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Introduction

A relation between field theory and string theory

The string as a physical object was first introduced to describe the strong force.
The flux between two quarks was thought to be a string. Upon quantizing the
string, a spin-two particle was found which was interpreted as the graviton,
the quantum of the gravitational field. Instead of explaining the strong force,
the idea that the string might be the key ingredient to unify all particles and
all forces in Nature became appealing. Since it is believed in particle physics
that all forces are described by quantum field theories, the string could be
the missing link to the long lasting problem how the theory of gravitation is
connected with the forces in quantum field theory.

A quantum field theory is usually only understandable when the coupling
constant is small, since higher order interaction terms are proportional to pow-
ers of the coupling and can therefore be suppressed in calculations. A theory
for which the coupling constant is small is called a perturbative theory. The
perturbative theory of string theory is called supergravity.

To understand a theory in the non-perturbative regime is challenging and
has in string theory resulted in a conjecture, which might explain not only how
certain string theories, are related to field theories but also how the theory
of the strong force, known as Quantum chromodynamics (QCD), at strong
coupling can be interpreted in terms of a weakly coupled string theory. The
most studied strong/weak-coupling duality which originates in string theory,
is the so called AdS/CFT-correspondence [1]. This correspondence describes
how a ten-dimensional string theory, which is effectively described as our four-
dimensional space-time times a six-dimensional compact space which is too
small to perceive, is related to a certain four-dimensional field theory.

To test this correspondence is very hard. The reason is that no one knows
how to quantize the string on the curved background, the geometry on which
the string theory is formulated. This makes it impossible to match the string
states with states on the gauge theory side. Another reason is that when one
side of the correspondence is weakly coupled, the other side is strongly coupled.
In strongly coupled theories, perturbation theory is not valid. Thus, at strong
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coupling, the gauge theory is unknown and equally the supergravity description
of the string is lost at strong coupling. However, the correspondence is powerful
in the sense that even though the strongly coupled theory is not known it can
be approached from the dual weakly coupled theory. Thus, the AdS/CFT-
correspondence provides an indirect method of understanding strongly coupled
theories.

Fortunately, there exists a “hidden” sector within the AdS/CFT-correspon-
dence in which it is possible to find an exact match between string theory and
gauge theory [2]. In this sector the string is described as a plane wave and the
string states can be solved quantum mechanically. This makes it possible to
compare with the gauge theory side finding an exact agreement.

To compute the properties of the gauge theory is in general very hard be-
cause of the operator mixing problem: The operators are not orthogonal and
therefore the eigenvalues are hard to find. In [3], a method to diagonalize a
large set of operators was achieved by translating the gauge theory into the de-
scription of the well-known Heisenberg spin chain. A spin chain can be thought
of a number of interacting particles on a one-dimensional lattice. In this pic-
ture, each gauge theory operator is a state of the spin chain. The spin chain
has a Hamiltonian which can be diagonalized, to find the eigenvalues, by the
standard technique of the so called Bethe ansatz.

The original formulation of the AdS/CFT-correspondence involves a special
field theory that is independent of a scale and is called a conformal field theory.
It is possible to deform the conformal field theory by adding new coupling terms
and coupling constants which preserve the conformal property. This procedure
leads to new spin chains in which an enlarged set of eigenvalues of the spin-
chain Hamiltonian can be computed exactly. In paper II the properties of
the deformed conformal field theory of the so called general Leigh-Strassler
deformation[4], which corresponds to a spin-one spin chain, was studied. Some
new integrability points in parameter-space were found.

In Paper III the general Leigh-Strassler deformation was obtained by defin-
ing a star product of fields. This can be viewed as a generalized multiplication
law of fields and enables us to study conformal properties of deformed con-
formal field theories with three deformation parameters. The procedure also
simplifies computation of amplitudes, since the star product formulation has
the effect of extracting the deformation in a prefactor.

A conformal theory which is scale-invariant is not a realistic theory, since all
known theories which describe known particles and interactions are dependent
on a scale and are therefore non-conformal theories. On the string theory
side of the AdS/CFT-correspondence it is possible to construct theories which
have the dual interpretation in terms of non-conformal field theories. This is
obtained by formulating the string theory on other geometries. In Paper I,
string theory is fomulated on a special geometry which makes the field theory
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on the gauge theory side of the AdS/CFT-correspondence scale-dependent.

Supersymmetry, super Yang-Mills theories and
deformed theories

Supersymmetry

Supersymmetry is a symmetry between fermionic and bosonic particles. Each
generator of supersymmetry is an operator with a half-integer spin which trans-
forms a bosonic state to a fermionic state and vice versa. A supersymmetric
gauge theory is called supersymmetric Yang-Mills theory or sometimes just su-
per Yang-Mills theory. These theories are classified by their number of genera-
tors. There can be at the most four generators in four dimensions if we require
the the supersymmetry to be a global symmetry. The theories are called sim-
ple NV =1 and extended N = 2, 3,4 super Yang-Mills theory. These theories
are consistent and as such renormalizable which means that divergences can
be canceled by including counterterms. The highest spin of the particles is
one. When more generators are included in a theory, higher spin particles are
present which makes the theory non-renormalizable.

Super Yang-Mills theories

An N = 1 super Yang-Mills theory contains two collections of fields where each
is called a supermuliplet. The chiral supermultiplet contains a complex scalar
field and a Majorana fermion. The vector supermultiplet contains a vector field
and a Majorana fermion. The fields in the chiral supermultiplet are the matter
fields and fields in the vector supermultiplet are the gauge fields.

Each supermultiplet can be assembled into a single field which is many
times easier to handle mathematically than the individual fields separately.
This single field is called a superfield and contains anti-commuting variables,
which are called Grassman variables, in addition to the normal commuting
space-time coordinates. Thus, the chiral supermultiplet can be arranged into
a chiral superfield and the vector supermultiplet can be rewritten as a vector
superfield.

It is possible to write N/ = 4 super Yang-Mills theory in terms of N' =1
superfields. This is obtained by a specific combination of one vector superfield
and three chiral superfields which gives the whole N' = 4 super Yang-Mills
theory. In addition, N’ = 4 super Yang-Mills theory also contains a potential
term which is not so surprisingly called the superpotential. In terms of N' =1
superfields the superpotential is a product of the three chiral superfields.

The more symmetries a theory contains the more constrained it is. NV =4
super Yang-Mills theory is special in this manner since it is a conformal field the-
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ory. A conformal field theory is a quantum field theory which is invariant under
conformal symmetry which contains scale-invariance. In a scale-invariant the-
ory, the gauge coupling renormalization constrain the coupling to be a constant.
That is to say that the coupling constant is not running. The beta-function is
defined as the change of the coupling with respect to the renormalization scale.
So for a constant coupling constant, the beta-function is zero. This is true for
N = 4 super Yang-Mills theory.

Deformed Super Yang-Mills theories

By introducing additional coupling terms and coupling constants in a certain
way, the conformal properties of N' = 4 super Yang-Mills can be preserved
even though the theory only contains N' = 1 supersymmetry. The additional
couplings can be viewed as deformations of the original superpotential of N' = 4
super Yang-Mills theory. An important deformation is the so called the general
Leigh-Strassler deformation[4] which contains a one-parameter deformation of
the original terms in the superpotential of N' = 4 super Yang-Mills, in addition
to deformations related to new cubic terms.

In Paper III a generalized non-commutative multiplication law is intro-
duced. It is called the star product and is used to simplify the study of de-
formed conformal theories. By replacing the ordinary multiplication of fields
with the star product, the general Leigh-Strassler deformation of N' = 4 super
Yang-Mills is obtained. One of the reasons why a star product defined theory
is useful is that the effect of the deformation can be extracted into a prefac-
tor when amplitudes are computed. This means that many of the properties
of N' = 4 super Yang-Mills theory also hold for the deformed theories since
the difference between the deformed and the undeformed theory lies in the
prefactor.

In Paper II the general Leigh-Strassler deformation is also studied but now
in terms of its integrable properties, which means exact solvability. Deformed
conformal theories have shown to give important results when translated into
the description of a spin chain. The Hamiltonian of a spin chain can then be
investigated to see if it is integrable. This will be discussed further in Chapter
“Integrability and spin chains”.

String theory, supergravity and D-branes

String theory and supergravity

String theory is a theory of one-dimensional objects which are moving in a
higher dimensional space-time. A string can either be open or closed. A prop-
agating open string sweeps out a two-dimensional surface which is called the
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world sheet. The world sheet of a closed string is formed as a tube. An open
string can interact with another open or closed string. Two closed strings can
also interact. The bosonic formulation of string theory requires the number
of dimensions to be twenty-six in order to be consistent. Thus, bosonic string
theory describes strings moving in a twenty-six-dimensional space-time. Quan-
tization of the bosonic string gives, at the massless level, gauge fields such
as the photon and the graviton. The photon is an open string state and the
graviton is a closed string state.

Superstring theory is a supersymmetric string theory which thus contains
both fermions and bosons. The number of space-time dimensions is reduced to
ten, again in order to have a consistent theory.

There are five consistent ten-dimensional superstring theories — Type I
SO(32), Type ITA, Type IIB, Heterotic Eg x Eg and Heterotic SO(32). These
theories are essentially distinguished by how the boundary conditions of the
fermions are chosen. The only theory which contains open strings is Type I
string theory.

These five theories are conjectured to be related and descendant from a
unique 11-dimensional theory — M-theory. The exact form of M-theory is not
known, only a low-energy approximation is known. The five ten-dimensional
theories are also only known in the weak coupling limit. What is interest-
ing is that the perturbative string theories and M-theory contain theories of
supergravity which is the theory of local supersymmetry.

Since local supersymmetry is a theory of general coordinate transformations
of space-time it is therefore a theory of gravity. All theories of supergravity
contains the graviton in their particle spectrum. Supergravity plays an impor-
tant part in string theory, and forms the basis for how quantum field theory
and a quantum theory of gravitation may be related. Supergravity can either
be viewed, as has been said, as a locally defined supersymmetric theory or as
an effective field theory which describes low-mass degrees of freedom of a more
fundamental theory which is believed to be string theory.

Type IIB supergravity is the most interesting theory in this context, since it
is the theory on the supergravity side of the AdS/CFT-correspondence, which
will be discussed in the next chapter. In the following, we will discuss the
massless closed string spectrum of Type IIB supergravity.

The modes on the vibrating closed string can either be left-moving or right-
moving. Even if they are propagating on the same string they are treated as
independent. These modes can either be periodic or anti-periodic when going
around the closed string. When the fermionic field modes are periodic they are
said to belong to the Ramond (R) sector. When they are anti-periodic they are
said to be in the Neveu-Schwarz (NS) sector. It can be shown that the ground
state in the Ramond sector is fermionic and Neveu-Schwarz sector is bosonic.

There are four possibilities to construct a closed string state from the two
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sectors. If both the left and right movers are bosonic NS-states we obtain a
closed bosonic string state, called NS-NS state. When both the left and right
moving modes are fermionic, the closed string state is again a bosonic state
and is called R-R states. The two remaining possibilities are both fermionic
and corresponds to the closed string states NS-R and R-NS.

In Type IIB supergravity, the bosonic NS-NS fields are a scalar, called the
dilaton, the symmetric metric and an anti-symmetric B-field. The metric and
the B-field are two-tensors. The bosonic R-R fields are tensor potentials which
are usually denoted Cjy, C5 and Cj where the index counts the number of
indices. The femionic NS-R and R-NS sectors contain two gravitinos, with the
same chirality, and two dilatinos.

The number of supersymmetry generators is the same as the number of
gravitinos. Since there are two gravitinos, Type IIB supergravity is a ten-
dimensional N' = 2 supergravity. Note that there is no vector potential, which
would be the normal gauge potential. Thus, there is no gauge symmetry in a
normal sense in the theory, so other forces in Nature than gravity are absent.
The particles that mediate the forces in this theory are described by other types
of tensor fields.

The bosonic NS-NS B-field, with two indices, is the generalization of the
electromagnetic potential, the photon, which has only one index. When the
photon propagates as a point-particle it forms an one-dimensional line. Inte-
grating over this world-line, represented by the electromagnetic potential, we
obtain the action for the photon. The string is an one-dimensional object which
forms a two-dimensional world-sheet when propagating. The action is obtained
by integrating over the world-sheet of the two-index B-field. This is to say that
the string is a source of the electric B-field.

String theory is a theory of strings living in a ten-dimensional space-time.
The world we perceive is four-dimensional with one time and three spatial
dimensions. For string theory to be a description of our world, there are six di-
mensions to many. One way of solving this apparent contradiction is by making
these extra dimensions small enough not to be seen. The ten-dimensional string
is thus moving in our extended four-dimensional world and at the same time
wrapping, bending and curling up in the six small and compact dimensions.

D-branes

As we have discussed, the string is the source for the B-field. In a famous
paper by Joseph Polchinski[5], it was shown that D-branes are the sources for
the bosonic R-R fields. In Type IIB supergravity, the R-R fields Cy, Cs and
Cy are charges of the D-branes. D-branes are as fundamental as the string.
The D-brane is a dynamic object which can wrap and bend in the compact
dimensions, just like the string. A DO0-brane is a point and a D1-brane looks
like an infinitely long string. A Dp-brane is a p + 1-dimensional object with
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one time dimension and p spatial dimensions. A Dp-brane is the source for the
Cp—1 R-R field. Type IIB supergravity therefore contains the D1-, D3- and the
D5-brane.

In the low energy description of the D-brane, the brane is a rigid object
and can be viewed as a flat hyperplane in space-time. The open string ends on
the D-brane. The D3-brane has the world-volume of a four-dimensional infinite
space-time. A ten-dimensional string which ends on a D3-brane therefore has
four space-time coordinates parallel to the D-brane, in which the string can
freely move. In the six transverse coordinates, the string is constrained to the
D-brane. Mathematically, this means that the Neumann boundary conditions
are replaced in the compact directions by Dirichlet boundary conditions. D-
brane is short for Dirichlet-brane.

The understanding of how gauge theories are related to string theory came
first after D-branes were introduced. When an open string ends on a D-brane
the coordinates parallel to the brane can be regarded as a vector field and
since there is a U(1) symmetry, this vector field can be interpreted as a gauge
vector field. The transverse coordinates are scalar fields. Thus, the open string
sector introduces in a simple way gauge fields and scalar fields in the context
of D-branes.

D-branes have many more special features. One is that a D-brane has
mass and charge equal. This means that two D-branes can be pushed together
without any external force. In other words, there is no force between two D-
branes since the attractive force of gravity exactly cancels the repulsive force
from R-R charge. When N D-branes are pulled together the U(1) symmetry
becomes an enhanced U(N) gauge symmetry. Thus, the open string sector with
N D3-branes on top of each other contains non-abelian U (V) gauge fields living
within the D-brane and six scalar fields in the adjoint representation. The low-
energy theory of the D-brane is a non-abelian Yang-Mills gauge theory with
U(N) gauge symmmetry.

In Type IIB string theory there are no open strings. The closed strings can
be viewed as excitations of the D-brane. The graviton can be emitted from the
boundary into the directions transverse to the D-brane, propagate for a while
and then disappear into the vacuum. Two D-branes interact by exchanging
closed strings.

D-branes are also localized solutions to supergravity. Localized static solu-
tions to classical fields equations with finite energy are a type of solitions. For
example, solving Type IIB supergravity gives, among other solutions, that the
D3-brane is represented as the R-R C5 field and the ten-dimensional space-time
metric. The more D3-branes the solution contains the more the space-time is
curved. In short, the presence of D3-branes dictates the geometry of the four-
dimensional space-time.

In Paper I the geometry of a special kind of D1-branes, called fractional
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D1-branes, is found.

