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1

The history of a physicist’s life was very simple. He was born; he became
interested in physics in some way, either through reading or through the

personal influence of a teacher or a lecturer; he wrote his thesis and
received his PhD degree; he died. The rest and essential part of this

biography could be read only in the scientific journals, in which were
described his own work and the work of his students and colleagues. It

was an eminently satisfactory life, to my mind the only serious
occupation for a gentleman. The drama in which he played his role was
epic in quality: the drama of man’s unfolding discovery of the world in
which he finds himself... The stage on which he played his role was the

globe...He had no counterpart to the art critic, the music critic, the
literary critic, or the dramatic critic to plague him. No one stood

between him and his public because his public were his colleagues. With
all the fringe benefits I have tried to describe so alluringly, you will not

be surprised to find out that his actual take-home pay was not large.
Plain living and high thinking were the order of the day.

— Isidor Isaac Rabi
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Introduction

i.1 Introduction to QCD

This thesis deals with phenomena within the high energy limit of Quantum
Chromodynamics (QCD). QCD is the quantum theory of the so-called strong
force (or sometimes strong nuclear force) which is one of the four fundamental
forces of nature. Despite the fact that there is no longer any doubt whether
QCD, which was formulated some three decades ago, is the correct theory for
the strong force, there is nevertheless good reason for why there still exists so
many people working in the field. The problem is that QCD is still not a theory
which is completely understood and it is extremely difficult, if not impossible,
to derive some of the fundamental properties of the strong force directly from
the basic principles of the theory.

In many cases one has to resort to so-called phenomenological models,
which are models based on principles believed to hold (principles derived
from what we observe) in the theory but which cannot be rigorously derived
from first principles. The main objective of such models is to describe the
various phenomena which we observe, and in order to fulfill this objective
one has to make simplifying assumptions which, strictly speaking, cannot be
proven from the fundamental theory. One example is the celebrated Lund
string fragmentation model [1] which describes how the basic constituents of
QCD (quarks and gluons) regroup themselves into the particles (such as pro-
tons and neutrons etc.) which we observe in our detectors.

Another possibility is to use effective theories which are theories construc-
ted to work only in a certain energy range, or distance scale. One example
is Chiral Perturbation Theory which describes strong phenomena in the low
energy limit. Another possibility is to use the so-called Lattice Gauge Theory
where one discretizes spacetime into a four dimensional lattice.

All the theories mentioned above have the property that they are either
entirely based on, or that they contain, physics which we cannot calculate
using standard perturbation theory. With standard perturbation theory we
mean approximate calculations based on expanding the relevant quantities in

i
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the coupling strength of the theory. For such calculations to be reliable, the
coupling constant, denoted α, must be a small quantity. For example, in the
quantum theory of electromagnetism (Quantum Electrodynamics, or QED for
short) the coupling constant, also called the fine structure constant, is given

by αem = e2

4πh̄c ≈ 1
137 where e is the fundamental electric charge, h̄ is Planck’s

constant and c is the speed of light in vacuum. This is indeed a small num-
ber, and predictions from perturbative QED are experimentally verified to an
astonishing accuracy.

QCD is however a much more complicated theory than QED. Here the
nonperturbative physics plays an important role, which is why there are so
many additional models we have to use if we want to make any reliable pre-
dictions.

One of the cornerstones in the understanding of the strong force was the
discovery of asymptotic freedom by Gross, Wilzcek and Politzer. Asymptotic
freedom states that the strong coupling strength αs vanishes asymptotically as
the relevant energy scale of a process gets very large. In other words, for very
small distances, the quarks will behave as if they were free particles, despite
the fact that they interact “strongly” with each other. This means that one
can actually use perturbation theory for processes involving large momentum
transfers, i.e. processes occurring at short distance scales. Such calculations
have indeed been able to describe strong phenomena rather well, as is evi-
dent from the success of the so-called DGLAP equations in perturbative QCD,
although we are still far away from the precision levels offered by QED.

For large distance scales, the strong force exhibits a behaviour known as
confinement. Confinement is the property that the basic quantities of the
strong force are confined in colourless objects, hadrons, which implies that
it is not possible to observe any free quarks. Confinement is yet to be proven
from QCD, but all experimental evidence collected so far support this picture.
The key feature of confinement is that the colour electric field between two
colour charges has the shape of a flux tube stretched between the charges.
This is to be contrasted to the usual electromagnetic field which stretches out
over all space. Confinement would follow in case the field strength between
two charges is a constant, since this implies that the potential increases lin-
early with the distance, and it would consequently require an infinite amount
of energy to completely separate two colour charges.

One possible explanation for confinement is that the QCD vacuum (the
gluon condensate) forms a dual superconductor. A dual superconductor is
a superconductor in which the roles of the electric and magnetic fields are
reversed. Consider a static qq̄ pair inside such a dual superconductor. The
Meissner effect then attempts to expel the colour-electric field, just as it tends
to expel the magnetic field in a usual superconductor. Due to Gauss’ law, how-
ever, the colour-electric field cannot be completely expelled. The field would
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instead be compressed into a narrow flux tube, occupying a minimal space,
which joins the quark and the antiquark along a line. The colour-electric field
runs parallel to the flux tube, maintaining a constant profile in the transverse
direction, while the colour-magnetic field circulates around the flux tube. This
would then give rise to the confining force mentioned above, thus providing a
mechanism for confinement. There are, however, various other problems with
this approach, but this is not really the subject of this thesis. i
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i.2 High Energy Particle Reactions

After a brief introduction to the general concepts in QCD and the strong force,
we now move on to study the strong interaction in more detail. We will start
by giving an historical introduction to the strong interactions and to the theo-
ries which were developed before the advent of QCD.

In order to account for the short range of the strong interactions, Hideki
Yukawa proposed [2] the existence of the meson which was subsequently dis-
covered in 1947. During the 50’s and the 60’s, a great zoo of strongly interact-
ing particles emerged from experiments. These discoveries led to the ideas of
quarks, gluons and eventually, the formulation of QCD. Before the discovery
of asymptotic freedom, and the successful formulation of non-Abelian gauge
theories however, it was not at all clear how one could formulate a gauge field
theory for the strong interactions.

In those pre-QCD days, lacking an understanding of the underlying dy-
namics of the strong interactions, people rather tried to formulate phenomeno-
logical theories based on a set of fairly reasonable postulates. The hope was
then to extract as much information as possible about the strong dynamics
using these postulates. The central quantity in this approach is the so-called
scattering matrix, or S-matrix. Let us therefore give a definition and brief
overview of this quantity. A more detailed account can be found in [3].

i.2.1 The S-Matrix Approach

What happens in collider experiments is that a state is at time −∞ prepared to
have some definite particle content, and a measurement is made at time +∞

to see what the outcoming state is. The “in” and “out” states, |iin〉 and | f out〉
respectively, are obtained by applying the time evolution operator on the free
particle states |i〉 and | f 〉,

|iin〉 = U(−∞, 0)|i〉, (i.1)

| f out〉 = U(∞, 0)| f 〉. (i.2)

The S-matrix is then the linear operator defined as

Si f = 〈 f out|iin〉 = 〈 f |U(−∞, ∞)|i〉 = 〈 f |SSS|i〉. (i.3)

The probability for the transition |i〉 → | f 〉 is given by

Pi→ f = |〈 f |SSS|i〉|2, (i.4)

and since the sum over all the possibilities must add up to unity, we have

∑
f

Pi→ f = ∑
f

|〈 f |SSS|i〉|2 = 1. (i.5)
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Using now the completeness of the free particle states we obtain

∑
f

〈i|SSS�| f 〉〈 f |SSS|i〉 = 〈i|SSS�SSS|i〉 = 1 = 〈i|i〉 (i.6)

for all states |i〉. Similarly we have 〈i|SSSSSS�|i〉 = 1 = 〈i|i〉, and from this we
conclude that

SSS�SSS = SSSSSS� = 111. (i.7)

SSS is therefore a unitary matrix, which is thus a consequence of the conservation
of probability.

The first postulate is the Lorentz invariance of the S-matrix. This means
that the S-matrix can be expressed in terms of Lorentz invariant variables. For
2-particle scattering processes, 1 + 2 → 3 + 4, these are the usual Mandelstam
variables u, t and s defined by

s = (p1 + p2)
2 = (p3 + p4)

2, (i.8)

t = (p1 − p3)
2 = (p2 − p4)

2, (i.9)

u = (p1 − p4)
2 = (p2 − p3)

2. (i.10)

From the S-matrix one usually defines two other quantities. The first one
is the transition matrix, or T-matrix which is defined as

SSS = 111 − iTTT. (i.11)

The unit operator above corresponds to the trivial situation where no interac-
tion takes place. T is therefore a direct measure of the scattering process. The
other quantity is called the relativistic scattering amplitude, and is defined by

Ti f = (2π)4δ(ptot
f − ptot

i )A(i → f ), (i.12)

where we have thus extracted the total four momenta conserving delta func-
tion from T.

From the unitarity of the S-matrix it now follows immediately that

(111 − iTTT)(111 + iTTT�) = 111

⇒ i(TTT� −TTT) = TTT�TTT. (i.13)

Taking the matrix elements with respect to 〈 f | and |i〉 we obtain

〈 f |i(TTT� −TTT)|i〉 = ∑
n

〈 f |TTT�|n〉〈n|TTT|i〉, (i.14)

i



8 Introduction

that is

2ImTi f = ∑
n

T∗
f nTin. (i.15)

For the scattering amplitude A we instead get

2ImA(i → f ) = (2π)4 ∑
n

A∗( f → n)A(i → n)δ(ptot
n − ptot

i ). (i.16)

If now the initial and final states are the same we obtain

2ImA(i → i) = (2π)4 ∑
n

|A(i → n)|2δ(ptot
n − ptot

i ) = Fσtot, (i.17)

where F is the incoming flux and σtot is the total cross section. This is the
famous optical theorem which states that the total cross section is given by
(modulo the flux factor) the imaginary part of the forward scattering ampli-
tude, i.e. the elastic amplitude. Thus, in order to calculate the total cross sec-
tion, one does not need to sum all possible matrix elements, but it is enough to
only calculate a single matrix element, namely the elastic part of the scattering
amplitude.

The second postulate is that the S-matrix is an analytic function of Lorentz
invariant variables. This is a nontrivial property and it turns out to have im-
portant consequences. In quantum mechanics it can be shown that the analyt-
icity of the S-matrix follows from causality, but this has not really been proven
in relativistic S-matrix theory.

The amplitude A is usually written as a function of s and t, A(s, t), and
one can then study the singularity structure of A in the complex s plane. The
singularities of the scattering amplitude on the real axis corresponds to the
physical thresholds for real particle production. For example, there will be
simple poles corresponding to the exchange of physical particles. In perturba-
tion theory, such singularities arise from the propagator

1

s − m2 + iǫ
. (i.18)

In addition to this, there will be branch points corresponding to exchange of
two or more particles.

As seen above, unitarity relates the imaginary part of the amplitude to a
sum over other amplitudes, and using analyticity one can reproduce the real
part of the amplitude from the imaginary part (via so-called dispersion rela-
tions).

In a similar way one can study the singularity structure in the complex
t and u planes. All these planes are related to each other via the so-called
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crossing symmetry which is an additional postulate in S-matrix theory, but is
known to hold in perturbative field theory.

There are two very important consequences of the S-matrix approach. The
first one is the Froissart-Martin Theorem [5, 6] which states that:
Assume that there exists a positive integer N such that the scattering amplitude,
A(s, t), satisfies A/sN → 0 as s → ∞. It then follows that the total cross section
cannot grow faster than ln2s as s → ∞.
This means that we have

σtot 6 C · ln2s as s → ∞. (i.19)

It can be shown that

C ≈ π

m2
π
≈ 60mb, (i.20)

with mπ being the pion mass.
The second theorem is the Pomeranchuk theorem [7] which states that:

In any scattering process where there is a charge exchange the cross section vanishes
as s → ∞. Conversely, if for a scattering process σtot does not fall as s increases, then
that process must be dominated by the exchange of vacuum quantum numbers.
Thus, if the cross sections are not falling as s increases, this is equivalent to
saying that, asymptotically, the total cross sections for particle-particle and
particle-antiparticle reactions must become equal, that is

σtot(PP)

σtot(PP̄)
→ 1 as s → ∞. (i.21)

From this theorem we now move on to the idea of Regge poles.

i.2.2 Regge Theory

Consider the scattering of an incident particle on some arbitrary potential V.
For a spherically symmetric V, it is in non-relativistic quantum mechanics well
known that one can expand the scattering amplitude f in a partial wave series,

f (k, θ) =
∞

∑
l=0

(2l + 1)al(k)Pl(cosθ). (i.22)

Here θ is the polar angle of the outgoing wave, k is the wave vector and Pl are
the Legendre polynomials. The coefficients al(k) are called the partial wave
amplitudes. The bound states of the potential V then appear as the singulari-
ties of these amplitudes.

The idea in Regge theory is that one can analytically continue al(k) to com-
plex values of l. The emerging function a(l, k) reduces to al(k) for positive

i
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integer values of l. For most potentials, the singularities of a(l, k) turn out to
be simple poles which depend on k,

lpole = α(k). (i.23)

As k varies these poles trace out trajectories in the complex l plane, known as
Regge trajectories.

Of course, for scattering off a potential, we know in non-relativistic quan-
tum mechanics the underlying dynamics of the scattering process. This is
given by the Schrödinger equation from which we can deduce the partial
wave amplitudes, and study the singularity structure for a given potential.
In Regge theory (and the S-matrix approach) on the other hand, we do not
have knowledge about the underlying dynamics of the strong force, and we
can therefore strictly speaking not prove the existence of Regge poles.

The existence of Regge poles is therefore a conjecture in this approach.
However, this “simple” conjecture turns out to have some far reaching conse-
quences. In the S-matrix approach we can similarly expand A(s, t) in a partial
wave series. For a 2 → 2 scattering event where all four particles have equal
masses m, the relation between t and the angle θ is given by cosθ = 1 + 2t

s−4m2 .

Under the assumption that we can analytically continue A(s, t) from positive
t (t = 2k · m in (i.23)) to negative 1 t, one can show that Regge theory predicts
the following asymptotic form of the scattering amplitude

A(s, t) → β(t)sα(t) as s → ∞. (i.24)

Here α(t) is the position of the leading Regge pole in the crossed reaction, i.e.
the pole with the largest real part, and β is the residue of this pole. The exact
calculation of this residue would require an understanding of the dynamics of
the process, but it is rather amazing that one can come down to such a simple
formula using a limited set of postulates! The result derived above is valid in
the region where s → ∞ for fixed t, and this is called the Regge limit.

The result in (i.24) can be attributed to the exchange of a particle with “an-
gular momentum” α(t). Of course this cannot be a real particle since the an-
gular momentum must be an integer, and it cannot depend on t. The result
rather corresponds to the exchange of a family of resonances which we, using
particle physics language, call a Reggeon.

Plotting the spins of the low lying mesons against the square of their masses,
it is seen that they all lie in a straight lines, i.e. one can parameterize the Regge
trajectory in the form

α(t) = α(0) + α′t. (i.25)

1According to the postulate of the crossing symmetry mentioned above, the process where s is
positive and t negative is described by the same amplitude, A(s, t), as for the process where s is
negative and t is positive (the crossed reaction).
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The value α(0) is called the Reggeon intercept. Using the optical theorem, this
implies that

σtot ∝ sα(0)−1, (i.26)

where the extra factor s−1 comes from the flux factor in (i.17), which is approx-
imately equal to 2s for large s.

Now, in light of the Pomeranchuk theorem stated in the previous section,
we see that a Regge pole satisfying α(0) > 1 must carry vacuum quantum
numbers (isospin zero, even under charge conjugation). Such a Regge pole is
called the Pomeron.

Finally we notice that Donnachie and Landshoff [8] found a good fit to the
pp̄ and pp total cross sections using the following parameterizations

σ
pp
tot = (21.7s0.08 + 56.1s−0.45)mb (i.27)

σ
pp̄
tot = (21.7s0.08 + 98.4s−0.45)mb. (i.28)

Here s is measured in units of GeV2. The first term on both fits corresponds to
the Pomeron with an intercept α(0) = 1.08 while the second term corresponds
to a Reggeon with an intercept 0.55 which consequently gives a negligible
contribution as s → ∞.

i.2.3 The Impact Parameter Picture

So far we have used the Mandelstam variables to characterize the amplitudes
and, via the optical theorem, the total cross section. Sometimes it is very useful
to switch from a description in momentum space to a description in impact
parameter space. This will especially be apparent when we go on to discuss
the dipole model and the question of multiple interactions.

Let us first look at the classical scattering of light from an obstacle or, equiv-
alently, the diffraction of light from a hole in an opaque screen. We assume the
incoming wave to propagate in the positive z direction, and the screen to lie
in the xy plane, centered at the origin. The classical field uP of the diffracted
wave at some point P is given by

uP =
k

2πi

∫

dxdy u
eikR

R
(i.29)

Here u is the field value calculated at the area element dxdy, R is the distance
from the area element to the point P, and the integration is performed over the
extent of the screen in the xy plane. We refer to the xy plane as the transverse
plane, and we will from now on denote dxdy by d2bbb.

In the case of Fraunhofer diffraction, the distance to the screen on which
we observe the light is assumed to be very much larger than the dimensions

i
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of the hole, which in turn is assumed to be much larger than the wavelength
of the incident wave. This is actually the most relevant case for high energy
particle reactions.

Defining the momentum transfer qqq = kkk′−kkk and denoting the distance from
the origin to the point P by r we get

uP ≈ u0k

2πi

eikr

r

∫

d2bbbT(bbb)e−iqqq·bbb. (i.30)

Here u0 denotes the field value at the origin, and we have defined the so-called
profile function T, which in the simple case of a hole is just given by 1 inside
the hole while it is equal to 0 outside the hole. For scattering through general
obstacles it will, however, be a more complicated function.

To make the analogy to particle physics, we make use of Babinet’s principle,
which states that complementary screens give the same intensity distribution
for the diffracted light [9]. The field uP produced by an opaque disc of the
same dimensions as our hole is therefore given by

uP =
u0k

2πi

eikr

r

∫

d2bbb(1 − T(bbb))e−iqqq·bbb

≡ u0k

2πi

eikr

r

∫

d2bbb S(bbb)e−iqqq·bbb, (i.31)

since the sum of these waves adds up to give the incident wave, u0eikz. This
can be seen by writing r ≈ z + (1/2z)(x2 + y2) in the exponent in (i.29). In
(i.31), S is the analog of the S-matrix defined earlier, while T is the analog of the
T-matrix (or rather iT). If all the light falling in on the obstacle is completely
absorbed we have S = 0 and T = 1, while if we have a completely transparent
screen S = 1 and T = 0.

We note that the scattered wave in (i.31) can be written as

uP = uin + u0
eikr

r
f (qqq), (i.32)

f (qqq) ≡ − k

2πi

∫

d2bbb T(bbb)e−iqqq·bbb. (i.33)

Thus f corresponds to the scattering amplitude. The scattering cross section
is then given by

σscatter =
∫

d2qqq
| f (qqq)|2

k2

=
∫

d2bbb |T(bbb)|2 =
∫

d2bbb|1 − S(bbb)|2. (i.34)
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This is not the total cross section, however, since the wave can also be ab-
sorbed, and the absorption cross section is given by

σabsorb =
∫

d2bbb(1 − |S(bbb)|2). (i.35)

The total cross section is finally given by the sum of the scattering and absorp-
tion cross sections,

σtot = 2
∫

d2bbb Re(1 − S(bbb)) = 2
∫

d2bbb ReT(bbb). (i.36)

i.2.4 The Eikonal Approximation

In the limit of vanishing wavelengths, propagating waves can be described
in terms of rays, and the laws of their propagation constitute the domain of
geometrical optics. The field of a propagating wave can be written in the form

φ = u(rrr, t)eiψ(rrr,t), (i.37)

where ψ is the phase of the wave. This situation is realized in high energy
particle interactions when the wavelength of the incoming particle is much
smaller than the interaction range. Solving the Schrödinger equation one ob-
tains, after a number of manipulations and definitions [10], a scattering am-
plitude of the form

f (k, θ, φ) = − k

2πi

∫

d2bbb e−iqqq·bbb(1 − eiχ(bbb)). (i.38)

Here the phase χ(bbb) is called the eikonal function, and is given by the integral
of the potential over the longitudinal direction. If we define S by

S(bbb) ≡ eiχ(bbb), (i.39)

we obtain exactly the same formulas as for the diffractive (i.34) and the inelas-
tic (i.35) cross sections above.

Before finishing this chapter we will give an example of the use of the
eikonal approximation in particle physics. However, we first note that the
optical theorem (i.17), and relation (i.15), show that every open inelastic chan-
nel contributes to the imaginary part of the scattering amplitude. As s → ∞,
more and more inelastic channels open up, contributing to the imaginary part
of the amplitude. For the real part of the amplitude no similar relation exists,
and it is then reasonable to expect that the imaginary part of the scattering
amplitude dominates over the real part in the high energy limit. (This im-
plies a predominantly real S-matrix) This assumption is indeed supported by
experimental results.

i



14 Introduction

Consider a high energy particle, say a hadron h, impinging on a nucleus
A. In this case the hadron can undergo multiple rescatterings with the nuc-
leons inside the nucleus. If we assume each hadron-nucleon collision to be
uncorrelated we obtain

SA = exp(iχA) = exp(i
A

∑
i=1

χNi
) =

A

∏
i=1

SNi
. (i.40)

Here SNi
is the S-matrix for the collision between h and the nucleon Ni. In case

S is real, as mentioned above, the phase factor χ will be purely imaginary. For
high energy scattering one can write χ = i∆, and in that case we have S =
exp(−∆).

Denote the profile function of nucleon Ni by fi, which is actually the Fourier
transform of the imaginary part of the forward scattering amplitude. It can
here be interpreted as the absorption probability of the projectile particle as it
travels through the nucleon2. In the eikonal approximation we assume that h
follows the same trajectory after each scattering. This means that the simulta-
neous scattering of h on nucleons i and j is given by fi f j.

Assume first, for simplicity, that the nucleus consist only of 3 nucleons. In
that case the sum of the profile functions is given by f1 + f2 + f3. In order
to avoid double counting, however, we must from this expression subtract
the events where h scatters off two of the nucleons. This means that we get
f1 + f2 + f3 − f1 f2 − f1 f3 − f2 f3. However, we must also not oversubtract
which is why we should add to this the possibility that h scatters off all three
nucleons. For the total profile function T(bbb) we then have

T = f1 + f2 + f3 − f1 f2 − f1 f3 − f2 f3 + f1 f2 f3. (i.41)

This expression is equal to

T = 1 − (1 − f1)(1− f2)(1− f3), (i.42)

S = (1 − f1)(1 − f2)(1 − f3), (i.43)

and if the fi’s are assumed to be small we have

S ≈ ∏
i

exp(− fi) = exp(−∑
i

fi). (i.44)

This expression is equal to (i.39), with a purely imaginary eikonal function.
Using expression (i.36) for the total cross section, we then get

σtot = 2
∫

d2bbb(1 − exp(−∑
i

fi)), (i.45)

which is an expression we will run into several times.

2Note that the optical theorem (i.17) relates the imaginary part of the amplitude to a sum over
probabilities so that this quantity can both be seen as an amplitude and as a probability.
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i.3 The High Energy Limit of QCD

Having reviewed high energy reactions during pre-QCD times, we will in this
section go on to review the advancements in the field made within the frame-
work of QCD. First, however, we will briefly describe an experiment which
has been providing us with a lot of data which offer many tests of perturba-
tive QCD, namely DIS.

i.3.1 Deep Inelastic Scattering

Consider the scattering of electrons on protons. The reaction looks something
like this:

e−(k) + p(P) → e−(k′) + X(PX). (i.46)

Here we have an incoming electron with momentum k which scatters off a
proton with momentum P. What comes out is the electron with momentum
k′ and a hadronic system X with momentum PX. In case X is just a proton, the
process is elastic.

The momentum exchange between the electron and the proton is mediated
via electromagnetic interactions, and what happens is that the electron emits
a virtual photon γ∗ with momentum q = k − k′, which is then absorbed by the
proton.

Experiments of this type were first performed during the 60’s at SLAC (the
SLAC-MIT experiment), and it was observed that for most events the mass of
the system X is much larger than the proton mass [11]. In this case we call the
process Deep Inelastic Scattering (DIS). DIS offers a direct study of the struc-
ture of the proton, and therefore a great possibility to test many predictions
from perturbative QCD. The constituents of the proton (the quarks and the
gluons) are collectively referred to as partons. For the last decade or so, DIS
experiments have been performed in great detail at the HERA accelerator at
DESY, and many interesting results have emerged [12, 13]. A picture of a DIS
process is shown in figure i.1.

DIS is usually described in terms of three variables. One of these is the
energy of the incoming electron which is fixed by the experimental set up.
The other two are usually chosen among the following variables3

Q2 = −q2
> 0, (i.47)

W2 = (P + q)2, (i.48)

x =
Q2

2P · q
=

Q2

W2 + Q2 − m2
p
≈ Q2

W2
. (i.49)

3There exists two more variables which one usually defines, but we will in this thesis never
make use of them so we do not write them here.

i
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k
k′

q

P
X

Figure i.1: Deep Inelastic Scattering.

Here W2 is the cms energy of the γ∗p system and Q2 is the virtuality of the
photon. The variable x is usually called the Bjorken variable and is sometimes
denoted by xBj. In the last line we have neglected Q2 and m2

p compared to

W2, which usually is a very good approximation, as for most experiments at
HERA we have W ≈ 160− 240 GeV while Q2

< 100 GeV2.
The high energy limit, or Regge limit, corresponds to fixed Q2 and large

W2 so that x << 1. This region is thus also referred to as the small-x region.
The HERA accelerator has been able to probe values of x down to 10−4 for
Q2 ≈ few GeV2. It is most common to describe DIS events in x and Q2.

One of the most striking features of the small-x region in DIS is the observa-
tion that the gluon density in the proton, usually denoted xg(x, Q2), increases
steeply as x gets smaller. We will below see that this is actually what QCD
predicts.

i.3.2 QCD Reggeization

A particle is said to reggeize if the amplitude for a process involving the ex-
change of that particle goes like

A ∝ sα(t) as s → ∞, (i.50)

and an interesting question in QCD is whether or not the gluon reggeizes.
Now, when calculating Feynman diagrams in the Regge limit care has to

be taken to the fact the perturbation series may not converge very fast as one
goes to higher orders in αs

4. The problem is that each factor αs entering the
result is accompanied by a factor ln(s/|t|), which can indeed be quite large in

4The coupling αs should not be confused with the Regge trajectory α(t).
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qqq + kkk kkk − qqq +

kkk1
kkk1 − qqq

kkk2 kkk2 − qqq

+ . . .

Figure i.2: . Feynman diagrams for quark–quark scattering via the exchange of gluons.

the Regge limit. Thus one can have αsln(s/|t|) ∼ 1, and it is then not enough
to stop the calculation at a fixed order in αs.

These large logarithms come from the phase space integrations in the inter-
mediate states. Such integrations originate from the unitarity relations given
in (i.16), in which the sum over n also contains phase space integrations.

Obviously it is not possible to calculate the full diagrams to all orders
in αs so one has to make some approximations. The simplest choice is to
only keep those terms, to a given order in αs, which are accompanied by the
largest power of ln(s/|t|). This procedure is known as the Leading Logarithmic
Approximation, LLA. It turns out that the series one needs to sum up is of the
form

∑
n

lnn(s/|t|)
n!

a(t)nαn
s = sa(t)αs . (i.51)

Summing up the diagrams shown in figure i.2 to all orders in perturba-
tion theory, even in the LL approximation, is a formidable task. We will here
only cite the result, and for a comprehensive derivation of the results to be
presented in this section we refer the reader to [14].

Before quoting the result, we mention some interesting features of the LLA
calculation. In this approximation, fermion loops inside the gluon ladder are
completely absent. Actually, the only QCD vertex to enter the game, besides
the quark-gluon vertices in the coupling to the external quarks, is the 3-gluon
vertex. Thus also the 4-gluon vertex is suppressed in this approximation and
never enters the calculations. Also, self-energy and vertex corrections do not
produce the leading logarithms, and thus these diagrams do not enter the LLA
calculations. In the LLA therefore, the coupling is a constant.

Calculating the relevant Feynman diagrams as in figure i.2 to all orders,
and projecting out the colour octet contribution, it can be shown that the result
for gluon exchange between two quarks does indeed behave as

A = A(0) · sǫ(t) ∝ s1+ǫ(t), (i.52)

i
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f (ω, kkk1, k2k2k2)

kkk1 kkk1

kkk2 kkk2

=

kkk1 kkk1

kkk2 kkk2

+

kkk1 kkk1

kkk2 kkk2

kkk kkk

f (ω, kkk, k2k2k2)

Figure i.3: Illustration of the evolution of the gluon ladder. The vertical gluons
in the figure are actually Reggeized gluons which are obtained after summing over
all virtual contributions with the result that the gluon propagator is modified as

1/kkk2 → 1
kkk2 ( s

kkk2 )ǫ(kkk2). The fat dots in the rightmost figure represent the so-called Li-
patov effective vertex which is obtained after taking into account various Feynman
diagrams for the gluon emission.

where

ǫ(t) ≡ ᾱ

2π

∫

d2kkk
t

kkk2(kkk − qqq)2
, ᾱ ≡ αsNc

π
and t = −qqq2. (i.53)

In (i.52) A(0) is the lowest order amplitude which is proportional to s. In (i.53)
the boldface quantities denote two dimensional transverse momenta.

We thus see that the gluon ladder corresponds to a Reggeon with trajectory
α(t) = 1 + ǫ(t). Using the expression for ǫ(t) in (i.53) we see that the intercept
is given by α(0) = 1 + ǫ(0) = 1, which means that the spin-1 gluon itself lies
on this trajectory.

i.3.3 The BFKL Equation

Another interesting question is whether there is any analogy in QCD of the
Pomeron which is responsible for the rising cross sections with s.

The simplest model for the Pomeron in QCD is offered by the two gluon
model, in which Pomeron exchange corresponds to the exchange of two glu-
ons in a colour singlet state. This is the Born approximation for the Pomeron,
and the complete expression is given by summing the full gluon ladder, as in
the case of the reggeized gluon, and projecting out the colour singlet contri-
bution.

The easiest way to sum up contributions from all orders in αs is to write
down an integral equation for the evolution of the gluon ladder. We will here
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only consider the simplest case of zero momentum transfer, i.e. qqq = 0 in (i.53).
The evolution is illustrated in figure i.3, and the equation reads

ω f (ω, kkk1, k2k2k2) = δ(kkk1 − kkk2) +
ᾱ

π

∫

d2kkk

(kkk − kkk1)2

{

f (ω, kkk, k2k2k2)−

kkk2
1

kkk2 + (kkk − kkk1)2
f (ω, kkk1, k2k2k2)

}

. (i.54)

This is the celebrated BFKL [15, 16] (Balitsky, Fadin, Kuraev and Lipatov)
equation (for zero-momentum transfer). The delta function corresponds to
no evolution while the second part, which consists of one real and one vir-
tual contribution, takes into account the evolution of the gluon ladder. The
variable ω is the Mellin conjugate variable to s/kkk2

0, where kkk0 is some typical
transverse momentum scale. To obtain the imaginary part of the scattering
amplitude, ImA, one has to take the inverse Mellin transform of f (ω, kkk1, k2k2k2),
and then integrate the result over kkk1 and kkk2.

One can also write down the BFKL equation as an evolution equation for
f (s, kkk1, k2k2k2) (the inverse Mellin transform of f (ω, kkk1, k2k2k2)). This is completely
straightforward since the derivative w.r.t. ln(s/kkk2) brings down a factor ω as
in the left side of (i.54). We thus get

∂y f (s, kkk1, k2k2k2) = KBFKL ⊗ f (s, kkk1, k2k2k2) (i.55)

where y ≡ ln(s/kkk2), and KBFKL⊗ is the integral kernel in (i.54). The solution
to the BFKL equation in the saddle point approximation reads

f (s, kkk1, k2k2k2) ≈
1

√

kkk2
1kkk2

2

1

2πc

eω0y

√
πy

exp

(−κ2

4c2y

)

, (i.56)

where c2 = 14 ᾱ ζ(3), ω0 = 4 ᾱ log 2, and κ ≡ ln(kkk2
1/kkk2

2).
BFKL thus predicts a power like growth of the amplitude with energy, and

the exponent is quite large, ω0 ≈ 0.55 for ᾱ = 0.2 (which is a reasonable value
for the coupling). This can be compared to the fits in (i.27) and (i.28) which
give an exponent of 0.08 for pp and pp̄ collisions. The terminology is such
that the intercept calculated from perturbative QCD is referred to as the “hard
Pomeron”, while the Pomeron responsible for the rise in σtot in pp collisions is
referred to as the “soft Pomeron”.

What is seen at HERA is that the density does indeed grow like x−λ, but
the exponent λ is lower than 0.55, and it varies with Q2, typically in values
from around 0.3 for Q2 ∼ 100 GeV2 down to values around 0.1 as Q2 → 0.
We should also mention that the leading order BFKL growth is significantly
reduced by non-leading and energy-momentum conservation effects. A nu-
merical evaluation of these effects within the dipole formalism is the subject
of paper 1.

i
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i.3.4 Unitarity and Saturation

A growth of the cross section like exp(ω0y) cannot continue indefinitely. The
reason for this is simple; such a strong growth does not satisfy the Froissart-
Martin (FM) bound in (i.19). This is of course not only a problem for the BFKL
calculation but also for the fits in (i.27) and (i.28), which also violate this bound
for very high s. (Although for these fits the violation would occur beyond the
Planck scale!)

The FM bound specifies how fast a total cross section can grow asymptot-
ically. In the classical analogy in section i.2.3, we considered the scattering
of light on a disc and noted that T(bbb) = 1 and S(bbb) = 0 corresponds to the
complete absorption of the wave at that bbb. In that case the target is completely
opaque, and this limit is referred to as the black disc limit. In this limit, it
is seen from (i.34) and (i.35) that both the scattering and the absorption cross
sections are given by πR2, where R is the radius of the black disc. The total
cross section is then equal to 2πR2.

The growth of the total cross section is then determined by the expansion
of the black disc in the transverse plane. The growth of the black disc depends
on how fast the partons proliferate at each bbb, and also on the nature of the
interaction. For example, the FM bound does not apply to the infinite range
Coulomb potential as in this case the constant C in (i.19) is infinitely large
(since the photon mass mγ is zero). For a confining field on the other hand, the
interaction probability falls off exponentially as a function of the interaction
range. If one further assumes that the interaction probability at each fixed
distance is bounded by a power of the energy (this was the assumption in the
formulation of the FM theorem), then the probability for interaction at some
distance r from the target is given by

P(E, r) 6 Ene−mr. (i.57)

The interaction is then negligible outside the screening length 1
m nlnE, and the

total cross section therefore satisfies

σtot 6
n2

m2
ln2E. (i.58)

There must, however, also be a limit to how fast the interaction amplitude
can increase at each bbb, since the total reaction probability at any bbb must be
bounded by unity, T(bbb) 6 1.

In QCD, the suppression of the growth at each bbb is provided within pertur-
bation theory while the expansion in the transverse plane is determined both
by the perturbative evolution and also by non-perturbative effects related to
confinement.

From general arguments we expect the BFKL-like growth to be modified
as the gluon density gets very high. Consider DIS where we probe the proton
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DGLAP

BFKL

Figure i.4: A cartoon of the evolution of the proton in the transverse plane in the
DGLAP and BFKL formalisms.

with a transverse resolution scale ∆x⊥ ∼ 1/Q. The proton travels at nearly the
speed of light, and due to Lorentz contraction it will appear as a pancake, or a
thin disc. As the proton is boosted to higher energies, gluons will be emitted
at different transverse positions.

In figure i.4 we show a cartoon of how the proton appears at scale Q2 for
some x. The small discs represent the gluons inside the proton. If we now
increase Q2 at fixed x = Q2/s, the evolution can be described by the QCD
renormalization group equations, or the DGLAP [17–20] equations for short.
In this domain the number of gluons increases but the density nevertheless de-
creases since Q2 gets larger. Here the interaction probability stays below one
(assuming it did so initially). In DGLAP evolution one can neglect interac-
tions among the gluons inside the proton, and the linear evolution is therefore
adequate in describing the physics.

Alternatively we can hold Q2 fixed while we decrease x. We are then in the
small-x region and BFKL evolution applies. In this case the number of gluons
increases while their sizes (determined by Q2) remain limited. Thus, at some
sufficiently low x, one will fill up the entire proton, and the overlaps between
the gluons are really large. At this point the interactions between the gluons
cannot be neglected, and the linear BFKL evolution ceases to be valid.

The value of x at which the linear evolution has to be modified depends
on Q2. At large Q2 the gluons probed by the projectile are smaller, and they
will therefore start to overlap at smaller x as compared to the low Q2 case.
The line which separates the linear and non-linear regions is referred to as

i
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Figure i.5: The saturation line separates the linear and non-linear regions in the (x, Q2)
plane.

the “saturation momentum”, and is denoted by Qs(x). Leading order QCD
calculations predict that Qs grows like a power of x [21] (an exponential in
y = ln1/x).

In order to reduce the fast growth of the scattering amplitude there must be
a mechanism which suppresses the growth of the gluon density. It was early
suggested by Gribov, Levin and Ryskin [22] that parton saturation should
tame the growth of the gluon density. They considered the evolution in the
presence of 1 → 2 gluon splittings, as in the linear BFKL evolution, and 2 → 1
gluon mergings which are increasingly important as the gluon density grows.
Such effects ought be proportional to the square of the gluon density, as op-
posed to the growth mechanism which is proportional to the density itself.

We note that the BFKL equation is a linear equation of the form

∂y f (y) = f (y), (i.59)

which has the solution f (y) = Aey. If now we also take into account gluon
mergings then we expect this equation to be modified into the following form

∂y f (y) = f (y)− f 2(y), (i.60)
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with the solution

f (y) =
A

A + e−y , f (0) =
A

A + 1
. (i.61)

From this expression we see that f → 1 as y → ∞. This is due to the non-
linear term in (i.60) which becomes important as f → 1, and exactly cancels
the linear growth term when f = 1.

If initially f is small (in QCD f is of order α2
s ) then we see that, for small y,

we can neglect A in the denominator in (i.61) in which case we obtain a BFKL
type solution. Gluon mergings can thus be neglected initially but they become
increasingly important as the density grows.

The equation derived by Gribov, Levin and Ryskin has a form similar to
(i.60), and is known as the GLR equation. This equation was derived rather
heuristically and it reads

∂y f (s, kkk) = KBFKL ⊗ f (s, kkk) − 81α2
s(kkk)

16kkk2R2
(xg(x, kkk))2, (i.62)

where R is an unknown parameter which is a measure of the size of a typical
region where the gluon density is high. If the gluons are evenly distributed in-
side the proton then R is the proton radius. In that case recombination effects
turn out to be negligible for x > 10−4. However, due to fluctuations in the
gluon number, there can be small regions inside the proton where the number
of gluons is large in which case it could be possible to observe recombination
effects for x values accessible at HERA. We should remark that also NLO ef-
fects reduce the growth of the gluon density, and it is therefore important to
try to separate the effects of saturation from that of NLO effects.

Since the pioneering work by GLR, there has been much progress in under-
standing the non-linear evolution in high energy QCD, and in the forthcoming
sections we will explore some of the evolution equations derived directly from
perturbative QCD.

i.3.5 The Color Glass Condensate

During the recent years a new theory for the high energy limit of QCD has
emerged. This theory predicts that all hadrons are at high energies described
by a new type of matter called the Color Glass Condensate. We will here give
a short summary of this theory and for a number of review articles we refer
the reader to refs [21, 23, 24].

