 1e-05

 1e-04

 0.001

 0.01

 0.1

 20  40  60  80  100  120  140  160  180  200

M
2 dL

/d
yd

M
2

M (GeV)

KhMR fixed Rg
KhMR varying Rg

KhMR fixed Rg µ2 = M2/2
KhMR published

Figure 1.2: The exclusive luminosity as a function of M for fixed rapidity,
y = 0, at the LHC, as calculated according to eqs. (1.1) and (1.6) with fixed
Rg = 1.2 (full line) and with varying Rg according to eq. (1.3) (long-dashed
line). The point is the the value quoted in [5]. Short-dashed line is the same
as the full line but using the scale µ2 = M2/2 rather than µ2 = M2/4 in the
oduPDFs.

the lower limit in the integral of eq. (1.1). We use a leading order αS and the
cutoff is taken to be the input scale of the MRST99 (central-g L300-DIS) [21]
used as the starting PDF in eq. (1.2).

We note that the scale used in the oduPDFs in [5] is µ2 = M2/4 rather
than the somewhat more natural one µ2 = M2. Although we realize that in a
leading order calculation like this the scale choice is somewhat ambiguous. In
figure 1.2 we show that the scale choice in fact makes a rather big difference,
the luminosity function is reduced by up to 50% by increasing the scale a factor
of two.

1.3 The Linked Dipole Chain Model

We will here only describe the main characteristics of the LDC model and
instead refer the reader to refs. [13,14,22] for a more detailed description. The
Linked Dipole Chain model is a reformulation and generalization of the CCFM
evolution for the uPDFs. CCFM has the property that it reproduces BFKL
evolution [23,24] for asymptotically large energies (small x) and is also similar
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to standard DGLAP evolution [25–28] for large virtualities and larger x. It does
this by carefully considering coherence effects between gluons emitted from the
evolution process, allowing only gluons ordered in angle to be emitted in the
initial state, and thus contribute to the uPDFs, while non-ordered gluons are
treated as final state radiation off the initial state gluons.

The LDC model is based on the obser-

proton
k0

q1

k1

q2

q′

1

k2

q3

qn+1

kn

lepton

qγ

Figure 1.3: A fan diagram for a
DIS event. The quasi-real par-
tons from the initial-state radia-
tion are denoted qi, and the vir-
tual propagators ki. The dashed
lines denote final-state radiation.

vation that the dominant features of the
parton chains are determined by a subset
of emitted gluons, which is ordered in both
light-cone components, q+ and q−, (which
implies that they are also ordered in angle
or rapidity y) and with q⊥i satisfying the
constraint

q⊥i > min(k⊥i, k⊥,i−1), (1.7)

where q and k are the momenta of the emit-
ted and propagating gluons respectively as
indicated in figure 1.3. In LDC this sub-
set (called “primary” gluons, or the back-
bone of the chain) forms the chain of initial
state radiation, and all other emissions are
treated as final state radiation.

This redefinition of the separation be-
tween initial- and final-state implies that
one single chain of initial-state emissions in
the LDC model corresponds to a whole set
of CCFM chains. As was shown in ref. [13], when summing over the contribu-
tions from all chains of this set, the resulting equations for the primary chains is
greatly simplified. In particular the so-called non-eikonal form factors present
in the CCFM splitting functions do not appear explicitly in LDC. The LDC
formulation can also be easily made forward-backward symmetric, so that in
DIS, the evolution can be equally well formulated from the virtual photon side
or from the proton side.

In the small-x limit, keeping only the 1/z term of the gluon splitting function
we can write the perturbative part of the gluon uPDF as the sum of all possible
chains ending up with a gluon at a certain x and k2

⊥

G(x, k2
⊥) ∼

∑

n

∫

n
∏

ᾱ
dzi

zi

d2q⊥i

πq2⊥i

θ(q+,i−1 − q+i)θ(q−i − q−,i−1) × (1.8)

δ(x− Πzi)δ(ln(k2
⊥/k⊥n)2),

where α = 3αs/π. For finite x it is straight forward to add not only the 1/(1−z)
to the gluon splitting function, as is also done in CCFM, but also to include
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the full splitting function with non-singular terms. The z = 1 pole then needs
to be regularized with a Sudakov form factor ∆S of the form

ln ∆S = −
∫

dq2⊥
q2⊥

αs

2π
zdzPgg(z)Θorder, (1.9)

where Θorder limits the integration to the phase space region where initial-
state emissions are allowed according to LDC. It is also straight forward to add
quarks in the evolution with the appropriate modification of the Sudakov form
factors.

The LDC model can easily be implemented in an event generator which is
then able to generate complete events in DIS with final state radiation added
according to the dipole cascade model [29, 30] and hadronization according to
the Lund model [31]. One advantage of having an event generator implemen-
tation is that energy and momentum can be conserved in each emission. Since
the lack of momentum conservation in the BFKL formalism is the main reason
for the huge next-to-leading logarithmic corrections [32], the LDC model is
therefore expected to have smaller sub-leading corrections (see [33] for a more
detailed discussion on this).

The perturbative form of the uPDF in eq. (1.9) needs to be convoluted with
non-perturbative input PDFs, the form of which are fitted to reproduce the
experimental data on F2. This has all been implemented in the LDCMC program
[34], and the resulting events can be compared directly to experimental data
from eg. HERA. One of the most important observables is the rate of forward
jets which is sensitive to parton evolution with unordered tranverse momenta,
which is modeled by BFKL, CCFM and LDC, but is not allowed DGLAP. This
observable should also be especially sensitive to the actual k⊥distribution of
gluons in the proton. It turns out that the forward jet rates can indeed be
reproduced by LDCMC (as well as with the CCFM event generator CASCADE

[35]) but only if only gluons are included in the evolution and if non-singular
terms are excluded from the gluon splitting function [33]. So far there is no
satisfactory explanation for this behavior.

The LDC gluon uPDF has been extracted by generating a DIS events with
LDCMC and measuring the gluon density as described in [22]. The density
depends on two scales, k⊥and a scale, q̄, related to the maximum angle allowed
for the emitted gluons, which is related to the virtuality µ2 of the hard sub-
process. In LDC, similarly to the KMR prescription, the uPDF approximately
factorizes into a single scale uPDF and a Sudakov form factor:

G(x, k2
⊥, µ

2) ≈ G(x, k2
⊥) × ∆S(k2

⊥, µ
2). (1.10)

This density can then be compared to other approaches and one finds that
the results are quite varying as the examples in figure 1.4 shows. Even looking
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Figure 1.4: The LDC gluonic unintegrated gluon distribution function (full
curve), compared to the corresponding results of JS [36] (long-dashed curve),
KMR [9] (dotted curve), KMS [37] (short-dashed curve) and a simple derivative
of the GRV [38] PDF parameterization (dash-dotted curve) as functions of x
for (a) k2

⊥ = 10 GeV2 and (b) k2
⊥ = 30 GeV2. Results for the two-scaled

functions, LDC, JS and KMR, with µ = 2k⊥, are shown together with the
1-scaled distribution functions of KMS and dGRV.

only at the proper two-scale uPDFs, factors of two difference are not uncom-
mon.

Due to the k⊥-unordered nature of the LDC evolution, the relationship
between the uPDF and the standard gluon density is different from eq. (1.4),
as the integrated gluon at a scale µ2 also receives a contribution, although
suppressed, from gluons with k⊥ > µ, and in [22] the following expression was
obtained:

xg(x, µ2) = G(x, k2
⊥0)∆S(k2

⊥0, µ
2) (1.11)

+

∫ µ2

k2
⊥0

dk2
⊥

k2
⊥

G(x, k2
⊥)∆S(k2

⊥, µ
2) +

∫ µ2/x

µ2

dk2
⊥

k2
⊥

G(x
k2
⊥

µ2
, k2

⊥)
µ2

k2
⊥

To obtain the off-diagonal densities needed for the exclusive luminosity func-
tion, we assume that a similar approximation can be made as for the KMR
densities, that is, in the limit of very small x′

fLDC
g (x, x′, k2

⊥, µ
2) ≈ Rg(x, k

2
⊥)G(x, k2

⊥)
√

∆S(k2
⊥, µ

2). (1.12)

The square root of the Sudakov form factor is used, since only one of the
gluons couples to the produced Higgs at the high scale. We will use both a
fixed Rg factor as in section 1.2 and the one which depends explicitly on the
x-dependence of the diagonal PDF taken at the relevant scale. It is currently
not quite clear to us how large the uncertainties are in this procedure and we
come back to it in a future publication.
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The LDC uPDFs are only defined down to a cutoff, k⊥0, below which we
will use the non-perturbative input density, g0, and arrive at the following
expression for the exclusive luminosity function:

L = S2





π

(N2
c − 1)b

(1.13)





1

k2
⊥0

Rg(x1, k
2
⊥0)g0(x1, k

2
⊥0)∆S(k2

⊥0,M
2)Rg(x2, k

2
⊥0)g0(x2, k

2
⊥0)+

∫ M2

k2
⊥0

dk2
⊥

k4
⊥

Rg(x1, k
2
⊥)G(x1, k

2
⊥)∆S(k2

⊥,M
2)Rg(x2, k

2
⊥)G(x2, k

2
⊥)

)]2

.

Comparing with eq. (1.1) we note that, besides the different form of the
oduPDFs, the scale and the integration limit is taken to be M 2 rather than
M2/4. The exact value of the integration limit is not very important, but the
scale in the Sudakov form factor is. In fact, the form of the Sudakov form
factor is also different. We use

ln ∆S(k2
⊥,M

2) = −
∫ M2

k2
⊥

dk2
⊥

k2
⊥

αs

2π

∫ 1−k⊥/M

0

dz

[

zPg(z) +
∑

q

Pq(z)

]

, (1.14)

which corresponds to the actual no-emission probability in the phase space
region up to the rapidity of the produced Higgs from the incoming gluon. The
different integration region in eq. (1.5) as well as the different scale used means
that the Sudakov suppression in that case is weaker as shown in figure 1.5.
The difference is not very large, but since the factor comes in squared in the
luminosity function for k⊥ of a couple of GeV the difference can easily become
larger than a factor two.

One of the main differences between the LDC uPDFs and the KMR ones is
that the evolution of former includes emissions with transverse momenta which
may be larger than the k⊥ for the probed gluon. This is, of course, kinematically
allowed but should be rather suppressed. In any case, it is not clear how to
handle such emissions when calculating the off-diagonal densities in eq. (1.12).
To investigate the effects of such k⊥-non-ordering we shall below also use as
comparison an alternative LDC uPDF where the transverse momentum in the
evolution has been limited to be below k⊥.

1.4 Results

In the following we shall present calculations for the exclusive luminosity using
three different parameterizations of the LDC uPDF. The three options differs
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Figure 1.5: The Sudakov form factor used in the LDC calculation (full line,
eq. (1.14)) compared to the one used by KhMR (dashed line, eq. (1.5)).

in the way they treat non-leading effects in the evolution and will be referred
to as standard , gluonic and leading as described in [22]:

• standard is obtained with the full LDC evolution including the full split-
ting functions for both gluons and quarks. This option does not describe
forward jets very well, but it gives an excellent description of F2 data.

• gluonic is obtained by using only gluons in the LDC evolution, but with
the full splitting function. This option does not describe F2 data as well,
especially not at large x, but it agrees better with standard parameteri-
zations of the integrated gluon PDF.

• leading is obtained by using only gluons in the LDC evolution and only
the singular terms of the gluon splitting function. Among the three it
is the one which describes inclusive data the worst, on the other hand
it is the only one which is able to describe the large rate of forward jets
measured at HERA.

Clearly, none of these options are in perfect agreement with data, but we will
use them here as a parameterization of our ignorance when it comes to unin-
tegrated gluon densities.

In figure 1.6 and 1.7 we present our calculations of the luminosity function
for the LHC and Tevatron respectively, using eq. (1.13) (with fixed Rg = 1.2
and 1.4 respectively). We find that the three options for the LDC evolution
give very different results. At the LHC the standard is fairly close to the
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Figure 1.7: The exclusive luminosity as a function of M for fixed rapidity, y = 0
(a) and as a function of rapidity for fixed mass M = 120 GeV, at the Tevatron,
as calculated according to eq. (1.13). The lines are the same as in figure 1.6.

results obtained with the KhMR calculation, while the result for leading is
up to a factor ten below. We note that for large rapidities in figure 1.6b the
differences between LDC and KhMR is larger also in shape, but this is close
to the phase space limit, where one of the gluons carry a large fraction of the
proton momentum and in this region the LDC parameterizations are less well
constrained. The same effect is visible at the Tevatron in figure 1.7 where again
the energy fractions are larger, especially for high masses.

The large difference between the three LDC options may seem surprising,
especially since the standard integrated gluon PDF is generally higher for lead-

ing than for the other two. The explanation can be found by studying the
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Figure 1.8: The LDC unintegrated gluon density as a function of k⊥ for
µ2 = (120 GeV )2 and x = 120/14000 (relevant for the luminosity function
in eq. (1.13) for M = 120 GeV and y = 0). For comparison the KMR uPDF is
shown for the same x but for µ2 = (120/2 GeV )2 (relevant for eq. (1.1)). The
lines are the same as in figure 1.6.

k⊥-dependence of the uPDF presented in figure 1.8. Here we see that leading

has a harder k⊥ spectrum than the the other two options and that all LDC
densities have a flatter spectrum than the KMR one (which is shown at a lower
scale corresponding to the one used in the luminosity function). This should be
expected since the leading also produces more forward jets (in agreement with
what is observed experimentally) and hence should give larger k⊥-fluctuations.
It turns out that the luminosity function is mostly sensitive to the uPDFs at
k⊥-values of around 2 − 3 GeV, since smaller and larger values are suppressed
by the Sudakov form factor and the 1/k4

⊥ factor respectively. Even if the dif-
ferences in this region is not very large, the uPDF enters to the power four in
the luminosity function, thus enhancing the differences (the difference between
LDC and KMR is diminished since the square root of the Sudakov formfactor
affect the LDC more than the KMR).

To investigate the uncertainties involved in going from the LDC uPDFs
to the oduPDFs in eq. (1.12) we show in figure 1.9 the difference between
using a fixed Rg factor and a varying one according to eq. (1.3) 7 with λ =

7The line is here a bit jagged due to the limited statistics in the Monte Carlo extraction
of the LDC uPDF.
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calculation based on KhMR with a varying Rg is shown with a dotted line.

d lnG(x, k2
⊥)/d ln(1/x). Comparing with figure 1.2, we find that the differences

are of the same order. We also show the effects of using an alternative version of
the gluonic density where the transverse momentum in the evolution has been
limited to be below k⊥. This will not only reduce the uPDF somewhat, but it
will also slow down the x-evolution, giving a smaller λ and hence a smaller Rg .
As expected this effect is quite small, but still noticeable especially at small
masses (small x).

1.5 Conclusions

The partonic evolution at small x is one of the least understood aspects of
QCD. Although inclusive Higgs production is not a small-x process and there-
fore well understood in terms of collinear factorization with well constrained
integrated gluon distributions, the exclusive production considered here relies
on the exchange of a small-x gluon and is very sensitive to the k⊥ distribution
in the less constrained unintegrated gluon distributions.

In this report we have described how we calculate the exclusive luminosity
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function using the unintegrated gluon distributions obtained within the LDC
model, and we have found that different options give widely different results. In
particular we note that the option which gives the best description of forward jet
production at HERA, which should be sensitive to the actual k⊥-dependence of
the gluon in the proton, gives a result which is a factor ten smaller than what
was reported by Khoze, Martin and Ryskin in [5]. This option is in theory
a worse approximation than the other two and is similar to the double-log
approximation discussed by the same authors in [39], which was also shown
to give a much smaller result. Contrary to them, however, we do not dismiss
the leading approximation, as experiments indicate that it better describes the
actual k⊥distrubution of the gluon.

There are several uncertainties in our calculations. The relation between
the unintegrated gluon and the corresponding off-diagonal unintegrated gluon
density not formally derived, but just assumed to be valid by analogy. The
results are sensitive to the treatment of the Rg factor and the treatment of
the k⊥-unordered nature of LDC evolution. The different options used for
the LDC unintegrated densities are in good agreement with different kinds of
experimental observables, but none of them agrees with all important observ-
ables. It should also be noted that these densities were obtained through a fit
to F2 data only, which is mainly concentrated at small scales. At large scales
which are important for reasonable values of the Higgs mass ( >∼ 120 GeV) the
densities are less constrained.

The conclusion of this paper is therefore not that the previous calculations
by Khoze, Martin and Ryskin is wrong in any way, but rather that they may
have underestimated the uncertainties due to the unintegrated gluon density.
We will not go so far as to say that the uncertainties are as large as a factor
ten, but we believe that they are much larger than a factor of two. This does
not mean that the prospects of using tagged forward protons to try to find
the Higgs or other scalar particles at the LHC becomes less interesting, but
our current understanding of the small-x sector of QCD clearly needs to be
improved before we can give reliable predictions for such processes.
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In a previous report we used the Linked Dipole Chain model unintegrated gluon
densities to investigate the uncertainties in the predictions for central exclusive
production of scalars at hadron colliders. Here we expand this investigation
by also looking at other parameterizations of the unintegrated gluon density,
and look in more detail on the behavior of these at small k⊥. We confirm
our conclusions that the luminosity function for central exclusive production is
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to give reliable predictions even for inclusive Higgs production at the LHC.
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2.1 Introduction

Detecting the Higgs boson at LHC in the “most probable” mass region around
120 GeV is far from a trivial task, such a light Higgs predominantly decays into
bottom quarks making the background from standard QCD processes huge.
Looking for Higgs signals in the clean environment of central diffractive events
is therefore an appealing prospect, provided the cross section is sufficiently
high [1–8].

In general, central exclusive events can be used for studying any scalar
particle. In this paper we will only consider a Higgs boson, but our results can
be trivially generalized. Central exclusive diffractive Higgs production was first
suggested in [1,2] and has lately been developed further by Khoze, Martin and
Ryskin (KhMR)1 [5]. One of the main advantages compared to inclusive Higgs
production is that, since the central system is constrained to be in a 0++ state,
the normal QCD background from b-jets is heavily suppressed. By matching
the mass of the central system, as measured with the central detectors, with the
mass calculated from the energy loss of the scattered protons detected by very
forward proton taggers, it is possible to exclude events with extra radiation
outside the reach of the detectors, to ensure that the central system is indeed
in a 0++ state.

In [10] we investigated the implications of the uncertainties in the uninte-
grated structure functions, uPDFs, for the KhMR calculations. Our main con-
clusion was that the cross section is very sensitive to the unintegrated structure
functions, G(x, k2

⊥,m
2
H), in the region of k⊥ ≈ 2 − 3 GeV. The differences in

the uPDF, which enters in the final exclusive luminosity to the power of four,
leeds to a variation in the result of roughly one order of magnitude. This esti-
mate was obtained using unintegrated structure functions both from KMR [9]
(used in the KhMR calculations) and different parameterizations based on the
Linked Dipole Chain model, LDC [11].

In this report we have also used the CCFM-based densities described in [12],
here referred to as Jung-1 and Jung-2. Both LDC and Jung have been tuned to
F2 data from HERA in the region of small x <∼ 0.01 and 1.5 < Q2 <∼ 100 GeV2.
Despite the similar fitting region and the similarities between CCFM and
LDC evolution, it is found that the densities differ substantially in their k⊥-
distribution [11] even inside the fitting region. This is to be expected, since
the fitting was only done to F2, which is an integrated quantity. Below we will
find that the differences at high scales, corresponding to the production of a
120 GeV Higgs, is large even for the integrated density. This can be explained
by the fact that here the densities are also influenced by the large x distribution
at smaller scales, well outside the region of the fit.

1We shall here refer to their calculations as KhMR to distinguish it from the KMR proce-
dure for obtaining unintegrated gluon densities from integrated ones by Kimber, Martin and
Ryskin [9].
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In the KMR case the uPDFs are derived directly from the globally fitted
integrated gluon density, MRST98 [13]2. Hence at least the integrals of the
uPDFs are well constrained. On the other hand, the k⊥ dependence is un-
certain since KMR assumes DGLAP evolution which works well for inclusive
observables but not necessarily for k⊥ sensitive ones.

The off-diagonal unintegrated parton densities (oduPDFs) which enters into
the KhMR calcultaions were derived in [14] from the corresponing off-diagonal
integrated one (odPDF) in the same way as the uPDFs were derived from
the standard integrated PDFs in [13]. Now, while the integrated gluon PDF
is fairly well constrained experimentally, the unintegrated is not, and the off-
diagonal unintegrated, used in the exclusive cross section, is even less so. And
any uncertainty in the uPDF will immediately be reflected in an uncertainty
in the oduPDF.

There are a few weak experimental constraints on the k⊥-distribution of
the uPDFs. So far these constraints have not been taken into account in any
fitting, but comparing models using the uPDFs with data can give us some
hints about where the densities work and where they need to be improved.
Since the exclusive luminosity is sensitive to the uPDF mainly in the region
of a few GeV we should look for other observables sensitive to features in this
region to obtain constraints. One such observable is the k⊥-spectra of W and Z
in hadron collisions (eg. at the Tevatron [15,16]) for small k⊥. While the main
features of this can be reproduced by a calculation using KMR uPDFs [17], the
small-k⊥ peak is slightly too low, as can be seen in figure 2.1, indicating that
KMR may be underestimating somewhat the hardness of the k⊥-distribution.

Another sensitive observable is the rate of forward jets in DIS at HERA.
Especially in the measured region of k2

⊥ ∼ Q2 >∼ 10 GeV2 and small x where
standard DGLAP evolution would not contribute. Indeed, DGLAP based mod-
els severely underestimate the rate of forward jets (see eg. [18] and [19] for a
discussion on this), and even though the KMR uPDFs have not been confronted
with this data it is likely that they will also fail.