The AdS/CFT-correspondence

The open string sector on the D-brane describes super Yang-Mills gauge theory.
The closed string sector contains supergravity solutions in terms of D-branes
which dictates the geometry of space-time. The D-brane therefore has a two-
folded interpretation — gauge theories and theories of gravitation. This duality
can be understood from the properties of the string. The string is modular in-
variant. Modular invariance interchanges the two world-sheet parameters, one
time and space, of the string so that the one-loop open string amplitude can
also be viewed as a tree diagram of a closed string. From this symmetry we
can understand that there should also be a duality between gauge theories
(open strings) and gravity (closed strings). The first exact gauge/gravity-
correspondence was presented by Maldacena in 1995. His statement is that
N = 4 super Yang-Mills in four dimensions is dual to Type IIB supergravity
compactified on the ten-dimensional space-time AdSs x S® [1]. This duality is
called Maldacena’s conjecture or the AdS/CFT-correspondence.

The N = 4 super Yang-Mills theory is a conformal field theory (CFT)
with gauge group SU(N). The AdS/CFT-correspondence is only valid when
N is very large. In the so called large-N limit the Feynman diagrams are very
simple. Only planar diagrams, that is diagrams which can be drawn on a paper
without any crossing lines, survive.

Type IIB supergravity is compactified on a very special geometry. Five
of the ten coordinates have the geometry of a sphere. The remaining five
coordinates have the geometry of a hyperboloid which is called an anti-de Sitter
space (AdSs). The boundary of the AdS5 space is four-dimensional and without
gravity. Loosely speaking, the correspondence says that the conformal super
Yang-Mills theory is the same theory as string theory on the boundary of the
anti-de Sitter space.

It is possible to extend the AdS/CFT-correspondence to more realistic field
theories which are non-conformal and with less or no supersymmetry. See
reference [6] for details and references within. This is achived by considering
other D-brane configuration than the ordinary D-branes.

If there exists a small compact circle in the compactification space one can
take a D(p+2)-brane and wrap it around the circle to a obtain a Dp-brane stuck
at the circle. This new D-brane, in the limit of the vanishing of the radius of
the circle, is called a fractional D-brane. By including fractional D-branes into
the Type IIB supergravity it is possible to obtain solutions which corresponds
to gauge theories with ' = 2, N' = 1 or no supersymmetry. These theories are
all non-conformal and the fractional D-brane at the circle is responsible for the
running of the coupling constant.
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In Paper I, Type IIB supergravity in terms of fractional D1-branes is studied
and perturbative features such as the running coupling constant on the gauge
theory side are computed.

Integrability and spin chains

Since the AdS/CFT-correspondence is a strong/weak coupling duality it is
very hard to test this conjecture. At strong coupling, the perturbation theory
breaks down and no predictions can be made. However, there is a “hidden”
subsector within the AdS/CFT-correnspondence where it is possible to find
exact solutions on both sides of the correspondence. This subsector describes,
on the supergravity side, a string which moves very fast around the equator of
the compact five-sphere with large angular momentum J. This special double-
scaling limit of large angular momentum J and large number of D-branes NV is
called the BMN-limit[2]. In this limit, the string becomes a plane wave which
can be solved exactly in terms of a quantum mechanical system.

The AdS/CFT-correnspondence predicts that the energy of the string states
on the supergravity side has the dual interpretation as the anomalous dimension
of gauge theory operators on the gauge theory side. The anomalous dimension
of an operator is usually hard to compute because of the operator mixing prob-
lem, that is that the operators are not orthogonal and therefore the eigenstates
and eigenvalues are hard to find.

In the important paper [3], a technique was developed to compute the
anomalous dimension for a large set of operators. The key idea was to write
the fields in A = 4 super Yang-Mills in terms of the Hamiltonian of an SO(6)
Heisenberg spin chain. This was achieved by considering the scalar fields of
the chiral sector of A' = 4 super Yang Mills. The scalar fields transform under
an internal SO(6) symmetry. The main idea in [3] is to regard the operator as
a one-dimensional lattice with J sites where each site host a six-dimensional
real vector. This lattice forms an SO(6) spin chain, or perhaps more correct
an SO(6) vector chain. It was shown that the Hamiltonian of the spin chain
could be identified as the matrix of the anomalous dimension for a gauge theory
operator.

The eigenstates and eigenvalues are usually not diagonal. To find these, the
Hamiltonian has to be diagonalized. This can be done by using the algebraic
Bethe ansatz. Obtaining the equations of the Bethe ansatz is a standard proce-
dure in finding the eigenstates and eigenvalues. The strategy is rather technical
and the details can be found in [7], but the chain of thoughts is the following.
Once the Hamiltonian of a spin chain is found it can be rewritten as an R-
matrix. The derivative of the R-matrix, with respect of a spectral parameter,
is essentially the Hamiltonian. If this R-matrix satisfies the so called Yang-
Baxter equation the Hamiltonian is known to be integrable, which means it is
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exactly solvable. Like the Hamiltonian, the R-matrix is acting on two adjacent
vector sites of the spin chain. The Yang-Baxter equation contains a product
of three matrices where each matrix is defined over three vector sites and is
obtained from the R-matrix. This equation can be thought of as describing a
three particle scattering and dictates the conditions of the specific momentum
and scattering angles which are necessary for integrability.

The idea of translating a gauge theory into a spin chain has turned out to be
very fruitful and has been extended to deformations of N’ = 4 SYM. In Paper II
the integrability properties of the deformed N'= 4 SYM of the general Leigh-
Strassler deformation is studied. The corresponding Hamiltonian describes a
spin-one spin chain. The integrability properties of this spin-chain is studied
in terms of an R-matrix and some new integrability points in parameter-space
is found.

Outline of the thesis

This thesis is based on three articles which cover three different topics related
to the AdS/CFT-correspondence.

Paper 1

The first article “The geometry of fractional D1-branes” provides solutions to
Type IIB supergravity in terms of fractional D1-branes. Perturbative features
such as the running coupling constant on the gauge theory side are computed.

Paper 11

The second article “The general Leigh-Strassler deformation and integrability”
translates marginal deformations of A’ = 4 super Yang-Mills theory in terms
of N' = 1 superfields including new cubic potential terms into a spin-chain.
Properties of integrability of the corresponding dilation operator is studied.
Some integrable points are found.

Paper 111

The third article “Star product and the general Leigh-Strassler deformation”
shows that the general Leigh-Strassler deformation is obtainable from a gener-
alized version of the Lunin-Maldacena star product including three-parameter
deformations. The conformal properties are discussed.
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abstract

We find explicit solutions of Type IIB string theory on R*/Zy corresponding
to the classical geometry of fractional D1-branes. From the supergravity solu-
tion obtained, we capture perturbative information about the running of the
coupling constant and the metric on the moduli space of N' =4, D = 2 Super
Yang Mills.



18 The Geometry of Fractional D1-branes

1.1 Introduction

The success of gauge theories to describe interactions in QED and QCD indicate
the possibility that all fundamental interactions in Nature are of gauge type.
Despite many challenging results of non-perturbative field theories, calculations
are stuck at the perturbative level. Progress in string theory has opened up
new perspectives. As a consequence, new important perturbative and non-
perturbative results have been obtained. Supersymmetric gauge theories can
be seen as embedded in a higher dimensional string theory containing D-branes.
On the one hand, the lightest open string excitations can be viewed as gauge
fields living in the world volume of the D-brane. On the other hand, the lightest
closed string modes correspond to D-brane solutions of supergravity. From the
duality between the open string loop channel and the closed string tree channel
one hence expects a possible relation between gauge theory and supergravity
in general. The first exact gauge/gravity correspondence was conjectured by
Maldacena, proposing that A = 4, D = 4 Super Yang-Mills theory (SYM) is
dual to Type IIB string theory compactified on AdSs x S5[1].

To extend the AdS/CFT correspondence to non-conformal theories with
less supersymmetry, one can study string theories with wrapped D-brane con-
figurations in the vicinity of singularities on orbifold or conifold backgrounds.
The number of supercharges which are preserved, and hence the possible SYM
theory, is decided by the details of the particular background. The way con-
formal invariance is broken depends on how the D-branes are wrapped around
the singularity.

In order to study the wrapped D-branes alone, we should decouple all other
states. Since the mass of a static, wrapped D-brane is proportional to the
volume it encircles times the mass of the “normal” string states, we should make
this volume very small. In the limit of vanishing volume these light, wrapped
brane states become massless and correspond to particles in the uncompactified
space-time. One only expects perturbative features of the gauge dual from this
singular geometry. When keeping the volume finite non-perturbative effects,
such as gaugino condensate and instanton effects, occur.

A general feature of fractional D3-branes on orbifold fixed points[2, 3, 4]
or at conical singularities[5, 6], is the presence of naked singularities at small
radial distance. The fractional brane acts as a source for a twisted field which
represents the flux of an NS-NS two-form through the two-cycle. This twisted
scalar field gets radial dependence and is interpreted, in the gauge dual, as the
running coupling constant in the IR.

In some cases, the IR singularity can be avoided by considering wrapped
D5-branes on non-vanishing Calabi-Yau two-spheres|7, 8, 9, 10], or deformed
conifolds[11]. In both these situations, the gauge theory interpretation of chiral
symmetry breaking and gaugino condensate is controlled by a single function
in the gravitational counterpart. Moreover, it was shown in ref.[10] that the
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occurrence of non-perturbative instanton corrections in N/ = 1 SYM smooth
out the running of the coupling constant in the IR and the theory is thus
without divergences. For a more detailed discussion and complete reference
list see for instance the review articles [12] and [13].

In this article we will use the gauge/gravity correspondence to study N = 4
SYM in D = 2. In Section 2 we consider the action of Type IIB string theory
on RY x R*/Z, using the wrapping ansatz for the fractional D1-brane. In
Section 3 we find solutions to the equations of motion. These solutions can be
expressed as a warp factor for the untwisted fields and a radially dependent
function for the twisted fields. In Section 4 the singular fractional D1-brane
geometry is probed. Before reaching the singularity the enhancon radius is
revealed and the breakdown of supergravity is discussed. From the probe anal-
ysis the running Yang-Mills coupling constant is extracted. In Section 5 we
show that the one-loop running gauge coupling for the two-dimensional gauge
theory, using the background field method, is in exact agreement with the run-
ning coupling constant obtained from probe analysis. The explicit equations of
motion can be found in the Appendix.

1.2 Action on the Orbifold

The action of Type IIB supergravity in ten dimensions can be written (in the
Einstein frame) asE|

1
263,

Siip =

1
{/dlox\/—detGR— 5/ [dpA*de + e HzyN*Hs)
2¢ * b 1 * T 1~ * I
HeTE) N Fay + ") N Ee) + 5 F5) A E)
—Cay NHz) A F(s)} } 7 (1.1)
where the field strengths

H@ =dBwy,  Fay=dCp), Fpg=dCp,  Fg =dCu, (1.2)

correspond to the NS-NS 2-form potential and the R-R 0-form, 2-form, and
4-form with

Fay = Fa) + Cloy A Hea), Fsy = Fi5) + Cioy) NHey. (13)

1The conventions in this paper for curved indices and forms are: eg...9 = +1, signature
(_’ +9)7
1 V—detG
Win) = mwmmundr“l A...ANdxFn and *w(n) = 7n!(10in!)w“1'””’"
... Adx¥10-n

H1---Kn vy
€ V1 ev10—n ATV A
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The field ﬁ(5) is self-dual, i.e ﬁ(g,) = *ﬁ(5), which condition can only be imposed
on the equations of motion. The overall factor k19 = 877/2g,a/ % is written in

terms of the string coupling constant g5 and o/ = [? where [, is the string scale.

Type IIB supergravity is now studied on the orbifold, RY® x R*/Z,. A
fractional D1-brane arises when a D3-brane is wrapped on a compact 2-cycle of
an ALE-manifold, wherupon we take the orbifold limit [14]. Although the cycles
shrink to zero size in the orbifold limit the fractional brane can exist because the
non-vanishing B,)-flux persists and is therefore keeping the brane tensionful
[15, 16]. Since the four-form C(4) couples to the D3-brane, the “wrapping
ansatz” for the fractional D1-brane is

B(g) = bws, Clay = Cia) Awa, (1.4)

where wy is the anti-self dual 2-form related to the vanishing 2-cycle at the
orbifold fixed point. The scalar field b and the 2-form C(2y will be refered to
as “twisted” fields since they correspond to the massless states of the twisted
sector of Type IIB string theory on the orbifold.

The fractional branes are free to move in the flat transverse directions but
are forced to stay on the fixed orbifold hyperplanes 25789 = 0, and the cor-
responding twisted fields are functions of directions transverse to the orbifold,
p=+/(22)2 + ...+ (25)2. The bulk branes can move freely in the orbifold di-
rections, and the untwisted fields are instead functions of directions transverse
to the fractional D1-brane world-volume, i.e. 7 = /(22)2 + ... + (z9)2.

It is here appropriate to list the notation of indices used throughout this
paper. The indices for the world-volume are denoted by «,3 = 0,1. The
transverse space i,j = 2,...,9 consists of four flat directions a,b = 2,...,5
plus four orbifold directions p,v =6,...,9.

The fractional branes couple to closed string states. Using the boundary
state formalisnﬂ one can determine which fields couple to the branes. In ref.[15]
the authors study how fractional branes in general couple to boundary states
and, in particular, it was found that, in the the fractional D1-brane case, the
boundary state emits the NS-NS graviton G;; and the dilaton ¢ and the R-R
2-form C(y) in the untwisted sector. In the twisted sector, the two-form 6(2)

and the scalar b couple to the boundary. b is the fluctuation part of b around
the background value characteristic of the Zy orbifold [18, 19], b = 272a/ + b.

Inserting the “wrapping ansatz” (1.4)) into the action of Type IIB string
theory we obtain the action

2For a good review of the boundary state formalism see for an example ref.[17].
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1 1
Sorbifold = 55— 4 [ A"’V —=detGR — = [ [dp A*dg + e?dC gy A *dC(z)]
2Ho7'b 2 10

1 ~ 1 ~ ~
—5/ [e—¢dbA*6db+2G3A*6G3+C(2)Adbmc@)” (1.5)
6

on the orbifold. Here we have introduced korp = V2k10 and an anti-self dual
3-form defined as Gz = dCs) + C(2) A db. The anti-self dual orbifold 2-cycles
are normalized to

/CUQ/\*WQZ_/WQ/\(UQ::L (16)

It is straightforward to show that the action (1.5)) is consistent with the equa-
tions of motion of the full Type IIB supergravity.
The boundary action is

1 My kors [ 5 _ 1=
oundary — - d ¢/2\/ —det o 1 —b
Sboundary 212 { V2 e etGag | 1+ 2m2a/

orb

2T1Hmnb 1 ~ 1 -~
* V2 /M {C(Q) (1 + 22/ b) * 2m2a’ 0(2)}} (1.7)
2

where T, = /7(21v/a’)37P) is the normalization of the boundary state related
to the brane tension in units of the gravitational coupling constant and Mo is
the world volume of the fractional brane.

1.3 The Ansatz and the Classical Solutions

To find the classical solution of the low-energy string effective action (1.5 with
boundary term (1.7]), we make the ansatz that the geometry of the fractional
D1-brane is described with the extremal metric in the Einstein frame:

(d3)2 = H_3/477aﬂd$adlﬂ + H1/4(5ijd$idl‘j. (18)

The harmonic function H is a function of the transverse world volume direc-
tions. The ansatz for the untwisted 2-form and the dilaton are

1
Cuoy = (H - 1) dz’ A dat, e = HY/?, (1.9)

while the twisted fields 6’(2) and scalar field b are assumed to have the form

Ca) = fda® A dat + Copda® A da®, b= f +constant.  (1.10)
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The function f depends on the directions tranverse to the orbifold. The axion
field C(g) is assumed to be zero in agreement with the “wrapping ansatz”
and the requirement C),, = 0. This can be concluded from the equation of
motion for the axion field.

The above ansatz implies that the solution is restricted to a subspace of
the complete moduli space of solutions. To relax the self-consistent condition
Caa = Caa = 0 might give a more general set of solutions. Note, however,
that the components C;, differ from zero. This is a necessary requirement to
sustain the anti-self duality of G'(3y which leads to the condition

8aé(bc + 81)60(1 + 8cé\Yab - _Eabcdad.ﬁ (111)

Solutions to this relation can be interpreted as a solitonic brane and look like
generalized Dirac monopoles.