High energy QCD is conveniently formulated in light-cone (LC) coordi-
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nates which are defined by

p± =
1√
2
(E ± pz), (i.63)

x± =
1√
2
(t ± z), (i.64)

p · x = p−x+ + p+x− − p⊥ · x⊥, (i.65)

where p⊥ and x⊥ are two-dimensional transverse vectors. Here x+ is usually
referred to as the LC “time”, and its conjugate variable p− is consequently
referred to as the LC “energy”. In hadron-hadron collisions the right (left)
moving hadron has a large (small) p+ and a small (large) p− given by p− =
m2
⊥

2p+ , with m⊥ being the transverse mass defined by m2
⊥ = p2

⊥ + m2.

Consider now a right moving hadron with total LC momentum P+. The
assumption is then that the hadron can be described by an effective theory
in which the colour sources are given by high-x gluons which have momenta
p+

> Λ = bP+. The small-x gluons on the other hand, have momenta p+
<

Λ. Here b is a number between 0 and 1 which is arbitrary, and x is the fraction
of LC momentum carried by the gluon. The scale Λ, separating the high-
x sources from the small-x gluons, is thus arbitrary, and in order to make
the physics independent of this scale one has to introduce a Renormalization
group procedure, in which layers of gluon fields are integrated out towards
lower momenta5.

The fields with p+
> Λ are no longer dynamical but are replaced by a

classical colour source ρa. The quantum corrections renormalize the classical
source without changing the effective formalism. The classical field equations
are given by

DµF
µν
a (x) = Jν

a = δν+ρa(x). (i.66)

Thus the sources move along the light-cone in the positive z direction, and it
is assumed that they do not deviate from their trajectory after the emission of
the small-x gluons (this is precisely the eikonal approximation encountered
earlier).

The sources are thus sitting at x− ≈ 0 which implies that the classical den-
sity ρa is highly peaked around this value. The longitudinal extension of these

sources can be approximated by ∆x−f ast ∼ 1
p+

f ast

<<
1

p+
slow

∼ ∆x−slow. This

implies that, to the dynamical small-x gluons, the sources appear to be dis-

tributed on a thin sheet. Moreover we have ∆x+
f ast ∼ 1

p−f ast

>>
1

p−slow

∼ ∆x+
slow

so that the sources appear to be frozen to the small-x gluons. For time scales

5This is done in the LLA as in sec i.3.3.
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longer than ∆x+
f ast, however, the source configuration will change, and ρa

is therefore given by a random field with a normalized distribution WΛ[ρ],
which depends on the scale Λ.

In the quantum theory, the small-x gluons are given by dynamical quan-
tum fields, and one proceeds by integrating out these in layers starting from
the initial scale Λ. The integrated fields are added to ρa which is renormalized.
Correlation functions are then given by two averages, first an average over the
dynamical quantum fields, and secondly an average over the classical random
colour source ρa. Mathematically this can be written as

〈Aµ(x)Aν(y)〉 = 〈〈Aµ(x)Aν(y)〉Λ
quantum〉ρ,classical

=
∫

Dρ WΛ[ρ] 〈Aµ(x)Aν(y)〉Λ
quantum

=
∫

Dρ WΛ[ρ]

∫ Λ DA Aµ(x)Aν(y)eiS[A,ρ]δ(G(A))
∫ Λ DAeiS[A,ρ]δ(G(A))

(i.67)

where G(A) is the gauge fixing condition. In covariant gauge G(A) = ∂µ Aµ,
and in this case the only non-trivial field component is A+

a ≡ αa. The relation
between αa and ρa is given by the Poisson equation: ∇2αa = −ρa. Using this
relation one can therefore specify WΛ either as a function of αa or ρa.

The weight function WΛ satisfies a Renormalization Group Equation (RGE)
which describes the evolution of the condensate in “rapidity” Y ≡ ln(P+/Λ)
(from now on we will instead of WΛ use the notation WY). This RGE is known
as the JIMWLK (Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and
Kovner) equation [25–28], and it reads

∂YWY [α] =
1

2

∫

d2x⊥d2y⊥
δ

δαa(x⊥)
ηab(x⊥, y⊥)

δ

δαb(y⊥)
WY [α], (i.68)

where

ηab(x⊥, y⊥) =
1

4π3

∫

d2 z⊥
(x⊥ − z⊥) · (z⊥ − y⊥)

(x⊥ − z⊥)2(y⊥ − z⊥)2
·

·(1 − V̄�
x⊥V̄z⊥)a f (1 − V̄�

z⊥V̄y⊥) f b (i.69)

and

αa(x⊥) ≡
∫

dx−αa(x−, x⊥). (i.70)

In (i.69), V̄ denotes a Wilson line, to be defined below, which is non-linear
in the fields αa to all orders. One can notice that the JIMWLK equation is of
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the Fokker-Planck type with η playing the role of the, spatially dependent,
diffusion coefficient.

The average of an arbitrary observable O evolves according to

∂Y〈O〉 =
∫

Dα O[α] ∂YWY[α] =
∫

Dα O[α] H[α] WY [α] . (i.71)

Here we have defined the JIMWLK “Hamiltonian” H. By using (i.68), and
integrating by parts, this evolution can be rewritten in the following form

∂Y〈O〉 =

〈

1

2

∫

d2x⊥d2y⊥
δ

δαb(x⊥)
ηab(x⊥, y⊥)

δ

δαa(y⊥)
O

〉

. (i.72)

Consider now an elementary projectile, a qq̄ dipole, which scatters off a
hadron. The scattering amplitude is denoted T(x⊥, y⊥), where x⊥ (y⊥) is the
transverse coordinate of the quark (antiquark). The explicit expression for T
reads

T(x⊥, y⊥) = 1 − 1

Nc
Tr(V

�
x⊥Vy⊥) (i.73)

where V is the Wilson line given by

V
�
x⊥ = P exp

(

ig
∫

dx−αa(x−, x⊥)ta

)

. (i.74)

Here ta are the colour matrices in the fundamental representation. The rea-
son we denoted the Wilson lines in (i.69) with V̄ is because in that case the
colour matrices are in the adjoint representation, i.e ta is replaced by Ta. P in
(i.74) denotes a path ordering of the colour matrices in the expansion of the
exponential.

The Wilson lines describe the multiple scatterings of the quark and the
antiquark off the classical colour fields αa ≡ A+

a in the eikonal approximation.
Note that V� can be rewritten in the following form

V� = P exp

(

i
∫

dτ g
dxµ

dτ
taAa

µ

)

= P exp

(

i
∫

d4y
∫

dτ g
dxµ

dτ
taδ4(x − y)Aa

µ

)

= P exp

(

i
∫

d4yj
µ
a Aa

µ

)

= P exp

(

i
∫

d4yHint(y)

)

. (i.75)

In the last line we have identified the interaction Hamiltonian and we thus see
that the Wilson line is nothing else but the S matrix for the particle. For the qq̄
dipole we then get the gauge invariant expression S = 1 − T with T given in
(i.73).
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By using equation (i.72) and (i.73) one can derive the following equation
for 〈T〉,

∂Y〈T(x⊥, y⊥)〉 =
ᾱ

2π

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
{−〈T(x⊥, y⊥)〉+

+〈T(x⊥, z⊥)〉 + 〈T(z⊥, y⊥)〉 − 〈T(x⊥, z⊥)T(z⊥, y⊥)〉}. (i.76)

We see that the equation for 〈T〉 receives a contribution from 〈TT〉. The equa-
tion for 〈TT〉 will in turn receive a contribution from 〈TTT〉 and so on. There-
fore the JIMWLK equation does not generate a closed equation for the dipole
scattering amplitude, but it rather generates an infinite hierarchy of equa-
tions, of which (i.76) is the first. This hierarchy is commonly referred to as
the Balitsky-JIMWLK (B-JIMWLK) hierarchy since the same set of equations
were derived earlier by Balitsky [29], albeit in a different formalism.

In order to obtain a closed equation we can make a mean field approxima-
tion where we replace 〈TT〉 by 〈T〉〈T〉. In that case we obtain the so-called
Balitsky-Kovchegov (BK) equation [29, 30] which is probably the most simple
non-linear evolution equation one can write down in perturbative QCD. The
BK equation is similar to the GLR equation (i.62) but is, unlike the latter, well
founded in perturbative QCD.

Let us now disregard all multiple scatterings in the evolution of the hadron,
i.e. we disregard the higher order correlations encoded in the Wilson lines in
(i.69). This means that we expand the Wilson lines to the lowest non-vanishing
order in αa, which is O(α2). This is justified if the associated fields are weak,
so that we are outside the saturation region. In this case the last term in (i.76)
is absent and the equation reduces to

∂Y〈T(x⊥, y⊥)〉 =
ᾱ

2π

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
{−〈T(x⊥, y⊥)〉+

+〈T(x⊥, z⊥)〉+ 〈T(z⊥, y⊥)〉}. (i.77)

As demonstrated by Mueller [31], this is nothing else but the BFKL equation
in transverse coordinate space. Thus the JIMWLK equation gives the BFKL
equation in the weak field limit. We will later see that equations (i.76) and
(i.77) can be easily derived within the dipole formalism.

The BFKL equation, which describes the evolution of a single colour singlet
gluon ladder (the Pomeron), thus arises from the JIMWLK equation when η is
expanded to O(α2). In this case we can write the Hamiltonian schematically

as H ∼ α2 δ2

δα2 . This evolution is illustrated in figure i.6, and one can here inter-
pret the fields α as annihilation operators which remove two gluons while the
functional derivatives δ/δα act as creation operators which add two gluons.
In this way we see that H describes the evolution of a single gluon ladder as
seen in the figure.
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α α

δ
δα

δ
δα

W[ρ]

Figure i.6: The evolution generated with H ∼ α2 δ2

δα2 which is equivalent to the BFKL
evolution of the gluon ladder. The grey blob on the top denotes the classical source
with weight W[ρ] and the evolution proceeds in the direction of the arrow.

. . .αn

δ
δα

δ
δα

W[ρ]

Figure i.7: One of diagrams generated from the full Hamiltonian H ∼ ∑n cnαn δ2

δα2 . In
this case n gluons merge into 2 gluons.

The full Hamiltonian is given by H ∼ ∑n cnαn δ2

δα2 . Thus the higher order
terms in α give rise to diagrams as in figure i.7, which describe the fusion of
an arbitrary number of gluons into two gluons. However, since there are only
two functional derivatives present in (i.68), this means that we cannot produce
more than two t-channel gluons with which we can probe the target. Notice
that this also implies that the B-JIMWLK hierarchy has the generic form6

∂Y〈Tk〉 = M⊗{〈Tk〉 − 〈Tk+1〉}, (i.78)

6For simplicity we here consider the large Nc version of these equations in which case com-
plicated colour structures vanish and the evolution can be written in terms of dipole amplitudes
only.
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where Tk is thus coupled only to higher order amplitudes Tn, n > k. The
presence of higher order functional derivatives in (i.68) would on the other
hand generate equations of the form

∂Y〈Tk〉 = M⊗{〈Tk〉 − 〈Tk+1〉}+K1 ⊗ {〈Tk−1〉 − 〈Tk〉 + 〈Tk+1〉} (i.79)

for H ∼ ∑n cnαn( δ2

δα2 + δ4

δα4 ) and some vertex K1, and

∂Y〈Tk〉 = M⊗{〈Tk〉 − 〈Tk+1〉}+ K1 ⊗ {〈Tk−1〉 − 〈Tk〉}+

K2 ⊗ {〈Tk−2〉 − 〈Tk−1〉 + 〈Tk〉 − 〈Tk+1〉} (i.80)

for H ∼ ∑n cnαn( δ2

δα2 + δ4

δα4 + δ6

δα6 ) and some vertex K2 and so on.
In terms of Pomeron interactions (we now restrict ourselves to the large

Nc limit where two-gluon ladders dominate over higher order gluon ladders)
such evolution equations describe processes where the Pomerons can evolve
BFKL-like, split and merge. In that case one can obtain Pomeron loops during
the evolution, and the modified equations above are therefore referred to as
Pomeron loop equations. The B-JIMWLK equations on the other hand, only
contain Pomeron mergings and therefore no Pomeron loops. This was realized
quite recently, and there have since then been various attempts to modify the
B-JIMWLK equations so that they can incorporate Pomeron loops [32–34].
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i.4 The Dipole Picture of QCD

It is sometimes convenient to describe QCD in terms of colour dipoles [35,36],
or colour antennas [37], rather than in terms of the quarks and the gluons
themselves. Just as in electrodynamics, a colour dipole in QCD is formed
by the separation of a colour electric charge–anti-charge pair. However, one
difference is that while in electrodynamics there is only one type of electric
charge, in QCD we have three colours, and in order to make a colour singlet
the colour dipole needs to be the coherent sum of rr̄, bb̄ and gḡ colour charges.

Consider for example an e+e− annihilation event, as shown in figure i.8.
The virtual photon splits into a qq̄ pair which may then emit QCD radiation,
and for short time scales asymptotic freedom enables us to use perturbation
theory to make QCD calculations.

In QED, when the qq̄ pair (or any other charge–anti-charge pair) emits a
photon the electric current is not changed (apart from the recoils suffered by
the emitters), since the photon does not carry electric charge. Thus the emis-
sion of the second photon proceeds in a similar way. In QCD, however, the
gluons carry colour charges which means that the colour current is changed in
a nontrivial way, and the emission of the second gluon is therefore not similar
to the emission of the first.

The emission of gluons from the qq̄ pair can, however, be understood in
the colour dipole language in a very simple way. Assume that we have a rr̄
pair formed from the virtual photon. Assume also that the red quark emits
a rb̄ gluon, which changes the colour of the quark into blue, as shown in
figure i.8. After the emission we thus have two colour dipoles, a bb̄ dipole
stretched between the quark and the “antiquark” part of the gluon, and a rr̄
dipole stretched between the antiquark and the “quark” part of the gluon. The
same configuration also arises if we start with a bb̄ pair and if the anti-blue an-
tiquark emits a b̄r gluon, changing its colour to anti-red.

Since the original quark–antiquark pair is a colour singlet, i.e. a coherent
sum of rr̄, bb̄ and gḡ, there is no way we can distinguish the two processes
from each other. Thus the quark and the antiquark in the pair emit the gluon
coherently, and the result is that the original dipole splits into two new dipoles,
one stretched between the quark and the “antiquark” part of the gluon, and
the other one stretched between the “quark” part of the gluon and the anti-
quark.

If the gluons emitted in the cascade are ordered in energy in such a way
that the last emitted gluon is much softer than the previous one, it can be
shown that the emission of the second gluon can be described by the emis-
sion from two independent dipoles, modulo interference corrections which
are suppressed by 1/N2

c . This picture holds for the entire cascade and the
process can therefore be formulated as a classical branching process, where at
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Figure i.8: Gluon radiation from an e+e− annihilation event.

each step a dipole can split into two new dipoles, both of which can further
split, independently from each other and the rest of the cascade, apart from
the 1/N2

c corrections. It is here essential that the cascade is strongly ordered,
and if we further assume Nc to be large, we obtain a cascade of independent
dipoles.

As time goes on and the quarks and the gluons move further apart from
each other, perturbation theory eventually breaks down. To further describe
the evolution of the cascade one therefore needs to resort to phenomenological
models, such as the Lund string fragmentation model. A further advantage of
the perturbative dipole cascade is that it gives a smooth and natural transition
to the non-perturbative Lund string.

In phenomenological applications the dipole formalism has been very suc-
cessful. The dipole cascade model [35, 36], as implemented in the ARIADNE
event generator [38], has been able to describe e+e− final states to a very good
precision.

In DIS the situation is a bit more subtle. Here we are dealing with a space-
like cascade initiated by the virtual photon, as opposed to the time-like e+e−

cascade. Furthermore, DIS is much more complicated as there are two rele-
vant scales, Q2 and W2, and in this case the QCD cascade determines both the
final states and the total cross section. In e+e− annihilation on the other hand,
the total cross section can easily be calculated perturbatively, while the dipole
cascade determines the final states only.

A modified version of the dipole model for DIS is again implemented in
ARIADNE. This model is referred to as the Soft-Radiation Model [39], and it
is currently the most successful model in describing the final states at HERA.
However, the model suffers from the fact that it does not predict the total cross
section, and it is also not very well founded within perturbative QCD.

Another extension of the dipole model is called the Linked Dipole Chain
Model (LDC) [40], which is a reformulation and a generalization of the so-
called CCFM model [41, 42] which incorporates the features of both DGLAP
and BFKL evolutions in their respective domains. The LDC and CCFM mod-
els have the ambition to describe both the total cross section and the final
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states. They work reasonably well in describing both, although none of them
is as successful as the abovementioned Soft-Radiation Model in describing the
final states.
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i.5 Dipoles In Coordinate Space

All dipole models described above have the property that they are formu-
lated in transverse momentum space. This has the advantage that one can
in a MC simulation easily take into account energy-momentum conservation
effects which are not included in the leading order QCD calculations. For very
dense systems, however, a formulation in transverse coordinate space is more
appropriate as saturation effects are easier to take into account in this repre-
sentation.

Actually in sec i.3.5 we have already introduced dipoles in the high energy
region of QCD. In eq (i.76), we wrote down the evolution equation satisfied by
an elementary dipole located at transverse coordinates (xxx, yyy) (in this section
we denote transverse vectors with xxx rather than with x⊥). In that case the
dipole was considered to be fixed while the target hadron evolved within the
CGC formalism. However, we can formally interpret this equation in terms of
dipole evolution, although we derived it from the JIMWLK equation which is
not written in terms of dipole degrees of freedom.

i.5.1 The B-JIMWLK Equations in Dipole Language

To make the interpretation obvious, we rewrite the LHS of eq (i.76) as ∂YTY =
1

dY (TY+dY − TY) (for simplicity we drop all brackets). Moving over TY(xxx, yyy) to
the RHS, and multiplying both sides with dY, we get

TY+dY(xxx, yyy) = TY(xxx, yyy)×
(

1 − dY
ᾱ

2π

∫

zzz
M(xxx, yyy, zzz)

)

+

+dY
ᾱ

2π

∫

zzz
M(xxx, yyy, zzz){T(xxx, zzz) + T(zzz, yyy) − T(xxx, zzz)T(zzz, yyy)}. (i.81)

We have here defined the dipole kernel M

M(xxx, yyy, zzz) ≡ (xxx − yyy)2

(xxx − zzz)2(zzz − yyy)2
. (i.82)

The first term in the RHS of eq (i.81) suggests that the dipole (xxx, yyy) might
scatter off the hadron as it is, with a reduced probability given by expression
in the parenthesis. The other terms take into account the possibility that only
one of the two new dipoles (xxx, zzz) and (zzz, yyy) scatters off the target, while in the
last term both of the new dipoles scatter.

The dipole splitting interpretation is actually more transparent if we rewrite
(i.81) in terms of the S-matrix for the dipole, by using the relation S = 1 − T.
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We then have

SY+dY(xxx, yyy) =

(

1 − dY
ᾱ

2π

∫

zzz
M(xxx, yyy, zzz)

)

× SY(xxx, yyy) +

+dY
ᾱ

2π

∫

zzz
M(xxx, yyy, zzz) S

(2)
Y (xxx, zzz; zzz, yyy), (i.83)

where S
(2)
Y (xxx, zzz; zzz, yyy) = 〈(1 − T(xxx, zzz))(1 − T(zzz, yyy))〉. From this equation we

clearly see that the dipole can remain as it is, with a reduced probability 1 −
dY ᾱ

2π

∫

M, or it can evolve into two dipoles (xxx, zzz) and (zzz, yyy), with a differential

probability given by dY ᾱ
2π d2zzzM.

We should of course be a bit careful when we talk about the survival proba-
bility being equal to 1− dY ᾱ

2π

∫

M, since the integral over M diverges which
can be seen from (i.82). In the expressions above we therefore need a cutoff ρ
such that (xxx − zzz)2, (zzz − yyy)2 > ρ2. However, note also that the evolution equa-
tions in (i.76) and (i.77) are finite since the expression in the RHS vanish at
zzz = xxx and zzz = yyy. The fact that T(xxx, xxx) = 0 is referred to as colour transparency,
and it can easily be seen that (i.73) satisfies this condition.

The dipole interpretation given here can be extended to the complete
B-JIMWLK hierarchy in case we neglect all Nc-subleading terms7. At each
step one dipole can split into two new dipoles, both of which can continue to
split independently from the rest of the cascade, just as in the discussion in sec
i.4.

i.5.2 Mueller’s Dipole Formulation

A dipole formulation of the leading order small-x evolution was given by
Mueller [31, 43, 44]. Mueller’s model is formulated in transverse coordinate
space which makes it easy to take into account multiple scatterings as we dis-
cussed in sec i.2.4.

Starting from a qq̄ pair, which might originate from the virtual photon in
DIS, one can calculate the probability to emit a soft gluon from this pair (the
process is illustrated in figure i.9). That the gluon is soft means that one can
neglect the recoil in the emission (which is precisely the eikonal approxima-
tion), and in that case this probability is determined by the dipole kernel (i.82).
In the leading logarithmic and large Nc approximations, further emissions fac-
torize so that one gets a cascade of dipoles evolving according to the discus-
sion above. The original qq̄ along with the emitted soft gluons can be referred
to as an onium (quarkonium).

The evolution of the dipole cascade can conveniently be formulated using
the operator formalism introduced by Mueller [44]. We define the operators

7Again it is essential that the cascade is strongly ordered, which is true in the CGC approach
since it is formulated in LLA as mentioned before.
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Figure i.9: The emission of a gluon from a colour dipole. The relevant Feynman
diagrams are shown in the top figure. In the bottom figure we represent the dipole as a
line stretched between the colour ends. The arrow indicates the direction of the colour
flow, which goes from colour to anticolour. In the rightmost diagram we illustrate the
splitting of the original dipole into two new dipoles.

a(xxx, yyy) and a�(xxx, yyy) which annihilate and create a dipole, respectively, at posi-
tion (xxx, yyy). These satisfy bosonic commutation relations

[a(xxx1, yyy1), a�(xxx2, yyy2)] = δ(2)(xxx1 − xxx2)δ(2)(yyy1 − yyy2). (i.84)

The onium state |ψ〉 can then be expanded in the dipole states as

|ψ〉 = ∑
N

∫

dΓNψN({xxxiyyyi}N)|{xxxiyyyi}N〉 (i.85)

where dΓN =
1√
N!

N

∏
i=1

d2xxxid
2yyyi, |{xxxiyyyi}N〉 =

N

∏
i=1

a�(xxxi, yyyi)|0〉.

(i.86)

The evolution is driven by two vertices, one which includes the 1 → 2 dipole
splitting, and one which takes into account the virtual corrections which are

i
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needed in order to ensure probability conservation. They read

V1 =
ᾱ

2π

∫

xxx,yyy,zzz
M(xxx, yyy, zzz)a�(xxx, zzz)a�(zzz, yyy)a(xxx, yyy), (i.87)

V2 = − ᾱ

2π

∫

xxx,yyy,zzz
M(xxx, yyy, zzz)a�(xxx, yyy)a(xxx, yyy). (i.88)

Assume we start from a single dipole (xxx0, yyy0) at rapidity 0. The probability
that the system after a rapidity evolution of Y contains N dipoles is given by

PN(Y) = 〈N|eY(V1+V2)a�(xxx0, yyy0)|0〉 (i.89)

=
∫

dΓN〈0|
N

∏
i=1

a(xxxi, yyyi)eY(V1+V2)a�(xxx0, yyy0)|0〉

=
∫

dΓN PN({xxxi, yyyi}|Y). (i.90)

In the last step we have defined the probability density to find N dipoles lo-
cated at positions {(xxxi, yyyi)}N

i=1. The interpretation of PN as probabilities is due
to the fact that they satisfy

∑
N

PN(Y) = ∑
N

∫

dΓN PN({xxxi, yyyi}|Y) = 1 (i.91)

for any Y.
The evolution can actually be formulated as a gain-loss type of equation.

Starting from the elementary dipole (xxx0, yyy0), the evolution generates a chain
of colour dipoles (xxx0, xxx1), (xxx1, xxx2), . . . (xxxN−1, yyy0) after the emission of N − 1

gluons at transverse positions {xxxi}N−1
i=1 . Let us denote the probability density

for this configuration by PN(xxx1, xxx2, . . . , xxxN−1|Y). It can then be shown that it
evolves according to

∂YPN(xxx1, . . . , xxxN−1|Y) = − ᾱ

2π

N

∑
i=1

∫

zzz
M(xxxi−1, xxxi, zzz)PN(xxx1, . . . , xxxN−1|Y) +

+
ᾱ

2π

N−1

∑
i=1

M(xxxi−1, xxxi+1, xxxi)Pi
N−1(xxx1, . . . , xxxN−1|Y)

(i.92)

where in Pi
N−1 the coordinate xxxi is absent and we have defined xxxN ≡ yyy0.

Equation (i.92) is interpreted as follows. The negative contribution on the
RHS is the loss term associated with the reduced probability that the original
configuration remains as it is. The second term tells us that we can reach the
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configuration on the LHS by emitting a gluon at position xxxi from the config-
uration (xxx0, xxx1), . . . (xxxi−1, xxxi+1), . . . , (xxxN−1, yyy0). This gives an increase in the
probability density (a gain term).

The great advantage of the transverse coordinate space formulation is that
the transverse coordinates of the gluons are frozen during the evolution (due
to Lorentz contraction) and the scattering process. We can then construct the
S-matrix much in the same way as we did in section i.2.4. Indeed, using the
operator formalism, Mueller showed that the S-matrix is given by

SY = ∑
N,M

PN(Y0)PM(Y −Y0) exp

(

−
N

∑
i=1

M

∑
j=1

f (xxxi, yyyi|xxxj, yyyj)

)

=

〈

exp

(

−∑
i,j

fij

)〉

. (i.93)

Here fij is the basic dipole–dipole scattering amplitude given by

fij = f (xxxi, yyyi|xxx j, yyyj) =
α2

s

8
ln2

(

(xxxi − yyyj)
2(yyyi − xxxj)

2

(xxxi − xxx j)2(yyyi − yyyj)2

)

. (i.94)

Note that (i.93) has exactly the same form as the expression in (i.44)8. The
only difference between the two is that the dipole S-matrix is obtained after
averaging over onium configurations. This is actually the relevant quantity
physically since the dipole configuration would be different for each scatter-
ing event in a collider experiment.

Using this expression for the S-matrix, we get the total cross section as

σtot = 2
∫

d2bbb

〈

1 − exp(−∑
ij

fij)

〉

(i.95)

where we note the similarity to (i.45).
Expanding the exponential in (i.95) one obtains the contribution from the

multiple scattering series. The lowest one of these corresponds to the BFKL
contribution, and we have already mentioned that eq (i.77) is the BFKL equa-
tion in transverse coordinate space. This equation follows immediately from
the dipole model if we allow at most one dipole–dipole scattering in each
event.

The higher order contributions generate the non-linear contributions in the
B-JIMWLK equations, as we already mentioned above. We thus see that the
dipole model takes us beyond the BFKL formalism since we can take into

8The similarity is even more obvious in a frame where the whole rapidity interval is given to
one onium while the other one is just an elementary dipole.

i
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account the exchange of an arbitrary number of Pomerons, even if we start
the evolution from a single dipole. The fact that one can include the “many-
body” correlations in a relatively simple way makes the transverse coordinate
representation useful in high energy QCD.

We notice that eq (i.94) arises from the definition (i.73) in case we make
a weak field expansion of the Wilson lines. The expression in (i.94) corre-
sponds to the exchange of two gluons in a colour singlet state, which is the
Born approximation for the Pomeron. The full Pomeron is thus generated by
the evolution of the dipole cascades, plus the single scattering between two
oppositely moving dipoles in the two gluon exchange approximation.

i.5.3 Saturation and Frame Independence

Multiple interactions induce correlations among different dipoles within the
same cascade. Notice, however, that the evolution of the cascade is linear as
there are no interactions between dipoles in the same cascade. Actually, since
at each step each dipole can split independently from the rest of the cascade,
the total number of dipoles increases exponentially. Therefore the cascade
evolution is BFKL-like, while non-linearities only arise from multiple dipole
interactions.

The treatment of non-linear saturation effects is therefore not fully con-
sistent. However, in case the rapidity interval between the two cascades is
shared equally, multiple scatterings become important at rapidities where one
can still neglect saturation effects within the individual cascade evolutions.
This can easily be understood from the following arguments. The scattering
between two dipoles is of order α2

s and the total reaction probability goes like
α2

s · n(y) · m(Y − y) for two cascades containing n and m dipoles respectively.
Thus when this number is of order one, multiple scatterings become impor-
tant.

If we assume that a dipole interacts with dipoles from the same cascade in
the same way as it does with dipoles from another cascade, then the probabil-
ity that it interacts with any other dipole in the cascade is given by α2

s · n(y).
The number of dipoles grows like n(y) ∼ eωy, with ω being the BFKL inter-
cept, and we see that

α2
s · n(y) · m(Y − y) ∼ α2

s eωyeω(Y−y) = α2
s eωY. (i.96)

Thus when Y ∼ 1
ω ln(1/α2

s ) multiple scatterings become important. On the
other hand, saturation in the cascade evolution becomes important either when

y ∼ 1
ω ln(1/α2

s ), or when Y − y ∼ 1
ω ln(1/α2

s ). In order to minimize the error

the optimal choice is obviously y = Y/2. 9

9Here we assume the initial states to be similar. If on the other hand we consider the collision
between a dipole and a large nucleus, the optimal frame would be the rest frame of the nucleus.
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At higher energies the approximation above becomes worse, and we then
need to include saturation effects also during the evolution. Consider any
process where we have multiple dipole interactions (multiple Pomeron ex-
changes). Assume now we make a Lorentz boost, which means that we change
Y0 in (i.93). We may for example choose Y0 ≈ Y or Y0 ≈ 0, in which case one
of the onia is just an elementary dipole.

In such a frame there must be Pomeron mergings inside the highly evolved
onium, since there is now only one Pomeron exchange between the colliding
onia. Since the evolution is linear, this process is not included in the dipole
model. Thus, whether or not we include a non-linear interaction depends on
the frame we use for the calculation. This implies that the formalism is frame
dependent.

Mathematically, the condition that the formalism be frame independent
means that the S-matrix (i.93) only depends on the total rapidity interval Y,
and not on how we divide this interval between the two cascades. We must
thus have ∂Y0

S = 0.
Let us denote a generic dipole state containing N − 1 gluons with AN . The

state carries information on the transverse position of each gluon, and also on
how these gluons are connected to each other via the dipoles. The evolution
of the distribution P(AN, Y) can then be written as

∂Y P(AN, Y) = − ∑
CN+1

∫

z
R(AN → CN+1)P(AN, Y)

+ ∑
CN−1

R(CN−1 → AN)P(CN−1, Y). (i.97)

Here we have assumed the dipole state to evolve through the addition of one
gluon, with splitting rate R, but we do not specify in which way the dipole
configuration changes. The integral

∫

z specifies the integration over the trans-
verse coordinates of the newly emitted gluon. We rewrite the S-matrix in the
following way

S =
∞

∑
N,M=1

∑
AN

∑
BM

∫

{N,M}
P(AN, Y0)P(BM, Y − Y0)S(AN, BM), (i.98)

where
∫

{N,M} denote the integration over the transverse coordinates of all the

gluons in the respective cascades. Using eq (i.97), the condition ∂Y0
S = 0 now

reads

∑
CN+1

∫

z
R(AN → CN+1){S(CN+1, BM)− S(AN , BM)} =

= ∑
DM+1

∫

z
R(BM → DM+1){S(AN , DM+1) − S(AN , BM)}. (i.99)

i
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This equation is not satisfied for the dipole model in case one includes
multiple scatterings. It was, however, shown in [45] that the equality does
hold in the one pomeron approximation 10. In that case the equation reduces
to

N

∑
i=1

M

∑
j=1

∫

zzz
M(xxxi−1, xxxi, zzz){ f (xxxi−1, zzz|yyyj−1, yyyj) + f (zzz, xxxi|yyyj−1, yyyj)

− f (xxxi−1, xxxi|yyyj−1, yyyj)} =

=
N

∑
i=1

M

∑
j=1

∫

zzz
M(yyyj−1, yyyj, zzz){ f (yyyj−1, zzz|xxxi−1, xxxi) + f (zzz, yyyj|xxxi−1, xxxi)

− f (yyyj−1, yyyj|xxxi−1, xxxi)}, (i.100)

where f was defined in (i.94). Here we have denoted the transverse coordi-
nates of the dipoles in the left-moving (right-moving) onium with yyyj (xxxi).

By making a Möbius transformation one can transform the coordinates xxxi

and yyyi into one another, and using the Möbius invariance of the dipole ker-
nel and f , each integral in the sum on both sides can be shown to be equal.
Since there are N · M terms in each sum, the equality does indeed hold for the
complete expression.

i.5.4 Dipole Swing

Identifying the interactions which give rise to the missing saturation effects
mentioned above has been one of the tasks which the papers in this thesis are
concerned with. Our proposal is to include the so-called dipole swing mecha-
nism in the evolution.

Note that the evolution which starts from a single dipole generates a chain
of dipoles which are all connected to each other via the gluons (this was dis-
cussed in sec i.4). When two dipole cascades collide, each dipole interaction
implies a recoupling of the colour flow as indicated in figure i.10. A single
dipole collision gives rise to two chains stretched between the right- and left-
moving dipole ends, while multiple subcollisions give rise to colour loops.

If we now make a boost, these loops have to be formed inside one of the
dipole cascades. It is then necessary that saturation effects give rise to such
loops inside the cascades. The loops can be formed in two different ways.

First of all, if we wish to go beyond the leading Nc approximation we
must take into account the fact that colour structures more complicated than
dipoles, such as quadrupoles, are formed. Using the dipole basis one then
has to decide how to represent such a quadrupole. The natural way to do
this would be to approximate the quadrupole field by two dipoles formed by

10Note that eq (i.96), which corresponds to one pomeron exchange, does not depend on Y0.
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Figure i.10: Each dipole interaction among the dipole chains implies a recoupling of
the colour flow as indicated in the figure. Each arrow indicates the colour flow which
goes from colour to anti-colour.

the closest colour–anticolour pairs. Thus if we have two dipoles (xxxi, yyyi) and
(xxxj, yyyj), we must take into account the fact that these may regroup themselves
into two new dipoles (xxxi, yyyj) and (xxx j, yyyi). This process is called a dipole swing.

Secondly, dipoles inside the same cascade may interact with each other by
exchanging gluons. As mentioned above, each interaction implies a recou-
pling of the colour flow, and therefore the two dipoles (xxxi, yyyi) and (xxxj, yyyj) will
once more be transformed into (xxxi, yyyj) and (xxxj, yyyi).

If we see the dipole swing as a way to approximate colour quadrupoles,
then it will be suppressed by11 1/N2

c . If on the other hand we view the swing
as the result of a gluon exchange, then it must be proportional to α2

s . However,
notice that αs is formally suppressed by a factor Nc when compared to ᾱ which
appears in the dipole splitting kernel in (i.82). Thus in both cases the process
is suppressed by 1/N2

c .
In our Monte Carlo implementation each dipole is randomly assigned one

of N2
c possible colours, and only dipoles of the same colour are allowed to

swing. The weight for a swing is determined by the factor

(xxxi − yyyi)
2(xxxj − yyyj)

2

(xxxi − yyyj)2(xxxj − yyyi)2
. (i.101)

From this weight we see that the swing is more likely to replace two dipoles by
two smaller dipoles, in accordance with the discussion above. It also retains
the property that the total weight of a dipole chain is given by ∏i(1/rrr2

i ) where
the index i runs over all dipoles present in the cascade, and rrri the size of the
dipole i.

11One may naively expect that the probability for a recoupling is proportional to 1/Nc, but
the correct factor is 1/N2

c since this is the probability that a given colour–anticolour pair forms a
colour singlet.

i
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r_1 r_2 r_3> >

Figure i.11: At the leftmost figure, we see the proton at a certain resolution scale r1. As
we put more gluons inside the proton all avaliable holes with radius larger than r1 get
occupied. We can then put more gluons inside the proton by lowering our resolution
scale to r2 < r1. We can continue to increase the gluon occupancy until there are
no holes with radius larger than r2. We can then continue by further lowering our
resolution scale down to r3 < r2 and so on. Continously shrinking the length scale, we
can always find avaliable space for more gluons.

We also note that the weight in eq (i.101) gives an analogy with the CGC
formalism where it can be shown that the gluon occupation number at fixed
impact parameter bbb, and transverse momentum kkk, satisfies

dN

d2bbbd2kkk
.

1

α2
s

(i.102)

due to saturation. In (i.102) we have integrated over rapidity y, and the
occupation number density for each fixed y is bounded by 1/αs. In the CGC
formalism, there is no bound for the total number of gluons. The growth of
the total number of gluons never stops, even in the saturation region. What
happens is that the exponential growth in y (powerlike in s) in the dilute re-
gion is replaced by a linear growth in y (logarithmic in s) in the saturation
region. What saturates is therefore the splitting rate of the gluons, rather than
the total number of gluons.

This can be understood as follows. Let us again represent the proton as a
thin disc in which the gluons appear as smaller discs with radii r ∼ 1/|kkk|. As
we go to higher energies, the number of gluons inside the proton increases,
and we can continue to put more gluons on top of each other until there are
so many gluons overlapping that their mutual interaction is strong enough to
prevent further occupation at that bbb. If we thus hold the gluon sizes fixed,
(fixed kkk) then sooner or later we will reach a point where it is not possible to
put in any more gluons of that size. In that case we have to increase kkk, which
in our classical picture corresponds to adding smaller discs into the proton,
see figure i.11. At one stage those smaller discs will also fill up the avaliable
holes, but there is then more room for even smaller discs and so on. We can
continue in this way forever, and the total number of gluons therefore never
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SWING

SWING

Figure i.12: At the leftmost figure, we see a certain region of the proton occupied by
dipoles. When the number of dipoles around a certain bbb is large enough, there will be
dipole swings. In the second figure we zoom into the region around one of the dipoles,
which after some time gets occupied with more dipoles. When the density around this
new bbb gets high, there will be more swings and so on.

ceases to grow. For fixed kkk, however, the occupation number must saturate, as
in (i.102).

The dipole swing works in a very similar way (see figure i.12). Since the
evolution is driven by the 1 → 2 splitting plus the 2 → 2 swing, the total
number of dipoles will continue to grow forever. Assume, however, that we
wish to put many dipoles of similar size r around the same impact parameter
bbb. If the number of dipoles is less than N2

c , there are no problems since the
swing is not very likely. However, as soon as we have N2

c dipoles they can
start to swing, and since in this case they sit on top of each other, they will
do so as soon as the chance is given. When two dipoles swing they will be
replaced by two smaller dipoles, with different impact parameters bbb′. This
implies that the dipole occupation number satisfies

dN

d2bbbd2rrr
. N2

c ∼ 1

α2
s

. (i.103)

Here we assumed ᾱ to be fixed and of order 1/π in which case we get αs ∼
1/Nc. When the number of smaller dipoles around bbb′ gets large enough they
will in turn start to swing to produce even smaller dipoles and so on. Thus we
get a picture which is similar to that in the CGC formalism.

i
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i.6 The Papers

In this section we shortly describe the 5 papers included in this thesis.

i.6.1 Paper 1

The small-x limit of QCD, where the momentum transfer is fixed and the en-
ergy is very large, is to leading order described by the BFKL equation. How-
ever, quantitative predictions from BFKL are made difficult due to the very
large non-leading (NLO) corrections. Another problem comes from the fact
that the linear BFKL equation does not contain saturation effects which are
expected to be increasingly important as we go towards smaller x.

Non-linear effects such as saturation and unitarisation are easier to take
into account in a formulation based on transverse coordinates, while non-
leading corrections such as energy-momentum conservation are easier in a
formulation based on transverse momenta. It has therefore been rather diffi-
cult to estimate the relative importance of these different effects.