In general there are indications of a slightly harder k⊥ distribution in the
uPDFs than what is given by KMR. This is predicted by the BFKL-like CCFM
evolution (and hence also LDC) on which the alternative uPDFs used in this
report are based on. Such evolution includes also ladders unordered in tranverse
momenta, opening up for more activity. As shown in [20] the typical evolution
path, starting from the high virtuality end, is a rapid DGLAP-like evolution
down to a few GeV and then a region of transverse momenta distributed as a
random walk in log(k⊥).

The layout of this paper is as follows. First we recapitulate the main points
in the calculation of Khoze, Martin and Ryskin and discuss their oduPDFs in

2MRST98 is not the newest of PDF parameterizations, but it was used in [5], where it
was also shown that the results are rather insensitive to the choice of integrated PDF.
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Figure 2.1: The p⊥-distribution of Z0 measured at the Tevatron [15] compared
to a calculation using the KMR approach to uPDFs with different options as
described in [17].

section 2.2. In section 2.3 we obtain the oduPDFs in the case of LDC and Jung
respectively. Then, in section 2.4 we present and comment our results. Finally
we arrive at our conclusions in section 2.5.

2.2 Central exclusive production

In a central exclusive production of a Higgs boson, two gluons with no net
quantum number fuse into a Higgs via the standard heavy quark triangle dia-
gram, whereas another semi-hard gluon exchange guarantees that there is no
net colour flow between the protons. This is shown in figure 2.2, where it
is also indicated that the exchanged semi-hard gluon should compensate the
transverse momentum k⊥ of the gluons producing the Higgs, so that the pro-
tons are scattered with little or no transverse momenta.

Several types of radiation can destroy the diffractive character of the inter-
action. There can be extra interactions between the spectator partons, modeled
by the so called soft survival probability S2. Also, the gluons participating in
the interaction can radiate both at scales above k⊥, which is modeled by the
hard survival probability using a Sudakov form factor, and at scales below k⊥,
which is suppressed, since such gluons cannot resolve the the individual colours
of the exchanged gluon pair.

This is discussed in detail in [21] and [10]. Here we just state the resulting
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Figure 2.2: The basic diagram for exclusive production of the Higgs boson in
hadron collisions.

exclusive luminosity function

L(M, y) =
δ2L

δyδ lnM2
(2.1)

= S2

[

π

(N2
c − 1)b

∫ µ2

dk2
⊥

k4
⊥

fg(x1, x
′
1, k

2
⊥, µ

2)fg(x2, x
′
2, k

2
⊥, µ

2)

]2

where µ2 = M2/4 in the standard KhMR prescription, y denotes rapidity, b
comes from the probability for the protons to remain intact, x1(2) = mHe

(−)y

and x′1(2) ∼ k⊥/
√
S � x1(2). f(x, x′, k2

⊥, µ
2) is the off-diagonal unintegrated

gluon density, the oduPDF, which should be interpreted as the amplitude re-
lated to the probability of finding two gluons in a proton with equal but opposite
transverse momentum, k⊥, and carrying energy fractions x and x′ each, one of
which is being probed by a hard scale µ2.

The cross section is then obtained by

σ =

∫

σ̂gg→H (M2)
δ2L

δyδ lnM2
dyd lnM2

where M is the invariant mass of the central system, in this case the Higgs
mass. In principle one should use a off-shell version of σ̂ (see eg. [22]) which
then would have a k⊥ dependence, and hence break the factorization. However,
for the exclusive cross section the main contribution comes from rather small
k⊥ and, at least for large masses, the factorization should hold. Since the cross
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section, in the exclusive case, is a convolution of the luminosity and the matrix
element it suffices to study the difference in luminosity to investigate the effects
of different oduPDFs.

Besides the oduPDFs, the only other main uncertainty in eq. (2.1) is the
soft survival probability S2. We have made a separate study using the mul-
tiple interaction model in PYTHIA [23, 24] in the same way as was done for
the WW→H process in [25]. Taking the probability of having no additional
scatterings in Higgs production3 using theparameters of the so-called Tune-A
by Rick Field [26], we estimate the survival probability to be 0.040 for the
Tevatron and 0.026 for the LHC. This is remarkably close to the values used
in [5] obtained in the so-called two-channel eikonal approach [27].

In the KhMR case the oduPDF [5] are obtained in a two step procedure
presented in [14]. In the first step the off-diagonal parton distribution functions,
odPDF, are extracted from the standard gluon PDF, in the relevant limit of
x′ � x:

H(x, x′, µ2) ≈ Rgxg(x, µ
2). (2.2)

Although we will use a constant Rg factor of 1.2, we note that it in general
depends on both x and µ2. The consequences for the luminosity function of a
non-constant Rg are moderate and briefly discussed in [10].

In the second step it is assumed that the oduPDF can be obtained from the
odPDF in the same way as the uPDF can be obtained from the standard PDF.
In the latter case one can use the KMR prescription introduced in [9], where

G(x, k2
⊥, µ

2) ≈ d

d ln k2
⊥

[

xg(x, k2
⊥)T (k2

⊥, µ
2)
]

, (2.3)

which then corresponds to the probability of finding a gluon in the proton with
transverse momentum k⊥ and energy fraction x when probed with a hard scale
µ2. T is the survival probability of the gluon given by the Sudakov form factor,

lnT (k2
⊥, µ

2) = −
∫ µ2

k2
⊥

dq2⊥
q2⊥

αS(q2⊥)

2π

∫
µ

µ+q
⊥

0

dz [zPg(z) + nfPq(z)] . (2.4)

To get the oduPDF one then starts from eq. (2.2) and get by analogy in the
limit x′ � x

fg(x, x
′, k2

⊥, µ
2) ≈ d

d ln k2
⊥

[

Rgxg(x, k
2
⊥)
√

T (k2
⊥, µ

2)

]

, (2.5)

where the square root of the Sudakov comes about because only one of the two
gluons are probed by the hard scale.

3We here used inclusive Higgs production, but the result should be the same for the
exclusive case.
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The hard scale µ in the oduPDF and in the Sudakov form factor is in the
KhMR approach argued to be mH/2. In fact the number is 0.62 · mH and
comes from a tuning to reproduce full one-loop vertex corrections [28]. For
LDC, below, we will be less ambitious and simply use mH as scale.

2.3 Unintegrated parton densities

A general comment concerning the unintegrated gluon densities used in the
KhMR calculations is that the KMR prescription essentially corresponds to
taking one step backward in a DGLAP-based initial-state parton shower, to
unintegrate the integrated PDF. As mentioned in the introduction, there are
indications that such a prescription underestimates the hardness of the k⊥-
distribution of the uPDF.

In the following we will investigate uPDFs based on CCFM and LDC evo-
lution, where emissions unordered in k⊥ are explicitly included, and could
increase the hardness of the k⊥-distribution. We will also inversigate a more
crude model. If the unordered emissions corresponds to a random walk in
log(k⊥) as suggested in [20], this could be modelled by an additional intrinsic

transverse momenta, similar to what is expected from the non-perturbative
fermi-motion included in most parton shower generators, but with an average
transverse momentum well in the perturbative region of a couple of GeV. We
will consider such intrinsic transverse momenta in section 2.4.2.

2.3.1 The Linked Dipole Chain uPDF

The Linked Dipole Chain model [29, 30] is a reformulation and generalization
of the CCFM [31–34] evolution for the unintegrated gluon. CCFM has the
property that it reproduces BFKL evolution [35, 36] for asymptotically large
energies (small x) and is also similar to standard DGLAP evolution [37–40] for
larger virtualities and larger x. It does this by carefully considering coherence
effects between gluons emitted from the evolution process, allowing only gluons
ordered in angle to be emitted in the initial state, and thus contribute to the
uPDFs, while non-ordered gluons are treated as final state radiation off the
initial state gluons. LDC differs from CCFM by the fact that it is ordered
both in positive and negative light cone momenta, q+ and q−, of the emitted
gluons, a treatment which categorizes more emissions as final state emission as
compared to CCFM. This symmetric ordering in both q+ and q−, which also
implies ordering in rapidity y or angle, together with the additional requirement
that the transverse momentum of an emitted gluon must be larger than the
k⊥ of the propagator gluon before or after the emission, greatly simplifies the
evolution equations and has as a consequence that the uPDF approximately
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factorizes into a one-scale density multiplied by the Sudakov form factor:

G(x, k2
⊥, µ

2) ≈ G(x, k2
⊥) × ∆S(k2

⊥, µ
2), (2.6)

where

ln ∆S(k2
⊥,M

2) = −
∫ M2

k2
⊥

dq2⊥
q2⊥

αs

2π

∫ 1−q⊥/M

0

dz

[

zPg(z) +
∑

q

Pq(z)

]

. (2.7)

The LDC model has been implemented in an event generator which is then
able to generate complete events in DIS with final state radiation added ac-
cording to the dipole cascade model [41,42] and hadronization according to the
Lund model [43]. One advantage of having an event generator implementation
is that energy and momentum can be conserved in each emission. Since the lack
of momentum conservation in the BFKL formalism is the main reason for the
huge next-to-leading logarithmic corrections [44], the LDC model is therefore
expected to have smaller sub-leading corrections (see [18] for a more detailed
discussion on this).

The perturbative form of the uPDF needs to be convoluted with non-
perturbative input PDFs, the form of which are fitted to reproduce the ex-
perimental data on F2. This has all been implemented in the LDCMC pro-
gram [45,46], and the resulting events can be compared directly to experimental
data from eg. HERA. The LDC gluon uPDF can then be extracted by gener-
ating DIS events with LDCMC and measuring the gluon density as described
in [11]. Due to the k⊥-unordered nature of the LDC evolution, the relationship
between the uPDF and the standard gluon density is different from eq. (2.3),
as the integrated gluon at a scale µ2 also receives a contribution, although
suppressed, from gluons with k⊥ > µ, and in [11] the following expression was
obtained:

xg(x, µ2) = G0(x)∆S(k2
⊥0, µ

2) (2.8)

+

∫ µ2

k2
⊥0

dk2
⊥

k2
⊥

G(x, k2
⊥)∆S(k2

⊥, µ
2) +

∫ µ2/x

µ2

dk2
⊥

k2
⊥

G(x
k2
⊥

µ2
, k2

⊥)
µ2

k2
⊥

,

where G0(x) is the non-perturbative input parameterization at the cutoff scale
k⊥0.

Note that a sharp cutoff k⊥0 is assumed, which could cause problems in
calculations sensitive to the small-k⊥ behavior. To avoid this we redefine the
uPDF as

G(x, k2
⊥, µ

2) =























a
(

k2
⊥

k2
⊥0

)a

G0(x)∆S(k2
⊥0, µ

2) k⊥ < k⊥0

G(x, k2
⊥)∆S(k2

⊥, µ
2) k⊥0 < k⊥ < µ

G(x
k2
⊥

µ2 , k
2
⊥) µ2

k2
⊥

µ < k⊥ < µ/
√
x

, (2.9)
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where a can either be set to 1, as was effectively done in [10], or to
G(x, k2

⊥0)/G0(x) which makes the distribution continuous across k⊥0. In this
way we get the standard form

xg(x, µ2) =

∫ ∞

0

dk2
⊥

k2
⊥

G(x, k2
⊥, µ

2), (2.10)

and we find that our results are not very sensitive to the choice of a.
To obtain the off-diagonal densities needed for the exclusive luminosity func-

tion, we assume that a similar approximation can be made as for the KMR
densities, that is, in the limit of very small x′

fLDC
g (x, x′, k2

⊥, µ
2) ≈ RgG(x, k2

⊥)
√

∆S(k2
⊥, µ

2). (2.11)

The square root of the Sudakov form factor is used, since only one of the gluons
couples to the produced Higgs at the high scale, and we could equivalently have
written

fLDC
g (x, x′, k2

⊥, µ
2) ≈ Rg

√

G(x, k2
⊥, µ

2)G(x, k2
⊥, k

2
⊥). (2.12)

Clearly this is not completely equivalent to eq. (2.5), but it is a prescription
which can be used for any uPDF, not only the KMR one. Using eq. (2.12)
for the KMR uPDFs (ie. using eq. (2.3)) we find that the exclusive luminosity
function is underestimated by ≈ 50% for a Higgs mass of 120 GeV as com-
pared to using the more correct eq. (2.5). Hence we expect that the exclusive
luminosities obtained for the LDC and also for the Jung uPFDs below, will be
underestimated by approximately the same factor.

2.3.2 The Jung 2003 uPDF parameterizations

The Jung 2003 [12] unintegrated parton distribution functions are based on
standard CCFM evolution and was obtained using a Monte Carlo implementing
forward evolution4. The main difference w.r.t. LDC is, as mentioned above,
that CCFM allows more emissions in the initial state, which makes it more
infrared sensitive and which prevents the simple factorization into a one-scale
density and a Sudakov form factor as in eq. (2.6). Another difference is that
CCFM only describes gluon evolution, while in the LDC it is also possible to
include quarks.

Just as for LDC, the perturbative CCFM evolution needs to be convoluted
with non-perturbative input parton density, the parameters of which are de-
termined by a fit to F2 at small x determined at HERA.

To produce full events the Jung uPDFs may be convoluted with an ap-
propriate off-shell matrix element (eg. γ∗g∗ → qq) and the final state partons

4Based on the SMALLX program [47,48].
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can then be generated in a backward evolution algorithm implemented in the
CASCADE program [49].

To obtain the off-diagonal densities, we use the same procedure as in LDC
given by eq. (2.12),

fJung
g (x, x′, k2

⊥, µ
2) ≈ Rg

√

G(x, k2
⊥, µ

2)G(x, k2
⊥, k

2
⊥), (2.13)

but note that the equivalence with eq. (2.11) does not hold since the factoriza-
tion in eq. (2.6) is absent in the Jung uPDFs.

2.3.3 Summary of uPDFs

Within the three different procedures for obtaining uPDFs there are a number
of optional behaviors to choose from which are summarized in table 2.1. For
KMR we can choose different integrated densities to start from, but that has
already been shown to only give rise to moderate differences [5]. Since the inte-
grated PDFs have been fitted to a wide range of inclusive data, the description
of such observables are trivially also reproduced by the KMR uPDFs. For less
inclusive observables the situation is less clear, and as argued in the introduc-
tion there are indications that the KMR procedure will underestimate slightly
the hardness of the k⊥-distribution especially at small k⊥. And although it
has been showed to be able to reproduce inclusive jet cross sections in deeply
inelastic scattering at HERA [50], it is not likely that it will be able to explain
the forward jet rates with k2

⊥jet ∼ Q2.

In [10] we used the three different options for the LDC densities introduced
in [11], which differ in the splitting functions included in the evolution. The
standard option includes all splitting functions and hence includes also the
evolution of quarks. The gluonic and leading options only includes gluons and
differs in that the latter only includes the leading 1/z and 1/(1−z) terms in the
gluon splitting function. All give reasonable fits to HERA F2 measurements
in the region x < 0.01 and 1 GeV2 <∼ Q2 <∼ 100 GeV2. The standard option
also describes F2 at higher x values where the contribution of valence quarks is
more important. Clearly the standard option is theoretically more appealing.
However, of the three options only the leading is able to satisfactorily describe
forward jets indicating that the other two probably underestimates somewhat
the hardness of the k⊥-distribution of the gluon.

The Jung 2003 distributions also come with different options. Here we will
use Jung-1 and Jung-2 which are similar to the LDC leading and gluonic options
respectively in that the former only uses the leading terms in the gluon splitting
functions, while the latter uses the full splitting function. Also these give a good
description of F2 in the fitted region of x < 0.01 and 1 GeV2 <∼ Q2 <∼ 100 GeV2.
When used in the CASCADE generator, only the Jung-1 is able to give a good
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uPDF evolution splittings inclusive observables forward jets

KMR DGLAP full globally good fit probably not
standard LDC full HERA F2 no
gluonic LDC full gluon HERA F2 at small x no
leading LDC singular gluon HERA F2 at small x yes
Jung-1 CCFM singular gluon HERA F2 at small x yes
Jung-2 CCFM full gluon HERA F2 at small x no

Table 2.1: Summary of the different uPDFs used in this report, indicating the
differences in evolution and the ability to reproduce experimental observables.

description of forward jets. Also for other observables the Jung uPDFs give
results which are consistent with the ones obtained with LDC.

2.4 Results

Armed with these six uPDFs and their corresponding off-diagonal densities, we
now want to see how they influence the exclusive luminosity function at LHC
energies. But before we do this we want to compare the uPDFs in general
to see if they at all make sense at the scales involved when considering Higgs
production at LHC.

2.4.1 Inclusive Higgs production

First we look in figure 2.3 at the uPDFs relevant for producing a central ex-
clusive 120 GeV Higgs at the LHC, i.e. x = xH = mH/

√
S and µ = mH =

120 GeV. What is shown is the logarithmic density in k⊥ and clearly there are
large differences between the uPDFs both in shape and normalization. For the
shape the LDC densities stick out as they do not tend to zero for k⊥ → µ. This
is as expected for LDC evolution with unordered k⊥-evolution. CCFM will also
allow k⊥ > µ, but it seems that this is more suppressed for high scales. For the
shapes we can also imagine a rough agreement between standard , gluonic and
Jung-2, while leading and Jung-1 are clearly harder. This is also expected as
the absence of nonsingular terms in leading and Jung-1 enhances the radiation
from gluons.

The difference in normalization also shows up in the predictions for inclusive
Higgs production. This is shown in figure 2.4. In figure 2.4a we show the
square of the integrated gluon densities, which would enter in a calculation
using collinear factorization. In figure 2.4b we use the k⊥-dependence of the
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Figure 2.3: The unintegrated gluon densities as a function of k⊥ for µ = mH =
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curves is due to low statistics when extracting them in [11].
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shell matrix element. The lines are the same as in figure 2.3.
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off-shell matrix element given in [22]:

σ̂∗(mH , ~k⊥1, ~k⊥2) = σ̂0 · 2
(

m2
⊥H cos(φ)

m2
H + k2

⊥1 + k2
⊥2

)2

, (2.14)

where ~k⊥1 and ~k⊥2 are the incoming transverse momenta, φ the angle between
them, m⊥H the resulting transverse mass of the Higgs, and σ̂0 is the standard
on-shell matrix element. This gives us the inclusive luminosity function,

L(mH , y) =

∫

dk2
⊥1

k2
⊥1

dk2
⊥2

k2
⊥2

dφ
σ̂∗

σ̂0
G(x1, k

2
⊥1, µ

2)G(x2, k
2
⊥2, µ

2), (2.15)

where x1,2 = m⊥He
±y and µ = m⊥H . We use this scale also for KMR, since this

is what was used in the case of W and Z production [17]. As seen in figure 2.4
there are small, but not insignificant differences between the collinear and off-
shell versions. In fact the off-shell version takes into account some of the beyond
leading order effects which are absent in our LO collinear approximation.

Clearly the differences in the inclusive luminosity are too large to be taken
as genuine uncertainties in the prediction for the Higgs cross section. For such
integrated quantities we expect the standard DGLAP approach implemented
in KMR to give a reasonably predictive answer, and we conclude that the
CCFM and LDC based densities parameterizations simply are not well enough
constrained to give reasonable predictions for Higgs production at the LHC.
The problem is that the Jung and LDC densities have only been fitted to F2

at HERA which means mainly small x and Q2, while for Higgs production
we have much larger scales and through evolution we are also sensitive to the
large-x behavior at lower scales, which is not well constrained.

If the LDC and Jung densities are not constrained enough to predict in-
clusive Higgs production at the LHC, it is unlikely that they are able to say
anything predictive about exclusive Higgs production. However, although the
normalization is uncertain, it may still be possible that these densities have
some predictive power on the k⊥-dependence of the uPDF. In figure 2.5 we
show the normalized k⊥-distribution of a centrally produced Higgs at the LHC
as predicted by the different uPDFs, and we see that the differences are large,
but not unreasonable. We find that the spectra are harder for leading and
Jung-1 than for standard , gluonic and Jung-2, which is expected since the for-
mer only have singular terms in the gluon splitting function which allows the
gluon to radiate more.

2.4.2 Exclusive Higgs production

Although we do not believe that the LDC/Jung uPDFs can be used to give
any prediction for neither the inclusive or exclusive luminosity, it is not unlikely
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Figure 2.5: The normalized k⊥-distribution of a central Higgs produced at LHC
as predicted by using different uPDFs. The lines are the same as in figure 2.3.

that they actually have some predictive power on the ratio of the two. We saw
above that the normalized k⊥-distribution of the Higgs looks reasonable. In
addition, although the uPDFs enters to the power 4 in the exclusive luminosity
function, according to eqs. (2.12) and (2.13), the high scale uPDF only enters
with power 2 while the other two powers depend on lower scales where the
uPDFs may be better constrained. Hence, the uncertainty from the evolution
to high scales may cancel in the ratio.

In figure 2.6 we show the ratio between the exclusive and the inclusive
luminosity functions for fixed central rapidity as a function of mH according
to eqs. (2.1) and (2.15). There are clearly large differences, probably too large
to be attributed to anything else than that the LDC and Jung densities simply
are not constrained enough to give any reasonable predictions.

We know that the inclusive luminosity in eq. (2.1) is mostly sensitive to k⊥-
values around a couple of GeV, and we can see that the Jung-1 is much lower
than Jung-2 which can be attributed to the fact that Jung-1 has a harder k⊥-
distribution than Jung-2 reducing the density in this region relative to higher
k⊥. Similarly leading is much lower than standard and gluonic and again the
former has a harder k⊥-distribution than the two latter. But since there are
large differences in general between LDC and Jung we cannot say that the
differences simply does not come from the fact that all these uPDFs are too
unconstrained.
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To focus on the uncertainties in the k⊥ distribution of the uPDFs, we
instead concentrate only on the KMR densities, where we know that the overall
normalization is well constrained, and study what happens if we simply shift
the k⊥ distribution slightly, while keeping the integrated PDF fixed. We know
that the k⊥-spectrum of the Z and W at the Tevatron can be well described
by standard DGLAP based parton showers if a Gaussian intrinsic k⊥ with a
width of a couple of GeV is added to the incoming quarks [51]. Judging from
figure 2.1 it does not seem unlikely that the shape would be better reproduced
if the KMR uPDF was modified in the same way.