In the Appendix the equations of motion and more details on their solution
are presented. The equations for the twisted fields b and Cy; both give, after
lengthy calculations,

0,0"f — K&*(2*°) = 0. (1.12)
The constant is K = T1Korp/ V2r2a/. In a similar fashion, the equations for

the untwisted fields; the metric Gy;, the dilaton ¢ and the the R-R 2-form Cy;
are all equivalent to

0:0'H + 0, fO° f64(a%0) + AS® (a20) = 0, (1.13)

where A = /2T kors. The singular terms of both equations are source terms
coming from the boundary action truncated to the first order in the fluctuations
around the background values of the fields.

To solve the equations (|1.12)) and (1.13) standard Fourier transform tech-
niques are used with the resulting solutions

K 1
= — — 1.14
f(p) n)? 2 (1.14)
for the twisted fields and
Al K211 r?2 —2p% (r? — p?)e?

A=1vsastomm|atd 0

2 10p? 1
— — 1.15
+r2 A + 2(r2 — p2) (1.15)

for the untwisted fields. The presence of the cutoff € reflects the unknown short-
distance physics in directions transverse to the orbifold. Another indication of
this unknown physics is the presence of the enhangon radius which is discussed
in the following section.
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It is interesting to note that although the warp factor, H, appears to differ
very much from the expression in the case of fractional D3-branes[2], they are
actually very similar. They both contain one term which is just the spher-
ical solution to the Laplacian in 9 — p dimensions with a point source, and
the remaining terms originate from the same expression in terms of a 5 — p-
dimensional integral

e [ o

1672 u—x)2 412 — p2) 7"

where (u — 2)? = 645 (u® — %) (ub — 2°). It would be interesting to find out if
this solution is valid for fractional Dp-branes in general.

1.4 Probe analysis of the fractional brane solu-
tion

In this section we wish to relate our result to the non-conformal extension
of the gauge/gravity-correspondence and to compare the supergravity solu-
tion with the low-energy dynamics of the gauge theory living on the frac-
tional brane. The previously found background, consisting of N fractional
D1-branes, is approached by a slowly moving fractional D1-brane probe. To
find the gauge/gravity-relations we identify the gauge theory Higgs field ®°
with the transverse directions z® on the supergravity side through the relation
7% = 27a’®%. The probe action is defined as the boundary action ex-
panded to second order in the Higgs field. Expressed in static gauge, z° = £°,
! = ¢! and ¢ = £%(29), the probe action becomes

Spmbe:_fl Vo — (2ma’)? T <1+ b )/d%;aacbaaacpbéab. (1.17)

K10 4/‘610 271'20/

The first term is a constant, which shows that all position dependent terms
have cancelled. This is related to the fact that fractional branes are BPS states
and hence there is no force between the probe and the source. The second
order term survives which enables us to define a non-trivial four-dimensional
metric on the moduli space

Ty bN o 4gso/ N
b = 92 N2 1 (;a — 1— s 0 5(1 . 1.1
Jap = (2m) 4Kk ( + 27r20/> b 29 ( P> ’ (1.18)

In the last step we have inserted our explicit solution ([1.13]). From the second
term in the probe action (|1.17)), which is interpreted as the gauge field kinetic
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term, the running of the Yang-Mills coupling constant can be extracted. It
equals

1 1 o2ra’ 2N
M) , (1.19)

G n(p) g3 (oo p?

where the bare coupling constant is defined as g% ,,(00) = 2gs/7a’. If we now
change the scale parameter to p = 2wa’u, we obtain the running coupling

constant ) . N
= 1— gy (o0 > : 1.20
Q%M(M) Q%M(OO) < var( )27w2 ( )

for our fractional D1-branes. In the following section this result will be com-
pared to the running coupling constant of A" =4, D =1 + 1 super Yang-Mills
theory.

To end this section we note that when the probe approaches the radius

p = p. where
Pe = \/4gsa/' N, (1.21)

the metric on the moduli space vanishes which means that the fractional
brane becomes tensionless. This is the enhangon radius [20]. For values p < pe
the tension becomes negative and hence undefined. The supergravity solutions
can not be trusted inside the enhancon radius. If we insert the value for p, into
the solution @ for the b field, we find it equal to the background value for
the b field with opposite sign. This means that at the enhancgon radius the b
field vanishes. If we express the Yang-Mills coupling constant in terms of the
b-field

) (1 ~ GEar(c0)

1 1 / b
- = By = ——, 1.22
912/M(p) 4mg, s @ 4mg, ( )

we see that at the enhangon radius the coupling constant gy p; goes to infinity.
To overcome this artifact one should remember that the supergravity action
is truncated to first order. This suggests that when the probe approaches
the enhancon radius new physical degrees of freedom, which extrapolate the
reliability of supergravity to smooth geometries, become important. The lack
of a trustworthy solution inside the enhancon radius means that we cannot
predict the infrared behavior of the dual non-conformal gauge theory within
this framework.

1.5 The running coupling constant of N/ = 4,
D =2SYM

The background field method is an efficient approach to calculate the Yang-
Mills one-loop running gauge coupling for a D-dimensional field theory. The
standard procedure is to write down a Lagrangian, gauge invariant even after
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gauge-fixing, with a background external gauge field which is a solution to the
classical field equations. From the effective action[21]

1 1
Seff =~ /dDch2 <2 +I> , (1.23)
4 9y m
the quadratic terms in the gauge fields can then be extracted with
e —u?s
@) D/2 / dssD/2 n (1.24)
Here p is the mass of the fields and

N, +D—26 2lP/2 N,
12° 12 @ 6

R=2 [ (1.25)
The bracket means the integer part, that is [D/2] = D/2 if D is even and
[D/2] = (D —1)/2 if D is odd. The constants ¢ are the normalization of
the generators of the gauge group with Tr(A?A?) = c§*® and depend on the
representation under which the scalars, vectors and fermions transform. N
and Ny are the numbers of scalars and Dirac fermions in the theory.

For the specific case of fractional D1-branes, there are Ny = 4 scalars and
Ny = 2 Dirac fermions in a N' =4, D =1+ 1 super Yang-Mills theory. If we
choose the gauge group to be SU(N) the scalars and Dirac fermions are in the
adjoint representation which implies that ¢, = ¢, = ¢y = N. With all this in
hand, we find for D =1+1

1 o0 2 1

il —wsp_— _~
I= i dse R T2 R (1.26)

with R = —2N. This means that I = —N/27u?. The running gauge coupling
constant is then

L (1 R (1.27)

gy () g3 (c0) 2mp

which is in exact agreement with what we previously found from the fractional
D1-brane solution.
We can also calculate the §-function,

3
Blgvar(w) = 222 _ o1 (o0) (gYM(“) - ( gy (1) ) ) (1.28)

o QYM(OO) QYM(OO)

which has a UV-stable fixed point at gy ps(00).
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1.6 Discussion

We have shown that perturbative features of N' = 4 super Yang-Mills in two-
dimensions are qualitatively inherent in the obtained supergravity solutions for
the fractional D1-brane. The running of the coupling constant is governed by
the twisted b-field which represents the flux of the NS-NS two-form through the
compactification two-cycle. When the geometry is studied at sub-stringy length
scales, the probe becomes tensionless before reaching the singularity. At the
enhancon radius the b-field vanishes and supergravity is no longer a trustworthy
description. It would be interesting to study this short-distance physics further,
in context of wrapped D3-branes where the singular orbifold is replaced by a
non-vanishing two-sphere. One expects, in a similar manner as in ref.[7], that
identifying the spin connection with an external gauge field would give a (4,4)
SYM theory in D=1+1 with a corresponding gravity dual free of singularities.
The running of the coupling constant is now dependent on the volume of the
two-sphere rather than the b-field. The abelian topological twist should be
performed in the UV regime but becomes, presumably, non-abelian in the IR
which smooths out the geometry of the supergravity solutions. This enhanced
gauge symmetry have been studied for wrapped D5-branes[8, 9, 10] and it
would be interesting to see if wrapped D3-branes share the same behaviour and
account for non-perturbative results such as gaugino condensate and instanton
effects.

Acknowledgment

We would like to thank Paolo Di Vecchia for many useful discussions.

1.7 Appendix

In this appendix more details of the calculations are presented. the equations of
motion obtained from the action with boundary terms are presented.
Inserting the ansatz (L.8)-(1.10) in these equations yield the equations
and .

The equation of motion for the field 6(2) is

d*°Gy — db A dC ) + 2K Q4 = 0, (1.29)
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where
G(g) = dé(g) + C(g) A db
K = Tikom/(V212a)
Qs = 6(2%)...6(%)dx® A... Adad. (1.30)

The equation of motion for the field b is
d(e=?*odb) + Gz AdCay — KV2Qy =0 (1.31)

where V5 spans the world-volume of the fractional D1-brane.
The equation of motion for the field C'y) is

d(€¢*10dC(2)) +db A da(g) N 54 4+ AQs =0 (1.32)
where
A = \/ETIHorb
Q = 6(z%)...6a%)da® A ... Ada®
Qs = 8(z%)...6(2%)da® A ... Ada®. (1.33)

The equation of motion for the dilaton ¢ is
* 1 ¢ * 1 —¢ * O 1
d*ode — 3¢ dCa) N *0dC(9) + 3¢ db AN *edb A Qy + §AVQQS =0. (1.34)

To obtain the equation of motion for the metric is not quite so simple. It
is more convenient to use the language of components instead of forms. The
equation can symbolically be expressed as Ry;ny = Lj;n where the left-hand
side is the Ricci tensor with ten-dimensional indices. There are three cases to
consider; when the indices are a, 3 = 0,1, a,b = 2,...,5 and pu,v = 6,...,9
(remember that 7,7 = 2,...,9). The result is

Rog = §H—2 (010" H — H™'0, HO" H) 1o, (1.35)
3 1
Rij = —gH_28iH6jH -3 (H'0,0"H — H 20, HO"H) 6,, (1.36)
and
1
Laﬁ = (_2Hak0018k001 - gHﬁQacbacb 54('77)

1 3
—iGcch 0164(m) — 8A58(m)> Mo (1.37)
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1
La = 500000

1 1
751{28&00161,001 + gﬂzakcma’“cméab
1 1

+§H*18ab obo* (2) — gJarlacba% 5*(x) Sap
—%HGamema‘*(x) + %HGC(HGC 0104 () Sap
+%A68(x)5ab7 (1.38)
L, = %@Lgb&,d) - %H26,LC’0181,C01 - %H%kcmakcmsw
+éH‘180b80b 54 () 8 + %Aés(x)ém,. (1.39)

Combining these relations in an appropriate manner gives the same equation
(1.13)) just like the equations for C(3) and ¢ do.
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The success of the identification of the planar dilatation operator of N' = 4 SYM
with an integrable spin chain Hamiltonian has raised the question if this also is
valid for a deformed theory. Several deformations of SYM have recently been
under investigation in this context. In this work we consider the general Leigh-
Strassler deformation. For the generic case the S-matrix techniques cannot
be used to prove integrability. Instead we use R-matrix techniques to study
integrability. Some new integrable points in the parameter space are found.
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2.1 Introduction

In the last few years, several new discoveries have shed light on the AdS/CFT
correspondence [1, 2, 3]. This correspondence maps strings moving in an Ad.Ssx
S5 background to an N/ = 4 supersymmetric Yang-Mills (SYM) theory. The
eigenvalues of the dilatation operator are mapped to the energies of closed string
states [4]. A step in understanding this duality better was the discovery that
the dilatation operator of the N'= 4 SYM is proportional to the Hamiltonian
of an integrable spin chain [5, 6, 7].

Recently, progress has been made to extend the gauge/gravity-correspondence,
in context of spin chains, towards more realistic models with less supersymme-
try [8, 9, 10, 11, 12]. For instance, if the background geometry for the string is
AdSs x W, where W is some compact manifold, the dual gauge theory should
still be conformal. Other geometries, mainly orbifolds of AdSs x S°, corre-
sponding to non-conformal theories have also been investigated [13, 14].

The success in using spin chains to study the duality beyond the BMN limit
motivates studies of integrability of deformed correlators. One question that
naturally arises in this context is whether integrability is related to supersym-
metry, conformal invariance or have more geometrical reasons.

The Leigh-Strassler deformations [15] preserve N' = 1 supersymmetry and
conformal invariance, at least up to one loop. It is hence of great interest to
investigate if there exist points in the parameter space where the dilatation op-
erator is mapped to an integrable spin-chain Hamiltonian. This question has
been under investigation in [16, 17, 18, 19]. In [17] this deformation was studied
in a special case corresponding to a ¢g-deformed (often called -deformed) com-
mutator. It was found that for the sector with three chiral fields the dilatation
operator is integrable for ¢ equals root of unity.

In reference [20], a way of generating supergravity duals to the S-deformed
field theory was introduced, and in [8, 9, 21] agreement between the super-
gravity sigma model and the coherent state action coming from the spin chain
describing the [-deformed dilatation operator was demonstrated. This way
of creating supergravity duals was used in [22] to construct a three-parameter
generalization of the G-deformed theory. The gauge theory dual to this super-
gravity solution was found in [22, 18] for ¢ = €"% with «v; real, corresponding
to certain phase deformations in the Lagrangian. This gauge theory is referred
to as twisted SYM, from which the #-deformed theory is obtained when all the
7v; = (. The result is that the theory is integrable for any ¢ = "% with -, real
[18]. The general case with complex «; is not integrable [17, 19].

In the present work, the g-deformed analysis is extended to the more general
Leigh-Strassler deformations with an extra complex parameter h, in order to
find new integrable theories. A site dependent transformation is found which
relates the y;-deformed case to a site dependent spin-chain Hamiltonian with
nearest-neighbour interactions. In particular when all y; are equal, the trans-
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formation relates the g-deformed theory to the h-deformed theory, i.e. the
theory only involving the parameter h. In particular, we find a new R-matrix,
at least in the context of N' =4 SYM, for ¢ = 0 and h = €'’ with 0 real. We
also find all R-matrices with a linear dependence on the spectral parameter
which give the dilatation operator. A general ansatz for the R-matrix is given.
Unfortunately, the most general solution is not found. However, we find a new
hyperbolic R-matrix which corresponds to a basis-transformed Hamiltonian
with only diagonal entries [19]. A reformulation of the general R-matrix shows
that the structure of the equations obtained from the Yang-Baxter equations
resemble the equations obtained in the eight vertex model. This gives a clear
hint how to proceed.

In the dual supergravity theory, some attempts to construct backgrounds
for non-zero h have been done [23, 24]. Apart from the five-flux there is also
a three-flux. A step going beyond supergravity was taken in [25] where the
BMN limit was considered. We hope our results will make it easier to find the
supergravity dual of the general Leigh-Strassler deformed theory.

2.2 Marginal deformations of N'=4 supersym-
metric Yang-Mills

To study marginal deformations of N = 4 SYM with SU(N) gauge group,
it is convenient to use NV = 1 SYM superfields. The six real scalar fields of
the N = 4 vector multiplet are combined into the lowest order terms of three
complex N = 1 chiral superfields ®q, ®; and ®,. It is well known that the
N = 1 superpotential

1
W=t = chqu;q)g@;{, (2.1)

abe

where C&{CK is the coupling constant, describes a finite theory at one-loop if

the following two conditions are fulfilled [26, 27]

acd

3C5(G) =) T(A)), and CIKECYd = 20°T(A7)6,067,. (2.2)
I

The constant Cs(G) is the quadratic Casimir operator defined hereﬂ as Co(G) -
1 =6, T3TY where A is the adjoint representation of the group G which in the
present context is the symmetry group SU(N). The constant T'(M) is defined
through T(M)§% = Tr(T§,T%,) for the representation M. The first condition

LOur conventions are: T% are the SU(N) group generators, satisfying 7% = T, The
normalization of T is given by Tr(T%T?) = §%°/2 from where it follows that Tr(T$T%) =
N§% in the adjoint representation A.
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of implies that the S-function is zero. For an SU(N) group with the su-
perpotential this is automatically fulfilled. The choice CL/K = gl 7K f,, .
therefore gives a superconformal N' = 1 theory at one-loop. However, there are
more general superpotentials satisfying the one-loop finiteness conditions. To
explore marginal deformations of N' =4 SYM we consider the Leigh-Strassler

superpotential [15]

1 1
W = g/\e”KTr[[<I>,,<1)J] ]+ gh”KTr {®;,®,} Pk, (2.3)

where h!7E is totaly symmetric. The coupling constants can now be written as

CHE = NelE f 1. + WITE Ty [{T,, T} Te]. The non-zero couplings are chosen

to be h12 = \(1—q)/(14q) and h'!1 = 2)\h/(14¢q). In terms of the deformation
parameters ¢ and h the superpotential (2.3]) becomes

2
1+g¢

h
W = Tr @0@1@2 — q(I)1<I>0(I)2 + g ((I)(B) + CI):I’ + (I)g) . (24)

This deformed superpotential will be our main focus.