In paper 1, we present a model for implementing both non-linear and non-
leading effects, knowing that an important fraction of the NLO corrections to
the BFKL equation are related to energy conservation. Our model is based on
Mueller’s dipole formulation which reproduces the leading order BFKL equa-
tion, and which in addition also takes into account saturation effects due to
multiple scatterings. Mueller’s model is formulated in transverse coordinate
space, and does not include energy conservation. However, noting similari-
ties between Mueller’s model and the Linked Dipole Chain (LDC) model, we
derive a scheme for implementing energy conservation in Mueller’s model,
and our ideas are tested in a Monte Carlo simulation.

We find that energy conservation has a large effect on the evolution, severe-
ly dampening the growth of the number of dipoles and, consequently, the total
cross section. This also implies that saturation has a relatively small impact on
the evolution at HERA, and we find a good semi-quantitative description of
the effective slope λe f f = dlnF2/lnx, also without saturation.

i.6.2 Paper 2

Although Mueller’s model includes saturation effects from multiple scatter-
ings, the evolution of the dipole cascades satisfies the linear BFKL equation.
There are consequently no saturation effects in the evolution of the individual
dipole cascades, which also implies that the formalism is not Lorentz-frame
independent.

In paper 2, we further improve our model from paper 1, to also include
saturation effects during the cascade evolutions. We propose to take into ac-
count these effects by including a 2 → 2 dipole transition called the dipole
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swing. Furthermore, we include effects from a running coupling and we also
introduce a simple description of the initial proton in terms of three dipoles.

Implementing these improvements in our Monte Carlo simulation, we find
a very good agreement with both the total γ∗p cross section as measured at
HERA, and the total pp cross section for energies ranging from the ISR to the
Tevatron and beyond. Although we cannot show analytically whether or not
the dipole swing would give a frame independent evolution, we find numer-
ically for pp collisions that the resulting evolution is almost frame indepen-
dent.

i.6.3 Paper 3

DIS data from HERA exhibits a remarkable property known as geometric scal-

ing, which implies that the total cross section, σ
γ∗p
tot , is a function of the variable

τ = Q2/Q2
s (x) only. Here Qs(x) is the so-called saturation momentum which

is proportional to x−λ, with λ having values around 0.3.
Geometric scaling is inherent in the Golec-Biernat Wüsthoff (GBW) dipole

model (also called the saturation model) which successfully describes σ
γ∗p
tot at

HERA. The success of the GBW model, together with the fact that the scaling
function shows a break around τ ≈ 1, has been taken as an indication for
saturation. However, the analysis around the point τ ≈ 1 is made difficult due
to the fact that small values of τ are at HERA only reached for Q2

< 1GeV2,
meaning that non-perturbative physics plays an important role.

In paper 3, we show that, besides saturation, also the transition between
the dominance of k⊥-ordered (DGLAP) and k⊥–non-ordered (BFKL) chains
contributes to a break around τ ≈ 1, as well as the suppression for small Q2

due to finite quark masses and confinement. We use the model developed in
papers 1 and 2 to investigate the roles played by these different effects on the
scaling properties. We also see that geometric scaling follows naturally from
our dipole cascade model, when Q2 is large compared to the quark masses,
and that also the linear one-pomeron cross section exhibits scaling, so that
geometric scaling alone cannot be taken as a proof for saturation.

Due to the limited energy range at HERA, there is little overlap between
data at different Q2 for fixed τ < 1. It is therefore not experimentally excluded
that scalebreaking effects would show up when a larger Q2 range is avaliable.
For small Q2, the result is very sensitive to the assumed quark masses. The
model can reproduce the data, but it also predicts a scale breaking behaviour,
and as a consequence we predict that the scaling behaviour will be changed
when data from a future machine will be avaliable.

We also investigate the scaling properties of the charm contribution, and
we find that one can also here obtain a scaling function by a suitable transfor-
mation of x in Qs(x).

i
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i.6.4 Paper 4

As we have already mentioned above, Mueller’s model does not include satu-
ration effects in a fully consistent way, meaning that the evolution is not frame
independent.

In a simple model proposed by Mueller, one neglects all transverse coordi-
nates, so that rapidity defines the only dimension. The model then describes a
system of point-like “dipoles” which evolve through dipole splittings, as in a
reaction-diffusion type model. In this model, explicit calculations are possible,
and one can easily obtain an explicitely frame-independent formalism.

The resulting frame-independent evolution can be interpreted such that
a new dipole is at each step emitted coherently from a “multi-dipole” state,
with similarities to the saturation mechanism in the Color Glass Condensate.
Recently, a 1+1 dimensional generalization of the simple toy model was pre-
sented. In this model, the assumption is again that a dipole state evolves by
the addition of a new single dipole only, without changing the configuration
of the emitting state. One can then easily obtain an explicitely frame indepen-
dent evolution, in a fashion similar to the 1+0 dimensional toy model.

In paper 4, we show that the toy models mentioned above can be given
a probabilistic formulation in terms of positive definite k → k + 1 transitions.
Such transitions can in the real model be naturally generated by combining the
dipole splitting with the dipole swing. In a k → k + 1 transition, a splitting is
combined with k − 1 simultaneous swings, so that k dipoles are replaced by
k + 1 new dipoles.

In an approximation where each dipole is restricted to single scattering
only, a simple swing is shown to be enough to generate the necessary colour
correlations, while one needs to include more than one swing at a time if indi-
vidual dipoles are allowed to scatter multiply. In this case the evolution pro-
ceeds such that the newly produced dipoles swing multiply with the dipoles
in the emitting cascade, giving rise to the k → k + 1 transitions mentioned
above.

For a system consisting of N dipoles, we show that one needs at most N − 1
swings in order to generate all colour correlations induced by the multiple
dipole interactions. For spatially disconnected dipoles this is very easy to
show. For the more relevant case of dipoles connected in chains, we have
explicitely checked for a number of cases that this is also true, which leads us
to conjecture that it is true for all cases.

The positive definite transition rates in the toy models are written in a form
which suggests that they indeed describe such processes where a single split-
ting is combined with k − 1 swings. However, one difference is in the satura-
tion mechanisms. Due to the fact that the toy models have trivial topologies,
it is difficult to directly compare the swing in the full model to the satura-
tion mechanism present in the toy models. The results presented here may



i.6 The Papers 47

hopefully help in the attempts to formulate an explicitely frame independent
formalism for the full model.

i.6.5 Paper 5

In high energy pp collisions, the cross section for parton–parton subcollisions
exceeds the total cross section, which implies that there are on average more
than one subcollision in each event. Via unitarity and the AGK cutting rules,
multiple subcollisions also have strong implications for diffraction.

In the quantum mechanical Good and Walker picture of diffraction, the
diffractive excitation is determined by the fluctuations in the collision pro-
cess. These fluctuations arise from the initial particle wave functions, from
the cascade evolutions, from the impact parameter variation, and from the
dipole–dipole scattering probabilities.

In paper 5, we use the model developed in papers 1-3 to study diffractive
excitation in γ∗p and pp collisions. We improve our model further to treat
confinement effects by consistently replacing the infinite range colour-electric
Coulomb potential by a screened Yukawa potential. This also turns out to
have important consequences on the frame independence of γ∗p collisions.
Using the Good and Walker picture of diffraction, we can investigate the de-
pendence of the cross sections on the mass of the diffractively excited system
by studying the collision in different Lorentz frames.

Most models only include part of the fluctuations mentioned above, and
this has the implication that different models give different results for the im-
pact parameter profile of the cross section. In our model we include all fluctu-
ations, and this implies among other things that our impact parameter profile
is less steep as compared to models where not all fluctuations are included.

Investigating the role of the fluctuations from the different sources we con-
clude that there are important contributions from all of them, apart from the
initial proton wave function, and we find a good agreement with data for both
pp collisions and DIS. We also find that elastic data are best reproduced if we
minimize the fluctuations in the initial proton state.

i



48 Introduction

Acknowledgments
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[38] L. Lönnblad Comput. Phys. Commun. 71 (1992) 15–31.

[39] B. Andersson, G. Gustafson, L. Lönnblad, and U. Pettersson Z. Phys. C43
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Important corrections to BFKL evolution are obtained from non-leading
contributions and from non-linear effects due to unitarisation or saturation. It
has been difficult to estimate the relative importance of these effects, as NLO
effects are most easily accounted for in momentum space while unitarisation
and saturation are easier in transverse coordinate space. An essential compo-
nent of the NLO contributions is due to energy conservation effects, and in
this paper we present a model for implementing such effects together with
saturation in Mueller’s dipole evolution formalism. We find that energy con-
servation severely dampens the small-x rise of the gluon density and, as a
consequence, the onset of saturation is delayed. Using a simple model for the
proton we obtain a reasonable qualitative description of the x-dependence of
F2 at low Q2 as measured at HERA even without saturation effects. We also
give qualitative descriptions of the energy dependence of the cross section for
γ⋆γ⋆ and γ⋆−nucleus scattering.

I
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I.1 Introduction

In the asymptotical high-energy limit, QCD should be described by BFKL [1,2]
evolution, at least to leading order and assuming a fixed coupling. Here
terms of the form (αs log x)n in a perturbative expansion are resummed to
all orders. The result is a fast rise of any cross section with increasing en-
ergy or, equivalently, with decreasing x. The rise has the form x−λ, where the
power λ to leading order is given by ᾱ 4 log 2, which is around one half for
ᾱ ≡ 3αs/π = 0.2. Clearly such a behavior will violate the unitarity bound
for large enough energies. To cure this problem Gribov, Levin and Ryskin [3]
in pioneering works discussed non-linear effects from gluon recombination,
which cause the gluon density to saturate before it becomes too high.

Because the transverse coordinates are unchanged in a high energy colli-
sion, unitarity constraints are generally more easy to take into account in a
formalism based on the transverse coordinate space representation, and sev-
eral suggestions for how to include saturation effects in such a formalism have
been proposed. Golec–Biernat and Wüsthoff [4] formulated a dipole model, in
which a virtual photon is treated as a qq̄ or qq̄g system impinging on a proton,
and this approach has been further developed by several authors (see e.g. [5]
and [6]). Mueller [7–9] has formulated a dipole cascade model in transverse
coordinate space, which reproduces the BFKL equation, and in which it is also
possible to account for multiple sub-collisions. Within this formalism Balitsky
and Kovchegov [10, 11] have derived a non-linear evolution equation, which
also takes into account these saturation effects from multi-pomeron exchange.
In an alternative approach a high density gluonic system is described by a so-
called Color Glass Condensate [12,13], where non-perturbative effects appear
due to the high density, even though the coupling αs is small.

There are, however, other effects which may dampen the growth of the
structure function. One is the fact that the next-to-leading logarithmic correc-
tions to the BFKL evolution turn out to be very large [14,15]. These corrections
strongly suppress the growth for small x, and in fact, even for moderate values
of ᾱ, the power λ becomes negative. It is well-known [16] that a major fraction
of these higher order corrections is related to energy conservation. The large
effect of energy-momentum conservation is also clearly demonstrated by the
numerical analyses by Andersen–Stirling [17] and Orr–Stirling [18].

As a consequence there is currently some controversy over whether satu-
ration has been observed in deeply inelastic scattering at HERA. Saturation
effects have been studied in the coordinate space representation in which it
has been difficult to include non-leading effects, and the non-leading effects
have been studied in momentum space, where it is hard to include saturation.
Therefore it has been difficult to estimate the relative importance of saturation
and non-leading effects. To know if the dominant mechanism behind the re-
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duced growth rate is due to energy conservation or to saturation is also very
important for reliable extrapolations to higher energies at LHC and high en-
ergy cosmic ray events. Our aim in this paper is to find a formalism where
it is possible to account for both unitarisation and energy-momentum conser-
vation, knowing that the latter is a major part of the non-leading effects. An
alternative approach to this problem is presented in [19, 20], in which a for-
malism to include saturation and conservation of energy (or rather the posi-
tive lightcone momentum component, p+) is described. In our formalism we
emphasize conservation of both lightcone components, p+ and p−.

We emphasize that the question concerning saturation is not whether it
exists in general — clearly if the scale is small enough so that the transverse
size of the gluons is as big as a nucleon there must be recombinations present
— rather the debate is about whether effects of recombination of perturbative
gluons at scales above a couple of GeV has been observed. The deviation
from the linear BFKL evolution, as a consequence of saturation, is expected to
be essential below a line Q2 = Q2

s (x) in a (Q2, x) diagram [4]. The effect can be
viewed in two different ways, as a suppression of the logarithmic x-slope of
the structure function, d log F2/d log x ≡ λeff, when x becomes small for fixed
Q2, or as a suppression when Q2 becomes small for fixed x. HERA data show
an almost linear dependence of λeff with log Q2, leveling off at ≈ 0.1 for Q2

below 1 GeV2, with the proviso that the x-interval used to determine the slope
is not constant, but is shifted towards smaller x for smaller Q2-values (see e.g.
refs. [21, 22]). The suppression for small x and for small Q2 also appears to
satisfy a scaling property called geometric scaling, saying that F2 is a function
of a single variable τ = Q2/Q2

s (x). This scaling is satisfied by the HERA data
to a high degree, and in an early study Golec–Biernat and Wüsthoff found

a good fit to experiments with Q2
s (x) = (3.04 · 10−4/x)0.288 GeV2 [4]. In a

more recent analysis Iancu, Itakura, and Munier [23] obtained a good fit to
later HERA data with a model based on BFKL evolution including some non-

leading effects1 plus saturation, with Q2
s (x) = (0.267 · 10−4/x)0.253 GeV2. This

value is smaller than the one in ref. [4], and therefore moves the saturation
region closer to the non-perturbative regime.

The Mueller dipole evolution is formulated in rapidity (∝ log 1/x) and
transverse coordinate space, with rapidity acting as the evolution parameter.
A DIS γ⋆ p scattering is typically viewed in the rest system of the proton, where
the γ⋆ evolves into a qq̄ pair, long before the interaction. This qq̄ pair will then
radiate off gluons, qq̄ → qgq̄ → qggq̄ → . . ., a process which is formulated in
terms of radiation from colour-dipoles. The initial dipole between the q and

1Basically, non-leading effects are taken into account by simply lowering the BFKL λ, or treat-
ing it as a free parameter, in which case it comes out close to the value predicted by the so-called
renormalization-group improved [24] NLO BFKL. Also some non-leading effects are introduced
by letting αs run, typically with Q2

s as the scale.

I
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q̄ emits a gluon, splitting the dipole into two, one between the q and g and
one between the g and q̄, both of which can continue radiating gluons. In the
end, one of these dipoles can interact with the proton, giving a cross section
which increases as a power of 1/x, and in leading order reproduces the BFKL
result. Saturation comes in because when the density of dipoles becomes large
there is a possibility that more than one of them interacts with the proton, thus
slowing down the increase of the cross section. This effect can be interpreted
as multi-pomeron exchange, and is taken into account in the non-linear BK
equation.

The Mueller dipole evolution is very similar in spirit to the Dipole Cascade
Model (DCM) [25,26], which describes time-like evolution of dipoles from e.g.
an initial qq̄ pair created in e+e− annihilation. However, here the evolution is
formulated in momentum space. The transverse momentum is used as evo-
lution parameter, and the conservation of energy and momentum is simple to
implement, especially in a Monte Carlo Event Generator. This model gives a
very good description of e+e− annihilation and the ARIADNE program [27],
where it is implemented, describes almost all data from the four LEP collabo-
rations to an astonishing precision (see e.g. [28]). Also with the so-called soft-
radiation extension of the DCM, DIS final states as measured by HERA are
well described using a simple semi-classical description of time-like dipole
evolution (see e.g. [29]).

One problem in Mueller’s formulation is the fact that, while the emission
probability for a time-like cascade in the DCM is finite for a fixed value of
the evolution parameter, the emission probability here diverges ∼ 1/r2 for
very small dipole sizes r. However, the interactions from the colour charge
and anti-charge interfere destructively, resulting in colour transparency, and
for small r-values the dipole cross section is proportional to r2, implying that
the total cross section remains finite, and the Mueller dipole formulation can
be shown to be equivalent to BFKL. Although σtot is finite, the singularities do
cause problems. For a numerical analysis or a MC simulation it is necessary to
introduce a cutoff for small dipoles, and for small cutoff values the number of
dipoles becomes very large. In fact, the increase is so strong that a Monte Carlo
simulation of the evolution, as is done e.g. in the OEDIPUS program [30–32],
becomes extremely inefficient. It also implies that it is not possible to interpret
the dipole chain as a real final state. If a small size in coordinate space corres-
ponds to a large transverse momentum, the very large and diverging number
of dipoles with very small sizes obviously violates energy-momentum con-
servation. Instead these emissions have to be regarded as virtual fluctuations,
which in Mueller’s approach are handled by appropriate Sudakov form fac-
tors.

An alternative approach to DIS is the so-called Linked Dipole Chain (LDC)
[33, 34] model, where an initial set of gluons is obtained using space-like par-
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ton evolution, and then is evolved in time-like cascades into final-state gluons.
LDC is a reformulation and generalization of CCFM evolution [35, 36], which
reproduces BFKL in the asymptotic small-x limit but is also similar to DGLAP
evolution [37–40] at larger x values. In addition to sequences of DGLAP evo-
lution, where the upward gluon branchings with k⊥i ≫ k⊥i−1 are strongly
ordered in rapidity and in the k⊥ of the propagating gluon, also downward
splittings with k⊥i ≪ k⊥i−1 may appear with a reduced weight. The result is
an evolution which is totally symmetric, in the sense that it can be generated
either from the projectile or from the target end with the same result. The LDC
model is completely formulated in momentum space which makes it easy to
implement in a Monte Carlo event generator [41], where energy and momen-
tum conservation is easily accomplished.

In this paper we will identify some similarities between the LDC model
and the Mueller dipoles, and use them to derive a scheme for implementing
energy momentum conservation in the space-like dipole evolution. We conjec-
ture that only gluon emissions which satisfy energy-momentum conservation
can correspond to real final state gluons, and that keeping only these (with
a corresponding modification of the Sudakov form factor) will not only give
a better description of the final states, but also account for essential parts of
the NLO corrections to the BFKL equation. Our approach is based on the ob-
servation that the emission of a dipole with a very small transverse size, r,
corresponds to having two very well localized gluons, and such gluons must
have large transverse momenta, of the order of p⊥ ∼ 1/r. By in this way as-
signing a transverse momentum to each emitted gluon, and also taking into
account the recoils of the emitting gluons, we can then make sure that each
dipole splitting is kinematically allowed. However, as will be discussed in
detail in section I.4.3, energy-momentum conservation is a necessary condition
for a chain to correspond to a real final state, but it is not a sufficient condition.
Therefore we will in this paper only discuss results for total cross sections, and
postpone discussions of final state properties to a future publication.

The program described here is, of course, not easy to implement in an
analytic formalism. Instead we have written a Monte Carlo program, simi-
lar to OEDIPUS, where the kinematics can be easily treated. This program can
then be used to calculate cross sections for e.g. dipole–dipole scattering at dif-
ferent virtualities. We also introduce a simple model for nucleons as a distri-
bution in dipole numbers and sizes, to investigate cross sections for dipole–A
scattering. In principle this can also be used to study AA scattering, but such
investigations will also be postponed for a future publication.

The layout of this paper is as follows. First we describe the dipole cas-
cades formulated both in transverse momentum and in coordinate space in
sections I.2 and I.3. In section I.4 we then describe the similarity between
the LDC model and Mueller’s cascade model, and how this guides us in the

I
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introduction of energy-momentum conservation into the Mueller dipole for-
malism. In this section we also discuss some open questions related to final
state properties and gluon recombination. In section I.5 we describe briefly
the implementation in a Monte Carlo program we use to obtain the results
presented in the following section I.6. Finally we arrive at our conclusions in
section I.7.

I.2 Dipole Cascades in Momentum Space

The Dipole Cascade Model (DCM [25,26]) as implemented in the ARIADNE [27]
event generator has been very successful in describing the bulk of the data
on hadronic final states recorded at LEP. In this section we will first describe
briefly this model and then go on to how it can be extended to also describe
cross sections and hadronic final states in DIS by a reformulation of the CCFM
evolution.

I.2.1 Time-like Cascades

In e+e− annihilation, the emission of a gluon from the initial qq̄-pair can be
described in terms of dipole radiation from the colour-dipole between the q
and q̄. Subsequent emission of a second gluon is then described as radiation
from either of the two dipoles connecting the quark with the gluon and the
gluon with the anti-quark. In the dipole rest frame the relative probability for
such a dipole splitting is to leading logarithmic order given by the standard
dipole radiation formula

dP ∝ αs
dk2

⊥
k2
⊥

dy. (I.1)

The available phase space is a triangular region in the (log k2
⊥, y) plane, k⊥e±y

<

W, where W is the invariant mass of the dipole.
Clearly this is very similar to the Mueller dipole formalism. The main

differences are that here we have dipoles in momentum space rather than in
transverse position, and the evolution is in decreasing transverse momentum
rather than in increasing rapidity. Hence we here have a Sudakov form factor

− log ∆S(k2
⊥max, k2

⊥) =
∫ k2

⊥max

k2
⊥

dP
dk

′2
⊥

dk
′2
⊥. (I.2)

Also, we here deal only with real final-state emissions, while Mueller’s for-
malism describe initial-state virtual dipoles.

The ordering in decreasing k⊥ (measured in the rest frame of the emitting
dipole) means that energy and momentum conservation is a relatively small
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log(k⊥
2)

y

log(W2)

log(W2/4)

Figure I.1: The available phase space for a gluon emitted with some transverse mo-
mentum k⊥ and rapidity y from a dipole with total invariant mass W. The full line
represents the approximate phase space limits relevant for a leading log calculation,
while the dashed line represents the modification when taking recoils of the emitting
quarks into account.

correction. This formalism is easily implemented in a Monte Carlo generator,
in which it is straight forward to take into account non-leading corrections
to the emission probability in eq. (I.1) and energy-momentum conservation
including proper recoils of the emitters, which modifies the triangular phase
space region slightly as shown in figure I.1.

This formalism has many advantages as compared to conventional parton
cascades. One very essential feature is that coherence effects, conventionally
implemented as angular ordering, is automatically taken into account in a way
which is more accurate than the conventional sharp angular cut.

I.2.2 Space-like Cascades

The dipole cascade model has been extended to also describe deeply inelas-
tic lepton–hadron collisions in two different ways. The one which is imple-
mented in ARIADNE relies on a semi-classical model [42] where all gluon emis-
sions are treated as final-state radiation. This has been very successful in de-
scribing hadronic final states at HERA, but suffers from the fact that it does not
predict the cross section. It is also difficult to relate to any standard evolution
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equation, although it has qualitative similarities with BFKL and CCFM.

The other extension is called the Linked Dipole Chain (LDC) model [33]
and uses a reformulation and generalization of CCFM evolution to build up
an initial set of gluon emissions, which determines the cross section. These
gluons define a chain of linked dipoles, which may initiate standard final-
state dipole splittings, which then do not affect the cross section. The initial
gluons are carefully selected to be purely real final-state gluons, i.e. only such
emissions are considered which are not accompanied by large virtual correc-
tions given by the so-called non-Sudakov form factor in CCFM (or Regge form
factor in BFKL).

It turns out that these emissions are those where the gluons are ordered in
both positive and negative light-cone momenta and with transverse momenta
which are larger than the smaller of transverse momenta of the radiating prop-
agator gluon before and after the emission: p⊥i > min(k⊥i−1, k⊥i). We are
then left with simple splittings which either increase the k⊥ of the propagator,
given by

dP = ᾱ
dk2

⊥i

k2
⊥i

dzi

zi
, (I.3)

or decreasing it, given by

dP = ᾱ
dk2

⊥i

k2
⊥i

dzi

zi

k2
⊥i

k2
⊥i−1

. (I.4)

The extra suppression k2
⊥i/k2

⊥i−1 for evolution with decreasing k⊥ ensures that
the evolution becomes symmetric, i.e. it does not matter whether we evolve
from the proton or the virtual photon end. A local maximum, k⊥max, can
be interpreted as evolutions from the projectile and target ends up to a central
hard sub-collision. If treated as evolution from one end we then have a step up
to k⊥max followed by a step down in k⊥, and from the weights in eqs. (I.3) and
(I.4) this gives the correct factor 1/k4

⊥max expected from Rutherford scattering.
If we instead have a local minimum, k⊥min, then there is no associated power
of k⊥, and such a minimum is therefore free of singularities.

Also the LDC model has been implemented in a Monte Carlo generator
[41], which fairly well reproduces final states at HERA. However, there is a
caveat, namely that crucial measurements sensitive to small-x dynamics, such
as the rates of forward jets, can only be reproduced if non-singular parts of the
gluon splitting function are omitted. For further discussions on this subject,
we refer the reader to ref. [43].
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I.3 Dipole Cascades in Coordinate Space

I.3.1 The Mueller Dipole Formulation

Q

Q̄

1

0

1

0

r01

2

r12

r02

1

0

2

3

y

x

Figure I.2: A quark-antiquark dipole in transverse coordinate space is split into suc-
cessively more dipoles via gluon emission.

Consider now the process of an evolving onium state or γ∗ → QQ̄ →
QgQ̄ → QggQ̄ → . . . in transverse coordinate space, as illustrated in fig-
ure I.2. Here a virtual photon is split into a QQ̄ colour dipole, which is first
split into two dipoles by the emission of a gluon, then into three dipoles by a
second gluon, etc. The probability for such a dipole splitting is given by the
expression (for notation see figure I.2)

dP

dy
=

ᾱ

2π
d2r2

r2
01

r2
02 r2

12

· S

where S = exp

[

− ᾱ

2π

∫

dy
∫

d2r2
r2

01

r2
02 r2

12

]

. (I.5)

Here S denotes a Sudakov form factor. When this dipole splitting is iterated
it evolves into a cascade with with an exponentially increasing number of
dipoles.

We note that the weight in eq. (I.5) is singular, and the integral over d2r2

in the Sudakov form factor diverges for small values of r02 and r12. Therefore
Mueller introduced a cutoff ρ, such that the splitting has to satisfy r02 > ρ
and r12 > ρ. The integral in S is then also restricted in the same way. A
small cutoff value ρ will here imply that we get very many dipoles with small
r-values. However, as the cross section for a small dipole interacting with a
target also gets small (see below), the total cross section is finite also in the
limit ρ → 0.

A proton target can be treated as a collection of dipoles. When two dipoles
collide, there is a recoupling of the colour charges, forming new dipole chains.
This is schematically illustrated in figure I.3 for the case of γ⋆γ⋆ scattering.
Here we imagine the two virtual photons splitting up into quark-antiquark

I
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pairs, which develop into two colliding dipole cascades. When the two central
dipoles collide, it implies a recoupling, as indicated by the arrow. The weight
for this interaction is given by the expression [32]

f =
α2

s

2

{

log

[ |r1 − r3| · |r2 − r4|
|r1 − r4| · |r2 − r3|

]}2

. (I.6)

An important property of this expression is that when e.g. the left of the inter-
acting dipoles is small, the weight in eq. (I.6) can be shown to be proportional
to (r1 − r2)

2, which compensates the factor (r1 − r2)
−2 in the evolution prob-

ability from eq. (I.5).
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y =rapidity

Figure I.3: A symbolic picture of a γ∗γ∗ collision in rapidity-r⊥-space. The two dipole
chains interact and recouple with probability f given by eq. (I.6).

A γ⋆ p collision is frequently analyzed in the rest frame of the target proton.
When the virtual photon hits the target, the number of dipoles present in this
frame grows in accordance with the BFKL equation, and the total cross section
increases proportional to exp(λY), where the total rapidity interval Y is given
by Y = log(1/x) = log(s/Q2).

It is, however, also possible to study the collision in a frame different from
the target rest frame. Then the target dipoles evolve in the same way a dis-
tance y in rapidity, while the projectile dipole evolves the shorter distance
Y − y. As the evolution grows exponentially with rapidity, the cross section
is proportional to exp(λy) · exp(λ(Y − y)) = exp(λY), which means that it is
insensitive to the chosen frame, in which the collision is studied. This frame
independence is, however, broken by multiple collision effects related to uni-
tarity. This will be discussed further in section I.4.4.
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A

C

B
r

rapidity

Figure I.4: A γ⋆γ⋆ collision event with multiple sub-collisions in rapidity-r⊥-space.
At high energies several branches from the two colliding dipole systems may recon-
nect. The dashed vertical line symbolizes the Lorentz frame in which the collision is
evaluated.

I.3.2 Unitarity and Saturation

A great advantage of the coordinate space representation is the fact that the
transverse coordinate r is unchanged during the collision. This implies that
unitarity can very easily be implemented by the replacement f → 1 − e− f . As
the dipole cascades from the two virtual photons branch out, it is also possible
to have multiple interactions with dipoles from the left and from the right, as
illustrated in figure I.4. The total cross section is then given by

σ ∝

∫

d2b(1 − e− ∑ f ij). (I.7)

where b denotes the impact parameter separation between the two initial par-
ticles, and the sum runs over all pairs i and j of colliding dipoles. Here the

factor 1 − e− ∑ f ij, where the exponent corresponds to a no-interaction prob-
ability, ensures that the unitarity constraint is satisfied. The first term in an
expansion, ∑ fij, corresponds to a single pomeron exchange, while the higher
order terms are related to multi-pomeron exchanges.

Including these non-linear terms in the evolution equation leads to the
Balitsky–Kovchegov (BK) equation [10, 11]. The BK equation governs the
small-x evolution of the F2 structure function of a large nucleus. In his original
paper Kovchegov assumed a target nucleus at rest and an evolved projectile
dipole. Using Mueller’s dipole formulation for the evolution of the dipole and

I
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summing pomeron exchanges of all orders he derived the following equation:

dN(r01, Y)

dY
=

ᾱ

2π

∫

d2r2
r2

01

r2
02r2

12

{

N(r12, Y) + N(r02, Y) − N(r01, Y)

−N(r12, Y)N(r02, Y)

}

. (I.8)

Here N(rij, Y) denotes the forward scattering amplitude (which also deter-
mines the total reaction probability) of the dipole rij on the target nucleus. The
nucleus has been assumed to be large, which means that the impact parameter
dependence of N is suppressed.

For small N-values the quadratic term can be neglected, and eq. (I.8) is
reduced to Mueller’s linear equation for the dipole cascade evolution. This
equation is just the BFKL equation formulated in the dipole language. The first
two terms correspond to the emission of a gluon forming two new dipoles,
while the term with a minus sign accounts for the virtual corrections described
by the Sudakov form factor in eq. (I.5). The quadratic term represents the effect
of multiple collisions, which become more important when N becomes large.
This suppresses the growth rate for larger Y-values and results in saturation
when N approaches 1, thus preserving unitarity.

The BK equation (I.8) describes the development of the cascade before it
hits a dense nuclear target. It can also be used to describe the evolution of two
colliding cascades in a γ⋆γ⋆ collision, as illustrated in figure I.4. Here several
branches from the two systems may reconnect as described in figure I.3 and
eq. (I.6). We note here that the cascade evolution described by the linear terms
in eq. (I.8) are only leading in colour, while the effect from multiple collisions
is formally colour suppressed. Therefore this formalism includes corrections
from multiple sub-collisions in the Lorentz frame in which the process is eval-
uated (denoted by the vertical dashed line in figure I.4), but does not take into
account the possibility that two branches recombine before the collision. Such
an event is indicated by the letter A in figure I.4. This effect is also colour
suppressed and thus not included in the evolution. As a consequence the
result depends on the Lorentz frame used, and this problem will be further
discussed in section I.4.4.

I.4 Combining Energy-Momentum Conservation

and Unitarity

With a small cutoff ρ (r > ρ) we get, as mentioned above, very many small
dipoles. If these are interpreted as real emissions, with transverse momenta
proportional to 1/r, it would imply a catastrophic violation of energy-momen-
tum conservation. As discussed above, the emission of these small dipoles
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have a very limited effect on the total cross section, and they have to be in-
terpreted as virtual fluctuations. Thus the result in eq. (I.7) will describe the
inclusive cross section, but the many dipoles produced in all the branching
chains will not correspond to the production of exclusive final states.

I.4.1 Relation Mueller’s Dipole Cascade vs. LDC

Before a discussion of these virtual fluctuations we want to discuss the relation
between Mueller’s Dipole Cascade and the LDC model. Let us study the chain
of emissions, which is illustrated in figure I.5. Apart from the Sudakov factors
this chain gets the following weight:

d2r2 r2
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r2
02 r2

12

· d2r3 r2
12

r2
13 r2

23

· d2r4 r2
23

r2
24 r2
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· d2r6 r2
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=

= r2
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d2r2 d2r3 d2r4 d2r5 d2r6

r2
02 r2

13 r2
24 r2

45 r2
36 r2

56

(I.9)

We here note that the total weight is a product of factors 1/r2
ij for all “remaining

dipoles”, i.e. for those dipoles which have not been split by further gluon emis-
sion. They are marked by solid lines in figure I.5. All dependence on the size
of “intermediate” dipoles, which have disappeared because they split in two
daughter dipoles, is canceled in eq. (I.9), as they appear both in the numerator
and in the denominator. (These dipoles are marked by dashed lines in figure
I.5.)

If a dipole size, r, is small, it means that the gluons are well localized, which
must imply that transverse momenta are correspondingly large. This implies
that not only the new gluon gets a large k⊥ ∼ 1/r, but also that the original
gluon, which is close in coordinate space, gets a corresponding recoil. For the
special example in figure I.5 the emissions of the gluons marked 2, 3, and 4
give dipole sizes which become smaller and smaller, a >> b >> c >> d, in
each step of the evolution. (This also implies that the “remaining” and the “in-
termediate” dipoles are pairwise equally large.) The corresponding k⊥-values
therefore become larger and larger in each step. After the minimum dipole,
with size d, the subsequent emissions, 5, and 6, give again larger dipoles with
correspondingly lower k⊥ values. The probability for this chain is propor-
tional to

d2r2

b2
· d2r3

c2
· d2r4

d0
· d2r5

e2
· d2r6

f 2
· 1

f 2
(I.10)

For the first emissions, 2 and 3, we in this expression recognize the product
of factors ∏ d2ri/r2

i ∝ ∏ d2ki/k2
i , just as is expected from a “DGLAP evolu-

tion” of a chain with monotonically increasing k⊥. Emission number 4 cor-
responds to the minimum dipole size, d, which should be associated with a

I
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Figure I.5: A dipole cascade in rapidity-r⊥-space, where a chain of smaller and smaller
dipoles is followed by a set of dipoles with increasing sizes. The initial dipole between
points 0 and 1 is marked by long dashes, and those dipoles which have split into two
new dipoles and disappeared from the chain are marked by short dashes. This chain is
interpreted as one k⊥-ordered cascade from one side and one from the other, evolving
up to a central hard sub-collision, which is represented by the dipole with minimum
size and therefore maximum k⊥.
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Figure I.6: A cascade where the dipoles increase to a maximum, and then decrease.
Here the size of the largest dipole, denoted b, corresponds to the minimum k⊥ in the
chain.

maximum k⊥. In the following evolution the dipole sizes get larger again,
corresponding to successively smaller transverse momenta. In analogy with
the evolution in the LDC model described in section I.2.2, this latter part can
be interpreted as DGLAP evolution in the opposite direction, i.e. from the
target end up to the central hard sub-collision. In this sub-collision the glu-
ons 3 and 4 recoil against each other with transverse momenta k⊥max. In
eq. (I.10) we see that the factors of d have canceled, which thus gives the
weight d2r4 ∝ d2kmax/k4

max. This reproduces the weight expected from a
hard gluon–gluon scattering, and corresponds exactly to the result in the LDC
model as discussed in section I.2.2.

Figure I.6 shows instead a chain with increasing dipole sizes up to a maxi-
mum value, rmax, which thus corresponds to a minimum transverse momen-
tum, k⊥min. Here we get the weight d2rmax/r4

max ∝ d2kmin. Therefore there
is no singularity for the minimum k⊥-value. This result is also directly analo-
gous to the corresponding result in the LDC model.
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I.4.2 Energy-Momentum Conservation

As discussed in section I.2.2, the main feature of the LDC model is the ob-
servation that both the total cross section and the final state structures are
determined by chains consisting of a subset of the gluons appearing in the
final state. These gluons were called “primary gluons” in ref. [33] and later
called “backbone gluons” in ref. [44]. Remaining real final state gluons can be
treated as final state radiation from the primary gluons. Such final state emis-
sions do not modify the total cross sections, and give only small recoils to the
parent emitters. The primary gluons have to satisfy energy-momentum con-
servation, and are ordered in both positive and negative light-cone momen-
tum components, p+ and p−. We saw in the previous section that in Mueller’s
cascade the emission probabilities for gluons, which satisfy the conditions for
primary gluons in LDC, have exactly the same weight, when the transverse
momenta are identified with the inverse dipole size, 2/r. This inspires the
conjecture that with this identification an appropriate subset of the emissions
in Mueller’s cascade can correspond to the primary gluons in the momentum
space cascade, meaning that they determine the cross sections while the other
emissions can be regarded as either virtual fluctuations or final state radiation.

A necessary condition for this subset of gluons is that energy and momen-
tum is conserved. (This is not a sufficient condition, as discussed further be-
low.) Only emissions which satisfy energy-momentum conservation can cor-
respond to real emissions, and keeping only these emissions (with a corres-
ponding modification of the Sudakov form factor) gives a closer correspon-
dence between the generated dipole chains and the observable final states. To
leading order this does not change the total cross section. However, as it has
been demonstrated that a large fraction of the next to leading corrections to
the BFKL equation is related to energy conservation, we expect that taking
this into account will improve the results also in this dipole formulation of the
evolution.

A very important consequence of energy-momentum conservation is also
that it implies a dynamical cutoff, ρ(∆y), which is large for small steps in rapid-
ity2, ∆y, but gets smaller for larger ∆y. (Alternatively it could be described as
a cutoff for ∆y which depends on r.) The production of a small dipole with
size r corresponds to the emission of a gluon with k⊥ ≈ 2/r and therefore
k+ ≈ (2/r)e−y. Thus conservation of positive light-cone momentum implies

r > 2e−∆y/k⊥parent. (I.11)

Conserving also the negative light-cone momentum, p−, implies that we
in a similar way also get a maximum value for r in each emission. Here we
note that while the projectile has a large p+ component and a very small p−

2Note that in our notation, y is rapidity and not log(1/x).

I
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component, the target has small p+ but contributes (almost) all p−. Thus con-
servation of p− means that in the evolution of the projectile cascade, the p−
components become steadily larger, presuming that in end the collision with
the target will provide the total p− needed to put the cascade on shell. (The
kinematical details will be discussed further in section I.5.) Branches which
do not interact must consequently be regarded as virtual fluctuations, which
are not realized in the final state.

The net result of conservation of both p+ and p− is that the number of
dipoles grows much more slowly with energy, and we will see in section I.6
that this also strongly reduces the total cross sections. Besides this physical
effect, it also simplifies the implementation in a MC program, and implies that
the severe numerical complications encountered in MC simulations without
energy conservation, discussed in refs. [32] and [31], can be avoided.

I.4.3 Final States and Virtual Dipoles

However, even if we only include emissions which would be allowed by
energy-momentum conservation, this does not fully correspond to the for-
mation of a possible final state. As discussed above, the weight contains in
the denominator the square of all “remaining dipoles”. Even if the constraint
from energy-momentum conservation implies a minimum rapidity gap for
the emission of small dipoles, this suppression does not reproduce the weight
∝ d2k⊥/k4

⊥ for the smallest dipole in a sequence, needed to reproduce the
cross section for a hard sub-collision. A possible solution is to interprete clus-
ters of gluons, like those marked A, B, and C in figure I.7, as “effective glu-
ons”, where the small internal separations do not correspond to large trans-
verse momenta for real final state gluons. These hard emissions have to be
compensated by virtual corrections.

From the weight in eq. (I.5) we see that that the emission probability, where
such a small dipole is the parent, is proportional to the square of its length, and
therefore suppressed. However, if this dipole really does split by gluon emis-
sion, and starts a branch which interacts and gets coupled to a chain from the
target (as illustrated in figure I.8) then the separation cannot be neglected. In
this case the two gluons at the dipole ends have to be treated as independent,
and can no longer be considered as a single effective gluon. This problem
concerning the properties of exclusive final states will be further discussed
in a forthcoming publication, and in the following we will here only discuss
results for total cross sections.