In figure 2.7a we see the effect of such an intrinsic k⊥ on the k⊥-distribution
of a 120 GeV Higgs at fixed central rapidity at LHC. The effect is small, espe-
cially compared to the effects in figure 2.5. However, the effect on the exclusive
luminosity is large, as can be seen in figure 2.7b. Adding a Gaussian intrinsic
k⊥ with a width of

√
2 GeV reduces the luminosity by approximately a factor

2. And we conclude that the exclusive production of Higgs at the LHC is very
sensitive to the small-k⊥ distribution of the unintegrated gluon.

Using such high intrinsic k⊥ may seem unreasonable. However, as we ex-
plained in the beginning of section 2.3 we do not believe that this intrinsic k⊥
is of purely non-perturbative origin, but comes from the unordered evolution
not included in the KMR uPDF (and oduPDF). For Z production at the Teva-
tron in figure 2.1, an intrinsic k⊥ of one or two GeV may be sufficient to get
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a good fit. However, here we are dealing with incoming gluons which readiate
more than quarks, and we also have smaller x, which increases the phase space
for unordered evolution. To model this, it is not unreasonable to use an even
higher intrinsic k⊥.

2.5 Conclusions

The main conclusion of this article is a negative one. The predictive powers of
the unintegrated gluon density functions as fitted only to small-x HERA data is
very poor when applied to exclusive Higgs production at LHC. In fact, not even
inclusive Higgs production at the LHC is well constrained with these uPDFs.
However, looking at the qualitative differences between these uPDFs we can
learn something about where the uncertainties come from. Here we have argued
that there are problems not only with the overall normalization of the uPDFs
at the high scales under consideration, but also the actual k⊥-distribution at
small k⊥ is important. The reason is clearly visible in the k⊥-integration in
the exclusive luminosity function, where the main contribution comes from
transverse momenta in the region of a couple of GeV.

The situation is quite different when it comes to the uPDF derived from
the integrated gluon density using the KMR prescription. Here we believe the
overall normalization to be well determined by the global PDF fits, and the
predictions for inclusive Higgs production should be trustworthy. However, the
prediction for the distribution of small k⊥values is less certain and there is
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evidence that eg. the k⊥distribution for W and Z production at the Tevatron
obtained from the KMR prescription is a bit to high for small k⊥. This is
consistent with the behavior of DGLAP-based parton shower approaches, which
are closely related to the KMR approach, which typically need an additional
gaussian intrinsic k⊥ of one or two GeV to reproduce W and Z transverse
momentum spectra. We have found that introducing an intrinsic k⊥ in the
KMR uPDF in the calculation of the exclusive luminosity function will give a
clear reduction.

We will not try to use our findings to make an estimate of the uncertainties
involved in the KhMR predictions for the exclusive Higgs production at the
LHC and elsewhere. Clearly there is a need to find better experimental ob-
servables to constrain the (off-diagonal) unintegrated gluon density before we
can make precise predictions. We do feel that the published KhMR predictions
may be too high, but clearly they should give the right order of magnitude,
and the prospect of using the exclusive process to study the Higgs at the LHC
is still a very interesting one.
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3.1 Introduction

Since the theory of Large Extra Dimensions by Arkani-Hamed Dvali and Di-
mopoulos (ADD) first saw light in 1998 [1] there has been much discussion in
the literature about the prospect for observing these large extra dimensions
in colliders (see e.g. [2–6]). In particular the signal of small black holes which
can be produced if the Planck scale, MP, is of order TeV has been discussed.
However, there is another characteristic of black hole events; the signal of no
signal [7] . If we e.g. consider the dijet cross section as a function of invariant
mass,

√
ŝ, then for some large invariant mass, the partons which otherwise

would have undergone a QCD scattering may instead be trapped in a black
hole which would lead to a falling dijet cross section as a function of invariant
mass.

This argument is clearly oversimplified. Requiring a large ŝ ensures a small
extension of the interaction in beam direction. However, to form a black hole
the energy has to be well confined also in transverse direction. The absolute
range of a QCD interaction is set by the virtuality of the propagator, Q2. This
sets the timescale of the fluctuation and we therefore expect that interactions
with a large enough virtuality takes place over a small enough space such that
it is really possible to form a black hole, at least if the mass is high enough
to avoid uncertainties due to quantum gravity. Hence, the dijet cross section
would only fall off for high enough E⊥ of the jets. Of course, some of the
produced black holes may themselves decay into hard partons, filling up the
jet spectrum at high masses and E⊥, but we expect that spectra to look quite
different from standard QCD.

For energies much larger than the Planck scale, corresponding to a Comp-
ton wavelength much smaller than the Schwarzschild radius of a black hole
with that energy, we expect classical gravity to give the correct result, and a
produced black hole would evaporate by emitting particles with the thermal
spectra from Hawking radiation. The problem is that in colliders we would
first probe the Planck scale region where quantum gravitational effects should
come into play.

Approaching the Planck scale from below, where gravity starts to become
important, but still is not strong enough to trap partons in black holes, we
would expect gravitational scattering, to leading order simply 2 → 2 partonic
scatterings [8–10]. As the energy increases, the gravitational scattering would
transform into small black hole events. On the other hand approaching from
above using the approximation of Hawking radiation we would expect the black
holes to decay to a few particles.

In this transition region we are sensitive to unknown quantum gravity ef-
fects, but from general continuity arguments we would expect the black holes
to decay into a small number of particles, preferably two. Then as the energy
increases we expect the black holes to emit more and more particles looking
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more and classical and, in the end for M � MP, we would expect the thermal
spectra from Hawking radiation.

Hence, in searching for a drop in the cross section, a more complicated jet
spectra will appear with increasing ET scales. First there will be an increase
of the cross section due to gravitational interactions. Then, as black holes
begin to form, they are expected to decay to relatively few particles which will
sometimes be identified as jets, resulting in an increase of the cross section. At
high enough jet scales, however, we expect the jet cross section to completely
die out, since the QCD component of the hard scattering will disappear and
the black hole decay products will be softer as the black hole masses increase.

From the point of view of searching for large extra dimensions it is, of
course, the increased cross section which will be easiest to see, already at scales
much below where black holes are formed. But an increase in the jet cross
section could be attributed to many different kinds of new physics, while the
disappearance of Standard Model cross sections is not normally expected from
new physics processes.

So, while the above mentioned effects (gravitational scattering and black
hole decay products) are well worth looking for, we will devote this paper to
the black hole ’eating’ of the QCD cross section, and we will do this by using
phenomenological event generator models. We intend to get back to the other
issues in future publications.

I this paper we start with a brief review of the ADD and the, somewhat
different, Randall–Sundrum (RS) [11] extra-dimension scenarios in section 3.2.
The model for generating and decaying black holes is described in section 3.3,
while the many theoretical uncertainties are discussed in section 3.4. In section
3.5 we present and comment on our results and in section 3.6 we make the
concluding remarks and suggest further studies.

3.2 Models of large extra dimensions

3.2.1 Basics of ADD

The aim of the Arkani-Hamed Dvali and Dimopoulos (ADD) model [1] is to
solve the hierarchy problem of the differences in scale between the electro-weak
scale, 100 – 1000 GeV, and the scale where gravitation becomes important,
1019 GeV. This is done by introducing large extra dimensions with some com-
pactification radius, R. Although the compactification radius is typically taken
to be the same in all extra dimensions it could in principle vary. For distances
much smaller than the size of the extra dimensions (here assumed to be the
same) we will then have a Newton’s law of the form [1]

V (r) ∼ M

Mn+2
P

1

rn+1
, (3.1)
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where n is the number of extra dimensions and MP the fundamental n + 4
dimensional Planck mass. On the hand, for r � R gravity has expanded to
the full volume of the extra dimensions and we get [1]

V (r) ∼ M

Mn+2
P

1

Rn

1

r
. (3.2)

But this must equal to Newton’s law in 3+1 dimensions so we conclude that
the observed four dimensional Planck mass MP4 is (up to small volume factors)

M2
P4 ∼Mn+2

P Rn. (3.3)

This explains how we could have a fundamental Planck scale almost at the
electroweak scale but an observed Planck scale at 1019 GeV. Requiring that
the fundamental Planck scale is the same as the electroweak scale, ∼ TeV,
gives a compactification radius of the solar system for one extra dimension.
This is trivially excluded from observations. Two extra dimensions gives R ∼
mm, which is indirectly excluded from various cosmological and astrophysical
constraints. The same holds for R ∼ nm, corresponding to three extra dimen-
sions. However for four or more extra dimensions it is still possible to have a
fundamental Planck scale at the order of a TeV (A more complete listing is
given in e.g. [6]).

Since the black holes considered here are well within the range r � R, the
Schwarzschild radius can be calculated analogous to the 3+1 dimensional case.
The result is [12]

rSch =
1√
πMP

[

MBH

MP

8Γ(n+3
2 )

n+ 2

]

1
n+1

(3.4)

where Γ is the Euler gamma function.
The temperature is given by [12]

T =
n+ 1

4πrSch
. (3.5)

This means that more massive holes are colder. The mass dependence is how-
ever much weaker than in 4 dimensions since the radius changes less with mass.
The dependence on the number of extra dimensions is dominated by the factor
n+ 1 in the numerator. Hence black holes in many dimensions are hotter.

3.2.2 Basics of RS

A somewhat different model was introduced one year after the ADD-model by
Randall and Sundrum [11]. In the Randall–Sundrum model, RS, which has only
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one extra dimension, the metric doesn’t factorize. Instead the 4 dimensional
metric is multiplied by a “warp” factor which depends on the coordinate, y ∈
[−π, π], in the fifth dimension

ds2 = e−2|y|/lηijdx
idxj + dy2. (3.6)

In the above expression ηij is our normal (flat) four dimensional metric with
indices running from 0 to 3 and l is the radius in the anti-de Sitter space. By
taking the warp factor to be an exponent, and by assuming the gauge fields
(and hence us) to live in the most shrinked slice, y = π, of the five dimensional
world, a large hierarchy can be accomplished by letting gravity propagate in
the full space.

We note that it has been suggested (see eg. [13]) that black holes in the
RS model can only be formed on the Planck brane, which effectively means
that there would be no black holes produced in a collider. However, it was also
suggested [14] that the naked singularity obtained instead, could be covered
on the Standard-Model brane. Such a singularity could then be produced in a
collider and would evaporate as gravitational radiation into the bulk (where it
is naked) at the Planck time scale. As this radiation is not detected it would
appear as missing energy.

On the other hand, if a black hole is formed, but is stable on collider time
scales as argued in [15], the hole could (if gauge charged) be detected. It is,
however, unlikely that this would affect the signals studied here, and we have
chosen to ignore this effect.

If a RS black hole is sufficiently small, such that it is not affected by the
bulk curvature, the radius is still given by eq. (3.4) [16]. Hence, in either of
the above mentioned cases for black holes/naked singularities in the Randall–
Sundrum scenario, there will be no Hawking radiation which populates the
spectra, but there will be a drop in total cross section for standard model
interactions. Furthermore the cross section would be the same as in the ADD
scenario with one extra dimension for small enough black holes [16].

For the purpose of this paper, we ignore all the uncertainties of whether or
not black holes are possible in the RS model. In fact, we do not use any details
of the RS model, but use it only as an example of a model which could produce
black holes/naked singularities at large cross sections at a collider, but where
the decay products of the hole would not be detectable. For our investigations
this is then a best-case scenario.

3.3 Black hole production and decay

To study the effect on QCD-jets on LHC we have used PYTHIA [17] to gener-
ate the QCD events. To lowest order we here have two partons with energy
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fractions, x1 and x2, and an invariant mass, ŝ = x1x2s, which scatter and
give rise to two outgoing partons with transverse momenta, p⊥ ≈

√

Q2. For
this process to be trapped in a black hole, we require the whole process to be
located within the Schwarzschild radius, rSch(ŝ). Looking at the momenta of
the incoming partons in their combined rest frame we must require that their
wavelength, λl ∝ 2/

√
ŝ, is less than rSch. The corresponding requirement in

the transverse direction gives the requirement: λ⊥ ∝ 1/p⊥ < rSch.
Of course, it is questionable if these requirements are enough, maybe the

wavelengths should be much smaller than rSch. In any case it is reasonable to
introduce a parameter, and we will require λ < rSch/P , where we use P = 1 as
a standard value. From the longitudinal requirement we then get a minimum
mass of a black hole from

Mmin = 2P/rSch(Mmin). (3.7)

We then get a cutoff in the standard QCD cross section, given by the following
step-functions (which in general could be replaced by more smooth suppression
functions):

dσQCD(Q2)

dQ2dŝ
=

∫

dx1dx2

∑

i,j

fi(x1, Q
2)fj(x2, Q

2)
σ̂QCD

ij (ŝ, Q2)

dQ2
×

δ(ŝ− x1x2s)

[

1 − Θ(ŝ−M2
min)Θ(Q2 − P 2

r2Sch(ŝ)
)

]

.(3.8)

where the sum runs over all parton types.
Instead of the QCD process we will get black holes with the cross section

σBH(ŝ)

dŝ
=

∫

dx1dx2

∑

i,j

fi(x1, Q
2)fj(x2, Q

2)σ̂BH(ŝ) ×

δ(ŝ− x1x2s)Θ(ŝ−M2
min), (3.9)

where Q = P/rSch(ŝ). The partonic cross section is simply given by σ̂ = πr2Sch,
but also here one could imagine a smooth transition and a factor in front (see
section 3.4.2 below).

3.3.1 CHARYBDIS

We here describe the most important properties of the black hole event gener-
ator CHARYBDIS, which we have used to generate black holes and their decays.
The complete references are [18, 19].

In CHARYBDIS two partons create a black hole according to (3.9)1, which
then decays by Hawking radiation. The procedure of the decay is such that

1By default the scale Q2 is taken to be ŝ in CHARYBDIS, but we have used the option with
Q2 = 1/r2

Sch
[5], since this gives a more continuous transition from eq. (3.8).
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momentum, charge, color and baryon numbers are conserved. The decay prod-
ucts are chosen democratically among the standard model particles according
to their degrees of freedom (color and spin). The energy of an emitted parti-
cle is taken from a Planck spectra modified with the gray-body factor of the
particle. The temperature is given by eq. (3.5) where the black hole mass by
default is taken to be the remaining mass of the hole, but this may be modified
such that the initial temperature is kept throughout the evaporation. The mo-
tivation for keeping the initial temperature could be that it is anyhow dubious
to treat the black hole as a thermalized object considering the speed of the
decay [4].

One problem is that even if a black hole would be created well above the
Planck scale, i.e. well within the classical regime, it would evaporate and even-
tually reach the Planck scale. And, although we do not know what physics
looks like at the Planck scale, there must be a way of terminating the decay.

The CHARYBDIS method for this is to have a free parameter, set by the user,
which gives the number of particles the hole decays to in the end, where the end
can be defined either as when the black hole reaches the Planck mass, or - if it
happens before - when one of the emitted particles happens to get a momentum
so large that energy and momentum conservation would be violated for a two
body decay.

3.4 Uncertainties

First of all it should be pointed out that the major lack in our description is
the absence of a theory for quantum gravity. As we do not know what physics
we will encounter at the Planck scale it is impossible to make an error estimate
in the traditional sense. However we may still discuss which uncertainties will
effect our results. Roughly these can be classified in three groups. The first
concerns non black hole gravitational events, the second the production of black
holes, and the third deals with the decay of the black holes.

Apart from the uncertainties associated with quantum gravity there is of
course also an uncertainty in the QCD jet cross section. A recent evaluation
of the effect from the uncertainties in the parton distribution functions, and
in the NLO QCD theory, is published in [20]. In this paper a comparison is
made between the calculated cross section and the Tevatron Run 1b data, and
the uncertainty in the jet cross section for the LHC is estimated to be up to
a factor 2.5 at a jet-ET of 5 TeV. This effect is important for many QCD and
other Standard Model studies, however, it is an effect that can be neglected for
the main conclusions in this paper as can be seen in e.g. figure 3.
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3.4.1 Non black hole gravitational events

As mentioned in the introduction it is highly unlikely that black holes is the
major gravitational effect. In the ADD scenario the amplitude for perturbative
scattering is calculated in [8] and the dijet cross section is spelled out (using
the Planck scale as cut of for the Kaluza Klein modes) in e.g. [9]. While the
effect on jet production from gravitational scattering is large, it has the disad-
vantage of depending on a free parameter for the cutoff. Furthermore, as it is
a perturbative expansion it cannot be applied close in the Planck region. This
means that when searching for the signal of a disappearing QCD cross section,
we have to do that in a spectra which is already modified by gravitational scat-
tering in a basically unknown way. In this paper we will not further investigate
this issue, and these processes are not included in the simulation. Although
they should have a large effect on the cross section close to the Planck scale,
we will here mostly be concerned with the behavior well beyond this scale.

3.4.2 The formation of a black hole

There are several unresolved issues concerning the formation of mini black
holes. Firstly there is an uncertainty already at the classical level. The naive
formula is σ(MBH) = πr2Sch. Classical numerical simulations indicates that this
value should be multiplied by a factor ∼ 0.7 − 3, increasing with the number
of extra dimensions [21, 22]. (For a discussion about the effects of quantum
fluctuations based on wave packages, see [23, 24].) During the formation some
energy may be lost as gravitational energy reducing the remaining mass for
Hawking radiation [22, 25].

Secondly the factorization of the parton level cross section can be questioned
since the process is inherently non-perturbative [26].

Another fundamental issue concerns the onset of black hole production.
One may argue that no black holes should be formed below roughly the Planck
scale since this is (approximately) the mass scale where the Compton wave
length equals the black hole radius. This is the view point taken in eq. (3.7).
Combining eq. (3.7) and eq. (3.4) we get the following relation for Mmin

Mmin = MPπ
n+1

2(n+2)

[

n+ 2

8Γ(n+3
2 )

]
1

n+2

(2P )(n+1)/(n+2). (3.10)

We have used P = 1 as a standard value in this paper. Numerically the value
of Mmin is then approximately twice the Planck mass.

As for Q2, used in the parton distribution functions when generating the
black holes, we like to use the same constant in the inverse relation between
length and mass as in eq. (3.7) and this is what gave us Q = P/rSch. While, in
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principle, the scale in the parton distribution functions and the minimal mass
could be varied independently we have chosen not to.

One could also think of more sophisticated ways, where the nature of the
force is taken into account, of relating the ’interaction distance’ to momentum
but that is beyond the scope of this article.

3.4.3 The decay of a black hole

It is common to divide the decay of a mini black hole into 3 different phases.
In the first the asymmetry of the black hole, due to energy momentum and
gauge charge distribution, is lost. This is therefore referred to as the “balding
phase”, and it cannot be incorporated into CHARYBDIS as the spectra of this
phase is not known. Furthermore, gravitational radiation can be emitted on
the brane. As this radiation is not detected it will appear as a missing energy.
This radiation has also not been included in CHARYBDIS, where black holes
decay only into standard model particles.

The second phase is the Hawking evaporation phase. This is the phase most
accurately described by CHARYBDIS. However there are still a few discrepan-
cies. One is that CHARYBDIS uses the spectra of a non-rotating Schwarzschild
black hole, while the differential cross section would favor a Kerr hole with
large angular momentum, see e.g. [5]. A rotating black hole may emit a sig-
nificant part of the total radiation into the bulk [27–30]. There is not yet a
consensus in the literature about how much is emitted into the bulk, but it is
not inconceivable that it is as much as 50%. As large impact parameters are
favored this may significantly diminish the observed radiation. Also, it may
be possible for the black hole to recoil off the brane, emitting further Hawking
radiation in the bulk [31, 32].

In principle the gauge charges of the black holes should also be taken into
account. In the case of no extra dimensions and large black holes (MBH �MP)
the suppression of charged particles due to the electrostatic potential is argued
to be a small effect of a few per cent [33]. But since QCD is a significantly
stronger force, and since the black holes considered here are small, the effect
of QCD may be sizable. Again this is not properly included in CHARYBDIS.
There is, however, effectively a bias for events with few charges since charge
is conserved, implying that more events with large charge emission are thrown
away.

It can also be questioned if it is correct to treat these mini black holes as
thermalized considering their rapid decay [4]2. From the point of view of this
study a varying temperature is however the most conservative choice since a
hotter (thermalized) hole gives fewer decay products and hence is more difficult
to distinguish from the QCD dijet background. We hence chose a time varying

2On the other hand the decay may be slowed down as argued in [15].
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temperature. An example of the difference between a varying and a non varying
temperature can be found in [26].

Furthermore, it has been argued that the rapid decay may lead to the black
hole becoming surrounded by a chromosphere of soft partons which could sup-
press emission of hard partons [34]. Such effects are not included in CHARYBDIS

and, again, our results will be on the conservative side w.r.t. the disappearance
of hard jets.

In the final phase the black hole will disappear. Even if a black hole is
produced well above the Planck scale it will evaporate and eventually enter
the Planck region. As previously mentioned, the CHARYBDIS treatment of this
problem is to let the user chose the number of particles to which the black
hole should decay in the end. For this study we have consistently used 2,
partly because this gives the most continuous transition from a non black hole
gravitational event, and partly since it is the most conservative assumption as
it gives the largest number of very energetic particles. For the same reasons
we have chosen to define the “end” of the evaporation as whatever happens
first of the black hole reaching the Planck mass, or a decay product having a
forbidden momentum as explained in section 3.3.1.

In total, the “mistreatment” by effectively using (Schwarzschild black hole)
Hawking radiation for all phases, terminated by a two-particle decay, will lead
to a maximum radiation of standard model particles and to a harder spectrum
than if additional effects are taken into account. The simulation is therefore
based on conservative assumptions w.r.t. searching for the disappearance of
standard QCD jet production.