The presence of g and h in the superpotential breaks the SU(3) sym-
metry in the chiral sector. What is left of the symmetry is a Z3 x Z3 symmetry.
The first Z3 permutes the ®’s and the second takes &y — w®qy, &1 — wW?d;
and ®5 — P9, where w is a third root of unity.

The one-loop finiteness condition is satisfied if

2

2 2 2 2 N? -4
9 =+92 (1+9¢)*+((1-q) +2h)( N2 )] (2.5)

In the large-N limit, which we consider, the relation becomes even more
simple. The one-loop finiteness condition also implies that the scalar field
self-energy contribution from the fermion loop is the same as in the N' = 4
scenario, due to the fact that the fermion loop has the contraction C’igf C_'f}“;? I
The parameters in span a space within which there exists a manifold, or
perhaps just isolated points, 8(g, A, ¢, h) = 0 of superconformal theories to all
loops [15]. In the limit ¢ — 1 and h — 0 the N =4 SYM is restored. Marginal
deformations away from this fixed point will be explored in the following sec-
tions by means of integrable spin chains.

2.3 Dilatation operator

From the Leigh-Strassler deformation (2.4) of the A/ = 4 SYM theory it is
possible to obtain the dilatation operator in the chiral sector. In this sector,
the only contribution is coming from the F-term in the Lagrangian, under the
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assumption that the one-loop finiteness condition (2.2)) is fulfilled. The scalar
field part of the F-term can be expressed in terms of the superpotential as

2 2 2

_| W . (2.6)

0@,

ow
09,

ow

E -
F 0D,

Using ¢g, ¢1 and ¢2 to denote the complex component fields, the Lagrangian
becomes (omitting the overall factor 2)\/(1 4 ¢) in ([2.4]))

Lr

Tr [¢idit10i410i — qPit10iPit10i — ¢ bidir10iit ]
Tr [4q* Gis10ihibir1 — qh" Pir10:iPiv2dits — ¢ hivadirodidii]
Tr [hditoditodip10i + h*Gidis1Givadivs + hh ¢idiidi] ,  (2.7)

where a summation over ¢ = 0,1,2 is implicitly understood and the indices
of the fields ¢; are identified modulo three. In order to see how the dilata-
tion operator acts on a general operator O = ¢ LTrg,, ...¢d;, to first loop
order in the planar limit we calculate the Feynman graphs and regularize in
accordance with [16, 17]. The vector space, spanning these operators, can be
mapped to the vector space of a spin-1 chain (see [5] for details). We define
the basis states |0), |1) and |2) for the spin chain which correspond to the
fields ¢o, ¢1 and ¢2. By introducing the operators E;;, which act on the basis
states as E;;|k) = 0;1|¢), the dilatation operator can be written as a spin-chain
Hamiltonian with nearest-neighbour interactions, i.e. A =", H"'™! where

LI+1 I l+1 l I+1 * 7l I+1
H = Ei,iEiJrl,iJrl - qu+1,iEi,i+1 —q Ei,i+1Ei+1,i
* ol +1 * ol +1 * l I+1
+ qq Ez‘+1,i+1Ei,i —qh Ei+1,i+2Ei,i+2 —q hEi+2,i+1Ei+2,i
! I+1 * 1l I+1 * 1l +1
+ hEiJrQJ-EiJFZiJrl + h EZ-J-HEHMJr2 + hh Ei,iEi,z‘ . (2.8)

The direct product between the operators E;; is suppressed. If we use the
convention
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the Hamiltonian can be expressed as the matrix

h*h 0 0 0 0 h 0 —qg'h 0
0 1 0 —q* 0 0 0 0 h*
0 0 q*q 0 —qh* 0 —q 0 0

0 —q 0 q*q 0 0 0 0 qh*
H™ = 0 0 —¢h 0 hh 0 h 0 0
h* 0 0 0 0 1 0 —q 0
0 0 —q 0 h* 0 1 0 0
—qh* 0 0 0 0 —q 0 q*q 0

0 h 0 —q*h 0 0 0 0 h*h

(2.10)

We will now search for special values of the parameters h and ¢ for which
the spin-chain Hamiltonian is integrable. When £ is absent, the analysis
simplifies considerably, because the usual S-matrix techniques can be used [17,
19, 28]. The existence of a homogeneous eigenstate, an eigenstate of the form
|a)® |a)...® |a), is crucial for the S-matrix techniques to work. From this
reference state, excitations can be defined. In this context, the state |a) is a
pure state, that is, one of the states |0), |1) or |2).

When & is non-zero, the analysis become significantly harder. The only
values for the parameters, for which it is possible to define a homogeneous
eigenstate are ¢ = 1 + ¢2™/3h or ¢ = —1 and h = €?™/3 where n is an
arbitrary integer. In these cases the homogeneous eigenstates are

i27Tm i27Tm

la) =[0) +e75 [1) +e s

2), meZ. (2.11)

Clearly, the two Z3 symmetries are manifest. For ¢ = 14+he?™/3 the eigenval-
ues are zero, thus the corresponding states are protected. This case is related
to the g-deformed Hamiltonian by a simple change of variables. We introduce
a new basis

~, 21 7 127 |~
2) = —(|0)+e 3 2)), 2.12
12) \/g( |0) 12)) (2.12)
where n is an integer. It will shortly be shown that the phase shift in |0) will
imply that a phase e¥%27/3 can be transformed away from h. The Hamiltonian

expressed in the new basis (2.12) takes the same form as (2.8), but with new
parameters ¢ and h and an overall proportionality factor

o

i2wn

S+ he s

™ 2

_q€7 3

i

e

w)

(2.13)
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The new parameters ¢ and h can then be expressed in terms of the old param-
eters as

ge' s — e~5" — he— B

q = i2r —i2n —i2nn (2~14)
es —qe 3 —+he 3

~ 1— g+ he_izgm

h = — —= T (2.15)

e3 —qge 3 +he 3

The case ¢ = he 2™/3 4 1 corresponds to the g-deformed case, and if h's

imaginary part comes from the phase e?2™/3 the remaining part is phase
independent. This is in agreement with reference [29]. The integrable case ¢
equals a phase will correspond to the case ¢ = he=2™/3 4 1 with h = pe?2™/3
with p and ¢ being real. It is also clear that the case ¢ = —1 and h = e*2™/3
is related by the change of basis to a Hamiltonian of the form

H =Y 3[EuEy" + By + EL B (2.16)

This case looks perhaps trivial, but it is not. The different eigenvalues equal
3n withn =0,1,2,...,L — 2, L. Note that the value L — 1 is absent for this
periodic spin chairﬂ The states have a large degree of degeneration.

For other values of ¢ and h, a reference state does not have a precise mean-
ing. Hence, we cannot adapt the S-matrix formalism. Instead, we will try
to find an R-matrix, from which the Hamiltonian is obtainable. The
existence of an R-matrix R(u), depending on the spectral parameter u, is suf-
ficient to ensure integrability. All R-matrices necessarily have to satisfy the
Yang-Baxter equation

ng(u - U)R13(U)R23(’U) = Rzg(’U)ng,(u)ng(u — U). (217)

The Hamiltonian can be obtained from the R-matrix through the following
relation d

’P%R(u)\u:uo =H, (2.18)
where P is the permutation operator, with the additional requirement R(ug) =
P for some point u = ug.

2.4 A first look for integrability

In this section, we will show how the transformation of basis (2.12)) combined
with a position dependent phase shift, sometimes called a twist, gives rise to

2Excitations can be created if two states of the same number are next to each other. For
example the state |112012) has energy three and the next highest energy state is [111112)
with energy 4 x 3. The state with the highest energy, equals to 6 x 3, is [111111).
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new interesting cases of integrability. In [17], the g-deformed case was studied.
It was shown that for ¢ equals a root of unity, the phases can be transformed
away into the boundary conditions. Furthermore, it was shown in [18] that the
integrability properties do not get affected for any ¢ = %, where 3 is real. It
was also established that a generalised SYM Lagrangian deformed with three
phases ~;, instead of just one variable, is integrable. The deformed theory is
referred to as the twisted (or y-deformed) SYM and the corresponding one-loop
dilatation operator in the three scalar sector is

Li+1 | il I i+l | il

H EoET + EL Byt + Ep Egl|

i ol 4l | iyl bl iys il L
eMEGEW + e Ey By + e By Byl |
—iv1 il 1+1 —iva 1l 1+1 —ivs 1l [+1
e MEG BT 4+ e BByt + e P By By

EL B + ELET 4+ E(lJoEgl] . (2.19)

[
[
[
+

A natural question to ask is if the phases can also be transformed away
in a generic Hamiltonian of the form . If both ¢ and h are present we
can not, at least in any simple way, transform away the phase of the complex
variables. However, when ¢ = re*27%/3 it is possible to do a position dependent
coordinate transformation

6>k — ei2ﬂ’/3|0>k’ |'1'>k — eiQkﬂ/3|1>k7 and ‘é>k _ 67i2k7r/3|2>k’

(2.20)
as in [17]E| so that the phase of ¢ is transformed away. Here, k refers to the
site of the spin-chain state. This transformation changes the generators in the
Hamiltonian as

~1 _i2mml oy
En,n-i—m_e 3 En,n—i—m'

(2.21)

This kind of transformation of basis generally results in twisted boundary con-
ditions. Thus, the periodic boundary condition |a)g = |a); for the original
basis becomes in the new basis

= i2rL = = —i2nL ~

100 =10z, Yo =e3 1)1, and 2o =e" 3 |2)r, (2.22)

where L is the length of the spin chain. A consequence is that the system is
invariant under a rotation of ¢ by introducing appropriate twisted boundary
conditions . As an example, the g-deformed Hamiltonian with periodic
boundary conditions with ¢ = he??™/3 41 (see text above (2.16))), is equivalent
to qe?™/3 = he?™/3 4 1 with twisted boundary conditions. Hence, the
following cases are integrable

i27n i2Tm i27Tm i27n

h=pe 3, q=(1+p)e and g=—e 3 , h=e3 , (2.23)

3Note that the phase factor in |0) is not position dependent, it was only added in order
to cancel the extra phase which would have appeared in front of the terms having h in them.
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where p is real and can take both negative and positive values and n and m
are arbitrary independent integers.

One can actually combine the twist transformation above with the shift
of basis in a non-trivial way. This combination will turn out to give
a relation which maps the Hamiltonian with arbitrary ¢ and vanishing h into
the Hamiltonian with vanishing ¢ and arbitrary h. The periodic boundary
condition will, however, change for spin chains where the length is not a multiple
of three.

In terms of matrices the transformation can be represented as follows. Let
us represent the shift of basis by the matrix T (with n set to zero)

1 1 1 1
T— —— 1 ei27r/3 67i27r/3 , (224)
V3 1 e—i2n/3  i2n/3

and the transformation matrix related to the phase shift (2.20)) by (but without
the phase-shift in the zero state |0))

1 0 0
U= [ 0 e27k/3 0 . (2.25)
0 0 67i27rk/3

The transformation that takes the g-deformed to the h-deformed Hamiltonian
is then _
H=THT ", (2.26)

where
T =TT (U, @Up) (T PT™). (2.27)

Acting with this transformation on the Hamiltonian (2.8)) we get the new Hamil-
tonian

HY"Y = q*qBLET . —hq" Bl B — hUqEL L BT

41,41 i+l i1,
ol 41 ! I+1 w ol I+1
+ hRE B HRhE 0B W E o B
gl I+1 ) I+1 | il
— QCEi B0 —aE i o By e T EE (2.28)

Up to an overall factor, the transformation (2.26) change the couplings as
¢q#0 and h=0 — G=0 and h=-1/qg (2.29)

In terms of states, the map (2.26]) generates the following change

la) 143k — |a — D)igsk . |a)oysk — |la+ Doysr, |a)sk — |a)sr, (2.30)
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where a takes the values 0, 1 or 2. Let us investigate how the transformation
(2.28]) affect the boundary conditions. From equation (2.30) we see that the
original periodic boundary conditions |a)o = |a), translate into

(2.31)
if the length L of the spin chain is one modulo three and the opposite, |0™¢" )y =
[17€) 1, ete, for the two modulo three case. If the length is a multiple of three
the boundary conditions remain the same.

If we start from the Hamiltonian of the v-deformed SYM , the trans-
formation leads to the Hamiltonian

Li+1 | i+l i it i it
H EwEil + Bl Egf' + ES Bl

i 41 iy 141 | —irya I+1
e BB + eT M EQ Bt + e B B ]
e B EfE + e B B +6i7271E51E(Z)T1]

EyEe + B B + EézEéJ{l] . (2.32)

+

— o —

This Hamiltonian describes interactions which differ from systems we have
previously encountered, since here the interactions are site dependent. This
behavior shows up naturally in a non-commutative theory. In [18], it was
discussed that the y-deformed SYM corresponds to a form of non-commutative
deformation of NV =4 SYM.

If all the ; are equal, the Hamiltonian above will corresponds to our original
Hamiltonian with ¢ = 0 and h = €*?. The associated R-matrix is

R(u) = [EyEif" + BByl + E5Egt]
e (BB + E B+ Bl
— we” [ELEG + ESGEfS + Eg Byl
+ [BhEW' + B B + E5ET
+ (1-w) [EioEéJfl +E5 B + E32E;6rl] . (2.33)

We have checked explicit that (2.33)) satisfies the Yang-Baxter equation. This
means that the theory is integrable!

In the rest of this section we will discuss the spectrum when the spin-chain
Hamiltonian is either g-deformed or h-deformed. Figure shows the
spectrum for a three-site spin-chain Hamiltonian. The left graph shows how
the energy depends on the phase ¢, with ¢ = €’® and h = 0. The right graph
shows instead how the eigenvalues vary as a function 0, when h = ¢ and
G=0.

Figure [2.2] shows the same spectra for a four-site spin chain. All graphs
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Figure 2.1: Spin chain with three sites. The left graph shows the energy spec-
trum as a function of the phase ¢, when ¢ = ¢ and h = 0. The right graph
shows the spectrum as a function of the phase 6, when h = €' and § = 0.
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Figure 2.2: Spin chain with four sites. The left graph shows the energy spec-
trum as a function of the phase ¢, when ¢ = ™% and h = 0. The right graph
shows the spectrum as a function of the phase #, when h = €’ and § = 0.

contain energies which are the eigenvalues of several states. Highly degenerate
states are generally a sign of integrability because they reflect a large number
of symmetries in the theory.

Let us start by explaining the spectra in Figure When h is zero there
is only one sinus curve while when ¢ is zero there are three sinus curves. The
reason is the transformation (2.29), since it maps ¢ = ¢ and h = 0 into h = e*
and ¢ = 0 with the relation of the phases § = 7 — ¢ + 27n/3. Therefore, for
each value of ¢ there exist several values of h which differ by a phase 27 /3. For
q = 0, there is a state, independent of the phase, with energy three. This state
is absent for A = 0. One example of such a state is [000) —|111). The “inverse”
transformation, see (2.30), of this state is [120) — [201), which is zero due to
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periodicity.