A very important question concerns whether demanding energy conser-
vation also for virtual emissions implies a serious overestimate of its conse-
quences. The production of a small dipole implies large p⊥ for the new gluon
and also for its partner in the dipole, which suffers a recoil. Since the new



I.4 Combining Energy-Momentum Conservation
and Unitarity 67

A

B

C

0

1

Figure I.7: The clusters of gluons marked A, B, and C must be interpreted as “effec-
tive gluons”. The small dipole sizes do not correspond to large final state transverse
momenta.

dipole can be virtual only if it does not interact further, this is a problem if
the neighbouring dipoles are significantly changed by the emission. In the
calculations of the effect of the recoil, the lightcone component p+ = e−y · p⊥
is conserved, which implies that the rapidity y is adjusted to a larger value.
This implies that the emission of the virtual dipole does not significantly mod-
ify the p+-component of the neighbouring dipoles. It does, however, have a
large effect on the values of p− = e+y · p⊥, where the changes in p⊥ and
y do not compensate each other. In order not to overestimate the effect of
p−-conservation, we therefore in this analysis implement the constraint from
p−-conservation in such a way, that we neglect the size of the neighbouring
dipoles. Thus we calculate this constraint assuming that the p⊥ of the gluons
in the dipole ends is determined only by the size of the emitting dipole. This
does somewhat underestimate the effect of p−-conservation, but it avoids the
large overestimate, which would be the consequence of including the unreal-
istic constraint from virtual dipole neighbours.

I.4.4 Gluon Recombination and Frame Dependence

As mentioned in section I.3.1 the resulting cross section is relatively insensi-
tive to the reference frame in which a collision is studied. If the interaction is
studied in a frame with rapidity y relative to the projectile, then (in leading or-
der) the projectile cascade has evolved by a factor eλy and the cascade from the

target by a factor eλ(Y−y), where Y represents the total rapidity interval. The
product is proportional to eλY, and thus independent of y. It is also demon-
strated in ref. [31] that the result for a single chain is the same in all frames,
and independent of whether the cascades are developed from the projectile
end or from the target end. This is a consequence of the Möbius invariance of
the process, and is exactly true in the limit when the cutoff ρ goes to zero.

I
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Figure I.8: (a) The emission of a new branch from a small dipole is suppressed, and
proportional to the square of the small dipole size. However, if such a branch is emitted
and interacts with a dipole from the target (b), then the small size has to correspond to
a large k⊥ in the final state.

However, including the unitarity corrections from multiple collisions also
implies that the result is no longer frame independent. The contributions from
multiple collisions in eq. (I.7) are formally colour suppressed ∼ 1/N2

c . What is
treated as a multiple collision in figure I.4 or I.8 corresponds in the target rest
frame to a process where two dipoles fuse to a single dipole (or two gluons
fuse to a single gluon) before the collision with the target. Such recombina-
tions3 are consequently also colour suppressed, and they are not included in
the dipole cascade evolution, which is only leading order in Nc. In the fi-
nal state this process gives a closed dipole loop, which is colour disconnected
from the rest of the system. In a string fragmentation scenario it gives a closed
string, which fragments as a separate system. This implies that such loops are
only taken into account if the collision is studied in a frame where they are
appearing as multiple collisions between two branches coming from each di-
rection, and not in a frame where they appear as gluon recombination, as e.g.
in the target rest frame.

3In the terminology of ref. [31] the effect of multiple collisions is called a unitarisation effect,
while the effect of gluon recombination is called saturation. As the separation between the two
mechanisms is not dynamical, but only a question of bookkeeping depending on the particular
frame of reference used in the analysis, we do in this paper not make this distinction.
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We conclude that within this formalism the unitarisation corrections do de-
pend on the Lorentz frame used. As discussed in ref. [31], for symmetric colli-
sions the optimal frame should be the overall rest system, where both the pro-
jectile and the target may evolve, and the probability is largest that a dipole
loop corresponds to a multiple collision event. This is illustrated in figure
I.4, where in the overall rest system only one loop does not correspond to a
multiple collision but to a gluon recombination. In a less central frame more
loops would correspond to recombinations and there would be correspond-
ingly fewer multiple sub-collisions.

The situation is different for onium scattering on a dense nuclear target.
Here the target is treated as a large number of dipoles, and multiple collisions
are most likely when different initial dipoles from the target are involved.
Therefore multiple collisions are well accounted for in the target rest frame,
where the projectile cascade is fully developed. This is also the approach
taken in the BK equation, which similarly takes into account multi-pomeron
exchange but not the gluon recombination process representing pomeron fu-
sion.

The frame independence is a very essential feature of the LDC model, and
we think it is important to develop a formalism in which multiple collisions
and gluon recombinations appear on an equal footing, in a frame independent
description. We will return to this problem in a future publication.

There is also another frame dependent effect, which has a more kinematic
origin. For a finite cutoff ρ, or for the effective cutoff ρ(∆y), the frame indepen-
dence is only approximate, also for a single chain. Furthermore, in our scheme
for energy conservation every new branch takes away energy, and therefore
in a cascade with many branches the energy in each individual branch is re-
duced. As discussed in section I.4.2, a branch can only be realized if the in-
teraction with the target can provide the necessary p− momentum. The other
branches are virtual and cannot be realized in the final state. This is e.g. the
case for the branches marked B and C in figure I.4. As our constraint from
energy-momentum conservation also includes the fractions needed to evolve
the non-interacting branches the effect is somewhat overestimated. Quantita-
tively this bias turns out to be small. For dipole–dipole collisions, as described
in section I.6.2, we find that the cross sections calculated in the cms at y = 0.5 Y
or asymetrically at y = 0.75 Y differ by less than 4%.

I.5 The Monte Carlo Implementation

In this section we briefly describe the Monte Carlo scheme used to calculate
the results presented in this paper. As we have mentioned before, the onium
state is evolved in rapidity. For a given dipole one then generates y and r
values for a possible gluon emission (dipole splitting) using (I.5).

I
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I.5.1 Kinematics

To be able to study the effects of energy-momentum conservation we simply
assign besides a transverse position and a rapidity, a positive light-cone mo-
mentum and a transverse momentum to each parton in the evolution, where
k+ = k⊥e−y = (2/r)e−y. The dynamical cutoff is then given by

ρ = 2e−∆y/k⊥parent. (I.12)

When a dipole emits a gluon the mother partons will receive recoils from the
emitted gluon. Since a gluon belongs to two different dipoles one has to decide
how the emission of a gluon effects the neighboring dipoles. We will simply
assume that when a dipole emits a gluon the mother gluons need to supply
all the needed energy. Thus the next time a neighboring dipole emits a gluon,
the avaliable energy is reduced because one of its gluons has lost energy from
the earlier emission.

Consider the emission of gluon n from the dipole ij between partons with
light-cone momenta k+i and k+j. The transverse distances between the new
gluon and partons i and j are denoted rin and rjn respectively. We then assume
that the nearest parent gluon takes the dominant fraction of the recoil. Thus
if k+n is the momentum given to the emitted gluon, then the momenta left to
the parents after the emission are given by

k′+i = k+i −
rjn

rjn + rin
k+n and k′+j = k+j −

rin

rjn + rin
k+n. (I.13)

Alternative formulas for sharing the recoils have also been studied, but the
result does not depend sensitively on the exact formula. When an emission is
generated we always make sure that k′+ ≥ 0.

As we in this paper are not investigating final state properties but only
total cross sections, we will neglect the directions of the transverse momenta.
Keeping only the lengths of the k⊥ vectors, we neglect the possibility that
two contributions may be of approximately equal size in opposite directions,
giving a much smaller vector sum. This approximation has to be improved in
future analyses of final states, but should not be essential here. Thus in our
approximation the transverse momentum of a parton will be decided by the
shortest distance to another parton, with which it has formed a dipole, and
when the gluon n is emitted from the dipole (ij), its transverse momentum is
given by

k⊥n = 2 max

(

1

rin
,

1

rjn

)

. (I.14)
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In analogy the recoils on the emitting partons are given by

k′⊥i = max

(

k⊥i,
2

rin

)

(I.15)

k′⊥j = max

(

k⊥j,
2

rjn

)

.

The recoil also implies that the rapidity is modified for the parents, and

is determined by the relation y′ = log
k′⊥
k′+

. In some cases this could imply

that an emitting parton ends up with rapidity larger than the rapidity of the
emitted gluon. Since the cascade is assumed to be ordered in rapidity, such
emissions are not allowed, and we demand that y′i, y′j 6 yn. In this way we

also avoid the situation where there are partons which have rapidities outside
the allowed rapidity interval. As mentioned in section I.4.2, negative light-
cone momentum is also conserved. This we do by imposing the condition
k−n > max(k−i, k−j) during the evolution, where k−i = 2eyi /rij and k−j =

2ey j/rij according to the discussion in section I.4.3. For every generated gluon
one checks the kinematical constraints described above, and in case one of
them is not satisfied a new gluon is generated in a way which automatically
includes the same phase-space restrictions in the integral of the Sudakov form
factor.

The constraint on the negative light-cone momentum given above implies
that k− steadily increases. As also discussed in section I.4.2 we presume that
in the end the collision with the target provides the necessary k− to put the
dipole chain on shell. To make sure that this indeed is possible, we impose the
following constraint on the colliding dipoles

16

r2
ab

< k+a · k−b. (I.16)

Here a and b denote two colliding gluons, which are connected in the recou-
pling as shown in figure I.3. The left moving onium is the one with larger k−
while the right moving onium has larger k+. When two dipoles collide there
is only one possible way to reconnect the gluons, which is consistent with the
colour flow. The constraint in eq. (I.16) has to be satisfied for both pairs of
connected gluons. If one of the constraints is not satisfied, the corresponding
scattering amplitude is set to zero, which guarantees that only sub-collisions,
which satisfy energy-momentum conservation, contribute to the cross section.

As a final remark we mention that all calculations are performed using a
fixed coupling constant αs, corresponding to ᾱ = 0.2. We intend to study the
effects of a running coupling in future investigations.

I
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Figure I.9: The average total number of dipoles (full line) together with the average
number of large dipoles (dashed line) in the onium state when evolved with energy
conservation.

I.6 Results

I.6.1 Dipole Multiplicity

We will begin this section by describing some of the general properties of the
dipole evolution, and we first study how the dipole multiplicity grows with
energy. In figures I.9 and I.10 we show the average number of dipoles with
and without energy conservation. As some dipoles have to be regarded as
virtual, according to the discussion in section I.4.3, these results do not have a
direct physical interpretation. They are interesting because they may be help-
ful, e.g. in estimates of effects of multiple collisions and the efficiency of the
MC program. Without energy conservation a fixed cutoff, ρ, is needed for
small dipole sizes, and in figure I.10 results are shown for ρ = 0.04 r0 and
ρ = 0.02 r0, where r0 is the size of the initial dipole starting the cascade. In
all cases the total dipole multiplicity is growing exponentially with rapidity.
A small cutoff favors the production of very many small dipoles, which is re-
flected in a very large dipole multiplicity, as seen in figure I.10. With energy
conservation the dynamical cutoff ρ(∆y), discussed in section I.4.2, is large for
small values of ∆y, and this feature effectively suppresses the production of
many small dipoles in a small rapidity interval. Comparing the two figures
we see that energy conservation indeed does have a very large effect. With
energy conservation the multiplicity at Y ≈ 10 is a factor 20 below the result
obtained excluding energy conservation with the smaller cutoff value.
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Figure I.10: The average total number of dipoles together with the average number of
large dipoles in the onium state when evolved without energy conservation and using
two different cutoffs. For the smaller cutoff, ρ = 0.02 the total number is given by the
full line while the number of large dipoles is given by the dashed line. For the larger
cutoff, ρ = 0.04 the total number is given by the short-dashed line while the number
of large dipoles is given by the dotted line.

Without energy conservation the strong sensitivity to the small dipole cut-
off reflects the large probability to emit very small dipoles (c.f. eq. (I.5)). As
the small dipoles also have small cross section, one could imagine that the
differences seen in the dipole multiplicity is rather unessential for total cross
sections. This is, however, not the case. In figures I.9 and I.10 we also show
the number of dipoles with sizes larger or equal to the initial dipole size. With
energy conservation this number changes rather slowly and exceeds one first
at Y ∼ 7, while without energy conservation it is steadily increasing with en-
ergy. This is the case also for the larger cutoff value, although in this case the
total multiplicity is not significantly larger than in the energy conserving case.
This feature is further illustrated in figure I.11, which shows the distribution
in dipole size at Y = 6 and Y = 8. Energy-momentum conservation does not
only suppress small dipoles, which we understand as a result of conservation
of the positive light-cone component, p+, but there is also a suppression of
large dipoles, as a consequence of p−-conservation. Thus we conclude that
the implementation of energy conservation does not only have an effect on
very small dipoles, which turns out to be less important for the total cross
sections, but indeed also has a very strong effect on the main features of the
evolution. This will be more clearly illustrated in the following subsections.

I
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Figure I.11: The distribution in dipole size for Y = 6 and 8. The solid and longdashed
lines show the result from evolution with energy conservation while the shortdashed
and dotted lines show the same for evolution without energy conservation with the
cutoff ρ = 0.02 r0.

I.6.2 Onium–Onium scattering.

We will here study the collision between two onium states, which we regard
as two incoming dipoles. We denote the initial dipole sizes r1 and r2 respec-
tively, and we imagine r2 as the target dipole with fixed size, while we vary

the projectile size r1 ∝ 1/
√

Q2. We note that with energy conservation and
fixed αs there is no external scale, and therefore the result for the scaled cross
section σ/r2

2 does not depend on r1 and r2 separately, but only on their ratio.

Figure I.12 shows the total cross section as a function of the rapidity Y for
different values of r1/r2, obtained including energy conservation and unitari-
sation in accordance with eq. (I.7). The result from single pomeron exchange,
where the parenthesis in eq. (I.7) is replaced by ∑ fij, is shown in figure I.13,
and we see that these results are almost identical to those in figure I.12. We
note in particular that the curves are not straight lines, as is expected from
leading order BFKL. This implies that the effective slope, λeff, varies with ra-
pidity, in a way expected as a result of saturation. We also note that λeff grows
with larger values for the ratio between the dipole sizes. This effect is illus-
trated in figure I.14, and will be further discussed in section I.6.4.

For comparison, results obtained without energy conservation, with and
without unitarisation, are shown in figure I.15. In this figure the ratio r1/r2

is chosen equal to 1. We see that here the one-pomeron cross section, with-
out unitarisation, grows exponentially with rapidity, proportional to eλY with
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Figure I.12: The scaled unitarised dipole–dipole cross section as a function of Y for
different initial conditions.
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Figure I.13: The scaled one-pomeron dipole–dipole cross section as a function of Y for
different initial conditions.

a constant slope λ. Including unitarisation gives here a noticeable suppres-
sion, which becomes stronger for larger rapidity and correspondingly higher
dipole density. This has the expected effect that the growth rate is reduced for
larger rapidities, with an effective slope parameter λeff which is decreasing for
higher energies. Comparing figures I.12 and I.13 we note that already without
unitarisation, the inclusion of energy conservation also results in an effective

I
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Figure I.14: The effective power λeff calculated from the unitarised dipole–dipole cross
section where energy conservation has been included.
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Figure I.15: The scaled unitarised (full line) and one-pomeron (dashed line) dipole–
dipole cross sections calculated without energy conservation.

slope, which is varying with energy in much the same way.

I.6.3 Dipole–nucleus scattering.

Having studied dipole–dipole collisions we now apply our program to dipole–
nucleus collisions. We will focus on the qualitative features and consider a toy
model where the nucleus is given by a collection of colour dipoles, which are
distributed with a Gaussian distribution in dipole size r and in impact pa-
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Figure I.16: The dipole–nucleus cross section for rproj = 0.1 and 1 GeV−1 and A = 200.
The unitarised result is shown by the solid lines, and the one-pomeron contribution by
the dashed lines.

rameter b and with random relative angles. The number density of dipoles is
given by

dN = B · d2re−r2/r2
0 · d2be−b2/b2

0 (I.17)

The parameters r0 and b0 are related to the estimated primordial momentum
in a proton and the nuclear radius respectively. As our model is rather crude
we have not tried to optimize these parameters, but chosen the following
canonical values: r0 = 1 fm and b0 = A1/3 · 1 fm, A being the mass number for
the nucleus. The normalization constant B is determined by the requirement
that the transverse energy of the nucleus is set equal to A · 1 GeV. To sim-
plify the calculations, the interaction amplitude for a dipole–nucleus collision
is calculated in the nucleus rest frame, by convoluting the basic dipole–dipole
amplitude with the distribution in eq. (I.17). Although, as discussed in section
I.4.4, the result is not exactly independent of the Lorentz frame, the differences
are not large, and should not be essential for the qualitative studies in this sec-
tion. For the application to ep scattering in the next section, where we will
compare our results with data from HERA, we will perform our calculations
in the hadronic rest system, which in that case should be more accurate.

The results for A = 200 and rproj = 0.1 and 1 GeV−1 are shown in figure
I.16. Results are presented both for single pomeron exchange and including
unitarisation. The effect of unitarisation grows with nuclear size and with
the size of the projectile. For a small projectile of size 0.1 GeV−1 we can see
the effect of colour transparency, as the cross sections for the unitarised and
the one pomeron calculations are almost identical. For a larger projectile we

I
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Figure I.17: The scaled dipole–nucleus cross section, without conservation of energy,

for A = 200 with a projectile of size 1 GeV−1. The full and dashed line shows the result
with and without unitarisation respectively.

do see a clear effect from unitarisation, but even for rproj = 1 GeV−1 and
a nucleus with A = 200 this effect is only about 20 percent in the rapidity
interval 10 − 14. For smaller nuclei the effect will be correspondingly smaller.

It is also interesting to study our toy model without energy conservation,
and figure I.17 shows results for rproj = 1 GeV−1 and A = 200, corresponding
to the larger projectile in figure I.16. The result is qualitatively similar to the
corresponding results for dipole–dipole collisions, in the sense that the one-
pomeron result is a straight line, while with unitarisation the suppression is
increasing for larger Y-values, and the curve bends downwards. However, as
expected the unitarisation effect is here quantitatively much larger.

Comparing the results in figures I.16 and I.17 we see that including en-
ergy conservation very strongly reduces the cross section. This suppression
becomes larger for higher energies, which gives an effective slope, λeff, which
decreases with energy in a way characteristic for saturation. The reduction of
the gluon density due to energy conservation is also so large that the unitari-
ty effects become comparatively small for available energies, even for large
nuclei.

I.6.4 F2 at HERA

When we apply our model to deep inelastic ep scattering we want to empha-
size that we here only want to study the qualitative behavior. We postpone
a quantitative comparison with HERA data to a future publication, where we
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Figure I.18: The scaled dipole–p cross section as a function of log1/x, for Q2 = 4 GeV2

and Q2 = 400 GeV2. The unitarised results are shown by the solid lines while the
dashed lines show the one-pomeron results.

can include effects of colour recombination and improve the simple toy model
for the proton target.

For the application to DIS ep collisions we here use the same toy model de-
scribed in section I.6.3, with A = 1. We also identify Q2 directly with 4/r2

proj

without taking into account the detailed effects of the photon wavefunction.
This implies that the number of dipoles in the target is much smaller than the
number of dipoles in an onium state developed to large Y-values as described
in section I.6.1. Hence, the collision is more similar to the symmetric onium–
onium scattering than to the very unsymmetric onium–nucleus collision. To
reduce the frame dependent effects discussed in section I.4.4, we therefore
study the dipole–proton collisions in the overall rest frame. We neglect possi-
ble correlations between the target dipoles, which thus are assumed to evolve
independently. As the unitarisation effects turn out to be small, and we here
only study the total cross section, it is also possible to neglect the fluctuations
in the number of primary target dipoles.

The resulting dipole–nucleon cross section is shown in figure I.18 for two

different projectile sizes, corresponding to Q2 = 4 GeV2 and Q2 = 400 GeV2.
In this figure we also show the result for single pomeron exchange, i.e. without
unitarisation corrections, and we here see that the effect from unitarisation is
quite small.

Fig. I.19 shows the corresponding results without energy conservation.

(The results presented here are obtained for the cutoff ρ = 0.02 GeV−1, and

I
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Figure I.19: The scaled dipole–p cross section as a function of log1/x calculated without

energy conservation using ρ = 0.02 GeV−1. Both the unitarised (full line) and the one-
pomeron (dashed line) calculations are shown.

therefore somewhat lower than the limiting values for ρ → 0.) We see that
without unitarisation and without energy conservation, the cross section grows
exponentially with Y = log 1/x, or as a power of x. With unitarisation (but
without energy conservation) the growth rate is, as expected, reduced and be-
comes continuously smaller with decreasing x. We note, however, that energy
conservation has a similar effect, also without unitarisation, and the reduc-
tion in the cross section due to energy conservation is so large that including
unitarisation does not have a significant effect.

In figure I.18 we also see that the logarithmic slope

λeff =
d(log σ)

d(log 1/x)
, (I.18)

is increasing with increasing Q2. As discussed above, λeff is not a constant
for fixed Q2, but depends on both Q2 and x, when unitarisation and/or en-
ergy conservation is taken into account. To compare with experimental data
we show in figure I.20 λeff determined in the x-interval used in the analysis by
H1 [21], which varies from x ≈ 2× 10−5 for Q2 = 1.5 GeV2 to x ≈ 3× 10−2 for
Q2 = 90 GeV2. We note that the result of our crude model is not far from the
experimental data, although the dependence on Q2 is somewhat weaker in the
model calculations. As in figure I.18 we see that the effect of unitarisation is
small, and, as expected, it gets further reduced for larger Q2-values. From fig-
ure I.19 we see that the result without energy conservation and unitarisation
corresponds to a much larger effective slope, and also including unitarisation
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Figure I.20: The effective slope measured at different Q2 compared to data from HERA.
The full line is our model including unitarisation, while the dashed line is without.
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the result for λeff is roughly a factor two larger than the corresponding result
in figure I.18.

In conclusion we find that the result of our simple model is surprisingly
close to experimental data from HERA. This is very encouraging, especially
since we have not attempted to tune the model in any way. The effect of en-
ergy conservation is a suppression for small x-values and small Q2, which is
qualitatively similar to the effect expected from unitarisation. This suppres-
sion is so strong that the effect from adding unitarisation is only a very small
correction, visible for small Q2-values.

I.7 Conclusions

Including both higher-order corrections and unitarisation effects in the high-
energy limit of QCD is not a simple task. Unitarisation effects are more easily
included in a dipole picture formulation in transverse coordinate space, while
higher-order corrections are more easily formulated in transverse momentum
space. In this report we have used as a starting point that a large part of the
NLO corrections to BFKL are due to effects of energy-momentum conserva-
tion, which again are more easily formulated in transverse momentum space.
However, after noting similarities between the LDC and Mueller dipole for-
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mulations of high energy QCD, we conjecture that also in the latter case, the
essential contribution to the cross section comes from a subset of dipoles be-
tween real final-state gluons, which necessarily must respect energy and mo-
mentum conservation.

We have presented a way to implement energy and momentum conser-
vation in the Mueller dipole model. This is a necessary, although not suffi-
cient, requirement for selecting only final-state gluons, and should also in-
clude most NLO corrections to the BFKL evolution. Our way to implement
energy-momentum conservation also eliminates the need for a cutoff for small
dipoles in Mueller’s formalism, in which the large number of small dipoles
causes problems for a numerical treatment. Thus the number of dipoles pro-
duced in the evolution is drastically reduced. This applies not only to the
number of very small dipoles, which do not much affect the resulting cross
sections. Also the number of large dipoles is reduced, resulting in a drastic
reduction of the cross section and in the effective slope λeff = d log F2/d log x.

Also in standard BFKL evolution one would expect a large reduction of
the effective slope due to unitarisation effects. In our case the growth of the
cross section is already damped, making the inclusion of unitarisation a rather
small effect for the total cross section, even for deeply inelastic virtual photon
scattering on large nuclei.

Comparing with the results of [20], we find a larger effect from energy-
momentum conservation. One reason seems to be the inclusion of p−-conser-
vation, which in our formalism is found to have an important effect. Thus
we find that including only conservation of p+, and not of p−, increases the
cross section by a factor 2 (3) for dipole–proton collisions at Q2 = 4 (400)GeV2.
Conservation of p− is related to the so called consistency constraint [47], and
in [20] this contribution to the NLO BFKL kernel is neglected, with the mo-
tivation that saturation effects suppress the gluon density so that this contri-
bution is less important. Naturally, what is physically relevant is only the
combined effect of both energy conservation and saturation. Including the
contributions in different order, will also give different weights to the two
effects. We feel that energy and momentum conservation is the more funda-
mental phenomenon, and hence obtain a much smaller effect from saturation.

To investigate the scattering on nuclei we have introduced a toy model,
where the nucleons are treated as a collection of dipoles with a Gaussian dis-
tribution in sizes and impact parameter. We also use this to model the scatter-
ing on a single nucleon and compared our results with HERA data. Although
we made no tuning of the parameters of our model, we obtain a good semi-
quantitative description of the effective slope, λeff, measured at low x and Q2

at HERA.

Thus encouraged we will now continue to develop our model, and there
are several things which we would like to improve. A major development
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would be to achieve a formalism which is completely frame independent. This
would entail the inclusion of true gluon recombinations in the dipole evo-
lution, and also a better understanding of the “effective” gluons with small
transverse separation described in section I.4.3. In this way we hope to also
be able to use our formalism to describe exclusive final-state properties. An-
other important development would be to include effects of a running αs, and
also to improve our nucleon toy model to investigate the impact of our for-
malism in nucleus–nucleus collisions. We intend to return to all these issues
in forthcoming publications.
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We present a method to include colour-suppressed effects in the Mueller
dipole picture. The model consistently includes saturation effects both in the
evolution of dipoles and in the interactions of dipoles with a target in a frame-
independent way. When implemented in a Monte Carlo simulation together
with our previous model of energy–momentum conservation and a simple
dipole description of initial state protons and virtual photons, the model is
able to reproduce to a satisfactory degree both the γ∗p cross sections as mea-
sured at HERA as well as the total pp cross section all the way from ISR ener-
gies to the Tevatron and beyond.
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II.1 Introduction

Parton evolution at small x is a difficult problem. It is interesting because of
the strong nonlinear effects and the interplay between perturbative and non-
perturbative physics, and it is an important problem, as it is necessary to have
a good understanding of the dominant effects from the strong interaction in
the analyses of results from LHC and the interpretation of possible signals for
new physics.

Although it cannot be possible to include all quantum interference effects
in a classical branching process, such a stochastic evolution has been extremely
successful to describe parton cascades in e+e−-annihilation. This is also the
case in the DGLAP regime of DIS (high Q2 and large x). In these cases the vir-
tuality or transverse momentum acts as a well-defined evolution parameter,
and the perturbative cascade can be well separated from the non-perturbative
effects in the hadronization or the input distributions in the DGLAP evolu-
tion. We note, however, that important for the good agreement with LEP data
is both a description of the hardest gluons by fixed order matrix elements, and
implementation of energy–momentum conservation in the event simulation
procedure.

DIS at small x is more difficult. To LL or NLL accuracy the cross section is
determined by the BFKL equation, which describes an evolution in x instead
of the k⊥-ordering in the DGLAP evolution. A big problem is here that the
NLL corrections are so large, that it in practice only can give a qualitative
description of experimental data.

Part of the NLL corrections originate from the running coupling αs. Includ-
ing a running coupling in the evolution implies that the parton chain spreads
into the non-perturbative region, and a soft cutoff is needed for small k⊥. This
problem is avoided in studies of collisions between highly virtual photons or
massive onium states. Another possibility is to study events with two high
p⊥ jets separated by a large rapidity interval. Also here it is demonstrated
that the energy–momentum conservation constraint has a very large effect on
the theoretical calculations [1]. In ep and pp scattering the influence of non-
perturbative effects cannot be avoided, however, and has to be included in the
analysis.

A most essential feature of the e+e−-cascades is the so-called ”soft colour
interference” or angular ordering [2–5]. A colour charge in one parton has
always a corresponding anti-charge in an accompanying parton, and it is im-
portant to account for the interference in the radiation from these emitters.
An efficient way to treat this effect is offered by the dipole cascade model de-
scribed in refs. [6, 7], in which the QCD state is described as a chain of colour
dipoles formed by a charge–anti-charge pair, rather than a chain of gluons. In
the large Nc limit the dipoles radiate independently, and analyses of experi-
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mental data from LEP [8–11] indicate that the interference between different
dipoles is very weak. (In contrast to the other three LEP experiments, DEL-
PHI [11] does indeed favour some weak effects from interaction.)

In DIS a formulation with coherent colour dipoles was presented by Golec-
Biernat–Wüsthoff [12, 13], and a space-like dipole cascade model was formu-
lated by Mueller [14–16]. While the time-like dipole cascade model in ref. [7]
is formulated in momentum space, the dipoles in these models are specified
in transverse coordinate (or impact parameter) space. As the transverse coor-
dinate is little affected in a high energy interaction, this makes it possible to
account for multiple parton sub-collisions in a natural way.

Mueller’s dipole cascade model is valid in the large Nc limit, and is demon-
strated to satisfy the BFKL equation to LL accuracy. In this picture one starts
with a qq̄ colour singlet state (a quarkonium or simply onium state), and when
the system is boosted to higher energy more and more soft gluons are emit-
ted, forming a chain of colour dipoles. As mentioned this approach leads to
the BFKL equation, but it also goes beyond the BFKL formalism. When two
cascades collide it is possible to take into account multiple scattering to all or-
ders, and it is thus possible to obtain a unitarised expression for the S-matrix.
The probabilistic nature of the cascades implies that the evolution can be sim-
ulated in a Monte Carlo program, and the effects of unitarisation be studied
numerically [17, 18] (see also [19]).

The dipole model contains a vertex in which a dipole splits into two new
dipoles, originating when a soft gluon is emitted from the original colour
dipole. The evolution can then be formulated as a typical birth–death process,
where a dipole can decay into two new dipoles with a specified differential
probability, proportional to dY, with Y = log 1/x which here acts as a time
variable for the evolution process.

There are some problems with the dipole evolution as formulated in [14–
16]. One problem comes from the fact that the cascade cannot correspond to
real gluon emissions. The splitting vertex diverges as the size of one of the new
dipoles goes to zero. The many small dipoles interact, however, very weakly
with a target, a phenomenon referred to as colour transparency. Thus, even
if the number of small dipoles diverges, the total cross section remains finite.
Although we thus get a finite cross section, the divergence causes problems:
i) Dipoles which do not interact should be regarded as virtual. Therefore the
dipole model in this formulation can be used to study fully inclusive quanti-
ties like the total cross section, but not the properties of exclusive final states.
ii) In numerical calculations the divergence has to be regulated by a cutoff
for small dipoles. Although the cutoff does not show up in the cross section, it
makes it extremely time consuming to run a simulation program with a cutoff,
which is small enough to simulate the physics with good accuracy.

As mentioned above, the constraint from energy–momentum conservation

II
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is very important in order to achieve agreement between theory and experi-
ment in e+e−-annihilation, and in [1] it is demonstrated that it also has a large
effect in space-like cascades. This constraint goes beyond the LL approxima-
tion, and is not included in the formalism in [14, 15]. This is related to the
problem with small dipoles discussed above. A very small dipole corresponds
to well localized partons, which thus must have large transverse momenta,
which in turn implies also non-negligible longitudinal momentum and en-
ergy. Only real final state partons have to obey conservation of energy and
momentum, and to fully solve this problem one must also solve the problem
with specifying the final states.

Another problem is due to the fact that in this formalism dipoles in the
same onium do not interact. Saturation effects are included in the collisions
between two cascades, but not in the evolution of each cascade separately.
This problem is related to the large Nc approximation in the evolution. Multi-
ple collisions are formally colour suppressed, and in the Lorentz frame where
the collision is studied they lead to the formation of pomeron loops. As the
evolution is only leading in colour, such loops cannot be formed during the
evolution itself. If one e.g. studies the collision in a very asymmetric frame,
where one of the onia carries almost all the available energy and the other
is almost at rest, then the possibility to have multiple collisions is strongly
reduced. Only those pomeron loops are included, which are cut in the spe-
cific Lorentz frame used for the calculations, which obviously only forms a
limited set of all possible pomeron loops. It implies that the dipole model
is not frame independent, and the preferred Lorentz frame is the one where
the two colliding systems have approximately the same density of dipoles 1.
This feature clearly limits the rapidity range of validity. It is apparent that a
frame independent formulation must include colour suppressed interactions
between the dipoles during the evolution of the cascades, but so far it has not
been possible to formulate a model, which includes saturation effects and is
explicitely frame independent.

There is also another related problem with the finite number of colour
charges. The dipole degrees of freedom are natural only in the Nc → ∞

limit. Consider for example a system of rr̄rr̄ charges. Using the dipole ba-
sis this system the colours can be combined in two different ways. Obviously,
to go beyond large Nc one would need to take into account quadrupoles, as
in the example above, and even higher multipoles. This makes the colour
structure of the gluon cascade really non-trivial, and one loses the picture of
a system of dipoles evolving through dipole splittings in a stochastic process.
As the dipole approximation is so successful in e+e−-annihilation, it may still
be possible to find a working approximation using only dipoles. In the exam-

1The model is, however, frame independent at the level of one pomeron exchange as a conse-
quence of the conformal invariance of the process.
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ple above it may be possible to describe the quadrupole field as two dipoles
formed by the closest charge–anti-charge pairs. Such an approximate scheme
can be realized by introducing a 2 → 2 transition vertex in the dipole evolu-
tion.

In this paper we want to discuss ways to improve the dipole descrip-
tion of high energy interaction in DIS and hadronic collisions. Some effects
of energy–momentum conservation were presented in ref. [20]. This con-
straint gives a dynamic cutoff for small dipoles, which strongly reduces some
of the problems discussed above. The dipole multiplicity is reduced, which
makes the Monte Carlo simulation much more efficient. The reduced dipole
multiplicity also reduces the effect of saturation, which becomes rather small
for DIS within the HERA kinematical region. Here we will further extend
the model presented in [20], including colour suppressed effects related to
pomeron loops by introducing a 2 → 2 transition vertex in the dipole evo-
lution. Although not explicitely frame independent, the dependence on the
Lorentz frame used is here much reduced.

The coupling of a virtual photon to a qq̄ dipole is well known, but the
proton is a much more complicated system. It was early suggested that semi-
hard parton sub-collisions and minijets are important ingredients in high en-
ergy pp collisions, and responsible for the rising cross section [21–24]. This
picture is supported by the successful description of Tevatron data [25] using
the PYTHIA MC, which is based on perturbative parton–parton collisions [26].
These results encourages us to describe high energy γ∗p and pp collisions in
terms of perturbative dipole–dipole collisions, and we will in this paper also
present a simple model for the initial dipole system in a proton. The ideas are
implemented in a computer simulation program, and the results are compared
with DIS data from HERA and with data from hadron–hadron colliders.

The paper is organized as follows. In the next section we describe the
dipole picture of high energy collisions in QCD and its relation to the string
picture. In section II.3 we briefly summarize the alternative approach to high
energy QCD, the colour glass condensate, and recent results related to the for-
mation of pomeron loops in the corresponding evolution equations. In section
II.4 we describe the improvements we have made in the dipole model as was
briefly described in this introduction, followed in section II.5 by a brief discus-
sion of the model of the proton used to obtain quantitative results. In section
II.6 we present some details about our Monte Carlo program and how we im-
plement the improvements we have made. Then, in section II.7, we present
the applications of these improvements and compare our results to experi-
mental data for DIS and pp scattering. Finally, in section II.8, we arrive at our
conclusions.

II
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II.2 Dipole Picture of QCD

Higher order QCD diagrams are very difficult, and naturally it is not possi-
ble to formulate a quantum mechanical parton cascade as a classical branch-
ing process, including all interference effects. The great success for parton
cascades in e+e−-annihilation is therefore quite surprising. DIS is, however,
significantly more complicated than e+e−-annihilation.

II.2.1 Cascades in e+e−-annihilation

In e+e− the main problem is to calculate the properties of the final states,
while the total cross section is well determined by low order perturbative
QCD calculations. Although the 1st order matrix element for gluon emis-
sion diverges for soft gluons, the total cross section is still finite and given
by σtot ≈ σ0 (1 + αs/π), where σ0 is the cross section to 0th order in αs. The di-
vergence for soft gluon emission is compensated by virtual corrections, which
can easily be taken into account by Sudakov form factors. This implies that
the cascade has a probabilistic nature; the emission of one more gluon in the
ordered cascade does not change the total reaction cross section.

The process e+e− → qq̄gg does factorize in the limit when one gluon is
much softer than the other. In the large Nc limit also the amplitude for a multi-
gluon final state factorizes in the strongly ordered regime, where one gluon is
much softer than the previous one. Nc is, however, not a big number (even
if the non-factorizing correction terms are of order 1/N2

c and not 1/Nc). Also
the value of αs is so large that cascades which are not strongly ordered (and
therefore do not factorize), are very important in analyses of experimental
data.

The result depends quite strongly on the treatment of not well ordered cas-
cades, where the description depends equally much on physical intuition as
on analytic calculations. A very essential feature is what is called soft colour
interference, which was mentioned in the introduction. A parton with e.g. a
red colour has always a partner carrying anti-red colour charge. The interfer-
ence between these two charges implies a suppression for emission of gluons
with wavelengths larger than the separation between the emitters. Thus the
colour charge and its anti-charge partner do not radiate independently, but
must be treated as one unit.

In a fixed Lorentz frame this interference effect can be approximated by
an angular ordering [2–5]. This means that emissions from the red and anti-
red partons is restricted to angular cones with opening angles equal to the
angle between the emitters. This angular constraint is not Lorentz invariant
but frame dependent. It also overestimates the emission in some directions
and underestimates it in other, but in such a way that it averages out to the
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correct value.

A different approach to this effect is given by the dipole cascade model
described in [6, 7]. In this model the QCD state is described as a chain of
colour dipoles (with given momentum, energy, and orientation) rather than a
chain of gluons (with momentum, energy, and polarization). This is similar
to the relation between a lattice and its dual lattice. It is interesting to note
that at the end of the cascade this dipole chain gives a smooth transition to the
string in the Lund fragmentation model [27]. In the large Nc limit the dipoles
radiate independently apart from recoils (which may be important when the
emissions are not strongly ordered). The radiation from the dipole formed by
the red and anti-red charges discussed above is studied in the rest frame of the
two partons forming that dipole. Boosting to e.g. the overall rest frame this
reproduces the angular ordering, but without the (unrealistic) sharp angular
cutoff. A comparison between the dipole approximation and the exact 2nd
order matrix element is given in [28].

The angular ordering constraint is implemented in the event generators
Herwig [29] and Pythia [30], and the dipole cascade in the Ariadne event gen-
erator [31]. They all give very good descriptions of experimental data from
LEP and other e+e− colliders, with the dipole model giving just a slightly bet-
ter overall χ2. (The overall structure of the final state depends strongly on the
first hard emissions, and in all approaches the best agreement is obtained if
these are described by fixed order matrix elements.)

II.2.2 Cascades in DIS

DIS is a more complicated process than e+e−-annihilation. First, there are in
DIS two different energy scales, W2 and Q2. Secondly, in DIS both the cross
section and the final state properties are highly nontrivial problems. Only
in the pure DGLAP region, with high Q2 and large x, has the probabilistic
description in terms of k⊥-ordered cascades been really successful, in this case
both for cross sections and final state properties. In the DGLAP region the real
emissions are compensated by virtual corrections in a way similar to the time-
like cascades in e+e−-annihilation. Thus the virtual corrections can also here
be treated by Sudakov form factors, and the cascade contains only the real
emissions appearing in the final state. Thus the DGLAP evolution describes
the probability for a given parton state with a fixed resolution determined by
Q2. The total cross section is determined by the reaction probability between
the virtual photon and the quarks in the cascade. The final state is obtained by
adding final state radiation to the partons in the initial cascade (within angular
ordered regions).