3.5 Results

To investigate possible effects of black-hole production on standard QCD ob-
servables, we have used the PYTHIA event generator (version 6.227) [17] for the
standard QCD processes together with the CHARYBDIS program [18] for the
production of black holes and their decays. We have studied predictions for
the E⊥ spectrum of jets and the dijet invariant mass spectrum at the LHC us-
ing a cone algorithm with a cone radius of 0.7 and a minimum E⊥ of 250 GeV
assuming a calorimeter with 0.1×0.1 resolution in the pseudo rapidity interval
|η| < 2.5.

PYTHIA was set to generate standard QCD events using CTEQ5L parton
distributions [35], but for the extra dimensions scenarios, the differential cross
section was cut off according to eq. (3.8).

Black holes were produced according to eq. (3.9) and decayed with the
CHARYBDIS program, while additional parton showering was handled by
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Figure 3.1: Differential jet cross sections for the ADD scenario with MP =
1 TeV and P = 1 for two (long-dashed line), four (short-dashed) and six (dot-
ted) extra dimensions, compared with the Standard Model prediction (full line).
(a) shows the cross section as a function of the transverse energy of the hardest
jet and (b) the cross section as a function of the invariant mass of the two
hardest jets in an event.

PYTHIA.3 Apart from the the scale in the parton distribution functions, the
varying Planck mass, minimal mass, number of extra dimensions and the de-
cision of when to terminate the decay, the default settings of CHARYBDIS were
used.

In figure 3.1 the differential jet cross section is shown as a function of the
transverse energy of the hardest jet, and the dijet cross section as a function of
dijet invariant mass for the two hardest jets, for two, four and six extra dimen-
sions (ADD), MP = 1 TeV and P = 1 (corresponding to Mmin = 2.24 TeV).
Studying the case of two extra dimensions we find that, although the main
effect is an increase in cross section due to the production of black holes in
the regions just above the Planck mass, the spectra do indeed fall below the
standard model spectra for very large E⊥ and invariant masses. The effect
should be clearly visible at the LHC where we would e.g. expect over a hun-
dred events with Mjj above 8.5 TeV with an integrated luminosity of 100 fb−1

(corresponding to one year of running at 1034 cm−2s−1) for standard QCD,
while with black hole production there would be basically none. In the E⊥

spectrum the effect would be harder to see, and only a couple events expected
above 4 TeV from standard QCD would disappear in a n = 2 ADD scenario.

However, two extra dimensions is excluded from observations, and if we
increase the number of extra dimensions the temperature rises according to
eq. (3.5). As seen in figure 3.1 this results in a drastic increase in the number
of hard jets, making it seem rather unlikely that we will observe the QCD drop

3Hadronization was not included in the simulations presented here, but we have checked
that our results do not change if hadronization is added.
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Figure 3.2: The number of pure QCD events for 4 extra dimensions, MP = 1
and P = 1 divided by the number of QCD events in a Standard Model world as
a function of (a) the transverse energy of the hardest jet and (b) the invariant
mass of the two hardest jets in an event.
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Figure 3.3: Differential jet cross sections for the ADD scenario with MP =
1 TeV and P = 1 for four extra dimensions (long-dashed line), compared with
the Standard Model prediction (full line). Also shown are the contributions
from events with (dotted line) and without (short-dashed line) black holes. (a)
shows the cross section as a function of the transverse energy of the hardest jet
and (b) the cross section as a function of the invariant mass of the two hardest
jets in an event.

at LHC without further efforts to distinguish QCD and black hole jets. But
in principle it is an enormous effect. This can be illustrated by plotting the
ratio of QCD events in an ADD world, with e.g. 4 extra dimensions, and QCD
events in a four dimensional standard model world. This is shown in figure 3.2.

The QCD drop can also be clarified by decomposing the contribution to the
cross section of standard events and black hole decay products as in figure 3.3.
As expected the ’shoulder’ in the spectra is completely dominated by the black
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Figure 3.4: Differential jet cross sections at a 40 TeV pp-collider for the ADD
scenario with MP = 1 TeV and P = 1 for four extra dimensions (long-dashed
line), compared with the Standard Model prediction (full line). Also shown
are the contributions from events with (dotted line) and without (short-dashed
line) black holes. (a) shows the cross section as a function of the transverse
energy of the hardest jet and (b) the cross section as a function of the invariant
mass of the two hardest jets in an event.

hole decay products. The drop in the QCD cross section is also seen, however,
from an experimental point of view it is completely hidden behind the black
hole decay products.

Eventually, for high enough energies the QCD drop must appear, since light
black holes cannot decay to particles with energy greater than half the black
hole mass, and heavier black holes typically will produce less energetic decay
products as the temperature is lower.

However, as seen in figure 3.4 for a imagined 40 TeV pp-collider it turns out
that the (large) probability for producing a heavy black hole, which then emits
an unlikely heavy (Boltzmann suppressed) particle, dominates over the QCD
cross section for rather large transverse energies and invariant dijet masses.

The effect of varying P , and hence also the minimal mass Mmin, is shown in
figure 3.5 where P = 1 for MP = 1 TeV (giving Mmin = 2.24 TeV) is compared
to P = 1/2 for MP = 2 TeV (Mmin = 2.51 TeV) and P = 1 for MP = 2 TeV
(Mmin = 4.48 TeV). Comparing the lines which have the same MP but differ
in P and Mmin we see that the extra black holes which are produced if Mmin is
lowered, contribute to the low energy end of the spectrum despite the fact that
they are hotter. This is because the emitted quantum must have an energy less
than half the black hole energy. On the other hand, the high energy end of the
spectra, where the total cross section eventually would fall below the standard
model QCD cross section, is left more or less unaffected. This means that the
choice of Mmin is not particularly important for determining the point where
the cross section drop would be observed. Unfortunately this does not imply
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Figure 3.5: Differential jet cross sections for the ADD scenario for four extra
dimensions with MP = 1 TeV and P = 1 (long-dashed line), MP = 2 TeV and
P = 1 (short-dashed) and MP = 2 TeV and P = 1/2 (dotted line) compared
with the Standard Model prediction (full line). (a) shows the cross section as
a function of the transverse energy of the hardest jet and (b) the cross section
as a function of the invariant mass of the two hardest jets in an event.

that it is insensitive to Planck scale physics as recoil effects on the black hole
emitting the energetic quanta cannot be neglected.

An increased Planck mass results in a later onset of black hole production
and therfore less particles in the low energy end of the black hole decay spec-
trum. On the other hand there are more particles in the high energy end as
the temperature is increased according to eq. (3.5). For a higher Planck mass
it would therfore, as expected, be more difficult to observe the QCD drop.

One could try to eliminate the extremely energetic black hole events with a
thrust cut to regain the QCD drop, but it does not work particularly well since
the rest of the black hole which emitted the energetic quanta will have a large
momentum in opposite direction. The event will thus (from a clustering point
of view) look like a dijet event. Another option is to try a smaller cone radius.
This has a significant effect in the case of 2 extra dimensions, making the drop
clearly visible also in the E⊥-spectrum, but turns out to be less effective in the
higher dimensional cases since the black holes there are hotter.

The overall impression for the ADD scenario is thus that it will be hard
to observe the QCD drop without further efforts to discriminate between the
QCD and black hole radiation. On the other hand we have made the case
worse than it may be in several ways. We have ignored that some energy
will be carried away by invisible gravitational radiation, thus reducing the
observed background from black hole decay products, and we have maximized
the number of energetic particles by choosing a varying temperature and a
2-body decay in the end of the evaporation.

If the black holes do not decay on collider timescales, or if a naked singu-
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larity which decays in the bulk is formed, as may be the case in the Randall–
Sundrum scenario, there is no radiation to camouflage the QCD cross section
disappearance. Its disappearance may then be a key signal, as shown in figure
3.6.
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Figure 3.6: Differential jet cross sections for the RS scenario with P = 1 and
MP = 1 TeV (long-dashed line) andMP = 2 TeV (short-dashed line), compared
with the Standard Model prediction (full line). (a) shows the cross section as
a function of the transverse energy of the hardest jet and (b) the cross section
as a function of the invariant mass of the two hardest jets in an event.

3.6 Conclusion and outlook

We have seen that black hole production of partons interacting on a short
enough distance indeed seem to generate a drastic drop in the QCD cross section
at LHC. However if the created black holes decay on collider timescales as
expected in the ADD scenario, this drop will (naively) be completely hidden by
the black hole decay products even for rather large transverse energy/invariant
dijet mass. On the other hand, if the black holes are stable on collider time
scales there is no Hawking radiation to camouflage the QCD drop and the
absence of QCD events may be a key signal.

The point where the extra-dimensional black hole plus standard model cross
section falls below the four dimensional standard model cross section is sensitive
to the number of extremely energetic quanta emitted by small black holes and
this depends on physics in the Planck region. While we cannot exclude (due to
the large theoretical uncertainties) that a drop below the standard model QCD-
cross section will be observed at the LHC, it is unlikely (at least in this simple
form) to be important for the identification of the ADD model. Inventing mores
sophisticated methods for distinguishing the black hole jets from other jets may
on the other hand be well worth the effort.
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Finally we point out that it is, in a sense, unphysical to consider standard
model and black hole events without taking gravitational, non black hole, events
into account. Surely the gravitational events will play a major role close to the
Planck mass. For scatterings with momentum transfer far above the plank mass
we expect black hole events to dominate. We intend to further investigate the
effect of gravitational interaction in future publications.
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Abstract

It is argued that the assumption that the standard model particles live on
a finite brane in the ADD model does in itself imply a finite propagator for
virtual Kaluza–Klein mode exchange. The part of the propagator relevant for
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compared to the brane width. The matrix element corresponding to this part
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4.1 Introduction

The ADD model [1–3] aims at explaining the hierarchy between the weak scale
and the Planck scale. This is done by introducing extra, compactified, di-
mensions in which only gravity is allowed to propagate. At distances small
compared to the compactification radius, but large compared to the Planck
length and the thickness of the brane, the gravitational force will be enhanced
and behave essentially as in a 4 + n dimensional world, where n is the number
of extra dimensions. If the extra dimensions are large enough, the enhanced
gravitational force opens up for the possibility of gravitational scattering and
black hole production at present, or soon upcoming, collider experiments.

To quantify the amount of gravitational interaction, the theory was put on
a perturbative field-theoretical basis in [4, 5]. The perturbations of the extra
dimensional part of the metric enter as massive Kaluza–Klein (KK) modes in
the Lagrangian. When these modes are internal states they have to be summed
over which lead the authors of [4, 5] to the following divergent propagator
integral

∑

l

1

−m2
l
+ k2

∼ Rn

∫

mn−1

−m2 + k2
dm. (4.1)

Here l enumerates the allowed momenta, ml, in the extra dimensions, m is the
absolute value of ml, R is the compactification radius1 and k2 is the momentum
squared of the 3 + 1-dimensional part of the propagator. (This object, without
Lorentz structure, will somewhat sloppily be referred to as a propagator.) For
the above approximation to be valid, the compactification radius of the extra
dimensions clearly have to be large compared to other relevant length scales.
As it stands, the integral eq. (4.1) is explicitly divergent for n ≥ 2. However,
when arriving at eq. (4.1), the physical condition that the standard model fields
are confined to the brane was not taken into account.

Instead the problem of the divergent integral was approached in [4, 5] by
introducing a cut-off Ms, argued to be of the same order of magnitude as
the fundamental Planck scale, Mp. (A physical motivation for a cut-off was
later considered in [6, 7] by the introduction of a brane tension, and various
mathematical shapes of cut-offs have been discussed in [8]). For n > 2, and
exchanged momentum small compared to Ms, the Kaluza–Klein summation of
t-channel (or s-channel) amplitudes then gave a propagator behaving as

1

n− 2
RnMn−2

s ∼ 1

GN(4)

1

n− 2

Mn−2
s

Mn+2
p

(4.2)

1R is here used to denote the compactification radius, rather than the compactification
circumference.
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where GN(4) is the ordinary 3+1-dimensional Newton’s constant related to R

and Mp via G−1
N(4) ≈ RnMn+2

p . (In [4] Mp and Ms are taken to be the same in

the calculation of the propagator.) In the Born approximation the cross section
would then be given by [9]

dσ

dz
∼ s3

(n− 2)2

(

Mn−2
s

Mn+2
p

)2

F (spin, z), (4.3)

where z is the cosine of the scattering angle in the center of mass system, s the
squared sum of the incoming particles momenta and F a function taking spin
dependence into account.

A different approach to calculating the influence of the Kaluza–Klein modes,
was presented in [2] when deriving Newton’s law. In this case the summation of
Kaluza–Klein modes was performed in the classical limit, after Fourier trans-
forming our normal momentum space to coordinate space [2], giving rise to the
expected 3 + n dimensional version of Newton’s law,

V (r)

m1m2
∼
∫ ∞

−∞

dm

∫ ∞

−∞

dk
1

m2 + k
2 e

ik·r ∼
∫ ∞

0

dmmn−1 e
−mr

r
∼ 1

rn+1
(4.4)

where r = |r|. Eq. (4.2) and eq. (4.4) may seem to contradict each other.
Especially, eq. (4.2) gives the same form of the gravitational scattering potential
regardless of the number of extra dimensions, namely a δ-function at r =
0. Equation (4.4), on the other hand, gives different scattering behavior for
different number of extra dimensions. We will see in the next section that
k-dependent correction terms to eq. (4.2) are important for the classical limit
as the 1/rn+1-potential can not be recovered by Fourier transforming the non-
relativistic matrix element corresponding to eq. (4.2) to ordinary position space.

We will later implement the physical condition that standard model fields
live on a brane via a Fourier transform. To be consistent with this we should
really add a factor iy ·m, where y is the coordinate in the extra dimensions, in
the exponent and then integrate over a narrow distribution in y. However, as
the m integral is explicitly convergent when evaluated after the k integral as in
eq. (4.4), the addition of iy ·m in the exponent would not change the result in
the classical limit when the distance is much larger than the brane thickness.
In essence, what will be done in this paper is nothing but calculating eq. (4.4)
in the reversed order, starting with the m-integral.

The Fourier transform to position space w.r.t. the extra dimensions is
performed (for an odd number of extra dimensions) in section 4.2. In section
4.3 we show that the parts of the propagator relevant for the large distance
limit can be further Fourier transformed to position space w.r.t. our normal
dimensions giving back the extra-dimensional version of Newton’s law. We also
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find a corresponding “KK-summed propagator” for an even number of extra
dimensions by requiring that Newton’s law should be recovered. Finally we
summarize and conclude in section 4.4.

4.2 Fourier transformation to position space in

the extra dimensions

As the standard model fields are assumed to live on the brane, any measurement
of gravitational scattering will be in position space w.r.t. the extra dimensional
coordinates and in momentum space w.r.t. our ordinary coordinates. We
therefore search for the corresponding propagator. To find it we introduce a
coordinate y, with absolute value y, in the extra dimensions. Later we will
be interested in a narrow distribution around y = 0̄ corresponding to a small
extension of the standard model fields into the bulk. Searching for a propagator
which is in position space w.r.t. the extra dimensions also corresponds to
imposing the condition of locality. As the standard model fields live on a brane
they will only be sensitive to KK modes which overlap with the brane.

Fourier transforming eq. (4.1) to position space with respect to the extra
dimensions now gives for n ≥ 3

D(k, y) =
∑

l

1

−m2
l
+ k2

eil·y/R (4.5)

≈ RnSn−1

∫ π

0

sin(θ)n−2dθ

∫ ∞

0

dm
mn−1

−m2 + k2
eimy cos(θ)

= RnSn−1

∫ 1

−1

d cos(θ)(1 − cos2(θ))(n−3)/2

∫ ∞

0

dm
mn−1eimy cos(θ)

−m2 + k2

where Sn−1 is the surface of a unit sphere in n−1 dimensions (from integration
over the angles on which the integrand does not depend) and the factor Rn

comes from the density of Kaluza–Klein modes. For an odd number of extra
dimensions this can, with x = cos(θ), be rewritten as

D(k, y) = RnSn−1

∫ 1

−1

dx(1 − x2)(n−3)/2

∫ ∞

0

dm



−
(n−3)/2
∑

j=0

mn−3−2jk2j +
kn−1

−m2 + k2



 eimyx. (4.6)

From this form we see that the terms in the sum are either k-independent,
and therefore correspond to δ-functions at r = 0̄ in ordinary position space,
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or are even powers of k and correspond to derivatives of the δ-function. (This
is easily seen by Fourier transforming from k-space to r-space component by
component.) These terms are therfore localized to distance zero in ordinary
space and can not be important in the classical region, where wave packages
are well separated and do not overlap.

If we imagine the brane to have a finite narrow distribution (such as a Gaus-
sian) around y = 0̄ in the extra dimensions, the 1/rn+1-law will be modified
at distances similar to the brane thickness. The terms in the sum will then
give (possibly) large but finite contributions. These terms, which depend on
the extension of the brane, are important when the wave functions overlap and
will then give an interaction similar to that from eq. (4.3) (until the unitarity
condition sets in) but they will not be further investigated here. Instead we
concentrate on the term relevant for large distance and large energy scattering
(the classical limit) coming from the last term in parentheses in eq. (4.6). The
contribution to the integral from this term, called D̂(k), is easily evaluated in
the limit of small y (corresponding to a narrow distribution) and is given by

D̂(k) ≈ RnπSn

2

(
√

−k2
)n−2

in+1. (4.7)

It is easy to show that this result holds also for one extra dimension, and
therefore for any odd number of extra dimensions.

For an even number of extra dimensions the propagator in eq. (4.5) is also
turned finite by (for example) a Gaussian distribution in y-space corresponding
to a Gaussian distribution in m-space. In this case there is however no finite
term which directly corresponds to the classical potential.

The expression eq. (4.7), which is in momentum space with respect to our
normal dimensions, and in position space with respect to the extra dimensions,
has the following properties:

i It gives back Newton’s law, eq. (4.4). This will be demonstrated in section
4.3.

ii It depends on the number of extra dimensions in a non-trivial way, such
that, as the gravitational force increases faster with smaller distance in po-
sition space for many extra dimensions, this is reflected in a faster increase
with larger k in momentum space.

iii It does not depend on an arbitrary cut-off as long as the cut-off (≈ 1/(brane
thickness)) is much larger than k. This implies that it is not dominated by
metric perturbations of the scale 1/Mp for scatterings corresponding to much
larger distances. This is the case for eq. (4.1) integrated to Ms ≈Mp.

iiii It is the part of the propagator which is argued to contribute to the all
order exponentiated eikonalized amplitude in [10] (apart from what appears
to be a sign misprint).
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4.3 Fourier transformation to position space in

our ordinary dimensions

To obtain the 3+1+n dimensional version of Newton’s law we take the classical
limit such that the energy is given by the mass, multiply with the coupling
constant 4πGN(4) and Fourier transform eq. (4.7) to position space. Using

κ = |k| we have

V (r)

m1m2
= 4πGN(4)R

nπSn

2
in+1S3

2

1

(2π)3

∫ 1

−1

d cos(θ)

∫ ∞

0

dκκ2κn−2eiκr cos(θ)

= 4πGN(4)R
nπSnS3

4(2π)3
in+1 1

ir

∫ ∞

0

dκκn−1(eiκr − e−iκr). (4.8)

This can be evaluated by introduction of a small convergence factor

V (r)

m1m2
= 4πGN(4)R

nπSnS3

4(2π)3
in+1 1

ir
×

lim
ε→0

(

d

dr

)n−1 ∫ ∞

0

dκ

[

eiκr−εκ

in−1
− e−iκr−εκ

(−i)n−1

]

= GN(4)R
nπSn(4π)2

4(2π)3
in+1 1

ir

1

in−1
×

lim
ε→0

(

d

dr

)n−1

(−1)

[ −i
r + iε

− i(−1)n−1

r − iε

]

= −GN(4)R
nSn

Γ(n)

rn+1
, (4.9)

where the last step only is valid for an odd number of extra dimensions. This
is the same result as in [2] (apart from a minus sign which is neglected in [2],
the gravitational potential must be attractive), i.e. gravitational scattering
enhanced by the large density of Kaluza–Klein modes, corresponding to a large
coupling constant.

The strategy so far has been to start from the propagator and argue that
we can get back Newton’s law. Clearly this argument could be turned upside
down. Using the result in eq. (4.4) [2], we could alternatively search for the
“propagator” giving the expected potential when Fourier transformed to po-
sition space. Again this would give us a term of the form kn−2 for an odd
number of extra dimensions. For an even number of extra dimensions we settle
with this argument, showing that the term

D̂(k) ≈ RnSn

2
(−1)

n−2
2

(

√

−k2
)n−2

ln(−k2) (4.10)
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gives the desired form. The logarithm of a dimension-full quantity may
seem disturbing. Replacing it by ln(−k2/k2

0) for some k0 we note that the
kn−2 ln(k2

0)-term would only contribute at r = 0 when Fourier transformed to
position space. This means that, just as in the case of an odd number of extra
dimensions, we have a local interaction which depends on properties of the
brane. We also note that, just as for odd n, requiring the standard model par-
ticles to live on a thin bane by introducing a (narrow) distribution in y-space
we would have a (wide) distribution in m-space giving a (large) finite value for
the propagator.

Fourier transforming the non-relativistic version of eq. (4.10) to position
space we find the potential

V (r)

m1m2
= 4πGN(4)R

nSn

2
(−1)

n−2
2
S3

2

1

(2π)3
× (4.11)

∫ 1

−1

d cos(θ)

∫ ∞

0

dκκ2κn−2 ln(κ2)eiκr cos(θ)

= GN(4)R
nSn(4π)2

4(2π)3
(−1)

n−2
2

ir

∫ ∞

0

dκκn−1 ln(κ2)2i sin(κr).

For n even we get after evaluating the integral [11]

V (r)

m1m2
= −GN(4)R

nSn
Γ(n)

rn+1
. (4.12)

This is the multidimensional version of Newton’s law. We also note that
eq. (4.10) is the part of the propagator argued to contribute to the all order
eikonalized amplitude in [10].