The four-site spin chain (see Figure differs substantially from the spin
chain with three sites. The case ¢ = 0 is completely phase-independent. The
reason is the boundary conditions. Actually, spin chains with the number of
sites differing from multiples of three will have spectra which do not depend on
the phase. It will just coincide with the spectra for the case ¢ = e~ *2™/3 and
h = 0. Starting with the case g equal to a root of unity it is possible to make
a transformation, changing the boundary conditions, such that the phase of ¢
is removed [17]. The change in the boundary conditions is then

|0%)0 =107, |19)0 = e®[19) and 129)0 = e71|2°),  (2.34)

where ® is a phase factor, the exact form of which is not important for our
purposes. The effect (2.34) has on the boundary conditions (2.31)) is, when L
is one modulo three,

|Onew>0 — |2new>L7 |1new>0 _ ei‘i’lonew>L and |2new>0 _ e—iéllnew>L_
(2.35)

If we make the shift [17%%) — e!®|1™°%) we see that this corresponds to the
boundary conditions (2.31)). The same procedure can be made when L is two
modulo three. This means that any ¢ equal to root of unityﬂ can be mapped
to any h with the phase 6 = 7 + 2mp/n+2wm/3. All values of h will then give
the same energy spectrum due to the fact that p,n and m are arbitrary integer
numbers, so the possible values of 6 will in principle fill up the real axis. This
implies that the energy must be the same for all values of . For ¢ = e~#27/3
and h = 0 there is a direct map (see (2.14)) to the case ¢ = 0 and h = —e>™/3
which does not change the boundary conditions. The energy spectra for these
two cases must be the same. Consequently, the spectra for “all” points coincide
with the spectrum of ¢ = e=%>"/3 and h = 0. The fact that the shape of the
eigenvalue distribution changes drastically depending on how many sites there
are suggests that a well-defined large L-limit does not exist. However, it might
still be possible to find a well-defined large L-limit if only L-multiples of three
is considered.

2.5 R-matrix

We will now try to make a general ansatz for an R-matrix which has the
possibility to give rise to our Hamiltonian . A linear ansatz will turn out
to lead to the cases we found in the previous section. To find a new solution the
ansatz need to be more complicated, for instance consisting of hyper-elliptic

4q = €'? is a root of unity iff n¢ = 0 mod 27 for n an integer. The phase is then ¢ = 27p/n
where p is an integer.
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functions. We are interested in an R-Matrix of the following form

R(u) = aE;;®E;; +bE;; ® Ei11,i41 +bEit1,41 ® E;;
+ cBiit1 @ Fij1,+CcBiv1,; QF; i1
+ dEi1,i42 @ B j40 + CZEi+2,z‘+1 ® Eita
+ eBioi @ FEiyo i1+ el ipo ® Eiy1iqa, (2.36)

where the coefficients are functions of a spectral parameter u.
Written on matrix form the R-matrix is

[an}
[an}
(e}

(2.37)

=

Il
QLo ocoooR
00 OO O O
oOTIoOn OO0 OO ay
S coocoococaon o

OO T O OO0 OO

O OO o0 oS
QLIO OO O IO O
SO0 O OO
SN OTOOoOOO®

o

A natural first step to look for a R-matrix solution is to make a linear ansatz

which will give the Hamiltonian (2.8 as in (2.18]).

The Hamiltonian can also be defined through the permuted SR-matrix
R = PR, (2.38)

where P is the 9 x 9 permutation matrix.
If R(u)|y=uo = P or R(u)|y=u, = P, the Hamiltonian is obtained as

d d
H =P Ru)lumu, ot H=Po-R(u)|u=u,- (2.39)

The linear ansatz below has the property that it gives the Hamiltonian (2.8])
in accordance with the first formula in (2.39)

a(u) = (A*h—ku+«a, b(u) = —qu, d(u) = —¢*hu,
W) = (@a-Ku+ta, bw=—qu, e(u)=h,
cu) = (1-ku+a, d(u) =h*u, e(u) = —gh*u, (2.40)

with k and « being free parameters, the Yang-Baxter equations turn out to be
independent of o while they demand & to be k = % (1+ h*h + ¢*q). Inserting
the linear ansatz in the Yang-Baxter equation we find that the equation is
satisfied either if

g=c¢%andh=0 or g=0andh=¢", (2.41)
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where ¢ and 6 can be any phase, or if the following equations holds

eBr = (14 pe) (2.42)
e B = (14 pe ), (2.43)
r = +(1+p), (2.44)

where we used the notation that ¢ = re’® and h = pe’® and let r and p be
any real numbers. Here we immediately see that the relations between the real
parts of ¢ and h are given by the last equation, hence we only need to consider
which angles are not in contradiction to that. The solution is

q= ,rei27rn/3 , h= (1 + T)eiQﬂ'm/3 , (245)

where we once again let r take any real number. Now we would like to see
whether there exist solutions if an ansatz is made with the permuted version
of the R-matrix ansatz (2.40). We obtain

a(u) = (W*h — k)u+ «, () = —q*u, e(u) = hu,
bu)=(1—-k)u+ a, c(u) = —qu, d(u) = —q*hu,
b(u) = (¢*¢ — k)u+a, d(u) = —qh*u, €(u) = h*u. (2.46)

¢ =—q, h* = h?, (2.47)
with no restriction on k and a. The only solution to this is
q= _627'rn/3 ; h= e27'rrn/3 , (248)

(or ¢ = 0 and h = 0). This is the other type of solution we expected from
the last section. The one corresponding to ¢ = —1 and h = ¢?™/3 and that
one but with twisted boundary conditions. Hence a R-matrix with a linear
dependence on the spectral parameter u can not give us more integrable cases
than already found. We need a more general R-matrix solution to find new
interesting cases.

2.5.1 Symmetries revealed

In order to address the problem of finding the most general solution for the
R-matrix (2.37)) it is an advantage to make use of the symmetries. We choose
the representation

R

1

3
i=
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All indices in this section are modulo three if not otherwise stated. The gener-
ators S;, T; and FE; are

0 0 1 ( 0 1 00 1
Si=[e ™ 0 0], Se=[eF 0 0], S5=(1 0 0],

0 e 0 0 e % 0 010

0 ¥ 0 0 e 5 010
Ti=(0 0 |, =0 0 5|, =0 0 1],

1 0 0 1 0 0 100

1 0 0 I 0 10 0

Ei=[0 % 0 |, E2=10 5 0 , Bs=[0 1 0

0 0 €7 0 0 e 5 00 1

How the functions in the R-Matrix (2.37)) are expressed in terms of the functions
w;, w; and ~y; can be found in Appendix (2.66)). The generators are related by

SpSi = e T Ty, ST = By SkE; = €5 iy
27 (l—k 27 (l—k
TpS) = e 5B, ToT) = e 5 Sy ThEy = Ty
- 27
ErS; = Skt EyT, = e'5HT EvE = Epqy

(2.50)
Using these relations it is straightforward to obtain the Yang-Baxter equations
which can be found in Appendix . A nice feature of these equations is
that all of them, except the fourth, the fifth and the sixth, can be generated
from the first equation through the cyclic permutations wy,+1 — @py1 — 73
and v — w, — Wy — Y1 — Wpt2 — Wpt2. The remaining three equations
are related to each other by the same cyclic permutation. The structure of the
equations is similar to the Yang-Baxter equations in the eight vertex
model [30, 31]

10 !/ " A/ o
Wpw W — wiwpwy + wjwpw, — wpwiw; =0, (2.51)

for all cyclic permutations (4, k,I,n) of (1,2,3,4). These equations can neatly
be represented by writing the elements in rectangular objects

Wn | W Wi WE
wy Wn | Wk Wi
Wi | wg | wn | Wi | (2.52)
We Wj wy Wn
Wn | W Wi WEk

Note the beautiful toroidal pattern. The object above should be interpreted as
follows. The first three rows represent the equation (2.51f) with the first column
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representing the first term in (2.51)

Wn
Wi | = wpwiwy (2.53)
wj

and the next column is equal to the second term in ([2.51)

wi
Wn | = —ww,wj . (2.54)
Wk

The next three rows represent another equation of eight vertex model

wy Wn | WE wj
7N 7 / " /o0
Wj | Wk | wn | W |= wiwjwy — wpwpwy + wpwpw] — wjwiw, = 0. (2.55)

WE Wi wp Wn

Our equations can also be represented in terms of similar rectangular objects,
with the same toroidal pattern

w2 |wWi W2 | 71| V3 | W3
Wy | w2 |71 | W2 | W3 | Vs
Y3 Y1 w2 (2)3 (:)2 w1 |- (256)
V1| V3 | W3 | w2 | w1 | W2
Wo | W3 |73 | w1 |w2 | M

The first three rows give the second equation in with n = 3. The next
three rows are the seventh equation in with n = 1. This suggests that the
system of equations (2.67) should have a nice solution, just like the eight vertex
model. The first row determines the rest of the entries, thus all equations can
be represented with just the upper row. Hence, all the 36 equations can be
represented by the following rows

[wnt1 | wn [@np1 ]| [ 95 [Gngo]
[ wn Jwna ] @ [ 72 | 13 [ @ny2 |
[ @2 [wo [ [ | @5 | ws|

|
|
[wnti [ wn [ o0 [ 70 | 7 [Onsi]

!wz\w\m\%\wg\%\

”71\@2\’)’2\601\73\@3‘

(2.57)
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The solution to the eight vertex model is a product of theta functions. The
cyclicity and periodicity properties of the eight vertex model is mirrored into
the rectangular object. Due to the combination of addition theorems for theta
functions and the intrinsic properties of the equations, the rectangular objects
make it easy to see if an ansatz solves all the equations. We believe that the
addition theorems for theta functions generating the solution of the eight vertex
model should be possible to generalize to any even sized rectangular object. It
would then be interesting to see if those equations are related to an R-matrix
of arbitrary dimension.

2.5.2 A hyperbolic solution

If the following ansatz w; = €%@Qi, @; = Qi and v; = e, where we let Q;,

Q; and K; be arbitrary constants is made, it leads us to the following solution

wi = e, oy =e®, g = e,
Wy = €U gy = @1t gy = Qi (2.58)
w3 = e@au ) w3 = e@av ) V3= e )

The following Hamiltonian is obtained from the above R-matrix solution

LI+l _ gl 41 id 41 —ig gl I+1
H =E,QFE ;11 Te’Ei QL 1 +e E QB
1 A 141 id 1l 1+1
+ B, @ e E 4 0QFE 1ot eYE 5,1 ®E T,

— j ; 1 !
+e 1¢Ezl’+2,i ® Eii%,zﬁrl + 61¢Ezl',i+2 ® Eiﬂ,wrz + Ezlz ® Eﬁl (2.59)

where €' = (Q2e"2™/3 4+ Q1e72™/3) /(Q? + Q% — Q1Q2) (we put Q3 to zero
because it does not give us any more information). Here we also made use
of the fact that the Hamiltonian obtained from the procedure can be
rescaled plus that something proportional to the identity matrix can be added.

Actually this Hamiltonian can be related with the transformation (2.14]) to
a completely diagonal Hamiltonian, such that it is included in the integrable
models mentioned in [19]. In figure the graph to the left shows how the
energy eigenvalues of the Hamiltonian depends on the phase ¢. The
graph to the right shows the eigenvalues, of the Hamiltonian if we change the
sign in front of the second and third term in , depending on the phase
¢. The graph to the right looks very amusing. It looks very similar to the
graph to the left if that is turned upside down and deformed in a considerable
symmetrical way.
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0 o
philpi phipi

Figure 2.3: The eigenvalue dependence on the phase for the the Hamiltonian
(12.59)).

2.6 Broken Zj3 x Z3 symmetry

Relaxing the one-loop finiteness condition ([2.2)), by choosing %0 = h222 = (
and h''! o h in the superpotential (2.3 breaks the Z3 x Z3 symmetry. The
superpotential is

h
W o Tr | ®o®, Py — qP PPy + gqf{’ , (2.60)

where an overall factor is excluded. This superpotential is actually easier
to study since the dilatation operator has homogeneous vacua [0)|0)...|0)
and |2)]|2)...]|2). The mixing-matrix for the anomalous dimensions has the
form of a spin-chain Hamiltonian arising from R-matrices found by Fateev-
Zamolodchikov (or XXZ) [32] and the Izergin-Korepin [33]. This type of mod-
els were considered in [34] even though the authors never completely classified
them. They have a U(1)-symmetry which can be used to get rid of the phase
in the complex variable h.

In this setting, there is no longer a cancelation between the fermion loop
and the scalar self-energy. The additional contribution to the Hamiltonian is of
the form (2.72) (see Appendix for details). The spin chain obtained from
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the superpotential is, with ¢ = —1,

0
h*h
12 1
1 h* 1
h™h
1 =5
H= h 0 h . (2:61)
h*h
1- & 1
1 h* 1
h*h
1 =5
0

The term h*h/2, is the fermion loop contribution from the self-energy. We
will show that for the special values ¢ = —1 and h = €?/2, this Hamiltonian
can be obtained from the spin-1 XXZ R-matrix. The phase of h is redun-
dant, the energy does not depend on it, and can be phased away through the
transformation |1) = e=**/2|1). The R-matrix for the XXZ-model is [32]

S s=1
t r t = eJ sinh(u)
T a* R r = Jsinh 2n
" f a = it usinh 2
R(u) = a S a R = Jsinhnsin 2n
t sinh(u+n
r T — Jsinhusinhgufn)
R a* T - sinh(u+n)
r t o=c¢€t+ f%
S J = sinh(u+2n)
(2.62)

where ¢ = +1. The € in t in is added after checking that the R-matrix
still satisfies Yang-Baxter equation. If we put u = 0, the R-matrix becomes the
permutation matrix. Thus, a Hamiltonian can be obtained from the R-matrix
by the usual procedure H = PR'|,—g. Performing the derivatives at the point
u = 0 gives

J = 0, t':e,l 7 T,:_095h2n7 o — i¢.1 ’
sinh 27 sinh 27 sinh n
coshn  cosh2n 1
R = — _ , T = — , "=’ +R. (2,63
sinhn  sinh2ny sinh 27 ot (263)

Multiplying all parameters with sinh 27, the new variables, evaluated at n =
/4, leads to

=0, '=-1, =0, @ =¢%/2,
R=-1, T'=-1, & =0. (2.64)
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Figure 2.4: To the left is the spectra for the case h%%9 = h??2 = 0 and h'!l = h
depending on h when ¢ = —1, and to the right is the spectra for the case h'!
all equal to h (up to a constant factor) depending on h when ¢ = —1

with the corresponding Hamiltonian

0
0 +1
—1 e 1\/2 —1
+1 0
H= e'?/2 0 e'?/2 (2.65)
0 +1
-1 e /2 -1
+1 0
0
If we make the choice ¢ = —1, this is the spin chain Hamiltonian with defor-

mation h = €'*y/2 and ¢ = —1 | Looking at the left graph of Figure of a
four-site spin chain we see that two lines cross at this point.

This might, however, just be a coincidence. A special feature with ¢ = —1
is that there is a Zs-symmetry due to the invariance under exchange of the
fields ®¢ and P,.

The right graph shows the same spectrum, but with all couplings equal
to h, up to a constant factor. The point h = 1 — /3 is special, since at this
point the transformation is “self-dual” , which means here that ¢ = ¢
and h = h.

hIII

2.7 Conclusions

We have studied the dilation operator, corresponding to the general Leigh-
Strassler deformation with h non-zero of N' = 4 SYM, in order to find new
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integrable points in the parameter-space of couplings. In particular we have
found a relationship between the y-deformed SYM and a site dependent spin-
chain Hamiltonian. When all parameters ; are equal, this relates an entirely
g-deformed to an entirely h-deformed superpotential. For ¢ = 0 and the h = e,
where 6 is real, we have found a new R-matrix (see .

We found a way of representing a general ansatz for the R-matrix, with
the right form to give the dilatation operator, which makes the structure of
the Yang-Baxter equations clear. The equations can be represented in terms of
rectangular objects, which reveals that the underlying structure is a generalized
version of the structure of the eight-vertex model. We presented all values of
the parameters ¢ and h for which the spin-chain Hamiltonian can be obtained
from R-matrices with a linear dependence on the spectral parameter. Most of
them were related to the g-deformed case through a simple shift of basis with
a real phase f3, or a shift with a twist with the phase +27/3, which reflects the
Z3-symmetry.