For lower x and Q2 separate approaches have been used to describe the
total cross section and the final state properties. To LL or NLL accuracy the

II
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cross section is determined by the BFKL equation. The BFKL evolution can
be formulated in different ways. In its implementation in the Mueller dipole
cascade it is not suited to describe the final state, as the evolution contains
a very large number of virtual dipoles, which do not appear as final state
particles. As mentioned, the BFKL equation has also the problem that the
NLL corrections are so very large.

The presently best description of the final state properties at HERA is given
by the soft radiation model (frequently called the Color Dipole Model, CDM,
and implemented in the Ariadne event generator). In this model the gluon
radiation from the separating colour charges in the kicked out quark and
the proton remnant is described in a way analogous to emission in e+e−-
annihilation. The CDM model does not predict the cross section, but only
the properties of the final state. It has also the drawback that it is not solidly
founded in perturbative QCD.

The CCFM model [32, 33] represents an interpolation between the DGLAP
and BFKL evolutions. In the DGLAP region the cascade contains, besides
the real emissions in the DGLAP equation, also softer emissions which are
treated as final state radiation in the DGLAP approach. This makes the re-
gions where final state radiation should be added more complicated, and a
description of final state properties more difficult. The CCFM model is refor-
mulated and generalized in the Linked Dipole Chain (LDC) model [34], which
is based on a different separation between initial and final state radiation. Both
these models are implemented in MC event generators, Cascade [35, 36] and
LDCMC [37, 38] respectively. The models have the ambition to describe both
the cross section and the final state properties. They both work well with re-
spect to the cross sections, but none is as successful as the abovementioned
CDM model, when it comes to the properties of the final states.

II.2.3 Mueller’s Dipole Formulation

The Mueller dipole model [14–16] is formulated in transverse coordinate space.
Such a formulation has the advantage that the transverse coordinates of the
partons are not changed during the evolution. This makes it easier to take
into account saturation effects due to multiple scatterings. On the other hand,
it is easier to take into account energy–momentum conservation in a model
formulated in transverse momentum space.

In Mueller’s model we start with a qq̄ pair, heavy enough for perturbative
calculations to be applicable, and calculate the probability to emit a soft gluon
from this pair. Here the quark and the antiquark are assumed to follow light-
cone trajectories and the emission of the gluon is calculated in the eikonal
approximation in which the emitters do not suffer any recoil. Adding the
contributions to the emission from the quark and the antiquark, including the
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Figure II.1: The evolution of the dipole cascade. At each step, a dipole can split into
two new dipoles with decay probability given by (II.1).

interference, one obtains the result (for notations, see figure II.1)

dP
dY

=
ᾱ

2π
d2zzz

(xxx − yyy)2

(xxx − zzz)2(zzz − yyy)2
≡ ᾱ

2π
d2zzzM(xxx, yyy, zzz). (II.1)

Here xxx, yyy, and zzz are two-dimensional vectors in transverse coordinate space
and Y denotes the rapidity, which acts as the time variable in the evolution
process. This formula can be interpreted as the emission probability from
a dipole located at (xxx, yyy). In the large Nc limit the gluon can be seen as a
quark–antiquark pair and the formula above can then be interpreted as the
decay of the original dipole (xxx, yyy) into two new dipoles, (xxx, zzz) and (zzz, yyy). In
the same limit further emissions factorize, so that at each step one has a chain
of dipoles where each dipole can decay into two new dipoles with the decay
probability given by (II.1). In this way one obtains a cascade of dipoles which
evolve through dipole splittings, and the number of dipoles grows exponen-
tially with Y.

We note that the expression above has non-integrable singularities at zzz = xxx
and zzz = yyy. In numerical calculations it is therefore necessary to introduce
a cutoff, ρ, such that (xxx − zzz)2, (zzz − yyy)2 ≥ ρ2. To obtain a meaningful prob-
abilistic interpretation of (II.1) (note that dP/dY can become very large for
small ρ) we also need to take into account virtual corrections to the real emis-
sions. The effect of these corrections is described by a Sudakov form factor,
S =exp(−

∫

dYd2zzz · dP/dY), which should multiply the splitting probability
in (II.1).

II.2.4 Scattering of Dipoles

In Mueller’s model each dipole interacts independently with some target via
two-gluon exchange. In case of onium–onium scattering each onium evolves
into a cascade of dipoles. We let fij denote the imaginary part of the elastic
scattering amplitude for a dipole i, with coordinates (xxxi, yyyi), in one of the onia
and a dipole j, with coordinates (xxx j, yyyj), in the other onium. The basic dipole–
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dipole scattering amplitude from gluon exchange is given by

fij =
α2

s

8

[

log

(

(xxxi − yyyj)
2(yyyi − xxx j)

2

(xxxi − xxx j)2(yyyi − yyyj)2

)]2

. (II.2)

In the single pomeron approximation the onium–onium amplitude is then
simply given by the sum of the basic dipole–dipole amplitudes, ∑ij fij.

In the dipole model it is also possible to have multiple scatterings, i.e the
simultaneous scatterings of several dipoles. Assuming that the individual
dipole interactions are uncorrelated, summing multiple scatterings to all or-
ders exponentiates, and the total amplitude for a single event is given by
1−exp(−∑ij fij). Thus, the expansion of the exponential in a power series
corresponds directly to the contributions from the multiple scattering series,
where the single pomeron cross section corresponding to the first term in this
series is given by 2

∫

〈∑ij fij〉.
Consider the scattering of an elementary dipole (xxx, yyy) off some arbitrary

target. We denote the scattering matrix by S(xxx, yyy). After one step of evolution
in rapidity the dipole (xxx, yyy) has a chance to split into two new dipoles, (xxx, zzz)
and (zzz, yyy), through the splitting kernel Mxxxyyyzzz ≡ M(xxx, yyy, zzz). The evolution of
the S-matrix is then given by

∂YS(xxx, yyy) =
ᾱ

2π

∫

d2zzzMxxxyyyzzz{−S(xxx, yyy) + S(2)(xxx, zzz; zzz, yyy)}. (II.3)

The right hand side in this expression simply states that the dipole can remain
as it is, with a reduced probability, 1 − ᾱ/2π

∫

M, or that it can split into two
new dipoles, (xxx, zzz) and (zzz, yyy), with a probability density given by (II.1). If we

assume that S(2)(xxx, zzz; zzz, yyy) = S(xxx, zzz)S(zzz, yyy) and rewrite the equation in the
scattering amplitude T ≡ 1 −S , we get

∂YT(xxx, yyy) =
ᾱ

2π

∫

d2zzzMxxxyyyzzz{−T(xxx, yyy) + T(xxx, zzz) + T(zzz, yyy) − T(xxx, zzz)T(zzz, yyy)}.

(II.4)

This is the so called Balitsky–Kovchegov (BK) equation [39, 40]. The assump-

tion that S(2) = SS , corresponds to a mean field approximation, which can be
justified for a large target nucleus. As demonstrated in [14] the linear part of
(II.4) reproduces the BFKL equation, while the inhomogeneous term describes
the simultaneous scattering of the two new dipoles.

The S-matrix for a specific scattering event can be written as exp(−∑ij fij).
To obtain the physical cross section one has to perform an average over onium
configurations, so that S = 〈exp(−∑ij fij)〉. The total cross section is given by

2
∫

(1 − S(b)), where b denotes the impact parameter, and for onium-onium
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scattering we therefore get

σtot = 2
∫

d2bbb〈1 − exp(−∑
ij

fij)〉. (II.5)

For γ∗γ∗ scattering one also needs to convolute the averaged amplitude with
the virtual photon wave functions. The expression in (II.5) is also what we
will use for γ∗p and pp collisions, where we model the proton as a collection
of colour dipoles. These points are explained in greater detail below.

II.2.5 Energy–Momentum Conservation

As we saw above, the probability to produce small dipoles diverges as the
size of the dipoles goes to zero. To regulate this divergence a cutoff, ρ, was
introduced. Even though this cutoff does not show up in the cross section (the
divergence is canceled by virtual corrections, and σtot approaches a constant
when ρ → 0) it must still be kept in a Monte Carlo program. A small value
of ρ, which is needed in order to simulate the physics with a good accuracy,
will imply that we get very many small dipoles in the cascade. A small dipole
means that we have two well localized gluons in the transverse plane, and
these gluons must then have a correspondingly large transverse momentum of
the order of the inverse dipole size, p⊥ ∼ 1/r. Thus if these small dipoles are
interpreted as corresponding to real emissions with p⊥ ∼ 1/r, then the diverg-
ing number of such dipoles would imply the violation of energy–momentum
conservation. This suggest that these dipoles should be interpreted as virtual
fluctuations, which means that the dipole cascade will not correspond to the
production of exclusive final states.

Similarities between Mueller’s model and the Linked Dipole Chain (LDC)
model [34] were used in ref. [20] to implement energy conservation in
Mueller’s model. This removes a dominant fraction of the virtual emissions.
(It does, however, not remove all virtual emissions. That emissions must sat-
isfy energy–momentum conservation if they are to be present in real final
states is obviously a necessary condition, but as was discussed in [20], it is
by itself not a sufficient condition.) The modified cascade is ordered in both
light-cone variables, p+ and p−, and it was seen that this modification has a
rather large effect on the cascade. One sees for example that the total number
of dipoles, while still increasing exponentially, is greatly reduced, which im-
plies that the onset of saturation is delayed. In fact it is found that in DIS the
unitarity effects become quite small within the HERA energy regime, at least
for Q2 & 1 GeV2. Naturally saturation is more important for dipole–nucleus
or pp scattering. In particular we will in the following see that saturation ef-
fects have a large influence on pp collisions at the Tevatron.

II
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II.3 The JIMWLK Approach

II.3.1 The Color Glass Condensate

A different approach to high energy QCD is called the Color Glass Conden-
sate (CGC) (for review papers see [41–43]). This is an effective theory for QCD
valid at high gluon densities. Here, the strong gluon fields present in the high
energy particle (which might be a proton, a large nucleus etc.) emerge due
to a classical random color source, ρa, and the classical fields satisfy the cor-
responding Yang–Mills equations of motion. These random sources are dis-
tributed according to a weight functional W[ρ]. As the particle evolves one
proceeds by integrating out layers of quantum fields which are added to the
classical source. This is a renormalization group procedure and the weight
functional then satisfies a renormalization group equation which is known as
the JIMWLK equation [44–47]. The JIMWLK evolution leads to the saturation
of the gluon density2 when the field strength is of order 1/αs. The scale at
which the hadron seems to saturate is called the saturation momentum, de-
noted by Qs(Y). The CGC formalism predicts that Qs(Y) grows exponentially
with rapidity, defined by Y = log(1/x) in this case.

II.3.2 The Balitsky-JIMWLK Equations

When considering a scattering process within the CGC formalism, one usu-
ally thinks of the target as a highly evolved dense particle which can be de-
scribed by the weight functional W[ρ], satisfying the JIMWLK equation. The
projectile, on the other hand, is usually a simple particle which is not so
dense, such as an elementary dipole impinging on the target. The JIMWLK
equation can be written as a Schrödinger equation for the weight functional,
∂YW = HJ IMWLKW, where HJ IMWLK denotes the “JIMWLK Hamiltonian”.
Operators corresponding to observables are averaged over with the weight
W[ρ], and one may then bring the action of HJ IMWLK on the operator, instead
of on W[ρ] itself. This is reminiscent of switching from the Schrödinger picture
(evolution of the “wave function” W[ρ]) to the Heisenberg picture (evolution
of an operator O) in quantum mechanics. In particular, if one applies HJ IMWLK

on S(xxx, yyy), the S-matrix for the projectile dipole, an infinite hierarchy of equa-
tions emerge. This hierarchy of equations is now commonly referred to as
the Balitsky–JIMWLK (B–JIMWLK) equations, since the same set of equations
were some years earlier derived by Balitsky [40] within a different formalism.
Taking the large Nc limit3 the more complicated colour structures disappear,

2The growth does not cease completely, but it is only logarithmic as opposed to a power-like
growth at lower energies.

3From now on, when we talk about the B–JIMWLK equations, we always mean the large Nc

limit of these equations.
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and the equations can be interpreted in terms of dipoles evolving according
to the discussion in section II.2. Written in terms of the scattering amplitude
T(xxx, yyy) = 1 − S(xxx, yyy), the equations in this hierarchy can formally be written
as

∂Y〈T〉 = K⊗ (〈T〉 − 〈TT〉)
∂Y〈TT〉 = K⊗ (〈TT〉 − 〈TTT〉) (II.6)

...

where K is the evolution kernel. We see here that the equation for 〈T〉 contains
a contribution from 〈TT〉. In turn, the equation for 〈TT〉 contains a term 〈TTT〉
and so on.

These equations simplify considerably when disregarding target correla-
tions, i.e. making a mean field approximation where 〈TT〉 = 〈T〉〈T〉. As can
be seen from (II.6) the hierarchy then boils down to a single, closed, nonlin-
ear equation for 〈T〉, which turns out to be none other than the BK equation
introduced in section 2.

II.3.3 Inclusion of Pomeron Loops

As we saw above the B–JIMWLK hierarchy couples the scattering amplitude
〈Tk〉 to all 〈Tn〉, with n ≥ k. There are however no contributions from ampli-
tudes 〈Tn〉 with n < k. The nonlinear term in the BK equation corresponds to
pomeron splittings in the projectile; the projectile dipole splits into two dipoles
and each of these two couples to the target through a single pomeron giving in
total two pomerons coupling to the target. However, one can also assume that
the target is given the rapidity increment, and in this case the two pomerons in
the target must merge into one pomeron, which couples to the single dipole.
Thus this term also corresponds to the merging of two pomerons inside the
target (see figure II.2).

We therefore see that the B–JIMWLK equations describe either pomeron
mergings, when the target is evolved, or pomeron splittings, in case the projec-
tile is evolved, but not both. Thus, even though the CGC formalism correctly
describes saturation effects, it nevertheless misses some essential physics as
it cannot account for pomeron splittings. What is actually absent is gluon
number fluctuations. Indeed, in the CGC approach the small-x gluons are ra-
diated from the classical colour source ρ, but are themselves not allowed to
split. They rather get absorbed into W[ρ], and act as sources for gluons with
even smaller x, as the evolution proceeds. The effects of fluctuations were
demonstrated in numerical studies by Salam [48], and it is known that they
are important for the approach towards the unitarity limit [49, 50]. We note
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Figure II.2: Diagrams for pomeron splittings and mergings. On the left picture the
projectile dipole is evolved, indicated by the down-going arrow, and one pomeron is
split into two pomerons. The frame in which the collision is viewed is indicated by
the horizontal dashed line. On the picture to the right, the target, the gray blob at the
bottom, is evolved and two pomerons merge into one pomeron which couple to the
projectile.

that these fluctuations are correctly taken into account in the dipole model,
and in a Monte Carlo program based on it, as demonstrated by Salam.

Ever since it was realized that the B–JIMWLK equations are not complete,
there has been a lot of effort to construct a model which contains both pomeron
mergings and splittings, and, through iterations, pomeron loops. This has
been formulated in the large Nc limit [51–53] where the dipole model has been
used to add pomeron splittings to the B–JIMWLK equations in the dilute re-
gion. The extension to the dense region is then obtained by simply adding the
remaining terms arising from the large Nc version of the B–JIMWLK
hierarchy. The main principle is that the two kinds of pomeron interactions
(splittings and mergings) are important in different, well separated, kinema-
tical regions. The equations obtained in this way give the correct expressions
in the two limits (dense and dilute systems), but it is not very clear how well
they work in an intermediate region. The new equation for 〈TT〉 receives a
contribution also from 〈T〉 and it can be written as

∂Y〈TT〉 = K⊗ (〈TT〉 − 〈TTT〉) + F · 〈T〉, (II.7)

where F is a quite complicated expression describing the fluctuations in the
target (or saturation effects in the projectile).
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II.4 Finite Nc Effects in Dipole Evolution

In this section we want to discuss what improvements can be made in order
to obtain a more complete picture of high energy evolution using the dipole
degrees of freedom. In a formalism where both the projectile and the target
are considered within the dipole picture, the missing piece is saturation effects
rather than fluctuations, which are fully accounted for in the dipole model.

In many approaches the dipoles in a cascade are treated as independent
and without a specified direction. An important feature in our formalism is
that our cascade consists of a chain of dipoles which are all connected to each
other through the gluons. This chain has also a specified direction, with each
dipole oriented from colour charge to anti-charge. Such a chain can only end
in a quark or an antiquark. In this picture one therefore cannot simply take
two arbitrary dipoles and merge them into one dipole, leaving loose ends be-
hind. It is also necessary to specify how these ends afterwards get reconnected
to other dipoles in the systems. We therefore begin this section by a discussion
of colour structures, and a motivation why it is important, before engaging
into the problems due to the finite number of colours. We end the section with
a comparison between our formalism and other approaches to include colour
suppressed effects in the dipole cascade formalism.

II.4.1 Colour Structures

In onium–onium scattering it is assumed that the probability for a dipole–
dipole sub-collision is independent of the remaining dipoles in the cascades.
The exchange of a gluon implies that the intermediate state corresponds to a
recoupling of the colour flow, as is shown in fig. II.3. This interaction actually
corresponds to the coherent sum of four different Feynman diagrams, illus-
trated in fig. II.4. Note in particular that in the dipole formalism a dipole is a
colour singlet, i.e. a coherent sum of rr̄, bb̄, and gḡ. Therefore the diagrams in
figs. II.4c and II.4d have the same weight as those in figs. II.4a and II.4b. Sum-
ming and averaging over colours they are all of order αs, and thus formally
colour suppressed compared to the dipole splitting vertex in (II.1), which is
proportional to ᾱ = Nc αs/π.

We see that the result of the interactions in figs. II.3 and II.4 is two new,
directed and uniquely specified, dipole chains. The colour end from one ini-
tial dipole chain is connected to the anti-colour end from the other initial
chain. There are actually two good reasons to keep track of the dipole ori-
entations. First we note that given the orientation of the colliding dipoles the
final dipoles are uniquely determined. There is only one possible way to con-
nect the four involved gluons and only one possible orientation for the new
dipoles. Thus keeping track of the orientation actually simplifies the formal-
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Figure II.3: Symbolic picture showing the interaction of two onia via a single sub-
collision. The interaction between the dipoles (xxxi, yyyi) and (xxxj, yyyj) leads to a recoupling
of the colour flow, with strength fij given by (II.2).

ism, as knowing which end of the dipole is the colour and which is the anti-
colour reduces the number of contributing Feynman diagrams. Secondly we
have the ambition to include analyses of exclusive final states in future work,
and it is clearly necessary to keep track of the orientation of the dipole chains
when we want to add final state radiation and hadronization.

Multiple dipole–dipole sub-collisions give more complicated final states,
as illustrated in figs. II.5a and II.5b. When dipole 1 scatters against dipole 3
and dipole 2 against dipole 4, as shown in fig. II.5a, the result includes an iso-
lated dipole loop in the center. If instead dipole 1 scatters against dipole 4 and
dipole 2 against dipole 3, as in fig. II.5b, the result is two dipole chains, each
connecting the two ends from one of the initial incoming chains. The lower
figures give schematic pictures of the resulting dipole chains. Here the pro-
jectile and target remnants move to the right and left respectively. The dipole
chains are stretched between these remnants and the gluons which have par-
ticipated in the hard sub-collisions.
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Figure II.4: Diagrams for dipole–dipole scattering. Each interaction implies a recou-
pling of the colour flow and the square of the sum of the four diagrams give fij in
(II.2).

II.4.2 Effects of Finite Nc

As discussed in the introduction there are two different effects related to the
finite number of colours. The first problem is due to the fact that the ampli-
tude for a dipole–dipole collision is proportional to αs, and therefore formally
colour suppressed compared to the dipole splitting process proportional to
ᾱ = Ncαs/π. Thus, while one takes into account colour-suppressed effects
and saturation due to multiple dipole–dipole sub-collisions, the evolution it-
self does not contain such effects. The multiple collision events can lead to
the formation of colour loops, as illustrated in fig. II.5a, or to pomeron loops
in the elastic amplitude as shown in fig. II.6. Fig. II.7 shows an example with
a more complicated event, where three dipole–dipole sub-collisions result in
the formation of two loops. There is also one loop formed totally within one of
the cascades, indicated by the letter A. Such a loop cannot be formed within
Mueller’s initial formalism, in which only dipole splitting is included within
the cascade. It could, however, have been included if the reaction had been
studied in a different Lorentz frame. We see that in order to achieve a boost
invariant formalism we must allow dipoles to combine in the cascade. We
note that the new terms that were included in the B–JIMWLK equations, dis-
cussed above, are also formally colour suppressed and are essential in order
to obtain a frame independent formalism.

We should however point out that there is also another frame dependent
effect, which is more kinematic in origin. For evolution with a finite cutoff,
ρ 6= 0, frame independence is only approximative, even in the one pomeron
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Figure II.5: The colour structure arising from two sub-collisions between the right- and
left-moving onia. (a) The final configuration involves an isolated dipole loop together
with two chains, each connecting the initial quark (antiquark) in the right moving onia
with the initial antiquark (quark) in the left moving onia. (b) The final configuration
obtained when dipole 1 collides with 4 and 2 with 3. The result is two “entangled”
chains. The lower part of the pictures give a schematic view of the resulting dipole
chains, with the projectile and target remnants moving to the right and left respectively.
Gluons participating in the hard sub-collisions are also indicated by arrows.

approximation (only one branch coupling to the target). In our case we have a
dynamical cutoff, ρ(∆y) (see section II.6), and in our scheme every new branch
takes away energy. This means that in a cascade with many branches the en-
ergy in each individual branch is reduced. We note that a branch can only
be realized if it interacts with the target and branches which do not interact
have to be regarded as virtual (such examples are shown in fig. II.7 where
the branches marked B and C do not couple to the target). These branches
should consequently be removed from the cascade and in the corresponding
final state they should be replaced by their earlier ancestors. However, as our
constraint from energy-momentum conservation also includes the fractions
needed to evolve the non-interacting branches the effect is somewhat overes-
timated. Therefore we do not expect to find complete frame independence,
but we will see in the following that the frame dependence is indeed very
small.

The second problem is due to the possibility that two dipoles can have the
same colour. The two charges and their corresponding anti-charges then form
a colour quadrupole, which cannot be described as two independent dipoles.
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Figure II.6: A high energy collision showing the partonic sub-collisions inside the
resolved photons. This figure shows the case of two sub-collisions and in the left figure
there is a loop of dipoles at the center. To the right is the corresponding elastic diagram
which shows the exchange of two pomerons.

A

C

B
r

rapidity

Figure II.7: Collision of two dipole cascades in rrr-rapidity space. The dashed vertical
line symbolizes the Lorentz frame in which the collision is viewed. The dipole splitting
vertex can result in the formation of different dipole branches, and loops are formed
due to multiple sub-collisions. The loop denoted by A can be formed via a dipole
swing, which is further illustrated in fig II.9.

Gluon Exchange

The two dipole sub-collisions in fig. II.5a, which both are due to single gluon
exchange, lead to a recoupling of the dipole chains and a closed dipole loop.
Visualized in a different Lorentz frame this process must be interpreted as the
result of gluon exchange between two dipoles in the cascade. It then corres-
ponds to the replacement of two dipoles with two new dipoles within the
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Figure II.8: Schematic picture of a dipole swing. The two dipoles (xxx1, yyy1) and (xxx2, yyy2)
are transformed into two new dipoles (xxx1, yyy2) and (xxx2, yyy1) after a recoupling of the
colour flow. The initial chain of dipoles is replaced by a new chain stretching between
the original qq̄ pair and a loop of dipoles.

evolution of the cascade. This process has been called a “dipole swing” and
is illustrated in fig. II.8. As it represents the dipole–dipole scattering cross
section in (II.2) it ought to be proportional to α2

s /8, and therefore effectively
suppressed. We ought to point out that fig. II.8 is only a schematic picture
showing how the dipoles are connected to each other, and does not represent
the transverse size of the dipoles. In fact, the swing process is more likely to
replace two dipoles with two smaller dipoles, as discussed below.

Including the dipole swing it is in fact possible to generate any kind of
colour loop. Thus all loops formed when the expanding “tentacles” in fig. II.7
join can be generated by the original dipole splitting process together with the
dipole swing. This is illustrated in fig. II.9, which shows how a dipole splitting
process in the evolution towards the left can also be visualized as a pomeron
fusion process generated by the dipole swing, when the process is evolved in
the opposite direction.

Colour Multipoles

As mentioned above a second effect of finite Nc is the formation of colour
quadrupoles and higher multipoles. In fact, it can be seen in the complete ver-
sion of the B–JIMWLK equations that more complicated colour structures ap-
pear at each step of the evolution. Obviously these complicated colour struc-
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Figure II.9: Evolution of dipoles in rrr-rapidity space. Going to the left we have evolu-
tion through dipole splittings and one dipole chain splits into two, corresponding to a
1 −→ 2 pomeron splitting. If instead we evolve to the right then the two chains can be
combined by a swing and only one of the chains continue evolving, corresponding to
a 2 −→ 1 pomeron merging.

tures imply that one loses the simple picture of a system of dipoles, which
evolve through simple splittings. Nevertheless, in view of the success of the
time-like dipole cascades in e+e−-annihilation it may be possible to find a
working approximation within the dipole framework also in this case. We
may then try to approximate a quadrupole as two dipoles where those formed
by the closest colour–anti-colour pairs should dominate. This means that we
allow for a colour recoupling, in which two dipoles with coordinates (xxx1, yyy1)
and (xxx2, yyy2), can be transformed into two new dipoles with coordinates (xxx1, yyy2)
and (xxx2, yyy1).

We note that the result of this process also corresponds exactly to the dipole
swing in fig. II.8, and consequently it has exactly the same effect as the gluon
exchange process discussed above. The only difference we may expect is that
the effect due to multipoles would be instantaneous, while the gluon exchange
process ought to be proportional to the rapidity interval, ∆y, in the evolution.

We have not (yet) found a weight for the dipole swing which makes the
scattering process explicitely frame independent. We note, however, that the
dipole splitting vertex in (II.1) gives a total weight for a specific dipole chain
given by the product of factors 1/r2

i for all dipoles still present in the cascade.
For dipoles which have already decayed (those denoted by dashed lines in

figs. II.7 and II.9) the factor r−2
i is exactly compensated by the factor r2

i in the
numerator of the splitting vertex factor. It may therefore seem natural that
the swing (xxx1, yyy1) + (xxx2, yyy2) → (xxx1, yyy2) + (xxx2, yyy1) has a weight proportional
to (xxx1 − yyy1)

2(xxx2 − yyy2)
2/(xxx1 − yyy2)

2(xxx2 − yyy1)
2. Such a weight would preserve

II
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the feature that any dipole system has a weight proportional to ∏ r−2
i . At the

same time it also favours dipoles formed by close charge–anti-charge pairs in
colour quadrupoles, in accordance with the discussion above.

Implementation of the Dipole Swing

When we include the dipole swing in the MC implementation we will there-
fore use a weight proportional to (xxx1 − yyy1)

2(xxx2 − yyy2)
2/(xxx1 − yyy2)

2(xxx2 − yyy1)
2,

and the normalization should be adjusted so that the final result is approxi-
mately frame independent. This would show that there is the same probability
to have a colour loop within the cascade evolution as formed by multiple sub-
collisions. Even if this is achieved it is, however, not possible to tell whether
the dominant mechanism behind the swing is due to gluon exchange or to
colour multipoles.

In the MC the probability for a swing (xxx1, yyy1)+ (xxx2, yyy2) → (xxx1, yyy2)+ (xxx2, yyy1)
is formulated as if the main mechanism is colour multipoles. There is a proba-
bility 1/(N2

c − 1) that two dipoles have the same colour. Therefore we assume
that two dipoles are allowed to swing with this probability. If they are allowed
to swing, they do so during an evolution step ∆y with a probability given by

∆P = λ
(xxx1 − yyy1)

2(xxx2 − yyy2)
2

(xxx1 − yyy2)2(xxx2 − yyy1)2
∆y. (II.8)

If the normalization factor λ is large, the dipoles with the same colour will

swing rapidly and adjust themselves to weights ∝ ∏ r−2
i before the next dipole

splitting. The applications presented in section II.7 are obtained using such a
large λ-value, which implies that the swing can be regarded as instantaneous,
as expected if colour multipoles is the dominant mechanism. This also means
that the effective normalization is given by the number of different dipole
colours N2

c − 1 = 8 and not by λ. We will see that this recipe does indeed
give an almost frame independent result. This does, however, not imply that
we also can conclude that colour multipoles is the dominant mechanism. It
is actually possible to get approximately the same result allowing swings be-
tween more dipoles but with a smaller λ-value. In this case the swing does
not occur instantaneously, but with a probability proportional to the step ∆y
in rapidity, as expected if the dominant mechanism is gluon exchange. It is
therefore not possible to tell which mechanism is most important.

A more detailed description of how the swing is implemented in the
simulation program is given in section II.6.

II.4.3 Comparison With Other Formalisms

There has been quite some effort to interpret pomeron mergings as dipole
mergings, i.e. interpreting (II.7) in terms of a system of dipoles which can ei-
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ther split (a 1 → 2 dipole vertex) or merge (a 2 → 1 vertex). While it is obvious
that dipole mergings generate pomeron mergings, the opposite of this state-
ment is not necessarily true. In fact there are also other dipole processes which
generate pomeron mergings. In a formalism where the cascade is treated as
a set of uncorrelated dipoles a 2 → n dipole vertex, with n ≥ 2, also leads to
pomeron mergings. This follows because there is always the possibility that
only one of the new dipoles interacts with the target, while the rest are spec-
tators. Of course such a transition leads to all possible 2 → m (m = 1, . . . , n)
pomeron transitions.

This argument can be illustrated by the following evolution equations. We
denote the dipoles by the letters a, b and so on, and the S-matrix by S(a), for
one dipole a, S(ab) for two dipoles a and b. The scattering amplitude is given
by T = 1 − S and with T(ab) we mean 〈T(a)T(b)〉. Assume now that there
exist different vertices for different dipole transitions; β(ab|c) for the merging
of a and b into c, Γ(ab|cd) for the transition a + b → c + d and so on. We then
have the following evolution equations

∂YS(ab)β =
∫

c
β(ab|c)

{

−S(ab) + S(c)

}

∂YS(ab)Γ =
∫

cd
Γ(ab|cd)

{

−S(ab) + S(cd)

}

. (II.9)

The negative contribution on the right hand side comes from the fact that the
system can remain as it is, with a survival probability given by (1 −

∫

β) or
(1 −

∫

Γ). Alternatively the system can evolve, with a probability density
given by β or Γ, which corresponds to the positive contribution on the right
hand side. Thus the evolution of the S-matrix has a clear probabilistic in-
terpretation. One can now rewrite these equations for T, using the relation
T = 1 −S . We thus get

∂YT(ab)β =
∫

c
β(ab|c)

{

−T(c) + T(a) + T(b) − T(ab)

}

∂YT(ab)Γ =
∫

cd
Γ(ab|cd)

{

−T(c)− T(d) + T(a) + T(b) − T(ab) + T(cd)

}

.

(II.10)

Here we can see that both equations contain both pomeron mergings and also
2 → 2 pomeron transitions. It is straightforward to write the equations also
for more general vertices. Indeed, for the general 2 → n transition, with the
vertex Γ(ab|c1c2 . . . cn), we get the following evolution equations

∂YS(ab)Γ =
∫

ci

Γ(ab|c1c2 . . . cn)

{

−S(ab) + S(c1c2 . . . cn)

}

II
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∂YT(ab)Γ =
∫

ci

Γ(ab|c1c2 . . . cn)

{

T(a) + T(b)− T(ab)+

+
n

∑
k=1

(−1)k
n

∑
ik>ik−1>···>i1

T(ci1ci2 . . . cik
)

}

. (II.11)

The interpretation of the equations for the amplitude T in terms of pomeron
transitions can however be misleading, especially if a single dipole is allowed
to couple to several pomerons. To find the equation for T, it is always safer
to start with the corresponding equation for S and then use the relation T =
1 −S to deduce the equation for T, just as we have done above. The equation
for S is determined by the structure of the corresponding dipole vertex and
has a simple interpretation as described above.

Note that so far we have not asked whether equation (II.7) can be rewritten
in a similar way. As mentioned above, this has been attempted by trying to
write it with a contribution of the form ∂YT(ab)β in (II.10). However, it was
shown in [54] that this approach has problems. Formally it is possible, but the
problem is that the would-be dipole merging vertex (in this case the β-vertex
above) has no fixed sign as is required in a proper probabilistic formalism.

We now want to demonstrate that the dipole swing discussed in the pre-
vious subsection can reproduce not only pomeron merging and loop forma-
tion, but also the more complicated transitions described in (II.11). Since the
dipole model is just an effective picture it is likely that a more complete treat-
ment will involve more general vertices, generating transitions involving an
arbitrary number of pomerons. As discussed in section II.4.2, the weight for
this process involves a phenomenological normalization parameter λ which
determines the strength of the process, i.e. how fast this process happens in
rapidity. In the applications presented in section II.7 the value of λ is such
that the recouplings saturate in the sense that the recouplings lead to an equi-

librium given by the weights proportional to ∏ r−2
i . This means that effec-

tively these recouplings happen instantaneously. After each gluon emission
the cascade will evolve through recouplings back and forth until it settles in a
preferred configuration (the weight in (II.8) here favours configurations where
the dipoles are as small as possible) after which there is a new gluon emission
(dipole splitting).

Assume that, at some rapidity, we have N partons, located at positions
(xxx0, xxx1, . . . , xxxN−1) where xxx0 and xxxN−1 are the positions of the initial quark
and antiquark respectively. Assume now that a gluon zzz is emitted from some
dipole (xxxi, xxx j) which means that this dipole is replaced by (xxxi, zzz) and (zzz, xxx j).
After this there will be a series of recouplings which transform the cascade into
some new configuration involving N dipoles. From our discussion above, it
follows that these recouplings will most likely involve the new dipoles which
were produced after the emission of zzz. This is so because the cascade, prior to
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the emission of zzz, already has settled in a preferred configuration and, apart
from the replacement of (xxxi, xxxj) with (xxxi, zzz) and (zzz, xxx j), it keeps the same con-
figuration after zzz is emitted. Therefore it is not so likely to have further recou-
plings among the other dipoles (if not, these would most likely have happened
before the emission of zzz). There will thus be a series of recouplings involving
newly produced dipoles until the cascade once again settles in some preferred
configuration, after which there will be a new emission.

The discussion above suggest that we may view the evolution as effectively
being driven by vertices involving k → k + 1 dipole transitions, where k is de-
termined by how many swings we have between the emissions. For a cascade
evolving through such a general vertex we can write the evolution equations
for S and T just as we did in above. Once again we denote the dipoles with let-
ters ai and the corresponding S-matrices with S(ai) for a single dipole, S(aiaj)
for two dipoles and so on. For a vertex Γk(a1 . . . ak|b1 . . . bk+1), giving rise to
the transition a1 + · · · + ak → b1 + · · · + bk+1 we then get the following evo-
lution equations

∂YS(a1 . . . ak)Γk
=

∫

bi

Γk(a1 . . . ak|b1 . . . bk+1)

{

−S(a1 . . . ak) + S(b1 . . . bk+1)

}

∂YT(a1 . . . ak)Γk
=

∫

bi

Γk(a1 . . . ak|b1 . . . bk+1) ×

×
{ k

∑
m=1

(−1)k+m−1
k

∑
im>···>i1

T(ai1 . . . aim) +

+
k+1

∑
m=1

(−1)k+m
k+1

∑
im>···>i1

T(bi1 . . . bim)

}

. (II.12)

Here one sees that Tk is coupled to Tm with m = 1, . . . , k + 1 which means
that there are pomeron mergings of the type k → i, i = 1, . . . , k − 1. We also
note that similar type of equations involving some more general vertices have
recently been presented in [55, 56] although the structure of the vertices are
different. If we consider the process in zero transverse dimensions, which de-
fines the toy model first presented in [16] (see also [57]), then for all dipoles
ai one replaces T(ai) by some t (and T(a1 . . . ak) by tk) which is the amplitude
in the toy model. One can then see that the equations for tk presented in [56]
(equations (2.19) to (2.21)) can be understood in terms of the general transi-
tions in (II.12).

II.5 The Initial States in the Cascade Evolutions

In the introduction we argued that results from the Tevatron supports a pic-
ture where high energy pp interactions are dominated by perturbative parton–

II
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parton sub-collisions. This encourages us to interpret γ∗p and pp collisions as
a result of perturbative dipole interactions. We then also need an initial dipole
state for a virtual photon and for a proton.

II.5.1 The Virtual Photon

The coupling of a virtual photon to a quark–antiquark pair is well known. In
leading order and for the case of massless quarks the longitudinal and trans-
verse wave functions, denoted ψL and ψT respectively, are given by

|ψL(z, r)|2 =
6αem

π2 ∑
q

e2
qQ2z2(1 − z)2K2

0(
√

z(1 − z)Qr)

|ψT(z, r)|2 =
3αem

2π2 ∑
q

e2
q[z

2 + (1 − z)2]z(1 − z)Q2K2
1(

√

z(1 − z)Qr).

(II.13)

Here z (1− z) is the longitudinal momentum fraction of the quark (antiquark)
and rrr is the transverse separation between them. Q2 denotes the virtuality
of the virtual photon and K0 and K1 are modified Bessel functions. The sum
in (II.13) runs over all active quark flavours, and in our case we consider 3
massless flavours.

II.5.2 The Initial Proton

The initial state for the proton can naturally not be determined by pertuba-
tion theory, but has to be described by some model assumption, which can
obviously never fully describe all features of the proton. We have tried a
couple of different approaches based on the assumption that a proton at rest
mainly consists of its three valence quarks. It is natural to think of these three
quarks as the endpoints of dipoles and, assuming that the quarks all have dif-
ferent colours, this would give three different dipoles. One would not expect
these dipoles to be completely independent, and indeed it was argued in [58]
that they would be non-trivially correlated. We have tried two different ap-
proaches with varying degree of correlation4: completely uncorrelated dipoles
or a “triangle” configuration. In the latter case each quark is connected by two
dipoles to the other two quarks, ie. assuming that eg. a red quark behaves
essentially as an anti-blue–anti-green colour compound to form dipoles with
the other two (blue and green) quarks.

4In the original dipole formulation, all dipoles are independent and correlations can only be
introduced through their relative placement in impact-parameter space. However, when intro-
ducing explicit energy conservation, neighboring dipoles will affect each other, thus introducing
an additional correlation.
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One could argue that a more natural choice would be to use a “Mercedes”
star configuration, where all three dipoles are joined in a junction. However,
a picture where the junction does not carry energy and momentum is then
difficult to reconcile with the dipole formalism, and we have in the follow-
ing settled for the triangle configuration with the dipole sizes distributed as
Gaussians with an average size ∼ 3.1 GeV−1, which is determined by a fit to
pp data.

II.6 Monte Carlo Simulation

Our calculations are performed with a simple simulation program written in
C++, where there are gluons connected by dipoles and vice versa. A dipole
state is described by a set of partons, each of which has a specified position
in the transverse plane and a rapidity, y (which is the true rapidity and not
log(1/x)). In addition, each gluon is assigned a transverse momentum when
it is emitted, corresponding to the inverse of the transverse size of the smallest
dipole to which it is connected. Thus, if we have a splitting as in (II.1) we
assign

p⊥ =
2

min(|xxx − zzz|, |zzz − yyy|) . (II.14)

In this way we can implement ordering in p± = p⊥e±y separately. The trans-
verse momentum of each of the emitting partons will be set to 2 times the
inverse transverse distance to the emitted gluon if this is larger than the pre-
viously assigned p⊥. In addition the rapidities of the emitting partons are
changed so that the total positive light-cone momentum component is con-
served in each emission. These recoils are distributed so that the emitting
parton at xxx contributes a fraction |zzz − yyy|/(|xxx − zzz| + |zzz − yyy|) to the p+ of the
emitted gluon. The assignment of the p⊥ for the gluons as given above, and
the conservation of the p+ component, automatically gives a cutoff for small
dipoles. Therefore we do not need to explicitely introduce a cutoff ρ, as de-
scribed in section II.2.3, but we rather obtain a dynamical cutoff, ρ(∆y), which
is large for small steps in rapidity, ∆y, but gets smaller for larger ∆y.