4.4 Conclusion and outlook

We have shown that requiring the standard model particles to live on a finite
brane, leads to a convergent result for the KK propagator. The part of the
propagator which is seen to be relevant for large energy and large distance
scattering can also (at least for an odd number of extra dimensions) be Fourier
transformed to position space w.r.t. our ordinary coordinates, giving back
Newton’s law. For an even number of extra dimensions we have found a similar
expression by requiring that we should get back Newton’s law in the classical
limit, when all coordinates are Fourier transformed to position space.

It should be pointed out that, although the part of the tree-level amplitude
relevant for large distance scattering, is calculated to a finite value, we can
not use eq. (4.7) and eq. (4.10) for calculating cross sections with the Born
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approximation. This is so because, at low energies the thickness of the brane
is important, and at high energies an all order eikonal summation has to be
performed [10]. This calculation is however more reliably performed by keep-
ing a finite brane width throughout the calculations and will be considered
separately.
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5.1 Introduction

The ADD model [1–3] is an attempt to solve the hierarchy problem, by intro-
ducing extra dimensions in which only gravity is allowed to propagate. For
distances smaller than the assumed compactification radius, R 1, the gravita-
tional potential will then be altered and has the form

V (r)

m1m2
= −GN(4)R

nSn
Γ(n)

rn+1
(5.1)

where n is the number of extra dimensions, GN(4) denotes the ordinary 3+1-

dimensional Newton’s constant, Sn = 2πn/2/Γ(n/2) is the surface of a unit
sphere in n dimensions and Γ(n) is the Euler Gamma function. This implies
that the strength of gravity increases much faster with smaller distance as
compared with the normal 1/r behavior, and the fundamental Planck scale
(related to the mass scale where the corresponding de Broglie wave length
equals the black hole radius) is reduced and given by

MD =
1

(8πRnGN(4))
1

n+2

. (5.2)

The presence of strong gravity at distances smaller than the compactifica-
tion radius opens up for the possibility of observing gravitational scattering and
black hole production at collider experiments and in cosmic rays. To eliminate
the hierarchy problem, and not only reduce it, the new Planck scale should be
of the order TeV, and LHC will be a quantum gravity probing machine.

In order to quantify the amount of gravitational interaction, the theory was
formulated as a field theory in [5,6]. As the extra dimensions are compactified,
the allowed wave numbers (and hence momenta) in these dimensions are quan-
tized Kaluza–Klein (KK) modes. The KK modes can of course enter both as
external and internal particles in the Feynman diagrams derived from the the-
ory. When the KK modes are internal (as for elastic gravitational scattering)
they have to be summed over. The problem is that the sum over KK modes
diverges for 2 or more extra dimensions,

∑

l

1

−m2
l
+ k2

≈ SnR
n

∫

mn−1

−m2 + k2
dm. (5.3)

Here l enumerates the allowed KK modes with momenta ml in the extra di-
mensions, m = |ml|, and k is the exchanged 4-momentum in our normal space.
(We will for simplicity call this object a propagator, despite the fact that the
Lorentz structure is not included.)

1Here we use the notations of [4], such that R is the radius and not the circumference.
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In the original papers [5, 6] this divergence problem was dealt with by in-
troducing a sharp cut-off, Ms, argued to be of the same order of magnitude
as the Planck mass, as new physics anyhow is expected to occur at the Planck
scale. Various mathematical forms of cut-offs have also been discussed in [7].
For n ≥ 3 and momentum transfers small compared to Ms, the sum was then
estimated to give

∼ 1

n− 2
RnMn−2

s ≈ 1

GN(4)(n− 2)

Mn−2
s

Mn+2
D

. (5.4)

In the Born approximation this would lead to a cross section of the form [8]

dσ

dz
∼ s3

(n− 2)2

(

Mn−2
s

Mn+2
D

)2

F (spin, z) (5.5)

where z is cosine of the scattering angle in the center of mass system,
√
s the

total cms energy, and F a function taking spin dependence into account.

Ordinary gravitational scattering in 3 + n dimensions would correspond to
a potential ∝ 1/r(n+1), but the scattering given by eq. (5.5) has a completely
different angular behavior. In particular the expected forward peak is totally
absent. Fourier transforming the amplitude in eq. (5.4) to position gives a
δ-function potential, ∝ δ(r̄), and the corresponding Born approximation cross
section in eq. (5.5) is therefore isotropic. Thus it is obvious that the approx-
imation in eq. (5.4) does not contain the full story of gravitational scattering
in the ADD model.

An attempt to solve this problem has been presented by Giudice, Rattazzi,
and Wells [4]. These authors point out two important facts:

i) For an interaction with a large Born amplitude but a short range, the
cross section is not determined by the Born term alone. Higher order loop
corrections reduce the cross section and guarantee that the unitarity constraint
is obeyed.

ii) The constant term in eq. (5.4), which represents a dominant part of the
amplitude in eq. (5.3), corresponds to a contribution to the cross section from
zero impact parameter, and should therefore give a negligible contribution to
the cross section, at least when the incoming wave packages do not overlap.
Consequently the important part of the amplitude in eq. (5.3) must in this
case be the smaller k-dependent terms, which have been neglected in eq. (5.4).

In case the interaction is dominated by small angle scattering the cross
section can be calculated in the eikonal approximation, in which the all-loop
summation exponentiates [9–11]. The cross section is then given by

σel =

∫

d2b̄⊥ |(1 − eiχ(b̄⊥))|2
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σtot =

∫

d2b̄⊥ 2Re(1− eiχ(b̄⊥)) (5.6)

with χ(b̄⊥) =
1

2s

∫

d2q̄⊥
(2π)2

eiq̄⊥·b̄⊥ABorn(q̄2⊥). (5.7)

Thus, if the absolute value of the eikonal, χ, is small compared to 1, we in
general expect small corrections from the higher order loop contributions, while
for large χ-values the cross section saturates, and the effective integrand in
eq. (5.6) is close to 1. We also note that when χ is real, the scattering is purely
elastic. In this paper we will focus on elastic collisions mediated via (multiple)
exchange in the t-channel.

It is also pointed out in [4] that in the eikonal limit the Born amplitude does
not depend on the spin of the colliding particles, and is therefore universal.
Expressed in the fundamental Planck mass MD in eq. (5.2) it is given by [4]

ABorn(k2) =
s2

Mn+2
D

∫

dnm̄

k2 − m̄2
. (5.8)

In [4] a divergent part is subtracted from the integral in eq. (5.3) or (5.8)
using dimensional regularization. This subtracted part corresponds to a nar-
row potential localized at r̄ = 0. Although the remainder is singular for n
equal to an even integer, its Fourier transform (the eikonal χ in eq. (5.7)) is
finite everywhere. Assuming the eikonal approximation to be applicable in
the transplanckian region s � M 2

D, the authors of [4] thus obtains a reason-
able result, where the gravitational scattering cross section grows with energy
∝ (s/Mn+2

D )2/n. However, we ought to be worried by the fact that the part
of the amplitude, remaining after the subtraction, grows for larger momentum
transfers, and is largest for backward scattering. This implies that the con-
ditions for the eikonal approximation are not satisfied. The formal problems
with divergent integrals also indicate that this result could be regarded as based
more on physical intuition than on a solid theoretical foundation. These un-
certainties also make it difficult to estimate the limit beyond which the result
should be applicable, and how the gravitational scattering behaves for lower
energies.

In this paper we want to study in more detail the result of various physical
effects, which can tame the divergences. These effects give effective cut-offs for
high-mass KK modes at some scale (here referred to as Ms), which does not
have to be the same as the Planck scale MD. Our result does indeed confirm
the relevance of the eikonal approximation and the result in [4] at very high
energies. For lower energies the behavior is different, wide angle scattering
is dominant and the amplitude does not exponentiate. Instead the all-loop
summation gives a geometric series. This implies that there will be a change
in the energy dependence, and for lower energies the cross section varies more
rapidly, proportional to ∝ s2M2n−2

s /M2n+4
D .



101

We want to emphasize that in this paper we do not discuss phenomena like
black hole formation or other nonlinear gravitational effects, which are expected
to modify the final states for very high energies and central collisions. For a
discussion of such effects we refer to ref. [3, 4, 12–17]. We also neglect possible
interference with strong and electro-weak effects and we study reactions for non-
identical particles such that KK modes appears only in the t-channel. Some
remarks on s- and u-channels are however made in secs. 5.6.3-5.6.5.

The approach in [4] will be discussed in more detail in sec. 5.2. In sec. 5.3,
we will introduce a finite width of the brane, on which the standard model
particles are assumed to live, and see how this leads to a finite amplitude. A
similar effect is obtained by assuming that the position of the brane is not
fixed in the extra dimensions [18, 19]. Fluctuations in the brane then result in
a kind of surface tension or ”brane tension”. The Born term is discussed in sec.
5.4 and higher order loop corrections in sec. 5.5. Here we also study in which
kinematical regions the Born term dominates, where the eikonal approximation
is valid, and the behavior of the cross section in regions where the scattering
is approximately isotropic. The results for scattering cross sections in those
different kinematical regions are then presented in sec. 5.6. Finally we will
summarize and conclude in sec. 5.7.

5.2 Problems and divergences

The integral in eq. (5.3) or (5.8) is divergent for n ≥ 2 and n ≤ 0, but converges
for n-values in the intermediate range 0 < n < 2. To give a physical meaning to
the integral for n ≥ 2, a finite result can be obtained by analytic continuation
from smaller n-values, corresponding to a dimensional regularization. The
resulting amplitude, presented in [4], is given by the expression2

ABorn(k2) = −π n
2 Γ
(

1 − n

2

)

(−k2

M2
D

)
n
2 −1(

s

M2
D

)2

. (5.9)

We see that this expression is finite for odd integers n, but singular for even n,
where the Γ-function has poles.

The result in eq. (5.9) is equivalent to a subtraction of terms, which are
proportional to δ-functions or derivatives of δ-functions at r̄ = 0, and therefore
may be expected to give negligible contributions to the cross section. Inserting
eq. (5.9) into the two-dimensional Fourier transform in eq. (5.7), we see that
this integral is also divergent. It can be given a finite result by introduction of
a convergence factor:

χ = −
(

bc
b

)n

, with bc =

[

s(4π)
n
2 −1Γ(n/2)

2Mn+2
D

]1/n

. (5.10)

2We have here inserted a minus sign not present in [4].
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p1 p1-kp1-q

p2 p2+kp2+q

iq q-k

HaL

p1

p2 HbL
Figure 5.1: (a) The one-loop contribution corresponding to exchange of two KK
modes. The KK modes are drawn as thick lines and standard model particles
as thin lines. (b) The two-loop contribution.

We note that although the amplitude ABorn in eq. (5.9) is singular for even
n, χ is finite. Thus χ(b) (like the potential V (r), to be discussed below) can
be analytically continued to finite values for all n-values. (A finite ampli-
tude, which corresponds to a potential proportional to 1/rn+1 for n even, is
∝ (−k2)n/2−1 ln (−k2).)

The result in eq. (5.10) is a single power ∝ 1/bn, and the scale factor (or
characteristic impact parameter) bc is defined so that |χ| = 1 when b = bc. If
this expression is inserted into eq. (5.6), we see that the term quadratic in χ,
which is the Born term, dominates the integrand for b > bc, where χ < 1, but
higher order corrections are important in constraining the scattering probability
for b < bc.

In ref. [4] it is assumed that eqs. (5.6) and (5.10) should give a realistic
approximation to gravitational scattering in the transplanckian region s �
M2

D (apart from special effects like black hole formation, which are treated
separately). The net result is then that the total scattering cross section grows
with energy proportional to b2c, or equivalently ∝ (s/Mn+2

D )2/n, (cf. eq. (5.43)
below).

The exponentiation in the eikonal approximation in eq. (5.6) follows when
the scattering is dominated by small angles [9–11]. The one-loop contribution
is then dominated by its imaginary part, and the all-loop summation gives an
exponential.

The one-loop diagram in fig. 5.1a is given by the following expression:

A1−loop(k2) =
−i
2

∫

d4q

(2π)4
ABorn(q2)ABorn((k − q)2)

1

(p1 − q)2
1

(p2 + q)2
.

(5.11)
Here p1 and p2 denote the momenta of the incoming particles, the total mo-
mentum exchange is k and the loop momentum q.
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The imaginary part of the integral in eq. (5.11) is coming from on-shell
intermediate states (denoted i in fig. 5.1), and can be calculated using the
Cutcosky cutting rules. This implies that the two propagators in eq. (5.11)
are replaced by δ-functions, which (with the approximation q2 ≈ q̄2⊥) gives the
result

A1−loop(k2) =
i

4s

∫

d2q̄⊥
(2π)2

ABorn(−q̄2⊥)ABorn(−(k̄⊥ − q̄⊥)2). (5.12)

If ABorn falls off for large k⊥, the Fourier transform to impact parameter space
of the one-loop contribution is proportional to χ2(b̄⊥). The sum over multi-
loop ladder diagrams with different number of KK exchanges exponentiates to
(iχ− χ2/2 + ...) = eiχ − 1, and the all order eikonal amplitude is given by

Aeik(k
2) = −2is

∫

d2b̄⊥e
ik̄⊥·b̄⊥(eiχ − 1). (5.13)

With the Born amplitude in eq. (5.9) we have, however, some problems.
First the real part of the integral in eq. (5.11) is not small and negligible
compared to the imaginary part. It is strongly divergent for n ≥ 2, as ABorn

increases proportional to qn−2 or qn−2 ln(−q2) for large q. Secondly the integral
in eq. (5.12) should only go over physical intermediate states, which means
q⊥ <

√
s/2. The Fourier transform of the convolution in eq. (5.12) gives χ2

only if the integrand in eq. (5.12) falls off so rapidly, that the integral effectively
can be extended to all q⊥. This is not the case with the amplitude in eq. (5.9).

We conclude that, although the result in eq. (5.10) and (5.6) is an intu-
itively reasonable result for scattering in a rapidly falling potential, it should
be worrying that it is derived from an amplitude, which grows for large mo-
mentum transfers and large scattering angles, while the eikonal approximation
is proven to be valid only when scattering at small angles is dominating.

At the root of this problem lies the fact that the subtraction, which gives the
amplitude in eq. (5.9) and is a result of the analytic continuation in the number
of extra dimensions, does not automatically remove all parts corresponding to
δ-functions at r̄ = 0. The definition of the potential as the Fourier transform
of eq. (5.9) is problematic. To illustrate this we study the most simple example
represented by the case n = 3. In the rest frame we have k0 = 0 and k2 = −k̄2.
The integral in eq. (5.8) is then proportional to

∫

m2 dm

k̄2 +m2
=

∫

(m2 + k̄2 − k̄2)dm

k̄2 +m2
=

∫

dm− k̄2

∫

dm

k̄2 +m2

=

∫

dm− |k̄|
∫

dx

1 + x2
=

∫

dm− |k̄|π
2
. (5.14)

The first term, the integral, represents an infinite subtraction. Its three-
dimensional Fourier transform gives a δ-function at r̄ = 0 with an infinite
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weight. The second term corresponds to the result in eq. (5.9). We may try to
define its Fourier transform V̂ (r̄) as a distribution in the standard way, multi-
plying with a test function and interchanging the order of integration. For test
functions of the form exp(−a r2) we then get (with k ≡ |k̄| and the constant C
appearing in eq. (5.25))

∫

d3re−a r2

V̂ (r̄) ≡ C(−π
2

)

∫

d3k k

∫

d3re−a r2

eir̄k̄

= −C π
2

∫

d3k ke−k2/4a(
π

a
)

3
2

= −C16π
7
2
√
a. (5.15)

We note that this result is finite, and goes towards 0 when the test function
approaches a constant, i.e. when a→ 0. For r 6= 0 we find V̂ (r) = C4π2/r4 by
Fourier transforming from k̄ to r̄ using a convergence factor. Integrating this
contribution with the test function above, we get the divergent result

C16π3

∫ ∞

0

e−a r2 dr

r2
. (5.16)

Thus this definition, V̂ (r) = C4π2/r4 for r > 0, is incomplete since the result
in eq. (5.15) is finite while the integral in eq. (5.16) is infinite. It looks as if a
δ-function, δ(r̄), with infinite weight is missing.

We conclude that the separation in eq. (5.14) does not in itself remove all
terms related to δ-functions at r̄ = 0. Instead we argue in the next section that
dynamical effects will remove the divergencies and give finite results.

In the next section we will consider possible mechanisms, which can sup-
press high KK masses and give an effective cut-off to the integral in eq. (5.8).
These mechanisms have real dynamical motivations, and we will see that such
finite cut-offs do remove all divergences and give well-defined results. For high
energies the Born amplitude indeed falls off for large momentum transfers, and
the eikonal approximation is applicable. For lower energies this is not the case,
and we will in secs. 5.4 - 5.6 discuss the resulting amplitudes and cross sections
for different relations between the energy, the Planck mass, and the cut-off
scale.

5.3 Possible solutions

In the ADD model the standard model particles are assumed to live on a thin
brane. The mechanism behind this assumption could possibly be taken from
string theory [3], but is not a part of the ADD model itself. The problems
discussed in the previous section are related to contributions from KK modes
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with very high masses. In a relativistic quantized theory there are also formal
problems with an infinitely thin and infinitely rigid brane. If the brane is
not infinitely thin, but has a finite width, this will effectively suppress the
coupling to high-mass KK modes, with wavelengths shorter than the brane
width. If the brane really is infinitely thin, then it must be impossible to
determine its position with infinite accuracy. In [18,19] it is demonstrated that
the fluctuations in the position of the brane suppresses high-mass KK modes,
in a way similar to the effect of a finite brane width. The emission or absorption
of a KK mode gives a recoil to the brane, and the fluctuations in the location
of the brane can then be regarded as a result of an effective ”surface tension”
in the brane.

Let us for definiteness study the effect of the assumption that the standard
model fields penetrate a finite distance into the extra dimensions, which gives
an effective finite width to the brane [20]. (The possibility of fluctuating branes,
studied in [18,19], give similar results, albeit with a different physical interpre-
tation.) To be specific we assume a Gaussian extension, but this assumption
is not essential for our conclusions. Thus we assume the standard model fields
to have a wave function with the extension

ψ(y) =

(

Ms√
2π

)
n
2

e−y2M2
s /4 (5.17)

into the extra dimensions, with y denoting the coordinate in the extra dimen-
sions. The overlap between two standard model fields and a KK mode of mass
m (what we have in a vertex) is then proportional to

∫

dy eim·y

(

Ms√
2π

)2 n
2

e−y2M2
s /2 = e−m2/(2M2

s ) (5.18)

or, in other words, the squared absolute value of the wave function in y-space
Fourier transformed to m-space. The exchange of a KK mode will have this
suppression factor occurring twice, once at every vertex. In total the exchange
of a KK mode with mass m will therefore contribute to the sum in eq. (5.8)
with a suppression factor

e−m2/M2
s . (5.19)

Implementing the physical requirement that the standard model particles
live on a narrow brane does therefore in itself imply a finite “effective” propa-
gator,

RnSn

∫

dmmn−1

k2 −m2
e−m2/M2

s (5.20)

for the exchange of 4-momentum k. (The factor Rn comes from the density
of KK modes and Sn = 2πn/2/Γ(n/2) is the unit surface of a sphere in n
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dimensions.) We note in particular that this expression (in contrast to the
expression in eq. (5.9)) falls off like 1/k2 for large momentum transfers, such
that −k2 � M2

s . This implies that for high energies, s � M 2
s , t-channel

interaction is dominated by small values of −k2/s, i.e. by small angles.

In the following sections we will show that the Fourier transform of the
propagator in eq. (5.20) gives a potential, which falls off ∝ 1/rn+1 for distances
larger than the brane width, given by 1/Ms, and smaller than the compactifica-
tion radius. Outside this range, both for r < 1/Ms and for r > 2πR (where the
massless graviton dominates), it varies ∝ 1/r. We will also study the resulting
scattering cross sections under different kinematic conditions.

5.4 The Born term

5.4.1 Amplitude

As described in section 5.3, several physical mechanisms result in effective cut-
offs for high masses in the KK propagator. After multiplying eq. (5.20) by the
coupling 4πGN(4), contracting Lorentz indices (not explicitly included here),

and using the relation G−1
N(4) = 8πRnM2+n

D we get the following result for the

Born amplitude for ultra-relativistic small angle scattering:

ABorn(t) =
s2

Mn+2
D

Sn

∫ ∞

0

dmmn−1

k2 −m2
e−m2/M2

s . (5.21)

For large angels there are less important corrections from spin polarization
which we neglect here and in the following. This integral is convergent and
finite for all negative values of k2 = t (including 0 when n ≥ 3). It is easy to
find the result in the limits of large and small (negative) t-values.

• Large momentum transfers; −t�M 2
s

When −t is large compared to M 2
s , the term m2 in the denominator in

eq. (5.21) can be neglected, which gives the result:

ABorn(t) ≈ s2

Mn+2
D

Sn

∫ ∞

0

dmmn−1

t
e−m2/M2

s = πn/2

(

Ms

MD

)n
s2

M2
D · t .

(5.22)

Thus for large momentum transfers (larger than the cut-off) the Born am-
plitude falls off proportional to 1/t.

• Small momentum transfers; −t�M 2
s

For smaller t, and n > 2, the integral is dominated by m-values of the order
of Ms, and therefore t can now be neglected in the denominator. We then
get the approximately constant result:
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ABorn(t) ≈ −s2
Mn+2

D

Sn

∫ ∞

0

dmmn−3 e−m2/M2
s

= − 2πn/2

(n− 2)

(

Ms

MD

)n
s2

M2
DM

2
s

. (5.23)

Thus for momentum transfers, which are small compared to the cut-off, the
Born amplitude is approximately constant for n > 2. For n = 2 the result for
small t has instead a slowly varying logarithmic dependence, proportional to
ln(−M2

s /t).