We also found a new hyperbolic R-matrix (2.59) which, through a sim-
ple change of basis, gives a Hamiltonian with only diagonal terms which was
included in the cases studied in [19]. We had a brief look at a case with bro-
ken Zs x Z3 symmetry and found that the matrix of anomalous dimensions
can for some special values of the parameters be obtained from the Fateev-
Zamolodchikov R-matrix.

We conjecture that the Yang-Baxter equations found for the general R-
matrix have a solution which is a generalized version of the solution to the eight-
vertex model. If this solution exists, it is plausible that there will exist more
points in the parameter space for which the dilatation operator is integrable.
To find a general solution to these equations would be of interest in its own
right. From a mathematical point of view, it is then interesting to generalize
the solution to an R-matrix of arbitrary dimension.

The found relationship between the g- and the h-deformed superpotential
should be visible in the dual string theory, and should also give a clue of
what that string theory looks like. Another way to approach the problem,
as mentioned in [9], is to first find a coherent state spin chain and from that
reconstruct the dual geometry. The coherent state spin chain [9] is valid for
small 3, i.e. ¢ = 1. We believe that making use of the basis transformation
(2.14) makes it possible to create a coherent state spin chain for ¢ ~ 1 and
small h acting with the transformation on a q close to one gives a new ¢
close to one and a new small h. We also hope that due to the relation between
vanishing h and vanishing ¢ it is possible to write a coherent sigma model for
both ¢ and & close to one. It would then be very interesting to find the dual
geometry, which corresponds to a further away deformation of the N' = 4 SYM.

One other thing of interest is to extend the analysis to other sectors of
the theory and to higher loop order. In the §-deformed case it is possible to
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argue that the integrability holds to higher loop order [8], because the dilatation
operator is related with a unitary transformation to the case of the usual N' = 4
SYM. In the same way can we argue about the h-deformed case, even though
we have to consider the induced effects of the spin chain periodicity.
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2.A Yang-Baxter equations for the general case

The functions in the R-Matrix (2.37) are expressed in terms of the functions
wi, w; and y; as

a(u) = yi(u) +y2(u) +3(u),

b(u) = y(u)e®™ 3+ (u)e™ ™3 4 y3(u),

b(u) = 2(u)e™™3 + 1 (u)e ™23 4 y3(u)
3

+ wa(u) + ws(u),

(
(

(u)
c (u) + wo(u) + w3(u), (2.66)
du) = wy(u)e®™3 +wi(u)e ™3 + wy(u),
(u) = @1(u)e™? 4 Gy(u)e™ /3 4+ Gy(u),
e(u) = wi(w)e®™3 +wy(u)e™ 23 + ws(u),
e(u @o(w)e™™/3 4 @y (u)e /3 4 3(u),

Yang-Baxter equations from the R-matrix ansatz (2.49)) read

/ 1" / 1 -1 = —/ -1
Wnt1Wp19Y3 — WnyoWp 1Yo + Y3WnW, 11 — Y20y Wy
— ! 1 — / 12
+0n+1Y2Wnt1 — WnY3Wneo = 0,
/ 1 ! 1 —/ -1 — =
Wn41Wp oY1 — Wnt2Wpn 1173 + YWy oW, — V3WnW, 4o
- - o
+OnY3Wnt1 — Wn+2V1Wngpo = 0,
/ " / " 7 - - —n
Wn41WpyoY2 — Wnt2Wp 1171 T Y2Wp41Wn4o — V1Wn+2Wy 1
- o - o .
FOnt2MWng1 — Oni1YoWni2 = 0,
— 1/ 1 — / — 1 — 1/ 1 — / -1
W1y, Wy — W1y, W3 + Waldy, 4 oWy — Wals, Wy
—/ 1 —. ! -1
+wol,w] — Wowsy, Wy = 0,
! 1 ! " ! 1 / 12
72wn+171 + V3Wn—172 + T1Wy Y3 — W1YpWo
’ " ’ "o
—W2Vp41W3 — W3 VWi = 0,
—/ " —/ 1 —/ 1 —. ! -1
V1Wp_1Y2 T Y2Wp173 T V3WRYT T WiV 1Wo
—. A -1 —. 1 =1
TW2Yp4 Wy T W3YWp = 0,
—. —/ 1 —. —/ 1 rn !
Wn41Wn 4 oWp 11 — Wni2Wp 1 1Wy — WnY371 T Wnt17173

r ’ -
—V1Wp41Wn4o + V3WpWpy1 = 0,
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— —/ 1 —. —/ 1 " !
W42y 41 W 4o — Wny1Wy, oWy, — WnY3Y2 + Wnt2YoY3

I - -
—V2Wp42Wn 41 + V3WpWhyo = 0 )
- —1 " - ) " ’ 1
Wn41Wp oW 12 — Wni2Wy 1 1Wn 1 — Wnt1Y1Y2 + Wni2 Y2 V1
r - - _
+’71wn+1wn+1 — VoWp oWy o = 0 )
’—n ro—n - P =
Wn2Wy Wy 11 — WpWy oWy + Wnt17Y3Y] — WnY173
—r —r "o
+’Yl"‘)n(")n-ﬁ—Q — V3Wp W, = 0 )
r - ’—n - A )
Wn Wy, 1 Wy, — Wnp1 Wy Wy o — Wnt2Y3Y2 + WnY2Y3
Y 7 "
—V2WpWh i1 + V3Wp oWy = 0 )
' - I - _ ' - '
Wn42Wy 4 1Wh 41 — Wnt1Wy oWy 1o + Wnt1Y2Y1 — Wnt27172
—1 " —r " _
+YWy 4 oWh o — V2Wp1Wpyr = 0,
(2.67)

Here, we have defined w = w(u — v), W’ = w(u) and "’ = w(v).

2.B Self-energy with broken Zj3 x Zs symmetry

We will follow the prescription of [35] to compute the contribution to the Hamil-
tonian from the superpotential (2.60|), when conformal invariance is broken.
The additional terms are coming from the self-energy fermion loop.

The scalar self-energy of the vertices is, in N =4 SYM,

gy u(L+1)

871’2 N :Tr (él(bz) Ty (268)

where L = logz=2 — (1/e +~ + logm + 2). The scalar-vector contribution to

this is 7%, and the fermion loop contribution is %. Half of the
fermion contribution comes from the superpotential; this is the part which will
be altered by the extra h-dependent part of the superpotential. Hence, the
additional term to the new spin chain, besides the F-term scalar part, is

h*h  g*(L+1)
1+qg*q 8n2

N :Tr (¢1¢1) : . (2.69)

Then, we will have an effective scalar interaction which just comes from the
F-term (since we have the same cancelation as in the A' = 4 SYM)[35]

2 9y mL .
(1+q*q) 1672 °

Vs, (2.70)
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where

Ve = (Tr[¢idir10it10i — @bit10ibis10i — ¢ bidit10iPit]
+  Tr [qq" ¢is10:0iPis1 — qh* Podadrd1 — ¢ hprd1dacho)
+  Tr[ho1d10002 + h* Padod1d1 + hh* Prd1d161]) - (2.71)

The plus-minus sign in depends on which sign we choose for the superpo-
tential. Since all terms are multiplied by the same divergent factor we can set
L = logz~2, just as in the case of N” = 4. The contribution from the self-energy
to the dilatation operator is

h*h
1+4q%q

(11 @I +1® Ey), (2.72)

and the F-term scalar interaction contribute with

2 | it ! 141 gl I+1
1+q79) (Ei7iEi+1,i+1 - qu+l7iEi,i+1 —q Ei7i+1Ei+1,i

* 7l I+1 * 1l I+1 * l I+1
+ qq Ei+1,i+1Ei,-i_ —qh Ei+1,i+2EiI+2 —q hELOElE
+ hEL B +h*E) BN 4+ b B ETY) (2.73)

We will now consider the case when ¢ = —1. The total dilatation operator
simplifies to

0
B h
1- B 1
1 —qh* 1
R
1 =5
H = h 0 h
h*h
1 hh 1
1 h* 1
h*h
1 1—
0
(2.74)

Here we have chosen a relative minus sign between the contribution from the
fermion loop and the scalar interaction term.
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abstract

We extend the definition of the star product introduced by Lunin and Malda-
cena to study marginal deformations of A" = 4 SYM. The essential difference
from the latter is that instead of considering U(1) x U(1) non-R-symmetry, with
charges in a corresponding diagonal matrix, we consider two Zs-symmetries fol-
lowed by an SU(3) transformation, with resulting off-diagonal elements. From
this procedure we obtain a more general Leigh-Strassler deformation, including
cubic terms with the same index, for specific values of the coupling constants.
We argue that the conformal property of N'=4 SYM is preserved, in both (-
(one-parameter) and ~;-deformed (three-parameters) theories, since the defor-
mation for each amplitude can be extracted in a prefactor. We also conclude
that the obtained amplitudes should follow the iterative structure of MHV
amplitudes found by Bern, Dixon and Smirnov.

KEYWORDS: marginal deformations, §-deformation, ~;-deformation, three-
parameter deformation
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3.1 Introduction

The exactly marginal deformations of A” = 4 supersymmetric Yang-Mills (SYM)
preserving AN/ = 1 supersymmetry, systematically investigated by Leigh and
Strassler in [1], have been studied extensively since the finding, by Lunin and
Maldacena in [2], of the supergravity dual of the so-called 6—deformedE|N =4
SYM theory. Marginal deformations provide an interesting opportunity to
study the AdS/CFT-correspondence [3] in new supergravity backgrounds.

The perturbative behaviour of the $-deformed theory shares many features
of the undeformed theory [4, 5, 6, 7]. In [8] it was found that maximally
helicity violating (MHV) planar amplitudes in A/ = 4 SYM have an iterative
structure for all n-point amplitudes. These results were then transferred to
the S-deformed theory in [7] by placing the deformation into the so-called star
product. The use of the star product, which was first introduced in this context
in [2], to study marginal deformations is especially convenient when calculating
amplitudes, since the dependence of the deformation can be isolated into an
overall prefactor.

The main purpose of this article is to show that it is possible to obtain the
general Leigh-Strassler deformatiorﬂ including cubic terms with all indices
equal the same value, from the star product. In section we discuss the nec-
essary conditions for conformal deformations of N'= 4 SYM. In Section [3.3] we
consider two global Zs-symmetries, in order to solve an eigenvalue system with
eigenvectors as a linear combination of the three chiral superfields ®;. The two
systems are related by an element of SU(3) which is also a symmetry of the
N = 4 SYM Lagrangian written in terms of N' = 1 superfields. We continue
to define the star product for Zz x Zs-symmetry charges, containing three de-
formation parameters ;. The (-deformed theory is obtained by putting all
parameters equal. In the the diagonal system the star product is easily evalu-
ated. We calculate the superpotential, with ordinary multiplication replaced by
the star product, in the - and ~;-deformed theories. The result is the general
Leigh-Strassler deformed superpotential, including the terms of the form Tr ®3.
In section [3.4] we compute the starproduct of two chrial superfields which are
simple in the [-deformed case. In appendix we present the the results
in the v;-deformed theory. In section we study the tree-level amplitudes
corresponding to terms in the classical Lagrangian. In the g-deformed theory
we find the expected 4-point scalar interaction terms for a Leigh-Strassler de-
formed theory. However, in the ~y;-deformed case we obtain component terms

1By (-deformation we mean a one-parameter complex deformation 8 = g + i8c. With
a y;-deformed theory we mean a theory containing three complex parameters 1, v2 and 3.
In the literature, a y-deformed theory sometimes means deformations by the real part of 3
which is called B8R in the present work.

2To distinguish from the S-deformed superpotential we use the word “general” when cubic
terms of the form Tr fI’? are present in the Leigh-Strassler deformed theory.
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of the form Tr ¢;r gb;r ¢:¢;, i.e with three identical indices, which are not normally
considered in a Leigh-Strassler deformed theory. Their gauge invariance and
supersymmetric properties have to be investigated. In Section [3.6] we extend
the proof in [7] which shows that the phase-dependence of HMV planar tree-
and loop-diagrams can be computed from an effective tree-level vertex, deter-
mined only by external fields. We conclude that the proof also holds for our
present theories. In the final section we compute the one-loop finiteness con-
ditions for conformal marginal deformed N = 4 supersymmetric theories with
both - and ~;-deformation.

3.2 Conformal deformations of ' =4 SYM

The most general renormalizable N' = 1 supersymmetric action which is in-
variant under a gauge group G, can be written as, excluding gauge-fixing and
ghost termsﬂ

_ 1 ) a 4, 120 255 (.2gV\A 5B
S = 716T(A)92/d:cd9’IﬁrW Wa+/dxd9d9®A(e )B¢>

+ / d*zd*0W + h.c. (3.1)

The chiral superfield ® 4 and its conjugate transform under irreducible repre-
sentations R of G. The index A runs over irreducible representations R; and
the component of each irreducible representation is labeled by I, such that
A = {i,I} [10]. The vector superfield V4, =V, (T“)AB contains the genera-
tors 7% a=1,...,dim G, of the gauge group G defined by (T“)AB = (T“i)IJ.
The first term in is related to the gauge theory kinematic Lagrangian
containing the gauge field A* and a Majorana spinor, which we call Ay. W is
the superpotential and is given by

W = Capc®? 0P (3.2)

where C'4 g is totally symmetric in A, B and C or equivalent totally symmetric
in the pairs {, I'}, {4, J} and {k, K'}. In the following we will restrict ourselves
to

CABC = C}]JkK = aijkleK + hijkd[JK N (33)

where a”* and by are totally anti-symmetric and h** and d;;x are totally
symmetric.

3We use the conventions of [9] such that the generators of the gauge group satisfy
[T]%,TI%} = if“bchc% for the representation R. The adjoint representation A is given by the

structure constants such that ad g = (TX) bc = —if%® normalized as Tr Tsz = —T(A)5%.
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The supercurrent J,g of the theory has the anomaly [10, 1]
DTy = 2 | Doy, 4 (ds —3)+ 7" (@D-D%”) (3.4)
ad — 3 g B s Y j Vg . .

where ’yij is the anomalous dimension for ®. The anomaly 1D is zero in a
conformal theory. At one-loop we have

3
g i
O = 1o [ DO T(R) = 3Ca(G) + 3 TR (35)
% 2,7
and
1 i
5}12& = hiji | (ds =3) = 5 Zm(l)j ' (3.6)
3

The number r; counts the number of chiral fields in each term of the superpo-
tential with the sum dy = )", 7;. The anomalous dimension is [11]

AW = ORI — 20 T(R)5}0). 30

Vanishing of the one-loop anomalous dimension also implies UV finiteness of
N =1 SYM at two-loop level [11].

N = 4 supersymmetric Yang-Mills in the N' = 1 superfield formulation
contains three chiral superfields in the adjoint representation of the SU(N)
gauge group and is obtained by taking i = 1,2,3 and  =a =1,...,N? — 1.
Thus, if we define ®/ = ®!T? the structure constants are €775 = fape, Which
can be expressed fope = —iT(R)"'TrT* [T, T¢]. The symmetric part dape
vanishes for a real representation. The A = 4 SYM superpotential becomes

Y ks, 1.
Wiz = T(R)g Tr @; [, i) . (3.8)

In the Wess-Zumino gauge, the A/ = 4 supersymmetric Lagrangian can be
written in terms of N' = 1 component fields as

L = Tr <i F F' — i\ 6" DAy — iX 6" D\ — Dl DH s
Tﬁg) (3 [ofA] + a1 X 0]
_%A) (eiﬂ'kxi [Aj,qsk] + gtk )\l [A},@ZD

g ][] - 2 o6 [s]) - 69)
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Conformal invariance of N’ =4 SYM follows from 1) where 7(1)2 = 0 since

Cikl, = gT(R)€"* fup.. This also implies that ﬂhl)k o

As we will see, marginal deformations of N = 4 SYM Wthh preserve the
finiteness condition at one-loop can be obtained by replacing the ordinary mul-
tiplication between all fields by an operator called star product. The general
form of coupling constants which contains the anti-symmetric part a*/*
and the symmetric part h* can be written on the form

W = a""Tr &; [®;, B + I Tr &, {®;, 8} . (3.10)

By choosing the non-zero couplings as a™* = ¢¥7%)\ /6, h1?% = \(1 —q)/6(1 +q)
and h* = h'//2 we obtain the general Leigh-Strassler deformation [1, 12], also
known as the full Leigh-Strassler deformation [13],

W =h(Tr®®®5 — ¢Tr &1 P3P2) + 1 (Tr &7 + Tr @3 + Trd3) . (3.11)

where h = 2X/(1 + q).