In each step an emission is generated for each of the dipoles in a state ac-
cording to (II.1) and the corresponding Sudakov form factor, allowing αs to
run according to the one-loop expression with the scale set to the p⊥ of the
emitted gluon5. The dipole which has generated the smallest step in rapidity
is then allowed to radiate and is replaced by two new dipoles, and the pro-
cedure is reiterated until no dipole has generated a rapidity above (or below,
depending of the direction of evolution) a minimum (or maximum) rapidity.
Finally a cross section can be calculated by letting the dipoles from the target

5To avoid divergencies, αs is frozen below the scale p⊥ = 2/rmax.
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Figure II.10: The pp cross section for different values of the coefficient λ. It is seen in
(a) that σ does not change for λ & 0.5. This can also be seen from (b) which shows the
difference in the cross section, ∆σ(λ) ≡ σ(λ = 0) − σ(λ),as a function of λ, and for
different s.

and the projectile, both properly evolved, collide at a random impact param-
eter according to (II.2) and (II.5).

In the dipole model it is possible to create arbitrarily large dipoles. Even
if the p− ordering in our formalism sets a limit for how large a dipole can be,
just as the p+ ordering sets a limit for how small a dipole can be, there is no
mechanism suppressing the formation of large dipoles. On the contrary they
are enhanced by the running of αs. Obviously confinement must suppress the
formation of larger dipoles and we therefore choose a parameter rmax such
that each emission is suppressed with a Gaussian of average size ∼ rmax. This
means that each emission, giving a new dipole of size r, is allowed with a
probability exp(−r2/r2

max). We choose rmax to have the same value as the
average size of the initial dipoles in the proton, i.e. rmax = 3.1GeV−1, as this
corresponds to the nonperturbative input for the proton.

When implementing the dipole swing mechanism we followed the strat-
egy introduced in the Ariadne program [31,59] where each dipole is randomly
assigned a colour index in the range [1, N2

c − 1] in such a way that no neigh-
boring dipoles have the same index.6 In each step any pair of dipoles with
the same index is allowed to generate a fictitious rapidity for a recoupling
according to (II.8) modified with an appropriate Sudakov form factor. These
generated recouplings are then allowed to compete with the generated emis-
sions, so that in each step the process giving the smallest step in rapidity is
performed. Because of the way colour indices are assigned we can ensure that
no unphysical dipole chains (eg. with colour-singlet gluons) can occur.

6Naively one might expect there only to be three differently coloured dipoles, but the probabil-
ity that two arbitraty dipoles are allowed to recouple is related to the number of different gluons
rather than to the number of colours which is why we have N2

c − 1 different dipole indices.
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Clearly if λ in (II.8) is very large, the evolution is swamped by recouplings
back and forth, making the simulation very inefficient. In this way we also see
that the effect of the recouplings must saturate at large enough λ. By chance
it turns out that a value of λ = 1 is just large enough for saturation, see figure
II.10.

It can be shown that two dipoles recoupling back and forth in this satu-
rated way and colliding with a single dipole according to (II.2) corresponds
exactly to a quadrupole–dipole scattering. Also higher multipole–multipole
scatterings are in this way well approximated.

As discussed above these recouplings in some sense also give rise to pome-
ron mergings, as configurations where one dipole is very small is favored and
this dipole has a smaller probability to interact with the target. In our program
it is also possible to include explicit mergings of neighboring dipoles, a process
which is necessary for the study of exclusive final states and will be studied
in a future publication. It should be noted that the combined process of first
splitting a dipole into two, then recoupling with a third dipole and finally
merging one of them again, corresponds to the recoupling of two dipoles with
different colour indices by the exchange of a gluon.

II.7 Results

In this section we compare results obtained from our model with experimental
data from DIS at HERA and pp collisions at the Tevatron. As we yet have not
a full control over the virtual dipoles we only study the total cross sections.

II.7.1 DIS

In [20] we obtained a reasonable qualitative agreement with HERA data for
the F2 structure function and the effective slope

λeff(Q2) = d(log F2)/d(log 1/x). (II.15)

Having now improved our model further, we will see that we also obtain a
good quantitative agreement with the data.

The γ∗p total cross section is given by the sum of the two wave functions
in (II.13), convoluted with the dipole–proton cross section, σ(z, rrr),

σtot
γ∗p =

∫

d2rrr
∫ 1

0
dz{|ψL(z, r)|2 + |ψT(z, r)|2}σ(z, rrr). (II.16)

Here the dipole–proton cross section σ(z, rrr) is obtained from equations (II.5)
and by (II.2), when the initial proton state in section II.5 is evolved as described
in section II.6.

II
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In figure II.11a we show the results for the γ∗p total cross section. As we
can see the results are in quite good agreement with data except for the fact
that the normalization is around 10–15% too high for Q2 . 15 GeV2 while it is
around 5–10% too high for Q2 & 45 GeV2. Data points are taken from [60, 61]
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Here results are shown for evolution with and without the dipole swing mechanism.
The results for the one pomeron contribution are also shown. Also shown are the
results obtained in the “lab” frame where one of the protons is almost at rest.

and we also see that the effects of dipole swings are quite small, mainly visible
for Q2 . 15 GeV2.

As seen from figure II.11a, our results seems to have the correct W depen-
dence. This can be seen more clearly from figure II.11b, where we show the
results for the logarithmic slope λeff. We see that there is a good agreement
with data for all points lying in the interval 1GeV2 . Q2 .100 GeV2. Here the
slope is determined within the same energy interval from which the experi-
mental points, taken from [60–62], are determined.

II.7.2 Proton–Proton Collisions

The results obtained for the pp total cross section are presented in fig. II.12.
Here we see that the dipole swing have a rather large effect, as expected. In
the figure we also show the results for the one pomeron cross sections, and one
can see the large effects of unitarisation. Our main results are calculated in the
center of mass frame, where the colliding protons share the energy equally, but
in the figure we also show results obtained in the “lab” frame, where one of the
protons carries almost all avaliable energy, while the other one is essentially at
rest. Due to the fact that the Monte Carlo simulation becomes very inefficient
in such a frame (since the energetic proton has to be boosted to quite high

II
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rapidities) we have evaluated σtot only up to
√

s ∼ 1 TeV. Although the result
is not exactly frame independent we see that the frame dependence is reduced,
and now very small.

The final result of this paper concerns the impact parameter dependence
of the pp total cross section. The result is shown in figure II.13. Here we have
plotted (1/2)dσtot/d2b as a function of b and for

√
s = 1.8TeV. The result is

compared to a two parameter Gaussian fit from ref. [63]. There is a quite good
agreement between the results. Our profile is more flat and has a somewhat
longer tail, but a Gaussian fit to our result would be very similar to the fit in
ref. [63].

II.8 Conclusions

The QCD description of high-energy scattering is clearly a complicated sub-
ject. Although a qualitative description of inclusive cross sections for γ∗p and
pp scatterings can be obtained in eg. the B–JIMWLK formalism, it is difficult
to give quantitative predictions, and even more difficult to describe exclusive
properties of the final states.

In this paper we have described a model of interacting colour dipoles based
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on a limited set of fairly simple ingredients:

• The description of the initial-state virtual photon and proton as a (set of)
dipole(s).

• Simple dipole splittings by gluon emissions according to the Mueller
formalism.

• Energy–momentum conservation in each splitting, which gives a dy-
namic cutoff for small dipole sizes and introduces non-trivial correla-
tions between neighboring dipoles.

• A mechanism for dipole reconnections (or “swing”) corresponding to
the introduction of pomeron loops in the evolution.

• A simple dipole–dipole scattering cross section, exponentiated to in-
clude multiple scattering and saturation effects.

Although each ingredient is fairly simple, it is prohibitively difficult to in-
clude them all in analytic calculations. However, implementing them in a
Monte Carlo simulation program we are able to reproduce to a satisfactory
degree both the γ∗p cross sections as measured at HERA as well as the total
pp cross section all the way from ISR energies to the Tevatron and beyond. It
should be pointed out that this is achieved with effectively only two tuneable
parameters, the basic QCD scale ΛQCD and rmax giving the non-perturbative
cutoff for large dipoles. There are two additional parameters involved in the
dipole swing. One is λ and we have shown that as long as it is large enough
to saturate the recouplings, the results are completely insensitive to this para-
meter. The other parameter is the number of colour indices, N2

c − 1, which we
have fixed to 8, but could in principle be considered a free parameter to sim-
ulate the effect of recouplings between differently coloured dipoles by gluon
exchange.

The resulting description is quite insensitive to the Lorentz frame chosen to
perform the simulations, which shows that we have a consistent treatment of
pomeron loops in the evolution and in the scattering of evolved dipole states.

Recently there has been a lot of activity in the subject of high energy evo-
lution in QCD. Different, and very interesting, models have been proposed
which are often based on analytical calculations in some toy limit or at asymp-
totically high energies. We here want to emphasize the importance of a work-
ing Monte Carlo simulation in order to confront QCD with real data at realistic
energies.

We have also seen that the way the dipole swing is implemented in our
model makes it possible to view the evolution as effectively being driven by
more general vertices which give rise to more general pomeron transitions
during the evolution. Some ideas with such vertices have recently been pre-
sented in [55, 56]. There is still more work to do with regard to explicit frame
independence in the dipole model, and it is our intention to further study this

II
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problem in future investigations.
Another advantage of our model is that it should be possible to also simu-

late exclusive properties of the final states. Confronting these with experimen-
tal observables will allow us to gain further insight into the QCD evolution at
high energies. We will return to this problem in a future publication.
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DIS data from HERA show a striking regularity as σγ∗p is a function of the
ratio τ = Q2/Q2

s (x) only. The scaling function shows a break at τ ≈ 1, which
has been taken as an indication for saturation. However, besides saturation
also the transition between dominance of k⊥-ordered (DGLAP) and k⊥-non-
ordered (BFKL) evolution contributes to a break around this value of τ, as
well as the suppression for small Q2 due to finite quark masses and confine-
ment. In this paper we use a dipole cascade model based on Mueller’s dipole
model, which also includes energy conservation and pomeron mergings, to
investigate the contributions of these different effects to the scaling behaviour.
As a result we predict that the scaling function for τ < 1 will be modified

when data for Q2
> 1 GeV2 become available. We also investigate the scaling

properties of the charm contribution and the impact parameter dependence of
the saturation scale.
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III.1 Introduction

Data from deep inelastic scattering (DIS) experiments at small-x exhibits an
interesting property called geometric scaling [1]. This means that the total
γ∗p cross section is not a function of the two variables x and Q2 separately
but rather a function of the combination Q2/Q2

s (x) only, where the “saturation
scale” Qs is defined such that saturation is expected to occur at Q-values below
Qs.

DIS is quite successfully described by the Golec-Biernat–Wüsthoff (GBW)
model [2, 3] in which the virtual photon splits into a qq̄ dipole long before
the interaction with the proton. The GBW model is also called the saturation
model, since it explicitely assumes that the dipole-proton cross section, σdp,
saturates to a constant value σ0 as the dipole size, r, gets large. To be more
precise, the GBW model assumes that

σdp = σ0{1 − exp(−r2/4R2
0(x))}, (III.1)

where the “saturation radius” R0(x), identified with Q−1
s (x), decreases with

decreasing x. In the GBW fit Q2
s has the form

R−2
0 = Q2

s,GW = Q2
0

( x0

x

)λ
with Q0 = 1GeV, x0 = 3·10−4, λ = 0.29. (III.2)

We thus see that σdp is a function of r/R0(x) only, and consequently it satis-
fies “geometric scaling”. For massless quarks this also implies that the γ∗p
cross section is a scaling function of τ = Q2R2

0 = Q2/Q2
s,GW, and this fea-

ture is indeed confirmed by experimental data as demonstrated in ref. [1].
(This reference also finds scaling if the relation ln R2

0 ∼ λ ln x is replaced by

ln R2
0 ∼ −x−0.08.)

Plotting the observed γ∗p cross section as a function of τ one can also see
that the growth of the cross section towards smaller τ is reduced noticeably
when τ . 1, corresponding to values satisfying Q2 . Q2

s,GW. Later analyses

including DGLAP evolution for larger Q2 [4] improve the agreement with the
HERA data, with the consequence that saturation is beginning at somewhat
smaller τ-values. This good agreement together with the success of the GBW
model in describing diffractive data, has been taken by some authors as a
proof that saturation exists, and that it has been observed at HERA.

Including the finite quark mass in the wavefunction describing the γ∗ −
qq̄ coupling introduces scale-breaking effects. In particular the charm quark
gives a large contribution to the cross section, which is phased out for Q2 .
4m2

c . In ref. [2] a fit including the charm quark mass actually shifts the ex-
pected onset of saturation to much smaller x-values, with x0 = 0.4·10−4 in the
expression for R0 or Qs in eq. (III.2). Such a shift is confirmed in the analysis
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in ref. [5], which includes the mass of the charm and beauty quarks into the
DGLAP-improved formalism of ref. [4].

For small Q2 also the mass of the light quarks becomes important. In
refs. [1, 2] this is taken into account by replacing the variable x = Q2/W2

in the definition of R0 or Qs,GW by

x̄ = x(1 + 4m2
f /Q2) =

Q2 + 4m2
f

W2
. (III.3)

In this way the scaling relation can be studied also for very small Q2 and for
photoproduction.

The test of scaling in the region of small τ is, however, limited by the fact
that small values of τ are reached only for small Q2, since larger Q2-values
would need energies not accessible at the HERA accelerator. Thus the data for
τ < 0.5− 1, where the change in the slope of the γ∗p cross section is observed,
are all obtained for Q2-values smaller than 1 GeV2, which means that they are
all in the non-perturbative region. The limited kinematical range at HERA
also implies that there is little overlap between data at different Q2 for fixed τ,
which implies that it is relatively easy to achieve a scaling result by adjusting
the quark masses.

The question of scaling for Q2
> Q2

s is discussed by Iancu et al. in ref. [6].
These authors argue that if Q2

s is defined as the scale where the scattering
probability is of order 1, then the BFKL evolution equation implies that the
quark and gluon distributions have to obey geometric scaling in the range
1 . ln(Q2/Q2

s ) ≪ ln(Q2
s /Λ2

QCD). This rather wide range in Q2 results from

the fast diffusion in ln k2
⊥ and the fast growth towards small x in the leading

log BFKL evolution. Beyond this range in Q2 the BFKL diffusion is gradually
replaced by the (not explicitely scaling) double leading log result.

A numerical analysis of the diffusion in the BK equation is presented by
Golec-Biernat et al. [7], including non-leading effects from a running coupling
and from the so called kinematical constraint. The result from a running αs

is that ln Q2
s for high energies grows ∼

√
Y, rather than proportional to Y,

as assumed in eq. (III.2). It also significantly reduces the diffusion into the
region of large k2

⊥. The kinematical constraint reduces this diffusion further,
and these results therefore put a question mark for the large scaling region
dominated by BFKL dynamics obtained in ref. [6]. A related work is presented
by Kwieciński and Staśto [8], where they study DGLAP evolution starting
from scaling initial conditions on the line Q2 = Q2

s , with Q2
s determined by

some unspecified dynamics. The result from this approach is also that scaling
is approximately preserved in a large domain above the line Q2 = Q2

s .

In the past few years it has been observed that a scaling feature is inherent
in the asymptotic solutions to the evolution equations in high energy QCD.

III
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It was also realized that the non-linear Balitsky-Kovchegov (BK) equation,
which is the mean field version of the more general Balitsky-JIMWLK hierar-
chy (B-JIMWLK), is similar to a certain type of equation, well known in statisti-
cal physics, called the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equa-
tion, which is known to have traveling wave solutions [9, 10]. Written for a
function u(x, t), which depends on x and the time t, the solution for large t
has the form of a traveling wave, u(x − vt), where v is the speed of the wave.
The similarity is expressed by the fact that the BK equation lies in the same
universality class as the FKPP equation.

More recently, the importance of fluctuations in small-x evolution has been
better understood [11], and this has led to the modification of the original ver-
sion of the B-JIMWLK hierarchy into a new hierarchy of equations, which
include both fluctuations and saturation effects. These new equations are also
referred to as pomeron loop equations, since they contain both pomeron split-
tings and pomeron mergings in the evolution. This hierarchy of equations
can also be written as a single Langevin equation, which is very similar to
what is called the stochastic-FKPP (s-FKPP) equation [11]. The study of the
asymptotic behaviour of the solution to this equation leads to the prediction
of a new type of scaling law, called diffusive scaling [12], which is expected to
hold at very high energies. It ought to be emphasized that the traveling wave
solutions discussed here are asymptotic solutions expected to be relevant at
extremely high energies, and therefore cannot be used to explain the scaling
observed in the HERA energy regime.

The above discussion raises three important questions:

i) What is the importance of saturation for the scaling behaviour?

ii) What is the dynamical mechanism behind the scaling observed for τ >

1, i.e. for Q2
> Q2

s ?

iii) Will the cross section still be scaling for τ . 1, when data for larger Q2

are available?

In this paper we will argue that geometric scaling is expected also in the
absence of saturation, and not only in the region dominated by BFKL diffu-
sion, but also in the double leading log domain, where k⊥-ordered (DGLAP)
evolution chains are most important. Scaling appears naturally in a dipole
cascade model [13, 14], which is based on Mueller’s dipole evolution [15–17]
but also includes energy-momentum conservation, pomeron merging, and a
simple model for the proton. The MC implementation of the model repro-
duces both F2 data from HERA and the total cross section in proton-proton
scattering. This model shows geometric scaling for Q2 below as well as above
Q2

s,GW, and for the one pomeron contribution as well as for the full unitarized
result. In the model the transition between BFKL diffusion and k⊥-ordered
evolution occurs for Q2 quite close to Q2

s,GW, and there are three different ef-
fects which all contribute to the change in the scaling curve for τ ≈ 0.5 − 1:
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Saturation, the BFKL-DGLAP transition, and the finite effective masses for the
light u-, d-, and s-quarks.

In order to get an intuitive understanding of the scaling feature we will
besides the results of the MC simulations also discuss two simple approxi-
mations, which contain the basic features of DGLAP-BFKL evolution and the
colour dipole cascades.

Diffractive excitation or rapidity gap events correspond to a large fraction
of the events at HERA. Diffractive scattering is related to the impact parameter
dependence of the interaction, and in section III.8 we will discuss how the
speed of the traveling wave varies with impact parameter, averaging out to
the velocity observed in the experimental data.

The paper is organized as follows. In the next two sections we briefly dis-
cuss the DIS cross section, the concept of geometric scaling, and the dipole
cascade approach to DIS. In section III.4 we discuss the effect of the charm
contribution together with the effect of saturation on the total cross section.
In section III.5, we present the two simple approximations to the full model
as mentioned above. The scaling properties of the charm structure function
are studied in section III.6, and in section III.7 we concentrate on the region
Q2

< Q2
s and study the effects of confinement and finite quark masses for

small Q2 below 1 GeV2 and the scaling properties of the cross section in this
region. In section III.8 we investigate the behaviour of the scattering ampli-
tude for different impact parameters and how the scaling feature varies with
impact parameter. Finally, in section III.9, we reach at our conclusions.

III.2 DIS and Geometric Scaling

In the dipole description of DIS the virtual photon, long before the interaction
with the proton, splits into a qq̄ pair which then interacts with the proton. The
transverse separation between the quark and the antiquark in such a dipole is
denoted rrr, and their fractions of the γ∗ longitudinal momentum z and 1 − z.
The coupling of the γ∗ to the qq̄ pair is well known and the leading order
result reads

|ψL(z, r)|2 =
6αem

π2 ∑
f

e2
f Q2z2(1 − z)2K2

0

(√

z(1 − z)Q2 + m2
f r

)

|ψT(z, r)|2 =
3αem

2π2 ∑
f

e2
f

{

[z2 + (1 − z)2](z(1 − z)Q2 + m2
f )×

K2
1

(√

z(1 − z)Q2 + m2
f r

)

+ m2
f K2

0

(√

z(1 − z)Q2 + m2
f r

)

}

.

(III.4)

III
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Here ψL and ψT denote the longitudinal and transverse wave functions re-
spectively. K0 and K1 are modified Bessel functions and the sum ∑ f runs over
all active quarks flavours, with mass m f and electric charge e f . The γ∗p total
cross section can then be written as

σtot
γ∗p =

∫

d2rrr
∫ 1

0
dz{|ψL(z, r)|2 + |ψT(z, r)|2}σdp(z, rrr). (III.5)

This cross section is related to the F2 structure function via the relation

F2 =
Q2

4παem
σtot

γ∗p. (III.6)

The factor σdp(z, rrr) in (III.5) above denotes the dipole-proton cross section.
In the GBW model this cross section is assumed to have the form given in
eq. (III.1). If we only consider the three light quarks and neglect their masses,
we see that the dipole size can be rescaled r → r/R0, which implies that the
result only depends on the scaling variable τ ≡ Q2/Q2

s .
The charm quark is known to give a significant contribution to the cross

section, and the heavy charm quark must obviously have a large effect on
the scaling properties. This will be discussed further in sections III.4 and III.6.
However, also for the light quarks the finite masses will have significant effects
for small Q2, which will be discussed in section III.7.

III.3 The dipole cascade model for DIS

We will in this section shortly describe the model we use to study the effect on
geometric scaling from different features in the QCD evolution.

DIS at small x is dominated by gluonic cascades due to the 1/z singular-
ity in the gluon splitting function. At large Q2 the cascade can be described
by DGLAP evolution, where the gluons are strictly ordered in transverse mo-
mentum. For smaller Q2 also non-ordered gluon chains are important, and
the k⊥-ordered DGLAP evolution is replaced by the x-ordered BFKL evolu-
tion. The ordering in k⊥ when Q2 → ∞ and the ordering in energy when
x → 0 follow both from an ordering in angle or, equivalently, in rapidity. Such
an ordering is a consequence of soft gluon interference, and is the basis for
the CCFM model [18, 19], which reproduces DGLAP and BFKL evolution in
their respective domains of applicability with a smooth transition in between.
The CCFM model is reformulated and generalized in the Linked Dipole Chain
(LDC) [20] model. Here some emissions, which are treated as initial state ra-
diation in CCFM, are instead included as final state radiation, with the result
that the “non-Sudakov” formfactors disappear, and the cascade becomes sym-
metric when exchanging the role of the projectile and the target. The remain-
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ing gluons (called primary gluons in ref. [20] and backbone gluons in ref. [21])
define totally the structure of the final state.

At very high energies the density of gluons becomes very large, and non-
linear effects are needed to tame the exponential growth in the above linear
evolutions, which would otherwise break the unitarity limit. Saturation and
multiple interactions are easier to take into account in a formulation in trans-
verse coordinate space since at high energies the transverse coordinate does
not change between repeated subcollisions, while these collisions do change
the transverse momenta. This is exploited in the GBW dipole model and the
dipole cascade model by Mueller [15–17].

The evolution in Mueller’s model reproduces the leading order (linear)
BFKL evolution. It starts from a colour singlet qq̄ pair. The quark and the an-
tiquark emit gluons coherently, forming a colour dipole. The original dipole
is then split in two dipoles formed by the qg and gq̄ systems. The new dipoles
split repeatedly forming a dipole cascade. In the leading log approximation
the probability per unit rapidity Y for a dipole with transverse coordinates
xxx and yyy to split emitting a gluon at zzz is given by (to leading log accuracy
Y ≡ ln 1/x and the true rapidity are equivalent)

dP
dY

=
ᾱ

2π
d2zzz

(xxx − yyy)2

(xxx − zzz)2(zzz − yyy)2
(III.7)

The splitting probability in eq. (III.7) is singular for small dipole sizes x − zx − zx − z
or z − yz − yz − y. These singularities have to be screened by a cutoff, but the small
dipoles have also a small probability to interact with the target, and therefore
the total cross section is finite when the cutoff goes to zero. This implies that
a lot of non-interacting virtual dipoles are created in the process, which also
makes computer simulations difficult [22, 23].

It is well known that a significant part of next to leading corrections are re-
lated to energy-momentum conservation [24], and in refs. [25,26] it is demon-
strated that energy conservation has a large effect on the small x evolution. Re-
lating the dipole size r to 1/k⊥ there are great similarities between Mueller’s
model and the LDC model. In ref. [13] these similarities were used to im-
plement energy conservation in the dipole cascade formalism. The result is
a dynamical cutoff for small dipoles, and the remaining emissions are or-
dered in both light cone variables p+ and p−, similar to the ordering in the
LDC model. A dominant fraction of the virtual emissions is here eliminated,
leaving mainly the “primary gluons” mentioned above. As a result the expo-
nential growth for small x is significantly reduced. It also greatly improves
the efficiency of the MC simulation, removing the difficulties encountered in
refs. [22, 23].

Mueller’s cascade includes saturation effects from multiple collisions in the
Lorentz frame chosen for the calculation, but not the effects of pomeron merg-

III
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Figure III.1: Our full results for the γ∗p total cross section plotted as a function of

the scaling variable τ = Q2/Q2
s,GW. Here saturation effects are included both in the

collision between the γ∗ and the proton cascades and within the evolution in each
individual cascade, via the so called dipole swing. We have used a charm mass of 1.4
GeV and an effective light quark mass of 60 MeV for the u, d and s quarks. Data points
are taken from [27] and [28]. Results are presented for Q2 ranging from 0.3 GeV2 to 90
GeV2, and with the same kinematics for the data and the model.

ing in the cascades. The result is therefore not Lorentz frame independent. In
ref. [14] we improved our model by allowing (colour suppressed) recouplings
of the dipole chain during the evolution, a “dipole swing”, which leads to
an almost frame independent formalism. In this paper we also introduced a
simple model for the proton in terms of three dipoles.

The dipole splitting is calculated in perturbative QCD, and therefore the
model is meant to work in the perturbative regime, which means not too small

Q2. In figure III.1 we show results for σγ∗p as a function of the scaling vari-
able τ ≡ Q2/Q2

s for different Q2 above 0.3 GeV2. The results include both the
dipole swing and multiple collisions and for Qs(x) we here use the definition
by Golec-Biernat and Wüsthoff, given by (III.2). For these Q2-values a scale-
breaking effect is obtained from the charm mass, for which we use the value
1.4 GeV. The theoretical result is presented for the same kinematical variables
as the experimental data, and we see that there is a very good agreement be-
tween theory and data. For small Q2 the result is sensitive to confinement



III.4 Effects of saturation and the charm contribution 133

effects and effective quark masses. These problems will be further discussed
in sec. III.7.

III.4 Effects of saturation and the charm contribu-

tion

The effects of saturation and of the large charm quark mass are illustrated in

figure III.2. The results correspond to Q2 between 0.75 and 90 GeV2, and there-
fore the light quark masses can be neglected. The dotted lines show the results
of the full model, presented in fig. III.1. The solid lines show the result when
the charm mass is set to zero. The deviation between these curves therefore
shows the effect of the charm quark mass. Neglecting also the swing gives
the long-dashed curves, and finally including only the single pomeron term
in the collisions gives the short-dashed curves. The difference between these
and the solid lines therefore represents the effect of saturation.

We first note that saturation effects from multiple collisions and the swing
have a relatively small effect for τ > 1, but grow for smaller τ, and reduce the
cross section by approximately a factor 2.5 for τ = 0.1. The effect of the charm
quark mass is, as expected, also largest for smaller τ. The charm contribution
is about 30% for τ = 100 and 10% for τ = 1, which should be compared with
40% for zero mass charm quarks.

We note in particular that also the one-pomeron result satisfies geometric
scaling, even down to τ = 0.1. Thus the scaling feature alone is not enough
to prove the existence of saturation. The scale-breaking effect from the charm
contribution will be further discussed in sec. III.6. The dominance of the light
quark contributions, and the strong correlation between Q2 and x due to the
limited HERA energy, imply that this effect is not so evident in the results
shown in figs. III.1 and III.2, although we can see a small shift between the
curves for different Q2 in fig. III.2.

Although saturation reduces the result for τ < 0.5, there is a more clear
break in the experimental data. We note, however, that the experimental
points, which show this break, all correspond to small Q2-values below 0.5
GeV2. Here we expect also non-perturbative effects to be important. The wave
functions in eq. (III.4) extend to very large transverse separations r, and such
large dipoles must be suppressed by confinement effects. We also note that en-
ergy limitations imply that for fixed Q2 the experimental points lie in a rather
small x-interval, which implies that the points for different Q2 have a limited
overlap. The scaling features for small Q2 will be further discussed in sec. III.7.

III
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Figure III.2: The top three curves show the γ∗p total cross section obtained from

our Monte Carlo simulation for Q2 ranging from 0.75GeV2 to 90GeV2 and for zero
quark mass for 4 flavours. The solid lines show the results for evolution including
the dipole swing and also multiple collisions, the long-dashed lines show the results
without the swing but including multiple collisions, while the short-dashed lines are
results without the swing and also without multiple collisions. It is seen that all three
results satisfy geometric scaling. The bottom curve represents our full results shown
in fig III.1.

III.5 Understanding geometric scaling in the linear

evolution

The saturation model gives a motivation for geometric scaling in the kine-
matic range Q2

< Q2
s , but it does not give a reason for the observed scaling

behaviour for Q2
> Q2

s at experimentally feasible energies at current acceler-
ators. The arguments in ref. [6] imply that the cross section should scale as a
function of Q2/Q2

s (x) within a wide kinematic region,

1 . ln(Q2/Q2
s ) ≪ ln(Q2

s /Λ2
QCD), (III.8)

which is dominated by BFKL diffusion. Here Q2
s (x) is defined as the scale

where the scattering probability is of order 1. As mentioned in the intro-
duction this is a consequence of the fast growth towards small x and wide
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diffusion to large k⊥ in the leading log BFKL evolution. Both these effects
are strongly damped by non-leading effects [7], which therefore reduce the
region dominated by linear BFKL evolution. (We also note that both refer-
ences [7] and [6] point out that with a running coupling the BFKL evolution

leads to a saturation scale which satisfies ln Q2
s ∼

√
Y rather than ln Q2

s ∼ Y.)
For larger Q2, k⊥-ordered evolution should be dominant and Kwieciński and
Staśto [8] have assumed that DGLAP evolution is applicable in the whole re-
gion Q2

> Q2
s , with scaling initial conditions at Q2 = Q2

s . They then found
that although not perfectly scaling, the result showed approximate scaling
in the same kinematical domain specified by eq. (III.8). Their arguments do,
however, not explain the shape of the saturation line.

We will below argue that scaling is expected both in the region dominated
by BFKL diffusion and in the k⊥-ordered double leading log (DLL) regime at
larger Q2. (In the DLL regime this is not obvious from the analytic expres-
sions, but follows from a numerical analysis.) Furthermore we find that the
transition between the DLL (k⊥-ordered) and BFKL (k⊥-non-ordered) regimes
is given by Q2 = Q2

limit ∝ xλBFKL , where λBFKL is the exponent in the solution

to the BFKL evolution, estimated to be around 0.3. This implies that Q2
limit is

very close to Q2
s,GW, leaving only a very small region where the linear BFKL

evolution is dominating.

The qualitative features of the QCD evolution at small x are present already
in the leading log 1/x results, and we will in sec. III.5.1 discuss a toy model
describing the BFKL-DLL transition [29]. Non-leading corrections from e.g.
energy conservation and a running coupling are important for the quantitative
result. In sec. III.5.2 we try to isolate the most important features of the full
dipole cascade MC, to get an intuitive picture of geometric scaling in the non-
saturated region.

III.5.1 Leading log approximation

When both 1/x and Q2 are large the gluon distribution is given by ladders
which are ordered in k⊥ and where the splitting function is dominated by the
1/z pole. This corresponds to the double log approximation, and for a running
coupling the gluon density is given by

g(x, Q2) ∼ exp
(

2
√

α0 ln ln Q2 ln 1/x
)

, where ᾱ(Q2) ≡ α0

ln(Q2/Λ2)
. (III.9)

This expression does not scale exactly with Q2
s ∝ x−λ. Neglecting the very

slow variation of ln ln Q2 the cross section ∼ g/Q2 scales with

Q2
s ∝ exp(λ′√ln 1/x), (III.10)

III
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Figure III.3: The cross section σγ∗p ∼ g/Q2 with the gluon density g given by equation

(III.9) for different Q2, varying from Q2 = 100GeV2 to Q2 = 1.5 · 1010GeV2, and plotted
as a function of Q2/Q2

s , with Qs parametrized according to (III.2), but with λ equal to
0.7.

with some parameter λ′, and in ref. [30] it is pointed out that the experimental
data can be equally well fitted with both these expressions for Qs. This is also

seen in fig. III.3, which shows the cross section σγ∗p ∼ g/Q2 vs. τ with g from
eq. (III.9) and τ defined from eq. (III.2) but with λ = 0.7.

For limited Q2 we are instead in the BFKL regime dominated by k⊥-non-
ordered chains, where the gluon density is growing as a power 1/xλ for small
x, with λ of the order 0.3. Multiplying by 1/Q2 therefore gives directly the
scaling cross section

σγ∗p ∼ Q2
s

Q2
= τ−1 (III.11)

with Q2
s ∝ 1/x0.3.

We now also want to argue that, as described in ref. [29], the line Q2 =
Q2

limit corresponding to the separation between ordered (DGLAP-like) chains

and unordered (BFKL-like) chains, is also close to Q2
s,GW. In the double log

approximation the (non-integrated) gluon distribution G is given by the k⊥-
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ordered expression

G(x, k2
⊥) ∼ ∑

n

n

∏
i

{

∫

4αs

3π

dk2
⊥,i

k2
⊥,i

θ(k⊥,i − k⊥,i−1)
dxi

xi
θ(xi−1 − xi)

}

×

×δ(x − xn)δ(k2
⊥ − k2

⊥,n). (III.12)

With the notation li ≡ ln(1/xi) and κi ≡ ln(k2
⊥,i/Λ2) (and κ = ln(k2

⊥/Λ2), l =

ln(1/x)) we get for a fixed coupling the result

G ∼ ∑
n

{

n

∏
i

∫ κ
ᾱdκiθ(κi − κi−1) ·

n

∏
i

∫ ln 1/x
dliθ(li − li−1)

}

= ∑
n

ᾱn · κn

n!
· ln

n!
= I0(2

√

ᾱ ln Q2 ln 1/x)

∼ exp
(

2
√

ᾱ ln Q2 ln 1/x
)

. (III.13)

For a running αs we have instead of dk2
⊥,i/k2

⊥,i = dκi a factor dκi/κi = d ln κi,
which then gives the result in eq. (III.9).

In the BFKL region with small x but not so large Q2, the k⊥-ordered phase
space in eq. (III.12) becomes small, and chains which are not ordered in k⊥
give important contributions. The BFKL evolution can be formulated in dif-
ferent ways. Expressed in terms of the primary [20] or backbone [21] gluons
a step downwards in k⊥ is suppressed by a factor k2

⊥i/k2
⊥i−1 [20, 31]. We note

that this implies that a maximum k⊥-value in the chain will contain the fac-
tor dk2

⊥max/k4
⊥max which can be interpreted as a hard parton-parton subcolli-

sion with the expected cross section proportional to dt̂/t̂2. Expressed in the
logarithmic variable κ, a step down is consequently suppressed by a factor
exp(κi − κi−1) = exp(−δκ). This implies that the effective range allowed for
downward steps corresponds to approximately one unit in κ. Consequently
we find that the phase space limits κi

>∼ κi−1 in eq. (III.13) is replaced by [29,31]

κi
>∼ κi−1 − 1. (III.14)

For a fixed αs the transverse momentum integrals giving κn/n! in eq. (III.13)
will be replaced by

∫ κ

0

n

∏
i

dκiθ(κi − κi−1 − 1) ≈ (κ + n)n

n!
. (III.15)

When κ is very large we recover the DLL result in eq. (III.13), but for smaller
values of κ we find instead using Stirling’s formula

κ small ⇒ (κ + n)n

n!
∼ nn

n!
∼ en (III.16)

III
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which implies

G ∼ ∑
n

[ᾱ e ln(1/x)]n

n!
= ee ᾱ ln(1/x) =

1

xλ
(III.17)

with
λ = e ᾱ ≈ 2.72 ᾱ. (III.18)

In this range the chain corresponds to a random walk in ln k2
⊥. The result

should be compared with the result from the leading order BFKL equation,
which gives

λ = 4 ln 2 ᾱ ≈ 2.77 ᾱ. (III.19)

We see that this simple picture describes the essential features of BFKL evolu-
tion.

We note here in particular that the boundary between the domains domi-
nated by k⊥-ordered chains (eq. (III.13)) and k⊥-non-ordered chains (eq. (III.16))
is determined by the relation

ln k2
⊥limit = e ᾱ ln(1/x). (III.20)

We see that if we replace the LL λ-value by a lower value ≈ 0.3, as indicated
by the experimental data, then k2

⊥limit is similar to Q2
s,GW(x) from the early fit

by Golec-Biernat and Wüsthoff [2, 3]. This shows that the line Q2 = Q2
s,GW(x)

(corresponding to τ = 1) is actually close to Q2
limit, which represents the sepa-

ration between k⊥-ordered (DGLAP-like) chains and non-ordered (BFKL-like)
chains.

III.5.2 The dipole cascade

The qualitative features in the LLA in sec. III.5.1 are modified by energy con-
servation and other non-leading effects. We will here study how the scaling
behaviour can be seen in the dipole cascade model presented in sec. III.3, try-
ing now to isolate the most important features of the full MC simulation.

Let us look at a dipole with size r, which after a rapidity interval ∆y splits
in two dipoles with sizes r> and r<, with r> larger than r<. Fig. III.4 shows
the MC results for the average values of the ratios r>/r and r</r for differ-
ent values for the “time”, ∆y, it takes from the formation of the dipole till it
splits. The probability distribution dP/d∆y is also shown. We see here that a
dipole typically splits in two dipoles, where one has the same size as the par-
ent while the other has just half its size. This result is independent of the step
∆y and of the photon virtuality Q2. This also shows that it is independent of
the size of the parent dipole. We note that these results depend crucially on
the energy-momentum conservation in the evolution. Without this constraint
the typical splitting would occur within a very small rapidity step giving one
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Figure III.4: The top figures show how the average values of the ratios r</r0 (left) and
r>/r0 (right) for splitting events vary with the rapidity separation ∆y. It is seen that
both these ratios are approximately constant independent of ∆y, and that r>/r0 is ≈ 1.
The bottom figure presents the ∆y-distribution dP/d∆y. This distribution has a peak
around ∆y = 1 and falls off exponentially for larger ∆y-values.

virtual dipole with a size close to the necessary cutoff. When the cutoff goes to
zero both ∆y and r</r would also go to zero. Essential for the simple result in
fig. III.4 is the conservation of both p+ and p−. This is seen in fig. III.5, which
shows the corresponding result obtained with only p+-conservation.

Let us then assume that each dipole r splits after a typical ∆y, which from
the distribution dP/d∆y is found to be around 1.8 units, into two dipoles with
sizes r and r/a, with the parameter a of the order of 2. If Y denotes the total
rapidity range the number of steps will be N = Y/∆y and the number of

dipoles 2N = 2(Y/∆y). Starting from an initial dipole r0 the number of dipoles

having size r0/an will be equal to (N
n ), with n = 0, 1, . . . , N.