5.4.2 Potential

To get the classical non-relativistic potential we start directly from the effective
propagator in eq. (5.20) multiplied with the coupling constant 4πGN(4). Going
to the rest frame, where k0 = 0 and t = −k̄2 we find the corresponding potential
as the three-dimensional Fourier transform:

V (r)

m1m2
=

1

2s2

∫

d3k

(2π)3
eik̄r̄ABorn(−k̄2)

=
−1

2Mn+2
D

Sn

(2π)3

∫ ∞

0

dmmn−1 e−m2/M2
s

∫

d3keik̄r̄

m2 + k̄2
=

=
−1

2Mn+2
D

Sn

(2π)3
2π2

∫ ∞

0

dmmn−1e−m2/M2
s · e

−mr

r
. (5.24)

This represents a weighted sum of Yukawa potentials. The integral can be
expressed in terms of error functions, but we are here primarily interested in
the behavior for large and small values of r.

• Large distances; r > 1/Ms

For distances larger than the brane thickness the integral is effectively cut
off by the factor e−mr, and the result becomes insensitive to the Gaussian
cut-off e−m2/M2

s . It is then approximated by

V (r)

m1m2
≈ −1

2Mn+2
D

Sn

4π

∫ ∞

0

dmmn−1 · e
−mr

r
=

−Sn Γ(n)

8πMn+2
D

· 1

rn+1
. (5.25)

We see that for distances large compared to the brane thickness (but small
compared to the compactification radius) we recover the result from eq. (5.1),
a potential falling off proportional to 1/rn+1, corresponding to the expected
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(3 + n)-dimensional version of Newton’s law. When r is increased, smaller
m-values ∼ 1/r are important in the integral in eq. (5.24) or (5.25). The
phase space factor mn−1 then gives this power-like fall off for distances large
compared to Ms.

• Short distances; r < 1/Ms

For smaller r-values we find instead that the factor e−mr is irrelevant, and
the result is

V (r)

m1m2
=

−1

2Mn+2
D

Sn

4π

1

r

∫ ∞

0

dmmn−1 e−m2/M2
s =

−πn/2

8π

Mn
s

Mn+2
D

· 1

r
. (5.26)

Due to the cut-off, the integral in eq. (5.24) is dominated by m-values close
to Ms for all r-values smaller than 1/Ms. Thus, when the distance is smaller
than the brane width, the result is a potential proportional to 1/r, corre-
sponding to a standard 3-dimensional Coulomb potential, although with a
coupling constant ∼Mn

s /M
n+2
D ∼ (MsR)nGN(4) instead of GN(4). Thus the

coupling is enhanced by a factor ∼ (MsR)n = ( compactification radius
brane width )n.

5.4.3 Eikonal

In a similar way we can calculate the eikonal χ(b) by a two-dimensional Fourier
transform in the transverse coordinates:

χ(b) =
1

2s

∫

d2k̄⊥
(2π)2

eik̄⊥b̄⊥ABorn(−k̄2
⊥) =

=
−s

2Mn+2
D

Sn

(2π)2

∫ ∞

0

dmmn−1 e−m2/M2
s

∫

d2k̄⊥e
ik̄⊥b̄⊥

1

m2 + k̄2
⊥

=

=
−s

2Mn+2
D

Sn

(2π)2
2π

∫ ∞

0

dmmn−1e−m2/M2
s

∫ ∞

0

k⊥dk⊥
m2 + k2

⊥

J0(k⊥b) =

=
−s

2Mn+2
D

Sn

2π

∫ ∞

0

dmmn−1e−m2/M2
sK0(mb). (5.27)

This integral can be expressed in terms of confluent hypergeometric func-
tions of the second kind:

χ(b) = − sMn
s

Mn+2
D

Γ(
n

2
)
πn/2−1

8
U(

n

2
, 1,

M2
s b

2

4
). (5.28)

This expression can easily be used in numerical calculations. For an intuitive
picture, the result for large and small b-values can be estimated in the same
way as the approximations in eqs. (5.25, 5.26).
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• Large impact parameters; b� 1/Ms

For large arguments the asymptotic behavior of the Bessel function K0(mb)
is proportional to exp(−mb)/

√
mb. This implies that for large b the Gaussian

cut-off is unessential, and we find the eikonal

χ(b) ≈ −s
2Mn+2

D

Sn

2π

∫

dmmn−1K0(mb) =
−s

Mn+2
D

Sn

π
2n−4 Γ2(n/2) · 1

bn

=
−s

2Mn+2
D

(4π)
n
2 −1Γ

(n

2

)

· 1

bn
. (5.29)

• Small impact parameters; b� 1/Ms

For small arguments we have K0(mb) ≈ ln(1/(mb)), which implies

χ(b) ≈ −s
2Mn+2

D

Sn

2π

∫

dmmn−1 e−m2/M2
s ln

(

1

mb

)

=
π

n
2 −1

4

s

M2
D

(

Ms

MD

)n(

ln(Msb) +
1

2
ψ(
n

2
)

)

(5.30)

where ψ(n
2 ) is the psi or digamma function.

Thus we see that the eikonal falls off ∝ 1/bn for large b, and grows logarith-
mically when b → 0. Using the quantity bc from eq. (5.10) and keeping only
the dominant term ln(Msb) in eq. (5.30), we can write the results in the form

χ(b) ≈ −
(

bc
b

)n

; b > bd (5.31)

χ(b) ≈ −(bcMs)
n

2n−1Γ(n/2)
ln

(

1

Msb

)

; b < bd (5.32)

with bd ≡ 1

Ms
(5.33)

and bc ≡
[

s(4π)
n
2 −1Γ(n/2)

2Mn+2
D

]1/n

. (5.34)

The separation line bd = 1/Ms is an estimate of the b-value where χ(b) changes
behavior. As an example fig. 5.2 shows these approximations for χ together
with the exact result for n = 3 and

√
s = MD = 1 in units such that Ms = 1.

As χ is proportional to s/Mn+2
D , a change in s and/or MD just corresponds to

a shift of all curves the same distance up or down.
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Figure 5.2: The logarithm of |χ| as a function of impact parameter for n = 3.
The curves show the example where

√
s,MD, andMs have the same magnitude,

and the units are chosen such that
√
s = MD = Ms = 1. This also implies

that bd = 1. The uppermost line is the large b limit of χ taken from eq. (5.31)
and the lowermost line is the small b limit of χ taken from eq. (5.32). The
interpolating line is the exact expression eq. (5.28). Note that a change in s
and/or MD, keeping Ms constant, just corresponds to shifting all curves up or
down.

5.5 Higher order loop corrections

We note that three different energy scales enter the expressions for the Born
amplitude in eqs. (5.21, 5.28):

√
s, MD, and Ms. Here

√
s is the total energy

in the scattering, MD is the fundamental Planck scale determined by the com-
pactification radius R, andMs is related to the width of the brane (or the brane
tension). The result depends on the relative magnitude of these quantities, and
in the following we will successively discuss five different kinematical regions,
which are illustrated in fig. 5.3.

5.5.1 Eikonal regions, s � M 2
s

We study the scattering process in the overall cm system, where the momentum
exchange has no 0-component, k = (0; k̄) and t = −k̄2. From eq. (5.22) we
see that ABorn falls off ∝ 1/k̄2 for k̄2 > M2

s . Thus for high energies, such
that s � M2

s , corresponding to region 1 and 2 in fig. 5.3, the Born term is
dominated by small values of k̄2/s, i.e. small angles. This implies that the
eikonal approximation is applicable. We note in particular that it is Ms rather
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Figure 5.3: The (
√
s,Ms)-plane for n = 3 and MD = 1. The straight line sep-

arating region 1 and 4 is
√
s = Ms while straight line separating region 4 and

5 is the line where the real and imaginary parts in eq. (5.38) have equal mag-
nitude. The power-like curve separating region 1 and 2 is

√
scd from eq. (5.36)

as a function of Ms and the line separating the regions 4 and 5 from region
3 is the line where |ABornX | = 1, see eq. (5.38). In the regions 1 and 2

√
s

is larger than Ms, and, at least for
√
s � Ms, the eikonal approximation is

correct. In region 1 the eikonal is, depending on b, either large compared to
1 or given by eq. (5.31). In region 2 on the other hand the b-range where χ
is small includes a region where it is described by eq. (5.32). In region 3 the
correction corresponding to higher order loops is small, but in region 4 it is
important to assure unitarity.

than MD, that sets the scale for when the eikonal approximation is relevant.
The one-loop contribution is here dominated by its imaginary part, obtained
when the particles in the intermediate state i in fig. 5.1a are on shell. The
contributions from multi-loop ladder diagrams (fig. 5.1b) exponentiate, and
the scattering amplitude is given by eq. (5.13):

Aeik(k
2) = 2is

∫

d2b̄⊥e
ik̄⊥·b̄⊥(1 − eiχ). (5.35)

From eq. (5.35) we see that the higher order corrections are important
when χ is of order 1 or larger. Correspondingly the Born term dominates when
|χ| < 1. We see from eqs. (5.32, 5.33) that χ varies only logarithmically when
b is decreased below the point b = bd. The importance of the higher order
corrections for the integrated cross section therefore depends on whether or
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Figure 5.4: −χ as a function of impact parameter for two examples with n = 3.
(a) High energies corresponding to region 1 in fig. 5.3, with

√
s = 10 TeV,

Ms = 1 TeV and MD = 1 TeV. The upper curve is the approximate expression
in eq. (5.29), and the lower curve the exact expression eq. (5.38). (b) Kinematics
corresponding to region 2 in fig. 5.3,

√
s = 0.1 TeV Ms = 1 TeV and MD = 1

TeV. The upper curve is the approximate high b expression in eq. (5.31), the
lower curve the approximate low b expression in eq. (5.32) and the interpolating
line is the exact expression in eq. (5.28).

not |χ(bd)| > 1. This relation is satisfied whenever bc > bd, or equivalently
when s > scd, with scd given by

scd =
2

(4π)
n
2 −1Γ(n

2 )

Mn+2
D

Mn
s

. (5.36)

This defines the boundary between region 1 and region 2 in fig. 5.3. In region 1
higher order terms are important for b < bc, and the exponentiation in eq. (5.35)
is essential to keep the amplitude within the unitarity constraints.

The difference between regions 1 and 2 is illustrated in fig. 5.4. Fig. 5.4a
corresponds to region 1, where the energy is high, and bc > bd. The absolute
value of the eikonal χ is smaller than 1 for b > bc, and in this range the
approximation in eq. (5.31) is relevant. For b < bc, |χ| is large and rapidly
varying, which causes the exponent in eq. (5.35) to oscillate rapidly.

Fig. 5.4b corresponds to region 2. Here |χ| < 1 except in a very small region

b <
1

Ms
exp

(

−4Mn+2
D π1−n

2

sMn
s

)

(5.37)

around the origin. Therefore the Born term dominates the cross section, and
higher order terms give only small corrections.
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P�2-qHaL

p1

p2 HbL
Figure 5.5: When the exchanged momentum is small compared to Ms, the KK
propagators are effectively replaced by vertex factors. The diagrams in fig. 5.1
can then be drawn as above with only standard model particle lines.

5.5.2 Non-eikonal regions, s < M 2
s

The Born amplitude in eq. (5.23) is almost independent of the momentum
exchange k̄ when k �Ms. When

√
s�Ms (regions 3, 4, and 5 in fig. 5.3) this

includes all kinematically allowed k̄-values, which implies that the scattering is
almost isotropic. Thus the exchange of the KK modes corresponds effectively
to a contact interaction. (For wide-angle scattering we also expect corrections
from spin polarization. This effect is neglected in the following.) The one-loop
contribution in fig. 5.1a is then represented by the diagram in fig. 5.5a, which
is easily calculated. We denote the momenta in the intermediate state P/2±q,
with P = p1 + p2, as indicated in fig. 5.5a, and in the cms we have P = (W, 0̄).
The vertices are then given by the Born term in eq. (5.23), with an effective
cut-off when q = Ms. The result is therefore

A1−loop(k2) =
−i
2

∫

q<Ms

d4q

(2π)4
A2

Born

1

(P/2 − q)2
1

(P/2 + q)2
=

≡ A2
Born ·X, with X ≈ 1

32π2
(ln

4M2
s

s
+ iπ). (5.38)

We note here in particular that the result is a constant, independent of the
momentum transfer k. Therefore also the one-loop amplitude can be effectively
regarded as a contact term with a cut-off when k > Ms. Consequently the two-
loop diagram in fig. 5.5b can be calculated in the same way as the one-loop
diagram, and the result is

A2−loop = A1−loop · ABornX = ABorn · (ABornX)2. (5.39)
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HaL HbL
Figure 5.6: (a) An example of a non-ladder diagram contributing to the elastic
cross section in region 5 in fig. 5.3. (b) An example of a diagram contributing
to the inelastic cross section in region 5 in fig. 5.3.

In the same way we can calculate ladder diagrams with more loops. Summing
all ladders we obtain

Aladder = ABorn (1 +ABornX + (ABornX)2 + . . . ) =
ABorn

1 −ABornX
. (5.40)

We see that instead of the exponent in the eikonal regime (where forward
scattering dominates) we here obtain a geometric series from ladder type con-
tributions. The importance of higher order corrections is now determined by
the quantity ABornX . When |ABornX | � 1 the Born term dominates. This
corresponds to region 3 in fig. 5.3.

When instead |ABornX | > 1, we expect different results depending on
whether it is the real or the imaginary part which dominates. When
ln(4M2

s /s) < π, the imaginary part dominates the loop integral in eq. (5.38).
Thus this diagram is dominated by real intermediate states i in fig. 5.1a, and
the ladder diagrams in fig. 5.1b or fig. 5.5b should be important higher order
corrections. This corresponds to region 4 in fig. 5.3.

When ln(4M2
s /s) > π (region 5 in fig. 5.3) the real part dominates the loop

integral. This implies that inelastic scattering and virtual intermediate states
are essential. We then expect important contributions from more complicated,
non-ladder, diagrams, like the examples shown in fig. 5.6. For this reason we
do not expect the result in eq. (5.40) to be representative for a sum of all higher
order corrections in this kinematical region.

5.6 Cross sections

Below we successively discuss the cross sections obtained in the five different
regions in fig. 5.3.
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5.6.1 Region 1, s > M2
s and |χ(bd)| > 1

In this region s > M2
s and |χ(bd)| > 1. As discussed in section 5.5.1 the

scattering is suppressed for −t > M 2
s . The first constraint therefore means

that the cross section is dominated by small angle scattering, the imaginary
part dominates the one-loop contribution, and the eikonal χ(b) exponentiates.
The cross section is then given by

σ =

∫

d2b̄⊥ 2Re(1− eiχ(b̄⊥)). (5.41)

The effect of the constraint |χ(bd)| > 1 was illustrated in fig. 5.4a. It implies
that bd < bc, and that the approximation χ ≈ −(bc/b)

n in eq. (5.31) is relevant
for all b > bc. In particular this means that, for b > bc (> bd), we have |χ| < 1
and 2Re(1 − eiχ(b̄⊥)) ≈ χ2. For central collisions, where b < bc, higher order
loop corrections are important to satisfy unitarity. Here |χ| is larger than 1
and rapidly varying, the exponent in eq. (5.41) is oscillating, and therefore

〈

2Re(1− eiχ(b̄⊥))
〉

≈ 2. (5.42)

(For b < bd the variation in χ is only logarithmic, and therefore small in relative

magnitude. As χ is very large, the variation may still be large in absolute

magnitude and such that eq. (5.42) is valid also here.) Inserting these results
into eq. (5.41), we get (for n ≥ 2) the following result for the total cross section:

σ ≈
∫ bc

0

d2b · 2 +

∫ ∞

bc

d2b

(

bc
b

)2n

= πb2c(2 +
1

n− 1
) = 2π b2c

n− 1/2

n− 1
. (5.43)

When s is increased, σ grows proportional to b2c ∝ s2/n. We note that the cross
section is dominated by central collisions with b < bc (especially for large n),
with only a small contribution from larger impact parameters. Integrating the
constant 1 in the parenthesis in eq. (5.35) between 0 and bc gives a dominant
forward peak, with oscillations at larger angles. The amplitude for these oscil-
lations falls off proportional to 1/k3/2, corresponding to dσ/dt ∝ 1/k3 for the
cross section.

For large k the dominant contribution in eq. (5.35) comes from the term
eiχ and a small range of b-values around bs, where

bs = bc

(

n

kbc

)
1

n+1

. (5.44)

For these b-values the frequencies of the exponents eik·b and eiχ(b) in eq. (5.35)
oscillate in phase, which gives an enhanced contribution. Using the saddle-
point approximation we get from this contribution (apart from logarithmic
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corrections) a cross section which falls off like dσ/dt ∝ 1/t
n+2
n+1 . This contri-

bution is dominating for k > n/bc, where |χ(bs)| > 1. As pointed out in [4]
it corresponds to classical scattering in a 1/rn+1-potential. For small scatter-
ing angles θ we have for a non-relativistic particle with mass m1 moving with
constant speed v and momentum p = m1v in the potential of a mass m2

θ ≈ |p̄⊥|
|p| =

1

|p|

∫ ∞

−∞

dtF⊥(r) (5.45)

= −GN(4)R
nSnΓ(n)

m1m2

m1v

∫ ∞

−∞

dr

v

d

db

(

1√
r2 + b2

)n+1

=
n(2

√
π)nΓ(n

2 )

8πv2

m2

Mn+2
D

1

bn+1
.

From this we see that if m1 = s/(4m2)

bnonrel = bc

(

n

4vpbc

)
1

n+1

(5.46)

agreeing parametrically with eq. (5.44). (A numerical difference is expected
since eq. (5.44) is ultra-relativistic whereas eq. (5.46) is a non-relativistic re-
sult.) This behavior is discussed in more detail in [4], and we note that in this
region, where s is much larger than both M 2

s and scd, our result is consistent
with the result of this reference. A necessary condition is, however, that

√
s,

MD, and Ms have values such that bs > bd = 1/Ms, which for fixed k-value
gives a minimum value for Ms. If this relation is not satisfied, the phase vari-
ation in exp(iχ) is given by eq. (5.32) rather than eq. (5.31), and therefore we
do not get the phase coherence in the integral in eq. (5.35).

5.6.2 Region 2, s > M2
s and |χ(bd)| < 1

In region 2, s is larger than M 2
s but smaller than scd, and therefore bd > bc.

A typical example is illustrated in fig. 5.4b. We see here that |χ| is small
compared to 1, apart from the logarithmic peak for very small b. The influence
of the small b peak is also suppressed by a phase space factor proportional to
b db. The cross section is therefore well approximated by the Born amplitude.

The largest contributions to the cross section come from b-values in the
neighborhood of bd; for larger b, |χ| falls off ∝ (bc/b)

n, and for smaller b the
scattering is limited by the smaller phase space ∼ b db. These b-values are just
in the transition region between the two asymptotic forms in eqs. (5.31, 5.32).
To get a good estimate of the cross section we should therefore use the exact
expression for χ in eq. (5.28). For an order of magnitude estimate we may,
however, approximate χ by the asymptotic result χ ≈ −(bc/b)

n for b > bd, and
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by a constant = −(bc/bd)
n for all b < bd. This gives the following qualitative

estimate for the total cross section:

σ ∼
∫ bd

0

d2b

(

bc
bd

)2n

+

∫ ∞

bd

d2b

(

bc
b

)2n

= π
b2n
c

b2n−2
d

n

n− 1
. (5.47)

As bc ∼ (s/Mn+2
D )1/n, and bd = 1/Ms, we note that the cross section grows

∝ s2M2n−2
s /M2n+4

D . Thus, although the cross section is comparatively small
in this region, it has a stronger growth rate ∝ s2 than in region 1.

For the differential cross section, we note that the t-channel Born amplitude
is proportional to 1/k2 for −k2 �M2

s . This implies that the cross section has
a forward peak. It corresponds to scattering at distances small compared to
1/Ms, in the 1/r potential from eq. (5.26). There is however no forward diver-
gence since the growth is softened at −k2 ∼ M2

s , i.e. at distances comparable
to the brane thickness.

5.6.3 Region 3, s < M2
s and |ABornX| < 1

In region 3 the cross section is also dominated by the Born amplitude. But
in this case the scattering is almost isotropic (apart from spin dependences)
as the factor −k2 in the propagator is small compared to the heavier and
most important KK modes. This implies that we may also have important
contributions from u- and s-channel exchanges. For identical particles, the
u-channel contribution has the same magnitude as that from t-channel.

5.6.4 Region 4, s < M2
s , |ABornX| > 1 and Im(X) > Re(X)

The one-loop t-type contribution in fig. 5.5a, is dominated by the imaginary
part, originating from real intermediate states. If loop diagrams of this type
dominate, the all-loop amplitude is approximated by the geometric sum in
eq. (5.38). As in region 3, the result is then approximately isotropic, but
here higher order corrections give some suppression compared to the Born
approximation. For identical particles the u-type ladder is identical to the t-
type ladder and hence equally important. For particle-antiparticle scattering
s-channel contributions have to be considered.

5.6.5 Region 5, s < M2
s , |ABornX| > 1 and Im(X) < Re(X)

In this region the one-loop diagram has a dominant real part. This implies that
virtual intermediate states and inelastic reactions are important. Therefore
non-ladder diagrams are expected to give large contributions, and we showed
two examples in fig. 5.6. This region is consequently much more complicated
than the other kinematical regions. It corresponds to situations where the
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effective cut-off Ms is large (”narrow brane” or strong ”brane tension”) and
the energy is in an intermediate range. From fig. 5.3 we see that for, e.g. n = 3,
Ms must be larger than 5 MD. In this paper we will not make any specific
predictions for what might be expected in this kinematic region.