In the next section we will compute the couplings h, ¢ and h’' in a star
product deformed theory. In section [3.7] we will evaluate the conditions for the
supercurrent in to remain anomaly-free.

3.3 Deformations from star product

Introducing the star product has shown to be beneficial in the study of marginal

deformations of N' =4 SYM [2, 7]. In general, it is not easy to compute the star
product of two chiral superfields. To simplify the computation we will in this
section solve an eigenvalue system. We continue to define the star product for
three deformation parameters. This allows us to compute the superpotential
for both (- and ~;-deformed theories.

3.3.1 Eigenvalue system

The key idea for this work is to make use of the permutation symmetries of the
superpotential to study marginal deformations of N' =4 SYM, by introducing
a generalized multiplication operator between all fields, which we call “star
product”. When the symmetries permute a set of fields in the original so called
®-system, it is hard to compute the star product directly. Instead, we rotate
the system by an SU(3) transformation into the so called ¥-system in which
the symmetries act with diagonal elements. In the WU-system, the star product
can easily be computed.

Let us begin by choosing two symmetries of the superpotential which we
denote S and Sy. In the diagonal U-system, the symmetries act as U(1) x U(1)
transformations on the vector ¥ = (Uy, Uy, U3) of chiral superfields accordingly
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S, : 7 — Q;¥, (3.12)
where
1 0 0 e'¥2 0 0
Q= 0 e v 0 and Qy = 0 e 0 . (3.13)
0 0 ele 0 0 1

At this stage, p1 and @9 are arbitrary parameters. The superpotential (3.10))
and also the Lagrangian (3.9) are invariant under an SU(3) transformation.
We introduce the vector @ = (®q, P, P3) of chiral superfields such that

T =T%, T € SU(3). (3.14)

We now demand that the symmetries S; and Sy act as permutations of the
q)i7SZ

S; : ® — P.d, (3.15)
with
0 as 0 0 0 b3
7)1 = 0 0 as and Pg = b1 0 0 , (316)
aq 0 0 0 b2 0

where the parameters a; and b; will be determined below. The relation between
P; and Q; is

P =T'Q,T. (3.17)
For the permutation matrices to be elements of SU(3), their elements have to
satisfy i) ajagaz = 1 and bybebs = 1 and i) |a;|> = 1 and |b;|?> = 1. It then
follows that P = 1 which is equivalent to Q7 = 1. Thus, the relation
breaks the U(1) x U(1) symmetry to Zs x Zs with et = ¢ = ¢!27/3_ For
simplicity we define o = €*2™/3 with inverse @. The relation 1 +a +a = 0 will
be used repeatedly. As a result, the symmetries S; and S5 act on the ¥;’s as

Sy (U, Wy, U3) — (U, 0¥y, aVs)
SQ : (\111, \1127 \113) — (a\Ill,@\Ilg, \113) . (318)

These relations will be used when we compute the star product in section [3.3-3]
The most general solution to (3.17) is

arty  arasty b
T = aaity Qaiaste  to R (319)
O_laltg aar a2t3 tg

where a; are the parameters of P; and b; = a/a;11 in Pe. The parameters
t1, to and t3 have to satisfy i) 3titatzalas(a@ — ) = 1 and ii) |¢t;|*> = 1/3 for
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T € SU(3). These requirements are fulfilled for (including the conditions for
P; € SU(3), see below (3.17))
a; = e’i01 , a9 = 6i02 — e*i(01+03) , as = e’i@g ,
t = el eiP2 iei(93*91*91*/}3) etP3 (3.20)

I S S R &

The transfer matrix becomes

1 ei(01+p1) e~ H03—p1) P
T = — al’ei(a?,—Pl—pB) @ie_i(91+P1+pS) iei(as—al—pl—ps)
V3 aet(01+p3) ae—103—p3) eliPs

(3.21)
If we denote the part of the elements in (3.21)) by ¢;; which are dependent of
the phases 6; and p;, then we can write

i
U, = Z a2t @ = Z a2 giri H % ®; . (3.22)
J J j

This compact form will be useful in the coming sections. The permutation
matrices (3.16) are

0 e U0t

P = 0 0 el0s
e 0 0
0 0 e~ it
Py = al it 0 . (3.23)

0 e 0

The transfer matrix (3.21f) contains four independent parameters. Two of pa-
rameters, 1 and 63, are inherited from the permutation symmetry in (3.23)).
The remaining two parameters, p; and p3, are coming from the original N' = 4
SYM SU(4) R-symmetry. It is interesting to note that there does not exist a
matrix T which takes Q; to P; (see (3.17)) for continuous parameters. As we
will see in the next section, the surviving discrete Zg X Zs symmetry will let us
define the star product, which is especially simple to compute in the U-system.
Transforming to the ®-system induces extra cubic terms, of the form Tr ®3,
to the superpotential which correspond to terms in the general Leigh-Strassler
deformed theory.

3.3.2 Definition of star product
We define the star product between two fields ¥; and ¥; as, in analogy to [2],

XA 70 78 (3.24)
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where W; - W, is an ordinary product and the determinant is defined as

= ’%’% det Qij . (325)

A @11 @2 | wQp wQ;
ety " Q@ H 5Qh 4Q;

(Q},Q?) are the S; x Sy charges of the fields for the symmetries S; and So
of the corresponding superpotential. It will be convenient to rewrite the three
deformation parameters 71, 72 and 73 as

so that v = 4273, 72 = 9371 and 3 = 7172. Note that the deformation param-
eters 4;7; also exist. Since they always occur in the combination 7;%; det Qy;
where det Q;; = 0, the deformations 7;7; do not have to be accounted for in
calculations.

A deformed multiplication law, such as , is usually denoted x and
called “star product”. Non-commutative field theories are often obtained by
replacing the ordinary point-wise product of fields by the Moyal star product,
which is defined by a bidifferential operator over some manifold. In the present
context, the star product may be viewed as generalized couplings between fields.
This is a convenient way to study marginal deformations of supersymmetric
N = 4 theories.

In order to prove that the star product is associative we have to assume that
the elementary fields are defined by and with arbitrary parameters
4; and that a composite field of n elementary fields is characterized by the

additive property (Q} éfjn) where

ij...n?
~1,2 ~1,2 1,2 1,
Qij...n =Q; +Qj JF"'JFQ;z . (3.27)
We can now compute the triple star product

w0y, = e 9 Qng, (T 0)

_ ei(det @U+det @jk+det é’k)\lfl . ‘I]j . \I/k ) (328)
The computation of the star product in (3.28]) is associative. The proof is given
in appendix To keep the permutation symmetry of the trace operator also
in a star product defined theory we use the short-hand notation

1

1 1
— 5672““) det Q5 Tr, - \Ilj + 56_’”““) det Qmj’j[‘r ‘I’j ;.
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In other words, we must symmetrize the trace explicitly before replacing the
ordinary multiplication with the star product. The trace for the triple star
product is

Trw, « U+ Uy, = 1 et (v det Qi +i det Qi+ det Qi) (3.30)
3
X I:eQi’yi det Qg 4 eZi'yj det Qik 4 62i'ch det Q7,] Tr \Ijzlqu’k .

When all deformations parameters are equal we obtain the so-called 3-deformed
theory with 8 = ;. If not, we have the three-parameter ~;-deformed theory. In
section @ we will compute the star product ®; x ®; of two (3-deformed chiral
superfields in the ®-system. The general results for the v;-deformed theory are
presented in appendix

3.3.3 Superpotential in the one-parameter deformed the-
ory
The [-deformed theory is obtained by setting all «;’s equal in (3.31). We

use the notation 8 = ;. From (3.18]) we find that the superfields ¥; in the
superpotential have charges

vy ( flv f2>:(071)
v (Q8,08) =(-1-
U, ( $1, §2>:(1,0). (3.31)

In the U-system it is easy to evaluate the star product. From ([3.31)) and (3.31))
we find
w = TI‘\Ill*\I/Q*\I’g—TI‘\Ifl*\Ifg*\IIQ
BT, - Uy Uy — e BTr U, - Uy Uy, (3.32)

Since the superpotential transforms as the determinant of the SU(3) T-matrix

in (3.21]), we have

W ="Tr \Ifl * [\:[12 ’,( \:[13] ="Tr (I)l * [@2 f (I)g} . (333)
If we use the relation (3.22]) between ¥ and ® we find
00y = Y oGty gty @D, D, (3.34)
l,m,n

Performing the trace gives

Tr \I’Z\I/]\IJ]C _ g Z O—[l—i—m—i—n (a1l+]m+kn+ akl+zm+_jn+ a]l-l—km-‘rzn)
l,m,n

XtiltjmtknTr ‘I)lq)mq)n. (335)
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To relate to the superpotential we compute

1
Trw WaWs = 3 Z a7 (1 4 altmEn g gltman)
l,m,n
Xt1tamtan Tr ©19y, O, (3.36)

which is zero unless | +m + n = 0 mod 3. This implies that the only possible
terms are

T U, UoW; = aTr &, o®y + aTr &1 P3P, (3.37)

i [
V3
4 00Ty 3 4 —i(O120) Ty 93 4 ~i(01—00) Ty q,g} _
In a similar way, we can compute the remaining part of the superpotential

(3-32)). The superpotential is invariant under SU(3) so that the phases 6; can
be transformed away by the field redefinition

B, — i 0i1—00)/3g, (3.38)

Using (3.32)), (3.33)), (3.38]) and (3.38)) gives the [-deformed superpotential

—2 2 2
Tl“(I)l * [(1)2 ’; (bg,] = ﬁ sin(B — ?ﬂ-)TI" @1@2(1)3 + Sin(ﬁ + %)TI‘ @1@3@2
+ sing (Tr@f + Trd3 + Tr&3) | . (3.39)

3.3.4 Superpotential in the three-parameter deformed the-
ory

In this section we let the three deformation parameters be arbitrary. In a
similar way as in the previous section we compute

Tr¥, xUgx Uy = 3 Z (ewcak—z +eWal—F 4 ezzaz—J)
04,k
thitgjtngI‘ q)z (I)j (I)k s (340)
and
Tr \I/l * \113 * \112 = g Z (e_“”@k_l + e_Zydj_k + 6_12@1_])
i, 5,k
thitgthkTI‘ q)z (I)j (I)k s (341)

where we have introduced

T=7+73 =71, Yy=73+7— "7 and 2=+ —73. (3.42)
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Using (3.33)) then gives the superpotential
21
W =Tr &y % [y 7 O3] = 3 P jk(@y, 2)titastan T &; @5 By, (3.43)
W4,k
where

P jk(z,y,2z) =sin(z+ (k—)u) +sin(y+ (j — k)u) +sin (2 + (¢ — j)u) .

(3.44)
with u = 27/3. Explicitly the terms are
P, i i(x,y,z) = sin(z)+sin(y)+sin(z),
P it1,iv2(®,y,2) = sin(z —u)+sin(y —u) +sin(z —u),
P itoit1(z,y,2) = sin(z+u)+sin(y+u)+sin(z+u). (3.45)

The indices are modulus three. All other terms vanish for any value of z, y and
z, due to the cyclic property of the trace operator. The P-functionsﬁ satisfy
the identity

Py i(@,y,2) + Priv1,iv2(2, 4, 2) + Prige, i1 (2,9,2) = 0. (3.46)

Finally, after using the field redefinition (3.38]), the ~;-deformed superpotential
becomes

-2
Tr & % [‘PQ * @3] = ﬁ [P1’2$3(.’I;, y,z)Tr D,1D0,P3 + P1’3’2((E,y7 Z)TI‘ P D3Py
+ Piia(z,y,z) (Trdf + Tr @3 + Tr @3)]. (3.47)

The superpotential (3.47)) is of the form of the general Leigh-Strassler defor-
mation (3.11]) which can be seen by defining
-2 _ Pisa(z,y,2) W o— -2

h=—=Pia3(z,y,2), T Pras(zy,z) ] N
\/§ 1,2,3( Y ) 4 P1’2,3(337y72) \/g

P,y 2) .
(3.48)

3.4 Star product of composite chiral superfields

It is straightforward to compute the star product of two chiral superfields in
the ®-system. These relations are useful when evaluating Feynman diagrams.
To begin, we recall (3.22)) with inverse

P, = Z d(i+2)jt;i U, = Z ali1+2)i g—i(p;+3,; 0:) 0, (3.49)
J J

4These functions are not arbitrary named, since the level-set surfaces (3.45) belongs to
the class of triply periodic minimal surfaces and are known in the literature as Schwartz’s
P-surfaces.
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which gives the star product

P, * CI)j = % Z aF+2)(m=0)+(+2)(n—7) piva(k+1) det Qi
k,l,m,n

kTR ISR 0-T 1051 0) g g

m

= % Z k=1 (m+n—i—j) (1 + a2 4 am—ie—i%m)

k,m,n

w T Om+ R 05— ;=15 65) ®,,P,, . (3.50)

In appendix we present the explicit expressions for the star product in the
~;-deformed case. In the g-deformed case the expression is considerable
simplified. All terms are zero unless i + 7 — m —n = 0 mod 3 which gives the
expressions

1
D, x P, = § [(142cosfB)P (3.51)
2 . i
(1 + 2COS 37()) 61(01_93_3259;)®i+1©i+2
2 . i
+ 1 -+ 2 COS ;)) 62(01793732:I 02)©i+2q)i+1:| ,
17 21
(I)i*q)i—i-l = g (1+2C05ﬂ)(1> (I)H-l + 1+2008(ﬂ— ?) (I)i+1q)'i
+ (1 +2cos(B+ 3 )) R A AL SV S
1 27
D, 1 xP; = § (1+2cosfB)Pi41P; + [ 1+ 2cos(6 + ?) DD, 4

2 : 2.
+ <1 + QCOS ;)) 672(91703732;—2 e'i)(I)i+2(I)i+2
3.5 Tree-level amplitudes from star product

To begin, we replace the ordinary multiplication between all component fields
in the Lagrangian (3.9) by the star product. From (3.31) we find that the
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component fields have the charges

Y1k (@.@¥) =1

o, Ao (@5, 05%) = (-1,-1)

U5 X (@.05%) = (.0

AR\ ( S, ): (3.52)

The part

Liny (fg (Aol ] + 20 A 0]
9>

MPYIPAE [o1.04] [‘ﬁ}%}) 7 (3.53)

of the Lagrangian is unchanged when replacing the normal multiplication
with the star product. The reasons are that the gluino A4 and its conjugate
from the vector multiplet are neutral and that the combinations )\ZTqb,» and (;SI oi,
with sum over 7, are phase-independent.