To study the scaling behaviour of the γ∗p cross section within this approx-
imation, we can treat the photon as a dipole with size rγ = 1/Q. In the lin-
ear region the initial proton can also be treated as a single dipole with size
rp = 1/Λ. The cross section for the scattering of two dipoles, r1 and r2, is

III
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Figure III.5: The averaged ratios 〈r</r0〉 and 〈r>/r0〉 as functions of ∆y in a simula-
tion where p− is not conserved in the evolution. We see that p+-conservation is not
enough to get the almost constant ratios seen in figure III.4.

given by [17]

σdd(r1, r2) = 2πα2
s r2

min{1 + ln(
rmax

rmin
)} (III.21)

where rmax (rmin) is the largest (smallest) of the two colliding dipoles r1 and
r2. We study the collision in a frame where only the proton is evolved, and the
photon therefore treated as a single dipole.

When Q is larger than aN ·Λ the photon dipole is smaller than all dipoles
in the proton cascade. The resulting cross section is then given by

σγ∗p(Q2, Y) = 2πα2
s

N

∑
n=0

(

N

n

)

Q−2

{

1 + ln(
Q

anΛ
)

}

= πα2
s Q−22N

{

2 − Nlna + ln
Q2

Λ2

}

∝
Q2

sc

Q2

{

1 +
1

2
ln(

Q2

Q2
sc

)

}

, (III.22)

where in the last expression we have used a = 2, N = Y/∆y and Q2
sc =

Λ2x− ln 2/∆y ≈ Λ2x−0.38. The result is obviously scaling, and the exponent
0.38 is not far from the experimental fit around 0.3. We note also that in this
case the dominating contribution comes from dipole chains where the dipoles
are ordered in size and where the last dipole in the cascade is larger than the
photon dipole. This just corresponds to the dominance of k⊥-ordered DGLAP-
type ladders.

For smaller Q-values the curly bracket in eq. (III.22) overestimate the con-
tribution from small proton dipoles represented by n-values for which an·Λ >
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Q. The largest terms in the sum are obtained when the binomial factor has its
maximum, i.e. for n ≈ N/2. Therefore the result in eq. (III.22) is a good
approximation as long as Q > aN/2 ·Λ. Indeed, using Stirling’s formula we

can write ( N
N/2) ≈ 2N , and in the saddlepoint approximation we again arrive

at the result given in eq. (III.22). We note that the constraint Q > aN/2 ·Λ
corresponds just to Q2

> Q2
sc, which thus is the limit for the dominance of

k⊥-ordered, DGLAP-type evolution chains.
Below this region, i.e. for Q2

< Q2
sc, it is not a good approximation to ne-

glect the contributions from scatterings where the proton dipoles are smaller
than the photon dipole. The full expression, including all contributions, can
be written as

σγ∗p(Q2, Y) ∝
m

∑
n=0

(

N

n

)

Q−2

{

1 + ln(
Q

anΛ
)

}

+

+
N

∑
n=m+1

(

N

n

)

a−2nΛ−2

{

1 + ln(
anΛ

Q
)

}

(III.23)

where m ≡ lnQ/Λ
lna . This expression is more complicated, but we show in figure

III.6 the result of a numerical evaluation expressed with a scale Q2
sc ∝ x−0.4.

We see that scaling is indeed satisfied for a large range of values for Q2, also
in the kinematic region dominated by chains which are not well ordered in
dipole size or in transverse momentum.

We note that our toy model has important similarities with the empirical
model presented in ref. [32]. In this paper it is demonstrated that geomet-
ric scaling follows from an assumption that the dipole cascade in the proton
is dominated by dipoles with size Q−1

s (while the virtual photon can be rep-
resented by a dipole with size Q−1). Our toy model approximation of the
full MC cascade has just this feature; the dipole multiplicity is given by the

binomial coefficient (N
n), with a maximum for n = N/2 corresponding to

r = 1/Qsc. The result in eq. (III.22), which is obtained for Q > Qsc using
the saddlepoint approximation, is thus identical to the corresponding result
in [32]. Ref. [32] also points out that if events with Q < Qs can be described
by an analogous cascade evolution of the initial photon dipole, then the ex-

pression Q/Qsσ
γ∗p(Q/Qs(x)) is symmetric under the exchange Q ↔ Qs(x).

This symmetry was initially observed in the HERA data by ref. [1]. For these
smaller Q-values (Q < Qsc) the dominant contributions from n ≈ N/2 are
contained in the second term in eq. (III.23). Using again the saddlepoint ap-
proximation we also obtain the symmetric result

III
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Figure III.6: The toy model cross section in (III.23) plotted as a function of the scaling

variable with Q2
sc = Λ2 · x−0.4, with Λ2 = 0.1GeV2, and for different Q2. The normal-

ization here is not of interest and all prefactors has been simply put to 1. We indeed
see that the result shows scaling, for low and high Q2 alike.

σγ∗p(Q2, Y) ≈ 2πα2
s 2Na−NΛ−2

{

1 + ln(
aN/2Λ

Q
)

}

≈ 2πα2
s Λ−2

{

1 + ln(
Qsc

Q
)

}

. (III.24)

In conclusion we find that Q2 = Q2
sc ∝ x−λ, with λ approximately equal

to the BFKL exponent, specifies the limit between dominance of k⊥-ordered
and k⊥-non-ordered chains, and that a simple toy model having this property
gives the qualitative features of the scaling dynamics for both large and small
τ. We also see that the toy model approximation to the full MC simulation
of the dipole cascade model have important similarities with the empirical
model in ref. [32], and gives a scaling result with a scaling exponent not far
from what is observed at HERA.
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III.6 Scaling features in the charm contribution

It is well known from HERA data that charm quarks contribute a significant
part to the total cross section. As discussed in sec. III.4, the large charm quark
mass modifies the scaling properties, and it is seen that the HERA charm data
do indeed not scale as a function of τ = Q2/Q2

s,GW(x). As pointed out in
ref. [33] they do, however, scale quite well as a function of the modified scaling
variable τc = (Q2 + 4m2

c)/Q2
s .

From the photon wave function in (III.4) we see that the term proportional
to the Bessel function K2

1 in |ψT|2 only contains Q2 and m f in the combination

z(1 − z)Q2 + m2
f . If z-values around 1/2 dominate, we would expect that the

charm contribution is gradually switched off when Q2 is of the order 4m2
c or

smaller, which necessarily leads to a breaking of geometric scaling. The sum
of the terms proportional to K2

0 in |ψT |2 and |ψL|2 is proportional to

[4z(1 − z)]z(1 − z)Q2 + m2
f ,

and for z close to 1/2 the square bracket equals 1, and we get the same factor
z(1 − z)Q2 + m2

f as before. From these features we may expect that the charm

contribution scales approximately with a modified scaling parameter where,
for example, we replace Q2 by Q2 + n ·m2

c in the definition of τ, for some
number n which should be close to or a little larger than 4.

In fig. III.7 we show data for the charm cross section from ZEUS [34] and
our MC obtained for mc = 1.4 GeV. In this figure we have used the scaling
variable

τc = (Q2 + 6m2
c)/Q2

s,GW(x̄) with x̄ = (Q2 + 6m2
c)/W2, (III.25)

obtained with n = 6 in the definition of τc, which we find gives somewhat
better scaling properties. This implies that τc = (1 + 6m2

c /Q2)1+λ ·τGW . We
here first note that the MC agrees quite well with the data, being only a little
high for the largest τ-values. Secondly we confirm the observation in ref. [33]
that the charm cross section does scale well as a function of such a modified
scaling variable.

The value n = 6 chosen for the scaling variable in eq. (III.25) is not cru-
cial for the scaling behaviour, which works rather well also for n = 4. We
note, however, that replacing x by x̄ in Qs only contributes a minor part to
the difference between τc and τGW , represented by the factor (Q2 + 6m2

c)
λ.

More important is the replacement Q2 → Q2 + 6m2
c in eq. (III.25). This is illus-

trated in fig. III.8, which shows that scaling does not hold if we replace τ by
Q2/Q2

s,GW(x̄).
We want here to point out that the effect of the charm mass is reduced very

slowly for larger Q2. Integrating over the dipole size, r, we obtain from a

III
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Figure III.7: The total charm cross section, σc
T + σ2

L plotted as a function of τc defined

in (III.25) with λ = 0.35 and mc = 1.4 GeV. Results are shown for Q2 between 2 and 130
GeV2. We see that the result scales fairly well with this scaling parameter. Data points
are taken from ref [34].

dimensional analysis

∫

d2rrrK2
i (ǫr)σ(z, rrr) ∝

1

ǫ4
, ǫ =

√

z(1 − z)Q2 + m2
f . (III.26)

When 4Q2 is small compared to m2
f we have ǫ ≈ m f , and the charm cross

section ought to scale as

σT ∝
1

m2
c

, σL ∝
Q2

m4
c

. (III.27)

We see here that the longitudinal contribution depends on two separate scales
Q2 and m2

c . In the other limit, when z(1 − z)Q2
> m2

c we can neglect mc.
However, since z(1 − z) can take on arbitrarily small values for fixed Q2, we
the effect of the charm mass can be important also for high Q2. In the MC
results presented in fig. III.7 the reduction due to the charm mass is about 30%

for Q2 = 90 GeV2 and 55% for Q2 = 15 GeV2. This slow decrease of the mass
effect is also seen in fig. III.2. (We should here also remark that the transverse
wave function ψT is not normalizable due to the singularity K2

1(r) ∼ 1/r2 at
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Figure III.8: Here we plot the charm cross section as a function of Q2/Q2
s (x̄) with the

same parameters as in fig. III.7. In this case we see that the result does not scale, which
shows the importance of replacing Q2 with Q2 + n · m2

c , n ∼ 4, as argued in the text.

small r. However, at small r the dipole-proton cross section behaves like r2

and thus the result is still finite.)

III.7 Interaction at smaller Q2

Due to the limited energy in the HERA accelerator the experimental data in
the region τ < 0.5 are all obtained for rather small virtualities Q2, where non-
perturbative effects must be expected.

III.7.1 Can the perturbative dipole formalism be used for Q2

below 1 GeV2?

For small Q2 the wave functions in eq. (III.4) extend to very large transverse
separations r, and such large dipoles must be suppressed by confinement ef-
fects. The interaction of these photons is usually described in terms of two
separate components, a vector dominance contribution and a direct coupling
to the quarks. We will here test if it is possible to represent the interaction of

III
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Figure III.9: The γ∗p total cross section plotted as a function of the scaling variable

τ for low Q2 values. Points are data from the H1 [27] and ZEUS [28] collaborations,
while the lines are results obtained from our Monte Carlo. We can here see a successive
suppression of the cross section for smaller Q2 as a result of the finite quark masses.

these photons with a finite mass for the light quarks, which effectively sup-
presses the contribution from the very large dipoles. Because the contribution
from the strange quark is suppressed by its smaller electric charge, and there-
fore relatively small, it is not possible to study in any detail the effect of the
strange quark mass. We therefore use a single quark mass, ml, for all the light

quarks, u, d, and s. The results in fig. III.9 for Q2 in the range 0.3-3.5 GeV2 are
obtained for ml = 60MeV and mc = 1.4GeV, and we here show the model
results for the same combinations of x- and Q2-values as in the experimental
data. We see that the experimental data are very well reproduced by the model
calculations, which gives some support to the application of this perturbative
description also for these small virtualities.

The effective quark mass is quite small, and we would have expected a
larger suppression for small Q2. The value 60 MeV is smaller than ΛQCD, and
also smaller than the effective mass obtained in ref. [35] in an analysis of the
vector-current two-point function. Ref. [35] studies a model with an effective
quark mass which varies with Q2, becoming smaller when Q2 is increased.
The agreement in fig. III.9 would actually be improved by such a varying ef-
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fective mass, but we do not believe that the accuracy of our model is sufficient
to claim that this improvement is significant. We have therefore here only
used a constant effective quark mass in the wave functions in (III.4).

III.7.2 Is geometric scaling obeyed for Q2/Q2
s < 1?

The effect of a finite quark mass is approximately a multiplicative factor which
suppresses the cross section for smaller Q2. As discussed in sec. III.6 the result
of the quark mass in the photon wave functions corresponds roughly to a
suppression by a factor Q2/(Q2 + 4m2

f ). The fact that the model results in

fig. III.9 look as a scaling function is therefore a consequence of the strong
correlation between x and Q2 in the experimental data. The finite energy in
the HERA accelerator implies that for small values of τ there are only data
for (x, Q2)-values within a very small interval. With a future accelerator with

higher energy, one could also reach smaller τ-values keeping Q2
> 1GeV2.

For these Q2 we do not get much suppression from the light quark masses,
and fig. III.10 shows that the scaling curve will lie somewhat above the present
HERA results. In the figure we show the extend the curve for Q2 =2GeV2 to
τ ≈ 0.07. As can be seen, the difference is increasing for smaller τ-values and
is about a factor 1.4 for τ ≈ 0.07. We also expect to see the scalebreaking effects
of the charm mass for 1GeV2 . Q2 . 10GeV2, while for higher Q2 these
effects should be gradually switched off. This cannot, however, be observed
at accelerators in the foreseeable future.

As a conclusion of this section we predict that at higher energies the data
will scale at larger values for the cross section than the present HERA data for
τ < 1. We should, however, point out that the analysis in this section only
holds for the particular value λ = 0.3 for the saturation scale in eq. (III.2).
For a different λ the scaling behaviour will be different and it turns out that
the deviation from the scaling behaviour would be somewhat reduced with a
higher λ.

III.8 Impact parameter dependence of the traveling

wave

In this section we will look at the impact parameter dependence of the dipole-
proton scattering amplitude Tdp(b), defined as T = 1 − S. We expect that the
contribution from small dipoles is reduced for large impact parameters, which
may result in different scaling behaviour for central and peripheral collisions.
This feature may be of special interest in studies of diffraction.

The amplitude Tdp is related to the total dipole-proton cross section by the

III
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Figure III.10: In this figure we extend the result for Q2 = 2GeV2 to smaller τ-values.
We can here see a deviation from the scaling behaviour at higher energies, about a
factor 1.4 for τ ≈ 0.07 corresponding to x ≈ 3 · 10−9 for Q2 = 2GeV2. In this plot
the deviation from the scaling curve is to a large extent due to the effective light quark
mass.

relation

σdp(z, rrr) = 2
∫

d2bbb Tdp(b). (III.28)

To get the amplitude for photon-proton scattering, the amplitude Tdp(b) has
to be weighted by the photon wave function in eq. (III.4). The average value
〈T〉 will then depend on the virtuality Q2 and the impact parameter b.

In the introduction we mentioned the similarity between the high energy
evolution equations for T and a certain type of equation (or rather a class of
equations) from statistical physics, known as the FKPP equation. Neglecting
the impact parameter dependence, the BK equation for the amplitude T(l, Y)
(with l ≡ lnk2) is analogous to the FKPP equation for the function u(x, t),
with the identifications l ↔ x and ᾱY ↔ t. The asymptotic solution, as t → ∞,
uas(x, t) = u(x − vt), then corresponds to Tas(l, Y) = T(l − λY) in QCD. If
we define Q2

s = exp(λY) as before the solution satisfies the geometric scaling
relation T(l, Y)as = T(lnk2/Q2

s ). There are a number of conditions which must
be satisfied in order to obtain an asymptotic solution of this form, and for a
short review on traveling wave solutions in QCD we refer to [36].
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As our model satisfies geometric scaling we can expect that the function
〈T〉(lnQ2) plotted for different Y-values looks like a traveling wave. This can
be seen in fig. III.11 which shows results for Y = 6, 8, 10 and 12. In this fig-
ure we also show the result for different impact parameters b. If we look at
different points with the same 〈T〉-value, the velocity is determined by the
relation

v(b) =
∆lnQ2

∆Y
(III.29)

The results in fig. III.11 correspond to the following velocities when saturation
effects are included in the amplitude: v(b = 0) = 0.28, v(b = 0.5 f m) = 0.35
and v(b = 1 f m) = 0.37. (For the one pomeron amplitude we instead obtain
v(b = 0) = 0.41, v(b = 0.5 f m) = 0.46 and v(b = 1 f m) = 0.48) Thus the ve-
locity varies significantly with the impact parameter, being smaller for central
collisions and larger for peripheral collisions. As the scattering probability is
largest for the central collisions, these results seem to be reasonably consistent
with weighted average over impact parameters corresponding to the velocity
v ≈ 0.3 observed for the total cross section.

In fig. III.11 we can see that also the one pomeron amplitude, which con-
tains no saturation effects, seems to exhibit the form of a traveling wave. We
also see that we need quite high energies, corresponding to x ≈ 6 · 10−6 for

Q2 ≈ 4GeV2 and b = 0, before the one pomeron amplitude reaches the uni-
tarity limit T = 1. However, it is also seen that saturation effects reduce the

amplitude by about 10% for larger Q2 and about 40% for small Q2 ∼ 1GeV2

already at x ∼ 10−3 for b = 0. This result is consistent with the previous
results presented in fig. III.2.

III.9 Conclusions

DIS data from HERA show a striking regularity as σγ∗p is a function of the ra-
tio τ = Q2/Q2

s (x) only, with Q2
s (x) given by eq. (III.2) [1–3]. Such a geometric

scaling has been expected in the range τ < 1, as a natural consequence of sat-
uration when the gluon density becomes very high, and there has been a lot of
discussion in the literature whether saturation has or has not been observed at
HERA. Modifications of the saturation model including DGLAP evolution [4]
improves the agreement with data for larger Q2, but it has not been equally
obvious how geometric scaling follows in a natural way from QCD evolution
in the non-saturated domain. The traveling wave solutions to the nonlinear
evolution equations in QCD do predict geometric scaling also for τ > 1 [9,10],
but these solutions are valid only at extremely high energies, far beyond what
is available at the HERA accelerator.

III
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In this paper we have tried to shed some light on these questions: What
is the reason for scaling for τ > 1, and is saturation indeed the reason for
geometric scaling for τ < 1? Supporting the saturation idea is the fact that the
scaling curve seems to have a break just around τ = 1. There are, however,
also other effects which contribute to a break in this region. In ref. [29] it is
shown that the transition between k⊥-ordered (DGLAP-like) chains and k⊥-
non-ordered (BFKL-like) chains is expected close to Q2

s . Secondly the finite
energy in the HERA machine implies that experimental data for τ < 1 are

only available for Q2
< 1GeV2, where nonperturbative effects begin to be

important.

To study the influence on the scaling from different dynamical effects we
have used the dipole cascade model presented in ref. [14]. This model is based
on Mueller’s dipole cascade model, but includes energy-momentum conser-
vation and saturation effects, not only from multiple subcollisions but also
from pomeron mergings in the cascade evolution, and it does successfully re-
produce the data from HERA.

Our conclusion is that scaling is a natural consequence of the dipole evo-
lution in the linear region τ > 1. Indeed, neglecting saturation the linear
evolution exhibits geometric scaling at high energies for τ-values both larger
and smaller than 1. The change from the DGLAP to the BFKL regime causes a
change in the slope of the scaling curve, but this change is rather smooth, with-
out a sharp break at τ = 1. The break seen in the HERA data is to a significant
part caused by saturation, but to an even larger extent by scalebreaking ef-
fects at low Q2. The latter are partly due to the large c-quark mass and partly
due to non-perturbative effects related to confinement for the light u-, d-, and
s-quarks. Therefore we predict that the results from a future higher energy
machine will show deviations from the scaling behaviour in the variable τGW .
These results are expected to lie above the HERA results for τGW < 1, and
be represented by a curve which is more smooth around τGW = 1. (Recently
it has also been predicted that a new type of scaling, called diffusive scaling,
will occur at very high energies, but we have in this paper concentrated on
energies which might be within reach at some future accelerator.)

We study the charm contribution separately, and compare with data for
the charm cross section. The charm contribution does not scale as the total
cross section, but we see that it does scale rather well as a function of the
variable (Q2 + 6m2

c)/Q2
s (x̄). Finally we have studied how the scaling feature

varies with impact parameter. We here see that the effective power λ in (III.2)
is somewhat smaller for central collisions and larger for peripheral collisions,
averaging out to the observed value around 0.3. Such a variation may be of
interest in studies of diffractive scattering.
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Figure III.11: The average scattering amplitude as a function of ln(Q2/1GeV2) for
Y = 6, 8, 10 and 12 and impact parameters b = 0, 0.5, 1fm. Both the amplitude con-
taining full saturation effects and the linear one pomeron amplitude are shown. For
the amplitude including saturation we obtain from here the velocities v(b = 0) = 0.28,
v(b = 0.5 f m) = 0.35 and v(b = 1 f m) = 0.37.
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Small-x evolution in QCD is conveniently described by Mueller’s dipole
model which, however, does not include saturation effects in a way consistent
with boost invariance. In this paper we first show that the recently studied
zero and one dimensional toy models exhibiting saturation and explicit boost
invariance can be interpreted in terms positive definite k → k + 1 dipole ver-
tices. Such k → k + 1 vertices can in the full model be generated by com-
bining the usual dipole splitting with k − 1 simultaneous dipole swings. We
show that, for a system consisting of N dipoles, one needs to combine the
dipole splitting with at most N − 1 simultaneous swings in order to generate
all colour correlations induced by the multiple dipole interactions.
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IV.1 Introduction

The small-x region in QCD can be described by the well known, linear, BFKL
equation which predicts a power-like growth in x for the gluon density. Such a
fast growth is problematic since it breaks the unitarity bound at high energies.
As the gluon density becomes large, non-linear effects cannot be ignored and
it was early suggested that effects from parton saturation should tame the
growth of the gluon density, in accordance with unitarity [1].

Starting the evolution from a colour singlet quark-antiquark pair, a colour
dipole, Mueller [2,3] formulated a dipole model in transverse coordinate space
which reproduces the BFKL equation to leading order. The transverse coor-
dinate formulation also allows one to go beyond the BFKL equation since it
is here easier to take into account multiple interactions. This is so because
the transverse coordinates of the partons are frozen during the evolution, and
it is therefore rather easy to sum the multiple scattering series in an eikonal
approximation. This was exploited by Mueller, who was thus able to obtain a
unitarised formula for the scattering amplitude.

Within the dipole formalism, Balitsky [4] derived an infinite hierarchy of
equations for the dipole scattering amplitudes. Kovchegov [5] derived a closed
equation for the amplitude using a mean field approximation, and this equa-
tion is referred to as the Balitsky-Kovchegov (BK) equation. The same hierar-
chy of equations also follows from the JIMWLK equation [6–9] which is the
master equation of the Color Glass Condensate (CGC) formalism [10] and de-
scribes the non-linear evolution of dense hadronic matter in the presence of
saturation effects.

In Mueller’s model the multiple dipole interactions correspond to multiple
pomeron exchange, and in the Lorentz frame where the collision is studied
these multiple interactions lead to the formation of pomeron loops. However,
these loops cannot be formed during the evolution of the dipole cascade since
this evolution is linear. Thus only those loops which are cut in the specific
Lorentz frame used for the calculation are accounted for, while none of the
remaining loops is included. This implies that the model is not frame inde-
pendent. To minimize the error, the optimal frame to use is the one where the
colliding dipole cascades are of the same density, since multiple scatterings
then become important at rapidities where one may still neglect saturation
effects in the evolving dipole cascades.

In order to obtain a frame independent formalism it is necessary to include
saturation effects also in the evolution of each dipole cascade. There have been
various attempts to include such saturation effects in a consistent manner, but
no explicitely frame independent formalism has yet been presented.

To gain insight and possible hints towards a solution, a simple 1+0 dimen-
sional (rapidity constitutes the only dimension) toy model in which transverse
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coordinates are neglected was constructed in [3, 11]. This model has been fur-
ther studied in [12, 13], and the resulting frame independent evolution can be
interpreted as a coherent emission of new “dipoles” from the multi-”dipole”
state.

In [14] we developed a dipole cascade model for DIS and pp collisions
based on Mueller’s model but also including effects of energy-momentum
conservation. This model was further extended in [15] to include saturation
effects in the cascade evolution through the so called dipole swing mecha-
nism [15,16], which gives an additional 2 → 2 transition during the evolution.
Monte Carlo (MC) simulations show that the evolution is almost frame in-
dependent, and the model results are in good agreement with inclusive and
diffractive data from HERA and the Tevatron [17].

In this paper we will first show that the explicitely frame independent evo-
lution in the toy model mentioned above, and also in its 1+1 dimensional
generalization in [18], can be given a probabilistic interpretation in terms of
positive definite k → k + 1 dipole vertices. Such k → k + 1 transitions can in
the full model be generated by combining the dipole splitting with the dipole
swing.

In case each individual dipole is restricted to single scattering only, we
show that one needs to combine the dipole splitting with at most one swing
at a time in order to generate the necessary colour correlations. As remarked
in [12], the toy model evolutions mentioned above describe the multiple scat-
terings of individual dipoles, and we will here show that one can in the real
model generate the correlations induced by the dipole scatterings by combin-
ing a splitting with several simultaneous swings. For a system consisting of N
spatially uncorrelated dipoles, it is easy to see that one needs to combine the
dipole splitting with at most N − 1 simultaneous swings. In a process where
one splitting is combined with k − 1 swings, k dipoles are replaced by k + 1
dipoles, thus giving a k → k + 1 transition.

However, starting the evolution from a single qq̄ pair, one obtains dipoles
which are connected in chains, and in this case not all swings are allowed. It is
here important to keep track of the correct topology of the dipole state. While
this is never a problem in the original formulation which only contains the
1 → 2 splitting, it is here very important to avoid the formation of unphysical
states. Although it has been checked for a large number of cases, a formal
proof that it is always enough with N − 1 swings is not avaliable, and the
result is a conjecture.

The paper is organized as follows. In the next section we shortly review
Mueller’s dipole model and the question of frame independence in the evolu-
tion. In section IV.3 we will review the toy models in zero and one transverse
dimensions formulated in [11, 18], and show how these can be interpreted in
terms of the k → k + 1 transitions mentioned above. Then in section IV.4 we

IV



158
On the Dipole Swing and the Search for Frame Independence in the Dipole

Model

consider the evolution in the full model and argue that also in this case the
correct evolution can be formulated in terms of k → k + 1 vertices. In section
IV.5 we go on to study the colour topology of the evolution, and we show
how one can generate the needed colour correlations using the dipole swing.
Finally, in section IV.6, we present our conclusions.

IV.2 Approaches Towards a Frame Independent

Formalism

In Mueller’s model [2, 3] for onium-onium scattering a colour dipole formed
by a colour charge at transverse coordinate x and an anticharge at y can split
into two dipoles by emitting a soft gluon at position z with the following
probability

dP
dY

=
ᾱ

2π
d2z

(x − y)2

(x − z)2(z − y)2
≡ d2zM(x, y, z), (IV.1)

ᾱ ≡ αsNc

π
and Y ≡ ln

1

xBj
. (IV.2)

We refer to M as the dipole kernel and to Y as the rapidity, which here acts
as the time variable in which the evolution proceeds. A dipole cascade is then
formed when each dipole splits repeatedly. When two such cascades collide,
a right-moving dipole (xi, yi) and a left-moving dipole (xj, yj) interact with a
probability

fij = f (xi, yi|xj, yj) =
α2

s

8

[

log

(

(xi − yj)
2(yi − xj)

2

(xi − xj)2(yi − yj)2

)]2

. (IV.3)

All dipole interactions are assumed to be independent, and the S-matrix ele-
ment is given by S = exp(−∑ij fij).

In this formalism, saturation effects occur only due to multiple scatterings
while the evolution of the dipole cascade satisfies the usual BFKL equation.
This implies that the formalism is not frame independent and in order to ob-
tain a frame independent formalism such saturation effects must be properly
included in the cascade evolution.

Different approaches have been proposed to obtain this. It was noted that
the CGC formalism is not complete in the sense that it does not contain any
gluon splittings, or gluon number fluctuations. This problem comes from the
fact that the Balitsky-JIMWLK (B-JIMWLK) equations1, which can schemati-
cally be written as

∂Y〈Tk〉 = M⊗{〈Tk〉 − 〈Tk+1〉}, (IV.4)

1Throughout this paper, we will only consider the large-Nc version of these equations.
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only couples the k−dipole scattering amplitude Tk to the (k + n)-dipole amp-
litudes with n = 0, 1, . . . . From the view of target2 evolution, this means that
one includes all gluon merging diagrams, while the gluon splitting diagrams
are absent. Gluon splittings are equivalent to dipole splittings, and the dipole
model has been used to add fluctuations into the formalism. The modified
B-JIMWLK equations then read

∂Y〈Tk〉 = M⊗{〈Tk〉 − 〈Tk+1〉}+ K ⊗ 〈Tk−1〉, (IV.5)

where K is a kernel representing the fluctuations in the target.

Viewed in the opposite direction, the fluctuation effects in the target cor-
respond to saturation effects in the projectile evolution. Given the form of
the modified B-JIMWLK equations above, it may seem natural to include a
2 → 1 vertex in the dipole evolution. Such an interpretation has, however, the
drawback that it cannot be interpreted as a classical evolution process since
the 2 → 1 vertex is not positive definite, as was shown by Iancu et al. [19].
In [16] Kozlov et al. calculated directly the 4 → 2 gluon merging vertex within
the dipole language and were led to the conclusion that one should include a
2 → 4 dipole vertex which is composed of a splitting and a swing.

In [15] we included the 2 → 2 dipole “swing”, in addition to the 1 → 2
dipole splitting, in the evolution. If we have two dipoles (xi, yi) and (xj, yj),
the swing will replace them by (xi, yj) and (xj, yi). The dipole swing can be
interpreted in two ways. First, as a way to approximate colour quadrupoles
as two independent dipoles formed by the closest charge–anti-charge pairs, in
which case the swing is naturally suppressed by N2

c . Secondly, we may view
it as the result of a gluon exchange between the dipoles, which results in a
change in the colour flow. In this case the swing would be proportional to α2

s ,
which again, compared to ᾱ, is formally suppressed by N2

c .

The dipole swing is related to the pomeron interactions studied by Bartels
and Ryskin [20, 21]. Here a pomeron is interpreted as two gluons in a colour
singlet state. In a four gluon system with two singlet pairs, gluon exchange
can give a transformation ( a “switch” or “swing”) (12) + (34) → (13) + (24),
where a parenthesis denotes two gluons in a singlet state.

We note that the swing is here not a vertex in the same sense as the split-
ting process since, unlike the splitting, the swing is not proportional to dY
but rather happens instantaneously. In the MC implementation we assign a
“colour” to each dipole and two dipoles are allowed to swing if their colour

2In the CGC approach, it is usually assumed that the target is a dense hadron while the pro-
jectile is an elementary colour dipole.

IV
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indices match3. The swing is then determined by the weight

P(swing) ∝
(x1 − y1)

2(x2 − y2)
2

(x1 − y2)2(x2 − y1)2
. (IV.6)

Here the two initial dipoles are determined by the coordinates (x1, y1) and
(x2, y2), and the new by (x1, y2) and (x2, y1). This form favours the forma-
tion of small dipoles. It also preserves one of the results in Mueller’s original
formulation, namely that the total weight for a dipole chain is given by the

product ∏i
1
r2

i

, where ri is the size of dipole i and the product runs over all

“remaining” dipoles in the cascade.
In our formalism the total number of dipoles does not decrease. For each

event, many of the dipoles will not interact and these have to be considered
as being virtual. In this case saturation effects do not have to decrease the
total number of dipoles but rather only the number of interacting, or “real”,
dipoles. The dipole swing has this property since it is more likely that two
dipoles are replaced by two smaller dipoles, as can easily be seen from (IV.6),
and smaller dipoles have smaller interaction probabilities. Thus the number
of interacting dipoles will actually decrease, and in pomeron language this
means that the swing generates pomeron mergings.

An essential feature of our formalism is that the dipoles in the cascade
form connected chains4, rather than a collection of uncorrelated dipoles, as
in a reaction-diffusion type of formalism. A dipole chain cannot end in a
gluon, and it is not possible to remove a dipole without reconnecting its neigh-
bors. A generic 2 → 1 vertex is therefore not possible in this formalism5, and
the dipole swing gives the simplest process from which one can form closed
chains during the evolution.

IV.3 The Toy Models

IV.3.1 The 1+0 dimensional toy model

In this section we will review the toy model which was studied in detail in
[12] (see also [13]). This model was first presented by Mueller [3] and it is
interesting since, besides having some structural aspects similar to the dipole
model, it offers analytical solutions which have been very hard to obtain for
the full model.

3The number of effective colours is N2
c which is the number of possible colour configurations

for a given colour–anti-colour pair.
4In Mueller’s original formulation this is not relevant since there the dipoles evolve truly in-

dependently. However, in our implementation of energy-momentum conservation, neighboring
dipoles affect each other and it is then relevant that the cascade is formulated as a dipole chain.

5The only allowed merging process is in case two neighboring dipoles merge.
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The model is defined such that at any rapidity Y the system is specified
only by the number of dipoles. The probability to find the system in the n-
dipole state at time Y is denoted by Pn(Y). Here transverse coordinates are
completely neglected and Y defines the only coordinate in the model.

If we let HHH denote the Hamiltonian of the system we have

Hnm = 〈m|HHH|n〉 = R(n)(δm,n+1 − δm,n). (IV.7)

R(n) is so far an unspecified function, which determines the splitting rate of
the n dipole state. The probability Pn(Y) evolves according to

∂YPn = HmnPm. (IV.8)

With Snm we denote the S-matrix for the scattering of two dipole states
of n and m dipoles respectively. If we assume that each dipole scatters inde-
pendently with a probability τ, we have Snm = (1 − τ)nm. We here assume
that τ << 1 and if this is not the case, one should replace 1 − τ by exp(−τ).
The physical S−matrix, S , is obtained by taking an average over all possible
events. Using matrix notation we have

S(Y1 + Y2) = pppT(Y1)SSSqqq(Y2). (IV.9)

Here pppT(Y1) = (P1(Y1), P2(Y1), . . . ) is the row vector of the configuration
probabilities for the right moving onium (evolved up to Y1) while qqq denotes
the column vector of configuration probabilities for the left moving onium
(evolved up to Y2).

In (IV.9) we have anticipated that S depends only on the total rapidity
interval Y1 + Y2, which defines boost invariance. This implies that we have
(∂Y1

− ∂Y2
)S = 0, and requiring this in (IV.9) one obtains

pppT(Y1)HHHSSSqqq(Y2) − pppT(Y1)SSSHHHTqqq(Y2) = 0. (IV.10)

A sufficient condition for a solution is to require that

HHHSSS = SSSHHHT (IV.11)

which means that HHHSSS is symmetric (since SSS is symmetric). It is now easily
seen that the condition (IV.11) requires R(n) in (IV.7) to be given by

R(n) = c (1 − (1 − τ)n) (IV.12)

where c is a constant, c = R(1)/τ. By rescaling Y, we might as well assume c
to equal 1.

IV
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IV.3.2 Stochastic evolution with k → k + 1 vertices

We note that (IV.12) can be rewritten as

R(n) = c
n

∑
k=1

(

n

k

)

(−1)k−1τk. (IV.13)

This suggests that we can interpret the evolution in terms of k → k + 1 tran-
sitions with weights (−1)kτk. However, the alternating signs implies that one
cannot interpret these vertices in a probabilistic formulation.

We will now show that one can nevertheless interpret the evolution in
terms of positive definite k → k + 1 vertices. Thus the evolution can still be
formulated as a stochastic process, but we will also see that the probabilistic
interpretation of the evolution implies that it cannot be reduced into a formal-
ism which describes a system of incoherent particles.

Assume we have a system of n particles X, which we also refer to as dipoles,
satisfying the following rules. Each isolated X can emit a new X with a prob-
ability per unit time (rapidity) given by τ, i.e. we have a reaction X → X + X
which occurs with probability τ > 0. In addition to this, k isolated dipoles can
undergo a transition kX → (k + 1)X with probability τk.

The evolution of the probabilities Pn(Y) for these X then satisfies

∂YPn(Y) = −
n

∑
k=1

R(n)
k→k+1Pn(Y) +

n−1

∑
k=1

R(n−1)
k→k+1Pn−1(Y) (IV.14)

where R(n)
k→k+1 is the splitting rate for the process where k dipoles are replaced

by k + 1 dipoles in a state containing n dipoles.

Now, the splitting rate R(n)
k→k+1 is not simply given by (n

k)τk as one could
expect naively, but it is instead given by

R(n)
k→k+1 =

(

n

k

)

τk(1 − τ)n−k, (IV.15)

since for each k → k + 1 we must also multiply with the probability that no
more than k dipoles were involved in the emission of the new dipole. Obvi-
ously, k must run from 1 to n, and summing all contributions we obtain the
total splitting rate as

n

∑
k=1

R(n)
k→k+1 =

n

∑
k=1

(

n

k

)

τk(1 − τ)n−k = (1 − (1 − τ)n) = R(n) (IV.16)

where R(n) was defined in (IV.12). The positive definite transition rates in
(IV.15) thus give a boost invariant evolution as before. Note also that in this
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case the k → k + 1 transitions are not universal since they depend on n, unlike
the rates in (IV.13). The k → k + 1 splitting vertex therefore not only depends
on the state of the k emitters, but it does also depend on the rest of the dipoles
in the cascade. We will in the forthcoming sections see that the dipole swings
give a very similar evolution in the full model.

We also note that the k → k + 1 transitions can be made manifest by writing
down the Hamiltonian

HHH =
∞

∑
k=1

τk

k!
(NNN−1/2aaa� − 111)(aaa�)kaaak

∞

∏
l=k+1

(1 − τ)
∞

∑
m=l

|m〉〈m|, (IV.17)

where aaa� and aaa are dipole creation and annihilation operators respectively, and
NNN = aaa�aaa.

IV.3.3 Evolution equations

In this section we will first show that the evolution equations for the scattering
amplitudes derived in [12] are described exactly by the k → k + 1 transitions in
(IV.15). We will then go on to point out that there is a fundamental structural
reason for the fact that the attempts to interpret the full model evolution given
in (IV.5) in a probabilistic manner have run into problems. We will see that it
is not possible to interpret this equation using a probabilistic 2 → 1 vertex
even in the toy model. However, we note that it is not necessary to include a
2 → 1 vertex to obtain saturation. In fact any 2 → n vertex where only one of
the n dipoles interact also corresponds to a 2 → 1 transition, and this will be
discussed more later.

First we write the S-matrix given in (IV.9) as

S(Y1 + Y2) = pppT(Y1)sssqqq(Y2), sssqqq ≡ SSSqqq (IV.18)

where the nth component of the vector sssqqq(Y2) is the S-matrix element of a pro-
jectile, evolved up to Y1, made up from n dipoles scattering against a generic
target, which is evolved up to Y2. It is then easy to see that (sssqqq)n ≡ 〈sn〉 satis-
fies the following evolution equation [12]

∂Y〈sn〉 = R(n){〈sn+1〉 − 〈sn〉}. (IV.19)

Using the relation s = 1 − t, where t denotes the scattering amplitude,
one can similarly derive the equations obeyed by 〈tn〉. Since τ is assumed
to be small, one can expand R(n) in each equation and drop contributions
which are negligible in all regimes (dilute and dense systems). Doing this, the
authors in [12] arrived at the following evolution equations for 〈t〉, 〈t2〉 and

IV
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〈t3〉,

∂Y〈t〉 = 〈t〉 − 〈t2〉, (IV.20)

∂Y〈t2〉 = 2(〈t2〉 − 〈t3〉) + τ〈t(1− t)2〉, (IV.21)

∂Y〈t3〉 = 3(〈t3〉 − 〈t4〉) + 3τ〈t2(1 − t)2〉+ τ2〈t(1 − t)3〉. (IV.22)

If one neglects all terms proportional to τ, then it is seen that the resulting
hierarchy corresponds to the large Nc version of the B-JIMWLK hierarchy.