5.7 Conclusions

In the ADD model it is assumed that standard model particles live on a 4-
dimensional brane, embedded in a (4 + n)-dimensional space with n compact-
ified dimensions. In these only the gravitational field is allowed to propagate.
If the brane is infinitely thin and infinitely rigid, the exchange of very mas-
sive Kaluza–Klein modes represents a contact interaction of infinite strength
between the standard model particles. This is not physically acceptable and
different ideas have been proposed to regularize the scattering process.

If the brane has a finite width, or if it is not infinitely well localized, the
exchange of KK modes will be suppressed for KK wavelengths shorter than the
width of the brane, or the size of its fluctuations. This will therefore give an
effective cut-off (denoted Ms) for high KK masses, which does not have to be
of the same magnitude as the fundamental Planck mass MD.

In this paper we have studied the effect of such a cut-off on the scat-
tering of standard model particles at various energies. We find that several
troublesome infinities and divergencies are removed. The scattering process
depends on three different energy scales, the collision energy

√
s, the fun-

damental Planck scale MD, and the cut-off scale Ms. The Planck scale,
MD = (8πRnGN(4)

−1/(n+2), depends on the compactification radius R of the
extra dimensions and the magnitude of Newton’s constant, while the effec-
tive cut-off depends on the width of the brane, Ms ∼ (brane thickness)−1, or
the fluctuations in its position. These scales are thus not automatically related.
Clearly the compactification scale R must be larger than the brane width 1/Ms.

Depending on the relative magnitude between these scales, we have here
studied five different kinematical regions with different dynamical behavior. In
one region (region 1 in fig. 5.3), the scattering is dominated by small angles, and
the eikonal approximation is applicable. Here we recognize classical scattering
in a 1/rn+1 potential and the results of Giudice-Rattazzi-Wells [4]. In two
other regions (2 and 3 in fig. 5.3) the Born approximation is applicable. In one
of these (region 2) forward scattering dominates, and corresponds to scattering
in a 1/r potential, but with a coupling enhanced by a factor proportional to
( compactification radius

brane width )n compared to scattering in the ordinary 1/r Newtonian
large distance potential. In the other Born region (region 3) the scattering is
approximately isotropic, as expected in [5,6]. In a fourth region the exponentia-
tion from ladder-type diagrams in the eikonal region is replaced by a geometric
sum. The scattering is expected to be mostly elastic since on-shell intermedi-
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ate states dominate, but approximately isotropic. In the last region inelastic
processes and non-ladder loop diagrams are important and make predictions
very difficult. The boundaries between the different regions are expressed in
the three mass scales involved, as illustrated in fig. 5.3.
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Abstract

We use the results from a recent investigation of hard parton–parton gravita-
tional scattering in the ADD scenario to make semi-quantitative predictions
for a few standard high-E⊥ jet observables at the LHC. By implementing these
gravitational scattering results in the PYTHIA event generator and combining
it with the CHARYBDIS generator for black holes, we investigate the effects of
large extra dimensions and find that, depending on the width of the brane, the
relative importance of gravitational scattering and black hole production may
change significantly. For the cases where gravitational scatterings are impor-
tant we discuss how to distinguish gravitational scattering from standard QCD
partonic scatterings. In particular we point out that the universal colorlessness
of elastic gravitational scattering implies fewer particles between the hard jets,
and that this can be used in order to distinguish an increased jet activity in-
duced by gravitational scattering from an increased jet activity induced by eg.
super-symmetric extensions where the interaction is colorful.
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6.1 Introduction

The most exotic, and by far most discussed collider signal of large extra dimen-
sions in the ADD scenario [1–3] is the copiously produced extra dimensional
black holes [4–7]. While these are expected to come with large cross sections
and characteristic signals at the LHC for a “natural” Planck scale of around
1 TeV, both cross section and signals suffer severely from uncertainties associ-
ated with quantum gravity. This provides a wonderful chance to probe quantum
gravity, but from the point of view of verifying the scenario it is not ideal. It
is therfore worth looking for processes which involve fewer uncertainties than
decaying black holes.

Other important ADD processes involve Kaluza–Klein modes, either the
production of real ones, or the exchange of virtual ones in gravitational scat-
tering of hard partons. The signal for the former involves a large missing trans-
verse momentum and will be difficult to distinguish from eg. the production
of stable super-symmetric particles in some SUSY extensions of the standard
model. The later will show up as an increase of the jet cross sections at high
energies and may, if this increase is is small, be difficult to distinguish from
other beyond-the-standard-model effects.

In a previous paper [8] we investigated an alternative signal for the ADD
scenario, namely the disappearance of the high-E⊥ jet cross section due to the
formation of black holes. However, in that paper we neglected the contribution
from hard gravitational scattering.

Lately a coherent picture of gravitational scattering in the ADD model, at
both low and high energies, was presented in [9]. In this paper we investigate
the phenomenological consequences. Again, we will concentrate on standard
jet observables to see how they are affected by the existence of large extra
dimensions, using different choices of the model parameters. We will try to
give a complete semi-quantitative description of the observables ranging from
the region of perturbative gravitational scattering in the low-energy end to the
domain of classical (non-quantum gravitational) black holes for energies above
the Planck scale.

While the LHC should easily discover large extra dimensions for the most
natural choices of Planck masses and number of extra dimensions, we find situ-
ations where the only signal could be a slight increase of the high-E⊥ jet cross
section at high energies from gravitational scattering. We therefore discuss
the possibility of distinguish such scatterings from standard QCD events by
studying the different color topologies involved. We also suggest that such a
procedure could be used at the Tevatron to see if an increase of the high-E⊥ jet
cross section there could be the result of the onset of subplanckian gravitational
scattering.

This paper is organized as follows. After a brief introduction to the ADD
scenario in section 6.2, we summarize in section 6.3 the description of gravita-
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tional scatterings developed in [9]. We then go on to discuss the production
and decay of black holes in section 6.4 and, in section 6.5, we present our results
before discussing our conclusions in section 6.6.

6.2 Basics of ADD

The so called ADD scenario, invented in 1998 by Arkani-Hamed, Dvali and Di-
mopoulos [1,2], aims at explaining the hierarchy problem, i.e. why the observed
Planck scale at 1019 GeV is so large compared to the masses of the standard
model particles. This is done by introducing a number, n, of extra dimensions
in which only gravity is allowed to propagate.

In order to explain why these dimensions have not yet been observed, it
is assumed that they are compactified with some (common) compactification
radius R1 and that no gauge fields are allowed to propagate in the extra di-
mensions. Gravity, on the other hand is, and this renders the form of Newton’s
law at distances, r, much smaller than the compactification radius

V (r)

m1m2
= − SnΓ(n)

Mn+2
P (2π)n

1

rn+1
. (6.1)

Here MP is the fundamental Planck scale, Sn = 2πn/2/Γ(n/2) is the surface
of a unit sphere in n dimensions and Γ(n) is the Euler Gamma function. At
distances large compared to the compactification radius we must recover the
normal 3+1-dimensional form of Newton’s law

V (r)

m1m2
= −GN(4)

1

r
. (6.2)

Expressing Newton’s constant in terms of the observed (3+1)-dimensional
Planck scale, GN(4) ∼ 1/M2

P4, then gives the relation M2
P4 ∼Mn+2

P Rn between
the fundamental Planck scale MP and the observed 4-dimensional Planck scale,
which explains how the fundamental Planck scale could be (almost) of the same
order as the weak scale, but the observed effective Planck scale, MP4, many
orders of magnitude larger.

However, this also implies that gravity should be very strong at small dis-
tances which opens up for the possibility of observing gravitational scattering
and black holes at collider experiments.

6.3 Gravitational scattering in ADD scenario

Although the field theory of gravity is ultimately divergent also in more than 4
dimensions, an effective low-energy theory can be constructed by a perturbative

1We use R to denote the compactification radius rather than the compactification circum-
ference (see the appendix for a discussion on conventions).
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treatment of the metric in the limit where the metric perturbation is small. A
Lagrangian can be derived and Feynman diagrams can be constructed from it.
This is done in [10,11]. Since the extra dimensions are compactified, momentum
occurs in each direction as multiples of some ground frequency, ie. as Kaluza–
Klein modes.

In a gravitational event an outgoing Kaluza–Klein (KK) mode will have
some (quantized) momentum in the extra dimensions, which enters in the La-
grangian as a mass term. But the KK modes can also occur as intermediate
states in which case they have to be properly summed or, taking the continuum
limit, integrated over. This gives rise to the integral

∑

ml

1

−m2
l
+ k2

≈ SnR
n

∫

mn−1

−m2 + k2
dm. (6.3)

Here l enumerates the allowed momenta, ml, in the extra dimensions, m is the
absolute value of ml, and k2 is the momentum squared of the 3+1-dimensional
part of the propagator. Note that this sum over KK states does imply momen-
tum non-conservation for momenta transverse to the brane where the standard-
model fields live, but this is not a complete surprise since translational invari-
ance is broken in the bulk by the presence of the brane.

6.3.1 Dealing with divergences

What is worrying though, is that the field theory seems to contain divergences
already at the tree level. However, the divergences dissappear when imposing
the requirement that the standard model particles live on a brane, either di-
rectly by assuming a narrow distribution of the standard model fields into the
extra dimensions [9, 12], or by a introducing a “brane tension” [13, 14]. Both
these methods gives physical effective cut-offs for the momentum (mass) of the

KK modes. For example, a Gaussian extension e−m2/(2M2
s ) of the standard

model field densities into the bulk gives an “effective propagator” [9]

D(k2) = RnSn

∫

dmmn−1

k2 −m2
e−m2/M2

s (6.4)

for the exchange of KK modes with four-momentum exchange k2. (This object,
D(k2), is here sloppily called a propagator, despite the fact that the multiplica-
tive Lorentz structure is not taken into account.)

For momentum exchange small compared to Ms, the standard model mo-
mentum k in the propagator is irrelevant (for most m in the integral), such that
s-, t-, and u-channels are equally efficient and the scattering is fairly isotropic.

For
√
k2 �Ms on the other hand, the interaction is dominated by forward

scattering via the t-channel, and an all-order eikonal calculation is necessary
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Figure 6.1: The (
√
s,Ms)-plane for n = 4 and MP = 1. The straight line

separating region 1 and 4 is
√
s = Ms while the straight line separating region

4 and 5 is the line where the real and imaginary parts in eq. (6.16) have equal
magnitude. The power-like solid curve separating region 1 and 2 is

√
scd from

eq. (6.12) as a function of Ms and the line separating the regions 4 and 5 from
region 3 is the line where |ABornX | = 1, see eq. (6.16). In the regions 1 and 2√
s is larger than Ms, and, at least for

√
s � Ms, the eikonal approximation

is correct. In region 1 the eikonal is, depending on b, either large compared to
1 or given by eq. (6.10). In region 2 on the other hand the b-range where |χ|
is small includes a region where it is described by eq. (6.11). In region 3 the
correction corresponding to higher order loops is small, but in region 4 it is
important and helps assuring unitarity. The dashed line indicates the minimal√
s (for a given Ms) at which the black hole radius eq. (6.21) is larger than the

brane width. The plot visibly very similar for n=6.

to ensure unitarity [9, 15]. The stage is therefore set by three energy scales,
the fundamental Planck mass, MP, the inverse brane width (brane tension),
Ms, and the rest mass of the partonic scattering,

√
s, and the phenomenology

depend on their relative magnitude. It is illuminating to fix one of these scales
an study the different kinematical regions in the plan spanned by the other
two. This is done in fig. 6.1 where the (

√
s,Ms)-plane is plotted for MP fixed

to 1 TeV.

Below we will successively describe the contribution from the t-, u-, and
s-channels and the various regions in fig. 6.1.
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6.3.2 t-channel

As argued in the above section, we expect t-channel contributions to dominate
at energies high compared to Ms. Unitarity constraints does, however, imply
that the Born approximation can not be valid for sufficiently high energies. In
fact, as is argued in [15,16], a completely new phenomenon occurs for scattering
in more than 3 spatial dimensions; namely the emergence of a length scale
associated with the transition from the classical to the quantum domain.

Intuitively this can be understood by considering the ratios

∆θ

θ
and

∆b

b
(6.5)

where θ is the scattering angle and b the impact parameter in a scattering
experiment. In the classical domain these ratios are both much smaller than
1. Requiring the opposite, and approximating

∆θ ∼ ∆q

Mv
∼ ~

Mv∆b
and θ ∼ b

Mv2

dV (b)

db
(6.6)

for a non-relativistic particle with speed, v, mass, M , and transverse momen-
tum, ∆q, moving in a potential, V , one finds, for a Coulomb-like potential
V (b) = α/b, the condition α > ~v. For coupling constants close to 1, this ba-
sically implies that the relativistic and quantum mechanical regions coincide.
For a more general potential of the form V (b) = α/bn+1, assuming n to be pos-
itive (this is what Gausses law gives in 3+n spatial dimensions), the separation
of the classical and quantum domain depends on the impact parameter, such
that, the transition occurs at bc ∼ [α/~v](1/n). For gravitational coupling with
α = G4+nMM , this corresponds to bc ∼ [G4+nM

2/(v~)]1/n [15]. Scattering in
the potential eq. (6.1) is therefore expected to be mainly classical only if the
impact parameter b is smaller than bc.

For MP ∼ 1 TeV the parameters of this equation are such that we will
see a transition between the classical and quantum domain at LHC, and a
more careful calculation, summing up amplitudes from ladders of t-channel
exchange in fig. 6.2 to all orders is necessary. This calculation was performed
in [15] by simply ignoring the divergences corresponding to local contributions
in eq. (6.3), and recently in [9] by a more careful analysis using the effective
propagator eq. (6.4).

The parameter bc also corresponds to the impact parameter where the
eikonal scattering phase

χ(b) =
1

2s

∫

d2k̄⊥
(2π)2

e−ik̄⊥b̄⊥ABorn(−k̄2
⊥) (6.7)

becomes large compared to ~. This makes perfect sense, as bc represents the
impact parameter separating quantum mechanical and classical scattering.
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p1 p1-kp1-q

p2 p2+kp2+q

iq q-k

HaL

p1

p2 HbL
Figure 6.2: (a) The one loop contribution corresponding to exchange of two KK
modes. The KK modes are drawn as thick lines and standard model particles
as thin lines. (b) The two-loop contribution.

At least in the eikonal region, i.e. for small scattering angles, where there
is no spin dependence, the Born amplitude can be written [9, 15]

ABorn(k2 = t) =
s2

2n−3πn−1Mn+2
P

Sn

∫ ∞

0

dmmn−1

k2 −m2
e−m2/M2

s (6.8)

where the suppression factor e−m2/M2
s comes from implementing the require-

ment that the standard model particles live on a finite brane [9]. The same
effect can be obtained by assuming a finite brane tension [13]. Computing the
integrals in eq. (6.7) [9] then gives the result

χ(b) = − sMn
s

(2
√
π)nMn+2

P

Γ(
n

2
)U(

n

2
, 1,

M2
s b

2

4
) (6.9)

where the U -functions are confluent hyper-geometric functions of the second
kind.

In the limit of large third argument, Msb � 1 in U , ie. impact parameter
much larger than the brane width, χ can be written

χ(b) ≈ −
(

bc
b

)n

for bc ≡ 1√
π

[

sΓ(n/2)

Mn+2
P

]1/n

. (6.10)

At least if bc � 1/Ms the eikonal eq. (6.9) reaches 1 in the region where it is
determined by eq. (6.10) and bc is indeed the parameter associated with the
transition from the quantum mechanical to the classical region. For Ms small
compared to MP the brane width is more important and there is an energy
range where the impact parameter for which |χ| reaches 1, is given by the
small argument limit in U , rather than the large argument limit,

χ(b) ≈ 2s

(2
√
π)nM2

P

(

Ms

MP

)n(

ln(Msb) +
1

2
ψ(
n

2
)

)

(6.11)
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where ψ(n
2 ) is the digamma function. The transition between, |χ(b)| ≈ 1

described by eq. (6.11), and |χ(b)| ≈ 1 described by eq. (6.10), occurs roughly
at the energy where bc = 1/Ms, and the phenomenology will therefore differ in
the regions bc > 1/Ms and bc < 1/Ms. Solving bc = 1/Ms we find

scd =
Mn+2

P πn/2

Mn
s Γ(n

2 )
(6.12)

this is the line separating region 1 and 2 in fig. 6.1. For t � M 2
s the all order

eikonal amplitude is given by

Aeik(k
2) = −2is

∫

d2b̄⊥e
ik̄⊥·b̄⊥(eiχ − 1). (6.13)

When |χ| is large compared to 1 which, for bc � 1/Ms, happens for b < bc,
the exponentiation in eq. (6.13) is important while for larger b the eikonal
amplitude is approximated by the Born term.

For bc < 1/Ms, region 2 in fig. 6.1, |χ| is smaller than 1 except for very
small impact parameters,

b <
1

Ms
exp

(

− (2
√
π)nMn+2

P

2sMn
s

)

, (6.14)

found by ignoring the digamma function in eq. (6.11). In the whole of region
1 and 2 for t � M2

s the gravitational cross section is obtained from the all
order eikonal amplitude in eq. (6.13) (although higher order corrections are
only important region 1). It is given by

dσeik

dt
=

1

16πs2
|Aeik|2. (6.15)

If, on the other hand,
√
s�Ms, such that

√
−t necessarily is small compared to

Ms, the amplitude is (apart from large angle spin dependences) fairly isotropic.
The ladder-type diagrams in fig. 6.2 will effectively turn into φ4 interactions as
in fig. 6.3.

Since the coupling grows with energy, higher order corrections will for some
s become necessary to ensure unitarity. Summing up all contributions of the
type in fig. 6.3, a geometric series is found [9] which helps unitarizing the cross
section. For the 1-loop contribution we have, with P = p1 + p2 as in fig. 6.3,

A1−loop =
−i
2

∫

q<Ms

d4q

(2π)4
A2

Born

1

(P/2 − q)2
1

(P/2 + q)2
=

≡ A2
Born ·X with X ≈ 1

32π2
(ln

M2
s

s/4
+ iπ) (6.16)
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p1
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Figure 6.3: When the exchanged momentum is small compared to Ms, the KK
propagator are effectively replaced by vertex factors. The diagrams in fig. 6.2
can then be drawn as above with only standard model particle lines.

and higher loop corrections give similar results. Summing all ladders we obtain

Aladders = ABorn (1 +ABornX + (ABornX)2 + . . . ) =
ABorn

1 −ABornX
. (6.17)

Thus loop contributions of this type helps unitarizing the cross section in region
4 in fig. 6.1, defined to be the region where

√
s < Ms, but on-shell intermediate

states in fig. 6.3 dominate. While we can not prove that these are the most
important contributions, it seems likely as long as the cross section is dominated
by on-shell states. In region 5 in fig. 6.1 this is no longer true since here the
imaginary part in eq. (6.16) is larger than the real part. The simulations
performed in this paper are in the phase space region 1, 2, 3 and 4 in fig. 6.1,
and we use eq. (6.16) to unitarize the cross section in regions 3 and 4 (although
it’s not important in region 3).

6.3.3 u-channel

In the regions 1 and 2, the u-channel contribution is small compared to forward
t-channel scattering. In the regions 3 and 4, corresponding to

√
s < Ms, it is,

however, of the same order of magnitude. In fact there is no difference between
the u and t-channel in fig. 6.3, implying that u-channel contributions run into
problems with unitarity at the same energy as t-channel contributions, and the
result eq. (6.16) can be used also for the u-type ladders.

The relevance of the u-channel ladders contribution is, however, signifi-
cantly lowered by the fact that interaction among similar partons is suppressed
at LHC. To get a handle on the importance of u-channel contribution, assume
that only valence quarks contribute to the cross section. This is a reasonable
assumption at sufficiently high momentum fractions and also, it will give an
upper limit. The probability for the colliding partons to have similar flavor,
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spin and color is then approximately 1/10. Assuming that the t-channel lad-
ders for scattering of particles with momenta p1 and p2 to momenta p3 and p4

have been calculated for all momentum transfers to be Aladders(p1p2 → p3p4),
the total amplitude, taking both t- and u-channel contributions into account,
would be Au+t = Aladders(p1p2 → p3p4)+Aladders(p1p2 → p4p3) for scattering
of identical particles. We consider for simplicity maximal constructive inter-
ference, giving us Au+t = 2Aladders(p1p2 → p3p4). The ratio of the average
extra cross section for both the t- and u-ladders compared to the pure t-ladders
cross section would then be something like 22/10. This is a significant but not
critical contribution, and it is an overestimate.

6.3.4 s-channel

For s�M2
s , the factor k2 = s in eq. (6.8) is insignificant compared to most con-

tributing KK masses and gives an amplitude similar to the t- and u-channels.
There is, however, one complication. Due to the relative difference in sign
between k2 = s and m2 in eq. (6.8) KK modes can be produced on shell.

From the point of view of inclusive observables, these s-channel on-shell
Kaluza–Klein states are, however, unimportant. The width of a single KK
mode with mass m to decay into two standard model particles of energy E/2
is ∼ m3GN(4) giving lifetimes of order 1000 seconds [11]. These KK modes will
leave the detectors unseen.

6.3.5 Phenomenology of low energy gravitational

scattering

As already mentioned section 6.3.1, a gravitational scattering where the Kaluza-
Klein mode is not in the outgoing state, comes with a momentum cut-off from
the width of the brane, or from fluctuations of the brane. In the low-energy
region, 3 in fig. 6.1, where the born approximation is applicable, a cut-off
dependent amplitude can be used for describing the interaction. From the
point of view of perturbative gravitational scattering with internal KK modes
only, this does not result in any extra parameters to describe the interaction.
Instead it suffice to replace the Planck scale MP by an effective Planck scale
according to

Meff =
1

2

(

(n− 2)2nπ
n−2

2 Mn+2
P

Mn−2
s

)
1
4

(6.18)

such that the Born amplitude, eq. (6.8), (neglecting spins) can be written

ABorn = − s2

M4
eff

, (6.19)
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after integration over m, neglecting k2 = t, u or s. In this kinematical re-
gion, gravitational scattering in the ADD model is a well behaved effective
field theory depending on only one free parameter, Meff . The low-energy spin
dependent footprint of the ADD scenario for any number of extra dimensions
can then be written

dσ

dt
=
ks

s

[

πα2
s

s
f(z) − sαs

M4
eff

g(z) +
s3

πM8
eff

h(z)

]

(6.20)

where αs is the strong coupling constant and ks, g(z), h(z) and f(z) are process
dependent functions taking spin-dependence into account given in [17].