The terms in the Lagrangian that are not invariant under the star
product are

L, = —Té’A) Tr (&ﬂm [\t du] + €N % [A} s qs;]
+ % {@T * ¢H X [gbi * @D . (3.54)

Since the Lagrangian (3.9), and naturally (3.54)), is invariant under the trans-
formation (3.21) we are free to express our fields in the -system. From a
generalization of the triple star product (3.28)) it is easy to evaluate the star

product ([3.24]) to express

> [slel]x[s105] = 23 @™n220%) (3.55)
i,5,k,l
ki,
« H 61(9,;+91~—0;—9_;)Tr¢I¢;{¢k¢l,
R

where we have defined

| 2 2
QYR = Z {2 cos <2fym+2 7;”1> — (14 o829, 12) cos W;Q a(m+Dns

" (3.56)
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with
ny=i—j—k+I, ng =i—j+k—I and ny=—i—j+k+1. (3.57)

We can see from @ and that interaction terms ¢j’¢;¢k¢l are allowed
for any combination of the indices, in the ;-deformed theory. That is, we may
have terms with two, three or four indices of the same value. However, in the 3-
deformed theory, all terms are proportional to the factor 14+ait7—F~lygiti—k=l
which is zero unless i+j—k—1 = 0 mod 3. As a consequence, terms with three
indices of the same value vanish. In the non-deformed theory, terms with three
or four indices of the same value vanish since the interaction is a product of two
commutators. Interaction terms with three indices identical are in general not
considered in the context of marginal deformations of A" =4 SYM. Properties
of gauge invariance and supersymmetry have to be investigated.
The four-scalar interaction of the F-term can be obtained from

aw " ow,
Lrp= ( ) * . 3.58
AT (359
Replacing the star product between the derivatives by an ordinary multiplica-
tion, might at first thought give rise to a new theory without terms with three

indices of the same value. However, calculations shows that the new couplings
are

QR =2 Z [co8(2Ym 12 — 2711 /3) — cos(2mna/3)] oM ns (3.59)

m

which still contain terms with three identical indices. In obtaining 7
the trace is not symmetrized since there is an ambiguity how to perform the
symmetrization. It might be possible to overcome this ambiguity by evaluating
the star product before defining ® = ®!T° from which it follows that the
structure constants f¢ are related to the trace operator. This would make
a valid relation. In the present context, the general rule is that all
multiplication of fields should be replaced by the star product, as in .

In deriving (3.56)), and also (3.59)), we have assumed the deformation pa-
rameters ~; to be real. To introduce complex variables we can go back to the
definition yo(;15) = 7i7;, see 7 with §; = 7% + i’yic where 3/ and ,~in are
real. This leaves us with the deformations

. ~R~R ~C~C . (“R~C ~C~R
YiYier = Vi Yig1 — Vi Yig1 T (%‘ Yiz1 t Vi ’Yi+1)
_  _R—, .. C+
= Vg2 T ik2
. ~R-R ~C~C . (~RxC ~C=R
ViFier = A i+ Vi T (VG — A Vi)

Y +ives (3.60)
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in addition to their complex conjugate. In there is no obvious way how to
separate the real and imaginary part from our original definition of v; without
introducing extra deformations, corresponding to ;¥,;4+1. This complicates the
study of the real and complex part of the theory, but might at the same time
open up for other interesting possibilities to consider. For complex deformations
we find the couplings to be

QUF = " [eos (297, — uny) cosh 2957, + cos (2915 — uny) cosh 2y %
m

— cosh (2951, — iuns) — cos 2717, cos uns] almHhns (3.61)

where we have used u = 27/3. If we let 'yﬁig = 7512 in (3.60) and (3.61)), we
obtain the real ;-deformed theory with couplings (3.56), as expected.

To compute the star product of the first term in (3.54]), we can make use
of the transformation (3.21) and the field redefinition (3.38]) for the component

fields ¢; and A;. We find
g 2
TRTr N % [\ % o] = 3 (Pi,i+1,i+2(33,y, 2)Tr [NiAip10ir2 — Aidir1Nita]
+  Piivoari(m,y, 2)Tr [Midipadirs — AidigaXit1]

+  Praia(z,y,2) (Trdg A, ¢1]
+  TrAz[Ag, ¢o] + TrAs [As, ¢3])) ; (3.62)

where we have used the same notation and definitions as in the equations (3.42])
and (3.45). The conjugate term can be computed in a similar way and equals

e R Tr Al * [)\j H ¢H = % (Pi,z‘+2,i+1($*,y*7z*)

xTr [)‘IA;{+1¢1’L+2 - )‘IQSZH)‘IH]

Piit1iqo(a” y", 25Ty P\ZAIH@TH - AI¢Z+2)‘Z+1}
Piaa(aty*,2%) (Teal (AL of | +Teal [AL, of]

+ 1 [ALel]) ) (3.63)

where again the fields have been redefined

+ o+ o+

3.6 Phase dependence of amplitudes from star
product

To compute n-point loop, or just even tree-level, amplitudes is a tedious work.
Organizing the Feynman diagrams by decomposed momentum and helicity, in-
stead of momentum and polarized spin, has shown to dramatically reduce their



78 Star product and the general Leigh-Strassler deformation

complexity. These MHV diagrams share an iterative structure for comput-
ing higher loops [8]. Evaluating HMV amplitudes in a star product deformed
theory shows the strength of the procedure.

In [7] it was shown in a [(-deformed theory not containing terms @2%2
that an arbitrary HMV planar tree or loop amplitude has a §-deformed phase
factor which can be read off from a single effective vertex. This vertex is only
dependent on the external fields and not on the internal structure. In this
section we will show that the results found in [7] also hold for our present (-
and ~;-deformed theories. In doing so, we will briefly extend the proof in [7].

The statement is that the deformation dependence for a general n-point
HMYV planar, tree or loop, amplitude A, (F1,. .., F,,) is entirely determined by
the configuration of the external fields Fi, ..., F},, so that

An(Fyy... Fy) Tr (Fy x Fy ... % F,) = [phase(y)] Tr (F1 Fy ... Fy) .

(3.64)
Let us start by considering a general HMV planar tree amplitude. Since an
HMYV diagram consists of fused vertices of opposite helicity, each propagator is
proportional to F' }L * Fr, with sum over I, which is phase independent due to
opposite charges. This means that the internal structure is phase independent.
A result which is true for both the - and the ~;-deformed theory. Thus, the
phase dependence of the amplitude lies entirely in the external fields.

The argument is the same for planar loop amplitudes. Per definition, a pla-
nar diagram has no intersecting lines. Each internal line, between two vertices,
is proportional to FIT * Fr, with sum over I, which again is independent of the
phase. Hence the phase dependence of a planar diagram can be computed from
an effective tree-level vertex as in , determined only by external fields.

In the v-system, all planar amplitudes in both the §- and ~;-deformed the-
ories are proportional to their A/ = 4 counterparts. Since N' = 4 SYM is a
finite theory, our derived (- and ~;-deformed theories should also share the
same property of conformal invariance. Since the v-system is equivalent to the
¢-system, through an SU(3) transformation, we can conclude that the Leigh-
Strassler deformation obtained from the star product, including diagrams with
three indices of the same value, for the specific coupling constants and
, are conformal in the planar limit. In the next section we will com-
pute the one-loop finiteness condition. The iterative structure of planar MHV
amplitudes in N' = 4 SYM, studied in [8], should also hold for our deformed
theories since the phase dependence can be isolated for each amplitude.

3.7 One-loop finiteness condition

The one-loop finiteness condition is equivalent to the vanishing of the anoma-
lous dimension (3.7) that was discussed in Section If we compare ((3.3)
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with the superpotential (3.43)) we find that

1j 1 aoc aoc
Cine = §Pi,j,k($ay,2)t1it2jt3k (fobe + dobe) (3.65)

The antisymmetric property of f2¢ then gives
P 1 2
Cikl ]bii? = 1 Z [|Pi,i+17i+2 — Piivoir1l” £ frea (3.66)
i
2 jacd 2 jacd
+ |Piit1,i42 + Py  d*dyca + | Pyl d dbcd} .

Using f%? fy.q = 2N and d*?dy.q = 2N — 8/N and explicitly write the P -
functions in (3.45)), we find the one-loop finiteness condition to be

2

h-.
2 = ?)lT’Y [3 |cos z + cos y + cos z|?
4
+2[sinz + siny + sin 2| (1 - N?ﬂ . (3.67)
This simplifies to
27 |hg|® , 4
= % {3 |cos B|” + 2 [sin 3] (1 - Wﬂ : (3.68)

in the §-deformed theory. The (-deformed theory studied in [7] showed that
a complex deformation of the form § = g + i8¢ gives the one-loop finiteness
condition g2 o< |h|® cosh 26¢ in the large-N limit. Feynman supergraph calcu-
lations showed that this planar equivalence with the N =4 SYM theory holds
up to four loops.

In the present (-deformed theor we instead get the planar equivalence

g% o |h5\2 (2 cosh 26¢ + sinh? B¢ + cos? ﬁR) , (3.69)
which is dependent on the parameter Sg. It would be interesting to understand
the underlying reason for this dependence in a supergraph formalism.

3.8 Summary and discussion

We have shown that it is possible to obtain the general Leigh-Strassler defor-
mation, including terms of the form Tr ®3, from the definition (3.24)) of the star

5Note that here we only have 3 = B3 and 8* = B*B*. When computing the one-loop

conditions, terms as B3* are not present, so it is possible to define 8 = Br + i8c where
Br = BE~ and Bc = BCT, with notation as in (3.60)
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product. The superpotential has been computed for the G-deformed theory in
and for the ~y;-deformed theory in . The analysis was based on two
equivalent systems of chiral superfields which we have called the ¥- and the
®-system, related by an SU(3) transformation. The latter system corresponds
to charges in an off-diagonal matrix obtained from an SU(3) transformation
of the diagonal Z3 X Zs-symmetry charges. In the diagonal ¥-system the star
product is easily evaluated.

When we computed the tree-level amplitudes corresponding to terms in
the classical Lagrangian we found the expected Leigh-Strassler deformed terms
for a [-deformed theory. However, in the ~;-deformed case, the four-scalar
interaction of the F-term contained terms of the form Tk(b;fgb;(ék@ for any
value of the indices. Terms with three equal indices vanish in the (-deformed
theory, but are present in the v;-deformed case.

We have extended the proof in [7] to also cover our present theories. We
concluded that for an arbitrary HMV planar tree or loop amplitudes, the phase
dependence of the deformation can be computed from an effective tree-level
vertex determined only by external fields, and not the internal structure. In the
y-system (component fields) all planar amplitudes in our present theories are
proportional to their A/ = 4 counterparts. Since A" =4 SYM is a finite theory
our present theories should share the same properties. We also concluded that
the iterative structure of MHV amplitudes in /' = 4 SYM, found in [8], should
also hold for our deformed theories. In section we computed the one-loop
finiteness condition. It would be interesting to find permutation matrices (3.16)
of a more general form to establish a relation between coupling constants and
more general conditions for a finite theory.

The supergravity dual to the real -deformed theory was generated in [2],
by a combination of T-dualites and a shift (called TsT-transformation) on the
isometries of the five-sphere part of AdSs x S°. The complex part of 3 followed
from a non-trivial S-duality transformation. In [14] for bosons and includ-
ing fermions in [15], it was shown that three consecutive TsT-transformations
generate a three-parameter deformation of AdSs x S°. The dual field theory
corresponds to a non-supersymmetric three-parameter marginal deformation
of ' =4 SYM. It would be interesting to understand if the three-parameter
supergravity background can be obtained in a similar way, by consecutive TsT-
transformations, for our present theories.

A Lax representation, which implies integrability of strings moving in the
Lunin-Maldacena background [2], was also found in [14]. In [16] and [17], it
was concluded that the integrability is lost in the planar limit, for complex (-
deformed theories. More general Leigh-Strassler deformed theories, containing
Tr &7, where consider in [12] to study integrability. It would also be interesting
to understand if the present results can be translated to a one-loop dilation
operator to win insight in the integrability of marginal deformed A" =4 SYM.



3.A Associativity of the star product 81

Acknowledgements

I would like to thank Anna Tollstén for many useful discussions and for
reading this manuscript. I would also like to thank Johan Bijnens for discus-
sions and useful inputs.

3.A Associativity of the star product

In this appendix we will show that
(\I’i*\lfj)*\lfk = \I/i*(\l’j*\l’k-) s (370)
which is to say that the star product (3.24) is associative.

We begin to use the definition (3.27)) for a composite field of two fields

51 _ Al Al 32 _ 2. 2
G =Q TQ5, and 5 =Q; +Q5, (3.71)
so that U, - ¥; is characterized by (~}j, ~fj). The triple star product becomes

Uyx (U % Up) = e 90 Qun o (W - Ty,) = (et Quetdet Qi) gy, Wy | (3.72)
where
Q& Qe
i @ Qj +Qp Q7 +Qj
- Q (@+q1) - @@+ at)
= QIQ;-QiQj + Qi — QQ}
= det @ij + det @ik . (373)

det Qi,jk = |

‘@; @%|

Thus, we have

W+ (U # Uy) = (et Quydet Quutdet Quu) g, ;. (3.74)

To prove associativity we also have to compute
(U %)) Ty = 9@ (T, ) % Uy,
= et Qe Qi) g, L (3.75)

where
2, QF |_|QitQ; QI+
Qn Qi Qi Qi
= det Q. + det Qjy - (3.76)

det Q,’j,k =
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This means that
(W % W) % Uy, = ildet Quydet Quutdet i)y, gy, . (3.77)

Comparing (3.74)) and (3.77)) proves the associativity (3.70]) of the star product.

3.B Star product in 7;-deformed theory
In this appendix we present the results of star product evaluation of two chiral

superfields. We us the same notation as in section [3.:4} In the ~;-deformed case
we find

1 - b
D xP; = §Z a(k_l)(z_”(l—l—QCos*yk)He’Ql(ai’GE)(I)j(I)j

gk 4,
i,j
+aFm DO TT e300 ((1 +2cos(y — u)) @ 41
i,j
(1 + 2 cos(yx + u))q>j+1<1>j) , (3.78)
1 o by
P; x ‘1%'_;,.1 = 6 Z Oé(kil)(lijil) (1 + 2 COS(’Yk + U)) H 61(05+27205)(I)j(l)j
Jk 1]

,J
+alk DO T eOira=0is2) ((1 + 208 7) P P11

i

(1 + 2 cos(yx — u))q>j+1¢>j) : (3.79)

1 - A
Qi1+ P = §Zk a(’“’l)(lﬂ’l)(lJchos(fyk—u))Hel(ewz 25)0;®;
Js ¥

<0

irj
+alk=D6=d) H e Uiz =0542) ((1 +2cos(yp +u))P; P41

2,

(1 2cosyk)<1>j+1q>j) . (3.80)
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For products involving conjugate superfields we find

1 2
O xdl = 5 > [(3 + 2 cos (yk — %(i —j))) 00! (3.81)
j.k

2 I
+2aF1 cos <’yk — %(Z -7+ 1)) Hel(93—93+1)(1)j@;+1
j

o J
+2ak_1cos(wk—3z—j+1>He (03=0;41) +1<I>;r. ,

i 2m
‘I’i*q’jﬂ—*H (i “’1)2[ ( k—3(l—]—1)>¢’jq’;
—|—(3—|—ZCOS (’yk— (t—j ))He’(e J+1)(I>j<I>;[-+1

2 Lo
+2aF 1 co (’Yk _ %(Z _ ])) He—l(9_3—93+1)(1)j+1(1);r. , (3.82)

2m
Dy * Bf = Hel(e GLH)Z [ < k—S(Z_J_1)> <I>j(1>§

J
+2a%7 1 cos (% ——(@{—J) > H i(%; _91+1)<I> <I>T

+ <3 + 2 cos <7k ——(i—j ) 5795“)@]‘-&—1‘1’; , (3.83)

1 2
<I>ZT * &, = §Z {<3+2 cos (’}/k+ 3(13))) <I>;<I>j

g,k
J
+2071 cos (% + ? t—7+1 ) He i3 *9J+1)<I>T<I> 41

2 o
e ) [
J
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1 oo B, g 2T, . _ib.
<I>1-L * P = g He"(ei O311) Z {20/“ ! cos (Vk + ?(z —J— 1)) e 95@;@7
; y
+ <3—|—2 cos <7k+ —(—y )) He i(0;— 93+1)q);¢>j+1

2 o
R Y | Y B

2 ,
O x D, = Heﬂ (6;—011) Z {Qakl cos (’yk + g(z - 1)) 6101(133[(13]'

3,k

+2aF~1 cos <’yk+ —(i—j >He (05— 95“)‘1’;@34-1

J
+ (3+2 cos (% + (-7 )) H W05=054) % +1‘I’ . (3.86)
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