Gravitational scattering differ from standard-model and most beyond-
standard-model processes in several ways. The experimentally most striking is
probably that it increases with increasing energy. As the experimental situa-
tion stands today this is, however, badly overcompensated by the decreasing
parton distribution functions for high momentum factions. The interaction is
mediated by the large number of Kaluza–Klein modes, implying that the cross
section will not have a single resonance structure, as opposed to cross section
signatures of most other beyond-standard-model particles. Due to the different
spin dependence of gravitational scattering the angular distribution will also
differ.

We will here consider another difference, namely that contrary to the main
contribution to inclusive cross sections, both in the standard model and in
super-symmetric extensions, the gravitational interaction is colorless. As we
shall see, this implies noticeable differences in particle multiplicity outside the
jets.

6.4 Black holes in ADD scenario

Black holes with mass large compared to the fundamental Planck scale, but
with radius small compared to the compactification radius are expected to
behave much like extra dimensional versions of astronomical 3+1-dimensional
black holes. The Schwarzschild radius is given by

rSch =
1√
πMP

[

MBH

MP

8Γ(n+3
2 )

n+ 2

]

1
n+1

(6.21)

and the temperature is given by [18]

T =
n+ 1

4πrSch
. (6.22)

Note that small black holes are hotter.
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A major difference between black holes in the ADD scenario and ordinary
3-dimensional black holes is that ADD black holes do not radiate gauge fields
into most of phase space, since only gravity is allowed to propagate in the extra
dimensions. One may believe that this would lead to almost no radiation on
the brane (where gauge fields and, hence, also we live) as the bulk phase space
is much larger. However, it has been shown that this is not necessarily the
case [4].

Since we are considering the non-idealized situation of a finite brane width
we must also consider the implications of this on black hole production. In
particular, a natural requirement is that the brane is not more extended than
the black hole, leading to the condition rSch < 1/Mb for the formation of black
holes. As we will see this prevents black holes from appearing at the LHC for
sufficiently small Ms.

On the other hand, if Ms is large, we may, with increasing
√
s, go directly

from the Born region 3 in fig. 6.1 to black hole production. This should be
worrying since the black holes are treated semi-classically but the gravitational
scattering in region 3 is purely quantum mechanical. It is reasonable that the
black holes should start behaving classically when the Compton wave length
is of the same order as the black hole radius, but it would have been more
comforting to only study black hole production in region 1 in fig. 6.1, where
the gravitational scattering is mainly classical already at lower energies. This
represents a genuine quantum gravity uncertainty.

Already at a classical level the cross section for black hole creation is subject
to significant uncertainties. This is basically due the fact that it does not suffice
to consider the colliding objects, but in addition the curvature of space-time far
outside the black hole needs to be calculated. Classical numerical simulations
for black hole formation in extra dimensions have been preformed in [19, 20]
with the result that the geometric cross section, πr2, should be multiplied with
a factor ∼ 0.7 − 3, increasing with the number of extra dimensions. For this
paper we have, however, chosen to keep the constant at 1.

As the black holes considered here are formed from partons inside the pro-
tons there is also an uncertainty from the usage of parton distribution functions
for an essentially non-perturbative process [21] . (A discussion about the effects
of quantum fluctuations based on wave packages can be found in [22, 23].)

Then there is the question of the onset of black hole production. It can be
argued that no black holes should be formed below (roughly) the Planck scale
as the uncertainty principle would forbid sufficient localization of the partons.
But precisely when does black holes begin to form?

We consider first the condition that the black holes have to be well localized
in our ordinary dimension. Looking at the momenta of the incoming partons
in their combined rest frame it is reasonable to require that their wavelength,
λl ∝ 2/

√
s, is less than rSch. The corresponding requirement in the transverse
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direction gives the requirement: λ⊥ ∝ 1/pT < rSch. Clearly one can argue
about the proportionality constant. We have chosen

Mmin = 2/rSch(Mmin). (6.23)

Combining this with the expression for the Schwarzschild radius eq. (6.21) we
get

Mmin = MP

[

(2
√
π)n+1(n+ 2)

8Γ(n+3
2 )

]
1

n+2

. (6.24)

Numerically the value of Mmin is then approximately twice the Planck mass.
As we consider a finite brane width we must add the condition rSch > 1/Ms,

leading to the minimal mass

Mmin2 =
Mn+2

P (2 + n)π
n+1

2

8Γ
[

3+n
2

]

M1+n
s

. (6.25)

Again one can argue about the proportionality constant. While we take into
account the effects of a finite brane, we do not consider the dynamics governing
the brane, and possibly describing its width, although this may have significant
effects on the spectra observed [24, 25].

Once a black hole has formed it is believed to lose most of its geometric
asymmetries in a short period referred to as the balding phase. This phase
leaves a black hole whose only geometric asymmetry can be described by one
angular momentum parameter. However, it turns out that this angular mo-
mentum tends to be lost rather quickly via Hawking radiation, such that the
black hole (apart from gauge charges) can be described by the Schwarzschild
metric.

Neglecting the gauge charges, which in the case of electromagnetism has
been shown to have a modest influence [26], the disappearance of the black
hole would be well described by Hawking radiation if the black hole was much
heavier than the Planck mass, and if no brane effects, such as the black hole
recoiling of the brane [27, 28], or interacting with the brane [24, 25] is taken
into account. The problem is that most collider-produced black holes will not
be much heavier than the Planck.

For a hole which is not heavy compared to the Planck mass one cannot treat
the metric as a static background for the emitted quanta, the back-reaction of
the quanta to the metric should be taken into account and this is not done in
the derivation of the Hawking radiation [29]. Also, at some point, the lifetime
of the black hole becomes shorter than its radius. This makes it difficult to
talk about a thermalized black hole.

Considering all of this, it should not come as a surprise if black holes
where observed with spectra which differs significantly from that expected from
eq. (6.22).



136

6.5 Results

We have used the amplitudes for gravitational scattering for the different re-
gions in fig. 6.1 presented above to reweight the standard QCD 2 → 2 scatter-
ings in the PYTHIA (version 6.2 [30]) event generator. In the regions 1 and 2 we
have used the (elastic spin-independent t-type) all order eikonal cross section
from eq. (6.7) and eq. (6.13). In the regions 3 and 4 we have used the spin
dependent Born amplitude [31] corresponding to eq. (6.20), and higher order
corrections according to eq. (6.17). In region 3 the higher order corrections are
small, but in region 4 they are essential. In the case of particle-antiparticle
scattering, such that the scattering can be mediated via the s-channel, we have
“unitarized” also the s-channel contribution in region 4 (and 3) using eq. (6.17),
despite that fact the the s-type ladders, diagrams in fig. 6.3 rotated by π/2 do
not have on-shell intermediate standard model particles. There are thus several
fundamental uncertainties associated with gravitational scattering in region 4.
First, we use the spin dependent Born amplitude, but we do not take spin de-
pendence consistently into account in eq. (6.17) since we use the same ABorn(t)
everywhere in all ladders. Second, we suppress s-type contributions in the same
way as u- and t-type. (Note that we call the ladders in fig. 6.2 and fig. 6.3 t-type,
sometimes these diagrams are referred to as s-channel, since the resummation
is in s.)

The different treatments in the various regions means that we could expect
a discontinuous transition when

√
s is increased, such that we cross the line√

s = Ms in fig. 6.1. As long as the Born approximation is applicable (regions 2
and 3), this transition just corresponds to starting neglecting spin-dependence
in region 2. If the transition is between region 4 and 1, the situation is, however,
worse due to fundamental uncertainties associated with region 4.

For each generated 2 → 2 scattering we also change the color flow between
the scattered partons with a probability σADD/(σADD + σQCD) to reflect the
colorless nature of the graviton exchange. The resulting partonic state is then
allowed to evolve a QCD cascade and is finally hadronized to produce fully
simulated hadron-level events. Where relevant, we have also added multiple
soft and semi-hard QCD scatterings to simulate the underlying event according
to the model implemented in PYTHIA [32].

In addition, we have used the CHARYBDIS [33] program to simulate the
production and decay of black holes as described in section 6.4. To ensure
that the energy is sufficiently localized, in our ordinary dimensions and in the
extra dimensions, we have required a minimal black hole mass according to
eq. (6.24) and eq. (6.25). We also use the Schwarzschild radius to cut off
any QCD and gravitational 2 → 2 scatterings for large enough masses and
transverse momenta as discussed in [8].

We limit our investigation to two standard inclusive high-E⊥ jet observ-
ables, namely the E⊥-spectrum of the highest-E⊥ jet in an event, and the
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Meff n Ms/MP MP Ms

1.0 4 1
2 0.45 0.22

1.0 4 1 0.63 0.63
1.0 4 2 0.89 1.79
1.0 4 4 1.26 5.05
1.0 6 2 0.56 1.13
0.7 4 4 0.88 3.54
4.0 4 4 5.05 20.21

Table 6.1: The different values of Meff , number of extra dimensions, n, and the
ratio of Ms/MP used in the simulations together with the resulting approxi-
mative values of MP and Ms. The masses are all given in units of TeV.
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Figure 6.4: (a) The E⊥-spectrum of the highest E⊥ jet in an event, and (b)
the invariant mass spectrum of the two highest E⊥ jets in an event at the
LHC. In both cases Meff = 1 TeV with 4 extra dimensions and Ms/MP = 2
(MP ≈ 0.9 TeV, Ms ≈ 1.8 TeV). The long-dashed lines are the contribution
from QCD scatterings, short-dashed lines the contribution from gravitational
scatterings, dotted lines the contribution from the decay of black holes and full
lines the sum of all contributions.

distribution in invariant mass, Mjj , of the two highest-E⊥ jets in an event. As
high-E⊥ jets will be a part of almost any signal of new physics at the LHC, such
observables will be measured early on after the start of the experiments and
it is also where one would expect gravitational scatterings to contribute. We
use a simple cone algorithm2 with a code radius of 0.7, assuming a calorimeter
covering the pseudo-rapidity interval, |η| < 2.5, and requiring a minimum E⊥

of 100 GeV for the resulting jets. We have checked that our results do not
depend much on the algorithm chosen.

2The GETJET algorithm originally written by Frank Paige.
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In fig. 6.4 we show generated the E⊥max and Mjj distributions at the LHC
for the case of four extra dimensions, Meff = 1 TeV and Ms/MP = 2 (see table
6.1 for the resulting values of MP and Ms). In the E⊥max spectra we find
that the cross section is dominated by QCD scatterings at low E⊥as expected,
followed by an intermediate region where gravitational scattering becomes im-
portant before black-hole production starts dominating the cross section at
large E⊥. For the Mjj-spectrum, the situation is different, and the gravita-
tional scatterings dominates at large masses.

Modulo effects of the parton densities we expect both gravitational scat-
tering and black-hole production to increase with energy. For black holes one
may naively not necessarily expect to find high-E⊥ jets, as energetic quanta
are Boltzmann suppressed in the Hawking radiation. However, it turns out
that the large cross section for a black hole to form at high s, multiplied with
the small probability for the Black hole to radiate extremely energetic quanta,
may dominate over the non-black hole cross section for rather large transverse
momenta [8]. (Even if well localized QCD and gravitational scattering events
are not suppressed due to black hole production.) These extremely energetic
quanta do, however, not obey the semiclassical approximation in the Hawking
radiation derivation, and are therefore associated with large uncertainties.

For large E⊥, however, the gravitational scattering events, just as the QCD
ones, will be localized inside the Schwarzschild radius and will collapse into a
black hole.

In fig. 6.5 we show the Mjj-distribution of gravitational scatterings only,
divided into the contributions from the different regions in fig. 6.1. Keeping
Meff = 1 TeV and the number of extra dimensions (4) fixed, we vary Ms/MP

and find that the contribution from region 1 dominates except in the low-mass
regions below Ms. The transitions between the regions are not sharp, mainly
due to the smearing introduced by shower, hadronization and the jet recon-
struction. This smearing hides the fact that the transition between

√
s > Ms

and
√
s < Ms is discontinuous in the distribution of the generated s. In the case

this transition occurs between region 2 and 3, where the Born approximation is
applicable, the discontinuity is not even visible in the generated s-distribution.
If the transition occurs between region 4 and 1, a discontinuity can, however,
be seen.

We note in table 6.1 that, although Meff is kept fixed, giving the same
amount of gravitational scattering at

√
s � Ms, increasing the ratio Ms/MP

will increase both Ms and MP. And since black-hole production depends of MP

and Ms differently via eqs. (6.21), (6.23) and (6.25), we can vary the relative
importance of gravitational scattering and black-hole production by varying
Ms/MP. Hence we see in fig. 6.6a that lowering Ms/MP to 1, the gravitational
scattering will never give a sizeable contribution to the E⊥max-distribution,
while increasing the ratio to 4 (fig. 6.6b) results in the gravitational scattering
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Figure 6.5: The contribution of different regions in figure 6.1 to the di-jet mass
spectrum from gravitational scatterings at the LHC with Meff = 1 TeV, 4 extra
dimensions and Ms/MP = 1 (a), 2 (b) and 4 (c). In all cases the full line is the
sum of all contributions and the contributions from regions 1, 2, 3 and 4 is given
by the long-dashed, short-dashed, dotted and dash-dotted lines respectively.



140

 100

 10000

 1e+06

 1e+08

 1e+10

4321

dσ
/d

E
⊥

m
ax

 (
fb

/T
eV

)

E⊥max (TeV)

(a)

Sum
QCD
Grav

BH

 100

 10000

 1e+06

 1e+08

 1e+10

4321

dσ
/d

E
⊥

m
ax

 (
fb

/T
eV

)

E⊥max (TeV)

(b)

Sum
QCD
Grav

BH

 100

 10000

 1e+06

 1e+08

 1e+10

4321

dσ
/d

E
⊥

m
ax

 (
fb

/T
eV

)

E⊥max (TeV)

(c)

Sum
QCD
Grav

BH

Figure 6.6: The same as fig. 6.4a, but with Ms/MP = 1 (a), 4 (b) and 0.5 (c).
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Figure 6.7: The same as fig. 6.4a, but with (a) 4 extra dimensions, Meff =
4 TeV, Ms/MP = 4 and (b) 6 extra dimensions, Meff = 1 TeV, Ms/MP = 2.

dominating the cross section further out in E⊥ as compared to fig. 6.4a. In
fig. 6.6c we decrease the ratio even further to 0.5 which results in a brane
thickness so large that black holes can never be formed at the LHC, and the
only indication of the presence of extra dimensions in the E⊥-spectrum is a
slight increase in the cross section for large E⊥max.

A similar effect can be obtained by increasing the effective mass, while
keeping the ratio Ms/Mp fixed, hence increasing both MP and Ms. This is
done in fig. 6.7a and, again, the only visible effect of the extra dimensions is
from gravitational scattering in the high-E⊥ region. On the other hand we
see in fig. 6.7b how increasing the number of extra dimensions to 6, keeping
Meff = 1 TeV, gives a negligible contribution from gravitational scattering to
the E⊥max-distribution, which instead is completely dominated by the decay
of black holes.

If large extra dimensions exist, one would hope that the scales are such that
they would be easily discovered at the LHC by, eg. the striking signature of a
decaying black hole. However, it is easy to see how nature could conspire, such
that the only signal would be a slight increase of the high-E⊥ jet cross section.
There are, of course, other signals, such as the production of real gravitons,
showing up as large missing transverse momenta. But such signals could also
be the result of other possible beyond-the-standard-model scenarios. In any
case, it would be desirable to be able to distinguish gravitational scatterings
from standard QCD events. One obvious difference is that the exchange of a
graviton is colorless in contrast to a QCD scattering. This will necessarily give
rise to a different color topology in gravitational events as compared to QCD
ones. In particular one would expect the appearance of so-called rapidity gaps
between the jets in gravitational scattering events. Although these gaps may
be filled by secondary soft and semi-hard QCD scatterings, one may still expect
a lower activity between the jets in such events.
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Figure 6.8: The average number of charged particles outside the jet-cones in the
central rapidity unit between the two hardest jets in events corresponding to
fig. 6.6c. The full line is for all events while the long-dashed and short-dashed
are for QCD and gravitational scatterings respectively. In (b) only events with
a minimum pseudo-rapidity difference of one unit between the two highest E⊥

jets are included, while in (a) there is no such requirement.

In fig. 6.8a we show the average number of charged particles with a trans-
verse momentum above 0.5 GeV outside the jet cones in the middle unit of
pseudo-rapidity between the two hardest jets as a function of E⊥max. Hence,
we count only charged particles, c, with

p⊥c > 0.5 GeV,

∆Rc1,∆Rc2 > 0.7 and
∣

∣

∣

∣

ηc −
η1 + η2

2

∣

∣

∣

∣

< 0.5, (6.26)

where ηc and ηi are the pseudo rapidities of the particle and (the center of)
jet i respectively and ∆Rci is the distance between the particle and jet i in
the pseudo-rapidity–azimuth-angle (η, φ) plane. In this simulation we have
included multiple interactions in PYTHIA to simulate the underlying event.3

We see that the expectation from QCD events is around 10 particles, while
for gravitational scatterings the average is around 5. With sufficient statistics
it could therefore be possible to observe the decrease in the number of charge
particles with increasing E⊥max as gravitational scatterings starts to dominate.
In fig. 6.8a we have not required a large rapidity separation between the jets.
Doing so would increase the effect, as shown in fig. 6.8b, but on the other hand
the statistics would decrease.

We note that the absolute numbers in fig. 6.8 is very sensitive to the model-
ing of the underlying event, which is very difficult to predict for the LHC. The

3Using parameter settings according to the so-called Tune-A by Rick Field [34].
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Figure 6.9: (a) The E⊥-spectrum of the highest E⊥ jet in an event, and (b)
The average number of charged particles outside the jet-cones in the central
rapidity unit between the two hardest jets at the Tevatron for Meff = 700 GeV,
Ms/MP = 4 and 4 extra dimensions. The full line is for all event while the
long-dashed and short-dashed are for QCD and gravitational scatterings re-
spectively.

underlying event should, however, give the same contribution to both scatter-
ing types, and the difference between the two should be fairly well predicted
by PYTHIA.

At the Tevatron there was an indication of an excess of the cross section
for very high E⊥ jets as compared to the QCD prediction [35,36]. Although a
re-evaluation of the uncertainties due to the parton density parameterizations
used in the QCD calculations has brought this excess within the limits of the
statistical and systematical errors, it is still intriguing that such an excess could
be the signal of the onset of gravitational scattering due to the presence of large
extra dimensions.

In fig. 6.9a we show our prediction for the E⊥max distribution for n = 4,
Meff = 700 GeV and Ms/MP = 4 at the Tevatron. The parameters were chosen
so that the excess above standard QCD production is approximately within
the statistical and systematical uncertainties of the corresponding Tevatron
measurement. In fig. 6.9b we then show the average number of charged particles
outside the cones (same as in fig. 6.8, but counting charged particles with
transverse momenta down to 0.25 GeV). The decrease in the region where
gravitational scatterings become important is significant, although it may be
difficult to get enough statistics to measure it even for Run-II at the Tevatron.
However, it is not completely inconceivable that by finding a more sensitive
observable of the color structure, we could be able to see the first indication of
large extra dimensions already at the Tevatron, before LHC is switched on.
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6.6 Conclusions

We have studied gravitational scattering and black hole production at the LHC
and the Tevatron in the ADD scenario assuming that brane on which the
standard model fields live have a finite width. We found that the relative
importance of gravitational scattering and black hole production is sensitive
to this width, and that for large widths the extension of the standard model
particle fields into the bulk, may prevent black holes from forming since the
energy may not be sufficiently localized within the black hole radius.

A wide brane corresponds to a low cut-off for virtual Kaluza–Klein modes
(the brane width and the KK cut-off, Ms, are inversely related via a Fourier
transform [9]) and therefore results in weaker gravitational interaction in the
non-classical regions. It is thus possible for nature to conspire, by choosing
a low Ms, such that neither much gravitational scattering or black holes is
observed at the LHC. In this case processes involving the production of on-
shell KK modes resulting in missing E⊥ may become important observables.

In our simulations we have used values of MP, Ms and the number of extra
dimensions, n, which we believe have not yet been excluded by experiments (see
eg. [37, 38] for recent reviews). Most of these limits are only relevant to MP

but restrictions on Ms could be obtained by considering processes involving
both virtual and real KK modes.

In the case of low Ms, only a weak increase in the jet spectra could be
observed at LHC, and the signal of missing E⊥ could be the result of SUSY.
We point out that the colorless nature of gravitational scattering could be a
way of distinguishing gravity induced events from other beyond-standard-model
extensions. In fact this method could be used to indicate if an excess of jet
activity at high transverse energies at the Tevatron is a result of gravitational
scattering.

6.A Appendix

There are at least four definitions of the Planck mass. Often one have to
understand which definition an author uses by the relation of the Planck mass
to the 4-dimensional Newton’s constant GN(4) or to the Schwarzschild radius of
a black hole. The process of hunting down constants is further complicated by
the use of different definitions of the compactification radius, many authors [10]
mean by the compactification radius rather the compactification circumference,
here denoted L, whereas others really mean the radius, R = L/(2π). In order
to simplify comparison between the different conventions we here state the
relations between the Planck masses MP (used here) and in [33], MD used
in [11, 15], MG, MS used in [10] and the 4-dimensional Newton’s constant
GN(4), the relation between the Planck masses and Schwarzschild radius, and
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the relations of the Planck masses to each other.

M2+n
D =

1

8πRnGN(4)
(6.27)

M2+n
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