Let us now see how equations (IV.20)-(IV.22) arise from the transition rates

R(n)
k→k+1. The evolution of the S-matrix elements are given by

∂Y〈s〉 = R(1)
1→2{〈s2〉 − 〈s〉}, (IV.23)

∂Y〈s2〉 = (R(2)
1→2 + R(2)

2→3){〈s3〉 − 〈s2〉}, (IV.24)

∂Y〈s3〉 = (R(3)
1→2 + R(3)

2→3 +R(3)
3→4){〈s4〉 − 〈s3〉}. (IV.25)

It is then straightforward to obtain the following equations for the scattering
amplitudes

∂Y〈t〉 = R(1)
1→2{〈t〉 − 〈t2〉} = 〈t〉 − 〈t2〉, (IV.26)

∂Y〈t2〉 = 2R(1)
1→2(〈t〉 − 〈t2〉) −R(2)

1→2〈t(1 − t)2〉 − R(2)
2→3〈t(1− t)2〉

= 2(〈t2〉 − 〈t3〉) + 2τ〈t(1− t)2〉 − τ〈t(1− t)2〉. (IV.27)

We indeed see that the first equation is equal to (IV.20) and that the second
equation is equal to (IV.21). It is also straightforward to see that the equation
for 〈t3〉 agrees with (IV.22).

Next, we comment on the structure of the equation given in (IV.5). Assume
we wish to view the process as a stochastic evolution with a 1 → 2 splitting
vertex, f1→2, and a 2 → 1 merging vertex, k2→1. We here assume the total
splitting rate to be the incoherent sum of the individual splitting rates. For the
evolution of the 2−dipole state we have

∂Y〈s2〉 = f
(2)
1→2{〈s3〉 − 〈s2〉}+ k

(2)
2→1{〈s〉 − 〈s2〉} (IV.28)

which gives

∂Y〈t2〉 = 2 f
(1)
1→2{〈t〉 − 〈t2〉}+ k

(2)
2→1〈t(1 − t)〉 − f

(2)
1→2〈t(1 − t)2〉

= (2 f
(1)
1→2 − f

(2)
1→2 + k

(2)
2→1)〈t〉+

+ (−2 f
(1)
1→2 + 2 f

(2)
1→2 − k

(2)
2→1)〈t2〉 − f

(2)
1→2〈t3〉

= k
(2)
2→1〈t〉+ ( f

(2)
1→2 − k

(2)
2→1)〈t2〉 − f

(2)
1→2〈t3〉. (IV.29)
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We thus see that the 2 → 1 contribution not only generates the “fluctuation”

term, k
(2)
2→1〈t〉, but it does also modify the 〈t2〉 term. If this term is to be un-

affected by the additional vertex, as in (IV.5), then we have to set k
(2)
2→1 = 0.

This is actually very similar to what happens in the full model. In that case
the integral over the proposed 2 → 1 vertex has to be zero, which implies that
the vertex cannot be positive definite, as was noted in [19]. We can also try
to add another vertex such that the total contribution to the 〈t2〉 term cancels.
Assume for example the existence of an additional 2 → 0 vertex g2→0. We
then get

∂Y〈t2〉 = (k
(2)
2→1 + 2g

(2)
2→0)〈t〉+ ( f

(2)
1→2 − k

(2)
2→1 − g

(2)
2→0)〈t2〉 − f

(2)
1→2〈t3〉 (IV.30)

from which we conclude that

k
(2)
2→1 + g

(2)
2→0 = 0 (IV.31)

which means that either k
(2)
2→1 or g

(2)
2→0 has to be negative. Thus we conclude

that this approach has big problems, as one must choose k
(2)
2→1 either to be 0,

or it must be negative, which means that one cannot obtain a probabilistic
formulation.

IV.3.4 The 1+1 dimensional toy model

A somewhat more complicated 1+1 dimensional model is presented in [18].
The structure of this model is very similar to the 1+0 dimensional model, but
the difference is that this time a dipole state is not only specified by the total
number of dipoles, but it also depends on the distribution of these dipoles
along some additional transverse axis.

We denote the position of a dipole along this axis with xi, and the generic
n-dipole state is denoted |{xi}〉 = |x1, . . . , xn〉. The assumption in [18] is that
the dipole state evolves only by the addition of a single new dipole at some
position xn+1. In that case the frame independence equation in (IV.11) can
easily be solved, and the simplest solution for the total splitting rate Ri({n})
is given by [18]

R({xi} → {xi} + xn+1) =
1 − ∏

n
i=1(1 − τ(xi|xn+1))

τ
. (IV.32)

Here τ is a constant which can, by a redefinition of Y, set to be equal to 1.
We now show that the evolution can once again be formulated as a prob-

abilistic process in terms of coherent k → k + 1 transitions as in sec IV.3.2.
In this case we assume we have a system of dipoles, Xi, which live on a one
dimensional spatial axis. We assume this axis to represent the position of the

IV
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“point-like” dipoles. This axis is assumed to be continuous, so that the index i
actually represents a continuous label xi. An isolated dipole Xi can then emit
another dipole Xj at position xj with a probability τij = τ(xi|xj). However, in
the presence of more than one Xi, the new Xj can also be emitted coherently
from several dipoles with a probability given by the product of the individual
emission probabilities. For a system of n dipoles located at positions x1, . . . , xn,

the total k → k + 1 splitting rates R(n)
k→k+1({xi} → {xi}+ xn+1) are then given

by

R(n)
k→k+1({xi}→{xi}+ xn+1)=

1

k!

n

∑
i1 6=···6=ik

τi1,n+1 . . . τik,n+1

n

∏
m 6=1,...,k

(1 − τim,n+1),

(IV.33)

and their sum satisfies

n

∑
k=1

R(n)
k→k+1({xi} → {xi}+ xn+1) = 1 −

n

∏
i=1

(1 − τi,n+1). (IV.34)

which is equal to (IV.32). Note that once again the positive definite splitting
rates do not only depend on the state of the emitting dipoles, but also on the
state of the other dipoles in the cascade. This is unavoidable if one wants to
obtain a probabilistic evolution.

The k → k + 1 splitting rates in (IV.33) are very similar in structure to the
processes generated by the dipole swing, to be discussed in the forthcoming
sections. Anticipating the discussion there, we can interpret (IV.33) as a pro-
cess where the newly produced dipoles swing multiply with the rest of the
dipoles in the cascade (a concrete example of this is shown in fig IV.5). Note
that in the toy models both the splitting and the scatterings of the dipoles are
determined by the quantities τij. If we would assume that these also deter-
mine the swing probability, then the k → k + 1 splitting rates in (IV.33) would
describe processes where the newly produced dipole i swings with k − 1 di-
poles from the cascade, and the factor ∏j(1 − τij) could then be interpreted as
the probability that i swings with no more than k − 1 dipoles.

One difficulty is, however, that the swing in its form in the full model can-
not really provide saturation in the toy models since the dipoles have no size
here 6. This follows from the fact that both toy models have trivial topologies,
in the sense that the dipole state is assumed to evolve only by the addition of
a new dipole without changing the emitting state. In the toy models satura-
tion occurs because k dipoles emit a single dipole with the same strength as

6In [18], the spatial axis was interpreted as being related to the dipole size while we feel a
more close analogy is to interpret it as a spatial coordinate where dipoles of some fixed size live.
Irrespective of the interpretation, however, direct comparison with the full model is made difficult
by the assumption that the toy model state only evolves by the addition of a single dipole.
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a single dipole. In our implementation of the dipole swing however, satura-
tion occurs because the swing decreases the sizes of the dipoles, and smaller
dipoles have a smaller probability to interact.

IV.4 Evolution in the full model

We will here argue that the evolution in the full model also can be formulated
as a probabilistic process in terms of k → k + 1 transitions.

The S-matrix is in the full model given by

SY = ∑
N,M

PN(Y0)PM(Y −Y0)
N

∏
i=1

M

∏
j=1

(

1 − f (xi, yi|xj, yj)

)

.

=

〈 N

∏
i=1

M

∏
j=1

(1 − fij)

〉

. (IV.35)

where fij is given by (IV.3).
Let us consider the evolution initiated by a pair of oppositely moving qq̄

pairs. We then consider generic dipole states AN , containing N − 1 gluons,
which at each rapidity step can evolve into states AN+1 containing N gluons.
The splitting rate is denoted R(AN → AN+1).

The scattering between the states AN and BM is then frame independent
if

∑
AN+1

∫

z
R(AN → AN+1)

{

1 − ∏
j∈BM

{1 − ( ∑
i∈AN+1\AN

− ∑
i∈AN\AN+1

) f (i|j)}
}

=

∑
BM+1

∫

z
R(BM → BM+1)

{

1 − ∏
i∈AN

{1 − ( ∑
j∈BM+1\BM

− ∑
j∈BM\BM+1

) f (i|j)}
}

.

(IV.36)

The notations in this equation are as follows. The integral
∫

z denotes the inte-
gration over the transverse position of the Nth emitted gluon. In ∏j∈BM

, the

index j runs over all dipoles in the state BM. The set denoted by AN+1 \ AN

consists of those new dipoles produced in the last step of the evolution. Simi-
larly, AN \ AN+1 denotes the set of all dipoles which are present in AN , but
not in AN+1, i.e. those dipoles which were removed from the cascade in the
last step of the evolution. Finally, f (i|j) stands for the scattering amplitude
between the dipoles i and j, i.e. the expression fij in (IV.3) and (IV.35). The
sum ∑AN+1

is over all N gluon states which can be reached from AN in one
step.

IV
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In the toy model analogy, the difference ∑i∈AN+1\AN
−∑i∈AN\AN+1

consists
of only the newly produced dipole, i, since all others dipoles are assumed to
be unaffected by the evolution. In that case eq (IV.36) reduces to

∑
i

R(AN → AN + i)

{

1 − ∏
j∈BM

(1 − f (i|j))
}

= ∑
i

R(BM → BM + i)

{

1 − ∏
j∈AM

(1 − f (i|j))
}

. (IV.37)

The most simple solution is given by

R(AN → AN + i) = 1 − ∏
j∈AN

(1 − f (i|j)), (IV.38)

which we recognize from (IV.32). We will now see that the evolution in the full
model can be formulated probabilistically in terms of k → k + 1 vertices as in
the toy models. At first we will formulate the evolution as in eq (IV.13) which
implies that the 2 → 3 transition will appear to have negative sign. However,
we know from above how to treat these signs, and thus give the evolution
a probabilistic interpretation. We will also see how one can interpret these
vertices in terms of the dipole swing.

To this end, we consider first the situation where N = 2 and M = 1. The
state A2 must consist of two connected dipoles since we know that a single,
isolated dipole (the state A1) evolves by a dipole splitting (assuming the evo-
lution is initiated by a single qq̄ pair). We then denote the two dipoles in A2

with a and b, and the single dipole in the state B1 is denoted by l. We can then
write (IV.36) as

∑
A3

∫

z
R(a, b → A3)( ∑

i∈A3\A2

− ∑
i∈A2\A3

) f (i|l) =
∫

z
R(l → (l1, z) + (z, l2)) ×

×
(

F (l, a, z) + F (l, b, z) −F (l, a, z)F (l, b, z)

)

(IV.39)

where

F (l, a, z) = f (l1, z|a) + f (z, l2|a) − f (l|a). (IV.40)

Here l1 and l2 denote the transverse positions of the partons of dipole l. From
studying the case N = M = 1 (the scattering between two elementary dipoles),
we know that each isolated dipole evolves by a 1 → 2 splitting. We therefore



IV.4 Evolution in the full model 169

write ∑A3
R(a, b → A3) as

∑
A3

R(a, b → A3) = R(1)(a → (a1, z) + (z, a2)) +R(1)(b → (b1, z) + (z, b2))

+ ∑
A

(2)
3

R(2)(a, b → A
(2)

3 ). (IV.41)

Here A
(2)

3 denotes the set of all 2 gluon states which can be reached from

A2 = {a, b} via the vertex R(2). Now, we know from [11] that the incoherent

contributions, R(1), above are equal to the first order contributions (in f (i|j))
in (IV.39). Thus we are left with the equation

∑
A

(2)
3

∫

z
R(2)(a, b → A

(2)
3 )( ∑

i∈A
(2)

3 \A2

− ∑
i∈A1\A (2)

3

) f (i|l) =

= −
∫

z
R(l → (l1, z) + (z, l2))

(

F (l, a, z) ·F (l, b, z)

)

. (IV.42)

In the toy model, where the dipole state evolves by the addition of a single

dipole i only, we know that R(2)(a, b → A
(2)

3 ) = − f (i|a) f (i|b) (in case we
use the formulation in (IV.13)). Indeed in that case we see that both sides in
(IV.42) equals −∑i f (i|a) f (i|b) f (i|l). It is then clear that we must have a 2 → 3
transition.

By similarly studying the case where N = 3 and M = 1, we would con-
clude that we need an additional 3 → 4 dipole vertex and so on. We are thus
led to a picture where the dipole state evolves by k → k + 1 transitions. If
these transitions can be generated by combining the dipole splitting with the
dipole swing, as we will argue in the next sections, we furthermore obtain a
probabilistic interpretation of the evolution, as was discussed in the end of sec
IV.3.4.

Before we going on, we also note that care has to be taken to the fact that
the frame independence equation in (IV.36) may contain divergences. In the
original dipole model, these divergences arise from the dipole splitting kernel
in (IV.1), but the frame independence equation is still finite since the expres-
sions in the brackets in (IV.36) vanish at these singular points. This is both due
to the topology of the dipole splitting and also to the colour transparency of
small dipoles. Any new vertex to be introduced into the model must retain
this property since otherwise equation (IV.36) would not make any sense.

IV
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IV.5 The Colour Topology of the Evolution

Although we are not able to explicitely write down the splitting rate

R(3)(a, b → A
(2)

3 ) in the full model, we will in this section argue that the
correct topology of the evolution is the one induced by the dipole swing.

We first write eq (IV.36) in Mueller’s original formulation,

N

∑
i=1

∫

z
M(i|z)

{

1 −
M

∏
j=1

(1 − ( ∑
k∈new

− ∑
k∈old

) f (k|j))
}

=

=
M

∑
i=1

∫

z
M(i|z)

{

1 −
N

∏
j=1

(1 − ( ∑
k∈new

− ∑
k∈old

) f (k|j))
}

. (IV.43)

Here M(i|z) is the usual dipole kernel in (IV.1) for a dipole i emitting a gluon
at position z, and for simplicity we denote with ∑k∈new(old) the sum over the
dipoles produced (destroyed) in the last step.

In case the newly produced dipoles only scatter against one target dipole,
eq (IV.43) linearizes, and in that case the equality is known to hold [11]. Note
that this case does not restrict us to one pomeron exchange, it is only the
dipoles produced in the last step which should scatter against a single dipole.
There may be still be several scatterings between dipoles produced earlier,
with the restriction that each dipole only scatters once. In such events, the
colour topology may be described by open chains stretching between the tar-
get and the projectile. An example is shown in fig IV.1. Here, the simple 1 → 2
splitting is sufficient for producing all possible colour configurations.

In case the newly produced dipoles scatter off two or more target dipoles,
however, more complicated topologies are formed, and the simple 1 → 2 split-
ting is not sufficient anymore. Let us first consider the case where each dipole
is restricted to single scattering only. In this case, the newly produced two
dipoles can at most scatter off two target dipoles. An example is shown in
fig IV.2 where three different colour configurations are formed (there are three
more configurations which can be formed by reversing the colour flow in each
line). Here two right-moving dipoles (x1, y1) and (x2, y2), are connected to a
single left-moving dipole (u, v). With the restriction that each dipole scatters
only once, the dipole (u, v) can obviously not be connected to more than two
oppositely moving dipoles. In this case one can produce all colour configu-
rations by combining the dipole splitting with only one swing. This is in
agreement with the findings in [16]. In fig IV.3 we show how the three con-
figurations in fig IV.2 can be generated from a dipole split and one swing, by
first forming the configuration in fig IV.3(A). Figure IV.3 can be compared to
eq (IV.42) where the right hand side of that equation describes the evolution

and the scattering of the dipole (u, v) (l in (IV.42)). The vertex R(2) on the left



IV.5 The Colour Topology of the Evolution 171

x1

y1

v1

u1

z

x2

y2

v2

u2

x1

y1

v1

u1
z

x2

y2

v2

u2

x1

y1
z

v1

u1

x2

y2

v2

u2

(A)

x1

y1

v1

u1
z

x2

y2

v2

u2

x

y

u

v

z

1

1

1

1

(B)

Figure IV.1: A process where the newly produced dipoles exchange only a single
gluon with the target. In this case the colour correlations can be generated by the
dipole splitting only. Here the position of z is integrated over and is therefore not
fixed, and we only show one possible colour flow. Note that each interaction implies
a change in the colour flow, which goes from colour to anticolour as indicated by the
arrows. It is not important whether there are also other interactions or not. In fig (A)
we assume an additional interaction between (x2, y2) and (u2, v2). In fig (B) we show
the same colour flow in the corresponding Feynman diagram.

hand side would then correspond to the diagrams showing the evolution of
(x1, y1) and (x2, y2) into the three dipoles (x1, z), (z, y2) and (x2, y1).

We conclude that in an approximation where multiple scatterings are al-
lowed, but with the restriction that each dipole scatters only once, the maximal
correlation induced between the dipoles is that between a pair, and such a
correlation can be generated by a simple swing.

Actually, in this approximation, explicit frame independence in zero trans-
verse dimensions can be achieved by including a 2 → 1 vertex in addition
to the usual 1 → 2 splitting. This reflects the fact that the maximal correla-
tion induced is that between a pair of dipoles. Note also that, in the situation
described above, it is always only one out of the three dipoles produced via
the combination of the dipole splitting and the swing which interacts with the
target. In that sense the swing corresponds to a 2 → 1 transition. We can thus
obtain an effective 2 → 1 transition without actually decreasing the number

IV
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Figure IV.2: The colour flow in a process where two right-moving dipoles (x1, y1) and
(x2, y2) are linked to a single left-moving dipole (u, v). Three different configurations,
(a), (b) and (c), are shown.

of dipoles.

If a single dipole can scatter multiply, one swing will not be enough. In this
case one dipole can for example split into two new dipoles, and these two
dipoles can then interact with more than two target dipoles, inducing higher
order correlations. Before going on, we note that there is an ambiguity in the
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Figure IV.3: The three configurations marked by (a), (b) and (c) in fig IV.2 can all be
generated when the dipole (u, v) interacts with one of three dipoles from the configu-
ration shown in fig (A). This is illustrated in fig (B). As illustrated, the configuration
in fig (A) can in turn be generated via the dipole swing.

statement that one dipole scatters multiply. Since each scattering implies a
recoupling of the colour flow, a dipole which interacts is replaced by a new
dipole. What we rather mean here is that the partons of the dipole can ex-
change multiple gluons.

Consider the diagrams shown in fig IV.4. Here a single left-moving dipole
(u, v) is linked to three right-moving dipoles (x1, y1), (x2, y2) and (x3, y3), as
shown in the figure. The two colour configurations shown in the figure can
then be generated as illustrated in fig IV.5: First one generates the configura-
tion {(x3, y2), (x2, y1), (x1, z), (z, y3)} by combining a dipole splitting with two

IV
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Figure IV.4: The colour flow in a process where three right-moving dipoles (x1, y1),
(x2, y2) and (x3, y3) interact with a single left-moving dipole (u, v) after the emission
of a gluon located at z. For simplicity, we only show two, marked (a) and (b), out of
the four possible configurations.

swings as shown in fig IV.5(A) (this is obviously not the only process from
which this final configuration can be generated). One of the four dipoles in
this state can then collide with the dipole (u, v). If for example (u, v) collides
with (x1, z), the configuration marked by (a) in fig IV.4 is produced.

The same process can also be viewed as an evolution of the dipole (u, v),
which then splits into (u, z) and (z, v), and fig IV.5 shows also how the two
configurations in fig IV.4 can be generated when the dipoles (u, z) and (z, v)
interact with (x1, y1), (x2, y2) and (x3, y3) exchanging now 3 gluons (fig
IV.5(C)). Thus at least one of the dipoles (u, z) and (z, v) must scatter multiply
in this case, since it would otherwise be impossible to generate the necessary
colour correlations. As remarked in [12], the evolution equations in sec IV.3.3
actually describe such events where a newly produced dipole scatters mul-
tiply. We can also compare the processes in fig IV.5 to eq (IV.36) where one
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Figure IV.5: The configurations marked by (a) and (b) in figure IV.4 can be generated
when the dipole (u, v) interacts with different dipoles from the configuration in fig
(A), as illustrated in fig (B). There are two more configurations which can be obtained
when (u, v) interacts with the other two dipoles in fig (A). In fig (C) we show how
the same configurations can be generated when the evolution is instead put into the
dipole (u, v).

side of the equation describes the multiple scatterings of the dipoles (u, z) and
(v, z), while the other side describes how the 3-dipole system evolves into a
4-dipole system which then exchanges a single gluon with (u, v).
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IV.5.1 Generating arbitrary correlations using at most N − 1
swings

We might then expect that the correlation induced by the scattering between
a single left-moving dipole and k right-moving dipoles can be generated by a
splitting followed by k − 1 swings in the right-moving system. Note that such
a process gives a k → k + 1 transition. In the example above this was possible
since we were able to form the configuration {(x3, y2), (x2, y1), (x1, z), (z, y3)}
by combining one splitting with two swings. This will always be possible if,
given an arbitrary set of N dipoles we always can generate all possible (N +
1)-dipole states, by combining a splitting with at most N − 1 dipole swings.
We will below argue that this is indeed the case. In case we have N spatially
disconnected dipoles, the proof is easy. However, starting from a single qq̄
pair, the evolution does not generate spatially disconnected dipoles, and in
this case the result is a conjecture.

Spatially disconnected dipoles

As a warm up, we first show the statement in case we have N spatially dis-
connected dipoles {(xi, yi)}N

i=1. We then wish to evolve this state into some
arbitrary N + 1 dipole state,

∏
i

(xi, yi) → (xk, z)(z, yj) ∏
i 6=k,p(i) 6=j

(xi, yp(i)), (IV.44)

using at most N − 1 dipole swings. Here p(i) is a permutation of i = 1, . . . , N.
We first start by emitting gluon z from the dipole (xk, yk),

∏
i

(xi, yi) → (xk, z)(z, yk) ∏
i 6=k

(xi, yi). (IV.45)

The result then follows if we can show that, for an arbitrary permutation p(i),
we can with N − 1 swings always make the transformation

N

∏
i=1

(xi, yi) →
N

∏
i=1

(xi, yp(i)). (IV.46)

To this end, we perform the following swings in the indicated order,

1 (xN, yN)(xp(N), yp(N)) → (xN , yp(N))(xp(N), yN)

2 (xN−1, yN−1)(xp(N−1), yp(N−1)) → (xN−1, yp(N−1))(xp(N−1), yN−1)

etc. Then, after at most N − 2 swings we are either finished, or we have

(x1, yp(2))(x2, yp(1))
N

∏
i=3

(xi, yp(i)). (IV.47)
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We then need only one more swing (x1, yp(2))(x2, yp(1)) → (x1, yp(1))(x2, yp(2)),
and so after at most N − 1 swings we are finished.

The problem is that generally the dipoles are not spatially independent,
and one then has to be careful in performing swings, since they might generate
zero size dipoles, i.e. colour singlet gluons which cannot be allowed.

Dipole states initiated by a qq̄ dipole

Representation of the dipole states and the swing in terms of permutations

Consider the evolution initiated by a qq̄ colour dipole. In the original for-
mulation of the dipole model, the dipole state at each rapidity Y consists of an
open chain, C , of colour dipoles which are linked together via the gluons. Note
the dual role played by the gluons and the dipoles, each gluon links together
two dipoles, and each dipole links together two gluons.

The inclusion of the dipole swing generates closed dipole loops, L, in
addition to the open chain, C . The swing induces the transformations

C ↔ C ′ + L, (IV.48)

L ↔ L1 +L2. (IV.49)

In what follows, we will denote each N-dipole state as an element of the per-
mutation group PN . For simplicity we suppress the transverse coordinates in
the notation, and each gluon is denoted by a number indicating the order in
which it was emitted, the first emitted gluon is denoted 1, the second 2 and
so on. The initial qq̄ pair is simply denoted by 0. A generic N-dipole state
containing N − 1 gluons, with k0 − 1 gluons in the open chain, and the rest in
m closed loops each containing ki gluons, is denoted

AN = (0 α1 . . . αk0−1)(αk0
. . . αk0+k1−1) . . . (α

∑
m−1
i=0 ki

. . . αN−1) ∈ PN . (IV.50)

Here {αi}N−1
i=1 is a permutation of i = 1, . . . , N − 1. The generic dipole state7

in (IV.50) is illustrated in IV.6. Each arrow indicates the colour flow, and in
the group theoretical notation in (IV.50), each gluon αi points to the gluon to
the right of it. The open chain is always represented by the cycle containing
the element 0 (the qq̄ pair), and each cycle in (IV.50) corresponds to a colour
singlet. Since we cannot have colour singlet gluons, the numbers αi cannot
appear as 1-cycles. The only 1-cycle allowed is (0), which corresponds to a
dipole formed by the initial qq̄ pair.

7Note the difference in notation as compared to the previous sections; with (x, y) we always
mean a single dipole spanned between the charge–anti-charge pair located at transverse positions
x and y respectively.

IV
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Figure IV.6: A generic dipole state formed after a rapidity evolution of Y, starting from
a qq̄ pair. The initial quark and the antiquark are both denoted by 0 while the gluons
are denoted by αi as explained in the text and in eq (IV.50). The arrows on the dipoles
indicate the colour flow, which goes from colour to anti-colour as before.

Every element in the group PN belongs to a certain class, which is deter-
mined by the cyclic structure of the element. The group P4 has 5 classes: 1111,
211, 31, 22 and 4. Here each n-cycle is represented by the number n. The state
AN in (IV.50) belongs to the class k0 k1 . . . km. The identity element is the per-
mutation which takes every number onto itself, and has the cyclic structure
11 . . . 1. A swing operation can be represented by an element of PN which
consist of one 2-cycle and (N − 2) 1-cycles, i.e. by an element belonging to the
class 211 . . . 1. Thus for example, the swing illustrated in fig IV.7 is represented
by S(αi, αj) = (αiαj) ∏k 6=i,j(αk), and we have

S(αi, αj)⊗(. . . αi−1αi . . . αj−1αj . . . ) = (αiαj) ∏
k 6=i,j

(αk)⊗(. . . αi−1αi . . . αj−1αj . . . )

= (. . . αi−1αj . . . )(αi . . . αj−1). (IV.51)

Here ⊗ denotes the group multiplication. The action of S(αi, αj) makes αi−1

point at αj, and αj−1 point at αi, leaving all other αk unchanged as shown in
the figure.

Due to the fact that not every swing leads to a physically acceptable state,
the number of allowed swings for a state containing N dipoles is not simply
1
2 N(N − 1). This would e.g. be the the number of pairs in a reaction-diffusion
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Figure IV.7: Illustration of eq (IV.51).

type of formalism. In most formulations this is not taken into account, but we
here wish to emphasize the importance of keeping track of the correct topo-
logy of the evolution. While this is not important in the original formulation
of the dipole model where the dipole state evolves through the 1 → 2 splitting
only, it is very necessary for transitions involving more than one initial dipole.
In the appendix we show that the the number of physically possible states ND,
and the number of possible swings NS are for N dipoles given by

ND(N) = (N − 1)!
N−1

∑
l=0

(−1)l

l!
(N − l), (IV.52)

NS(N) =
1

2
(N − 1)(N − 2) + n2, (IV.53)

where n2 is the number of closed loops containing 2 dipoles.

Multiple swings in the N → N + 1 evolution

The classes of the group PN are connected to each other via the swing
as illustrated in fig IV.8, where each line means that two elements from the
respective classes can be transformed into one another using one swing. Note
that the longest distance is that between 4 and 1111, which requires 3 swings.
In P5, we need 4 swings to go from 11111 to 5, as is also shown in fig IV.8.

Generally, for PN , any element in the class N can be reached from the
identity element using N − 1 swings. Explicitely, we can write the N-cycle

(j1 . . . jN) as ∏
N−1
i=1 (j1 ji+1). This also implies that, given any arbitrary element

a ∈ PN , we can reach any other element b ∈ PN using at most N − 1 swings.
This is so since we can always find N − 1 swings such that their product equals
ba−1.

However, not all classes fall into the subset of physically acceptable states,

IV
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Figure IV.8: Class diagrams for P4 and P5.
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Figure IV.9: Class diagrams for the subset of physical states of P5 and P6. The open
chain is marked by ∗.

which in particular does not contain the identity element. Therefore we cannot
a priori say whether or not the result above also holds for this subset. In fig
IV.9, we show the class diagrams of physically acceptable states for P5 and
P6. Here n∗ denotes the open chain containing n − 1 gluons. Thus using this
notation we would say that AN in (IV.50) belongs to the “class” k∗0k1 . . . km.
With a slight abuse of nomenclature, we will for simplicity continue to refer
to these quantities as “classes”, even though they do not constitute classes in
the group theoretical sense.

Actually, the dipole splitting can be represented by the same class of ele-
ments as the dipole swing. Assume we are in the state AN. We then regard
the splitting as a two-step process; first, we add the Nth gluon as a 1-cycle into
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Figure IV.10: Class diagrams representing the evolutions N = 4 → N = 5, and
N = 5 → N = 6. Here the double lines represent the dipole splitting. Note that for
these we can only go in one direction, from an un-circled class to a circled one.

the state AN , formally writing AN as an element of PN+1,

¯AN = (0 α1 . . . αk0−1)(αk0
. . . αk0+k1−1) . . . (α

∑
l−1
i=0 ki

. . . αN−1)(N) ∈ PN+1.

(IV.54)

We put a bar on ¯AN since, written in this way, it is not a physically accept-
able state. Then, in the second step, we represent the emission of N from the
dipole spanned between αi and αi+1 by operating on ¯AN with S(N, αi+1) (see
eq (IV.51)), since in that case (. . . αi αi+1 . . . ) is replaced by (. . . αi N αi+1 . . . ).

The class diagrams for the generic N → N + 1 evolution can be drawn in a
similar fashion as before. In fig IV.10, we show examples for N = 4 and N = 5.
Here only the circled classes are physically acceptable, and it is one of these
that we must end up in, starting from one of the un-circled ones. The maximal
distance between any two circled classes in an N → N + 1 evolution is 2 for
N = 3, 3 for N = 4, and also 3 for N = 5. Thus in this case this distance is
not equal to N − 1 for a N-dipole state. This does, however, not automatically
imply that we can reach any given state in less than N − 1 swings.

IV
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We here conjecture that one can also for the subset of physical states go
from AN to any AN+1 by combining a dipole splitting with at most N − 1
swings. In the appendix we show explicitely that this statement is true for
N = 4 (the cases N = 1, 2 are trivial, and N = 3 can be checked very easily).
We have also checked this result for N = 5, N = 6 and N = 7, but we will
for simplicity not present the calculations for these cases. In a process where
k − 1 swings take place, k dipoles in the cascade get replaced by k + 1 dipoles,
thus giving a k → k + 1 transition.

The only exception to the statement above is when there are states con-
taining an isolated triangle. For example, if we wish to go from the state
(0)(1 2 3)(4) in 1∗31, to the state (0 4)(1 3 2) in 2∗3, we need 5 steps totally,
1 splitting and 4 swings. Thus for these states, N − 1 swings are not enough
(one needs N + 1 swings). This is directly related to the fact that the physical
set of states does not allow the steps: (1 2 3) → (1)(2 3) → (1 3 2). There-
fore we need to use 4 swings rather than only 2 swings, which implies that we
generally need N + 1 swings for these states. Note, however, that this problem
does not appear for higher order cycles. The 4-cycle (1 2 3 4) can for example
be transformed into (1 4 3 2) easily: (1 2 3 4) → (1 4)(2 3) → (1 4 3 2).

However, we also note that the only difference between the configura-
tions (1 2 3) and (1 3 2) is in the orientation of the dipoles. Moreover, the
states AN = (α1 α2 α3)BN−3 and A ′

N = (α1 α3 α2)BN−3 have exactly the same
weights in the cascade evolution. They are therefore always produced equally,
and it is therefore not a problem if we cannot go between them using N − 1
swings. Finally, we note that the semi-classical approximation represented by
the cascade evolution cannot take into account all quantum-mechanical inter-
ference effects. The quantum-mechanical states corresponding to the configu-
rations (α1 α2 α3) and (α1 α3 α2) have colour factors Tr(TaTbTc) and Tr(TaTcTb)
respectively, and for finite Nc these states are not orthogonal. Although the
interference is suppressed by 1/N2

c , it is enhanced in for example the decay
process Υ → 3g, and is in this case quite large [22], which is also confirmed
experimentally.

IV.6 Conclusions

Mueller’s dipole model gives a simple picture of the small-x evolution which
is also very suitable to use in a MC simulation. While it is known that it gives
the correct evolution for dilute systems, a fully consistent version for dense
systems, where saturation effects during the evolution cannot be neglected,
is not known. There have been some attempts to interpret these saturation
effects in terms of dipole mergings but it has not been possible to present a
consistent probabilistic formulation.
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A consequence of neglecting the saturation effects during the dipole evo-
lution is that the model is not frame independent. In a previous paper [15]
(see also [17] for a more detailed account) we demonstrated that approximate
frame independence can be achieved by including a so called dipole swing in
the evolution (the swing was also suggested in [16] as a mechanism to gener-
ate pomeron loops). Based on this, we constructed a phenomenological model
which, implemented in a MC simulation, gives an almost frame-independent
formalism.

It has been quite difficult to analytically derive the relevant dipole interac-
tions which would give rise to saturation effects in the dipole model in a way
consistent with boost invariance. A very simplified treatment of the dipole
evolution is offered by the toy model introduced in [3,11], and later also stud-
ied in [12, 13]. In this model it is possible to modify the evolution so that the
formalism is explicitely frame independent. The evolution proceeds here by
the addition of a new dipole at each step, in such a way that the total split-
ting rate saturates as the dipole occupation number gets large. As discussed
in [12], this is actually quite similar to the way saturation occurs in the CGC
formalism.

In this paper we have first shown that it is possible to give a probabilistic
interpretation to the toy model evolutions in terms of positive definite k → k +
1 transitions. These transitions describe the coherent evolution of the dipoles,
which is an unavoidable consequence of the requirement that the transition
rates be positive definite. The evolution can also be formulated in a more
close analogy with a standard reaction-diffusion picture, where the k → k + 1
transition rates only depend on the k dipoles involved in the transition. In this
case, however, these rates appear with alternating signs which implies that a
probabilistic treatment is not possible.

In the real dipole model such positive definite vertices can be generated by
combining the dipole splitting with the dipole swing. In a k → k + 1 transition,
a splitting is combined with k − 1 simultaneous swings. In the approximation
where each single dipole only scatters once, we have seen that it is enough to
combine each splitting with a single swing in order to generate the necessary
colour correlations.

When each single dipole is allowed to scatter multiply, one needs to in-
clude more than one simultaneous swing. In this case the evolution proceeds
by the k → k + 1 transitions as in the toy models mentioned above, and we
have further shown that for a system of N dipoles, one needs at most N − 1
simultaneous swings in order to generate all colour correlations induced by
the multiple dipole interactions. We therefore obtain a close analogy with the
toy model evolutions, and the dipole swing furthermore gives a probabilistic
interpretation of the evolution. This is easy to show for spatially disconnected
dipoles, but there are strong arguments that this is also the case in the more

IV
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relevant situation when the dipoles are connected in chains.

This statement is strictly speaking not true for states containing a trian-
gular loop, where only one orientation of this loop can be reached using at
most N − 1 swings. This is, however, not a problem because the two possible
orientations always appear with the same weight.

Acknowledgments
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IV.A The Number of Dipole States

In this section we will demonstrate that the number of possible states for a
system containing N − 1 gluons, together with the initial qq̄ pair, is given by
formula (IV.52).

We start by considering n gluons in a closed topology, i.e. a state containing
one or more closed dipole loops. If all n gluons are in the same loop we obvi-
ously have (n− 1)! possible states. Next we might have n gluons in two loops.
The number of such states is given by the number of elements in Pn which

consists of one k- and one (n− k)-cycle. There are 1
2 (n

k)(k− 1)!(n− k− 1)! such
elements. The symmetry factor 1/2 comes from the fact that we can write the
k-cycle either to the left or the right of the (n − k)-cycle. For a closed topology
consisting of m loops, each containing ki dipoles, the number of possible states
is given by

1

m!

m−1

∏
j=1

(

∑
m
i=j ki

kj

) m

∏
i=1

(ki − 1)! =
1

m!

n!

∏
m
i=1 ki

, (IV.A1)

where

m

∑
i=1

ki = n. (IV.A2)

For each fixed closed topology with n gluons we also have (N − 1 − n)! pos-
sible states in the open chain. To write down the total number of states it is
convenient to introduce a generating function G(z) whose series expansion
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give the dipole state multiplicity. We have

G(z) =

(

N − 1

n

)

(N − 1 − n)!n!
∞

∑
m=0

1

m!

( ∞

∑
k=2

zk

k

)m ∞

∑
k0=0

zk0 ,

= (N − 1)!
e−z

(1− z)2
(IV.A3)

where k0 is the number of gluons in the open chain. We also demand that each
closed loop contain at least 2 dipoles as we do not allow colour singlet gluons.
The constraint ∑

m
i=0 ki = N − 1 is automatically ensured since we are looking

for the (N − 1)th coefficient in the expansion of G. The expansion of G gives

G(z) = (N − 1)!
∞

∑
M=0

M

∑
l=0

(−1)l

l!
(M − l + 1)zM. (IV.A4)

We then immediately see that the M = N − 1 coefficient is equal to eq (IV.52).

Notice also that for large N the number of states approaches N!
e . This can be

compared to the number of possible states for N dipoles formed by N spa-
tially independent charge–anti-charge pairs, which is N!, and to the number
of states in a system consisting of a single open dipole chain, as in the original
formulation of the dipole model, which is (N − 1)!.

IV.B The Number of Possible Swings

In this section we demonstrate that the number of possible swings for a system
containing N − 1 gluons, together with the initial qq̄ pair, is given by eq (IV.53).

Assume again that we have m closed loops each containing ki dipoles (i =
1, . . . , m) with ki > 2. The open chain contains k0 gluons, and thus ∑

m
i=0 ki =

N − 1. Within each closed loop we then have

1

2

m

∑
i=1

ki(ki − 3)θ(ki > 3) (IV.B1)

swings. The theta function takes into account the fact that we cannot have any
swings in a loop containing only two or three dipoles. The number of swings
between the closed loops is given by

1

2

m

∑
i 6=j

kikj (IV.B2)

since there are no restrictions in this case. The number of swings between the
open chain and the closed loops is given by

m

∑
i=1

(k0 + 1)ki, (IV.B3)
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and finally, the number of swings within the open chain is given by

k0(k0 − 1)

2
. (IV.B4)

The total number of swings is then given by

1

2

{ m

∑
i=1

{ki(ki − 3) − ki(ki − 3)δki 2}+
m

∑
i 6=j

kikj+2(k0 + 1)(N − 1 − k0) +

+k0(k0 − 1)

}

=
1

2

{

(N − 1 − k0)
2 − 3(N − 1 − k0) + 2n2 + 2(k0 + 1)(N − 1 − k0)+

+k0(k0 − 1)

}

=
1

2
(N − 1)(N − 2) + n2 (IV.B5)

where n2 is the number of closed loops containing 2 dipoles.

IV.C More Details on the N → N + 1 Evolution

In this last appendix, we will explicitely prove that N − 1 swings are enough
to reach any arbitrary state for N = 4. We have also explicitely checked the
cases N = 5, but we will for simplicity not present these calculations. We will
very briefly try to sketch the case when N = 7. The cases N = 1, 2 are trivial,
and we also omit the case N = 3 which is very easy to work out.

IV.C.1 N = 4

For this case, the class diagram is shown in fig IV.10. Assume first that we are
in the class 4∗1. An arbitrary element in this class is given by (0p1 p2 p3)(4),
for some permutation {p(i)}. We must reach any arbitrary element using at
most 3 swings, and thus using at most 4 steps, counting the splitting as one
step.

4∗1 → 1∗224∗1 → 1∗224∗1 → 1∗22: We see from fig IV.10 that we have to reach any element in
1∗22 using at most 3 steps (or else we would need at least 5 steps). An arbit-
rary element in 1∗22 can be written (0)(p′1 p′2)(p′3 p′4) where {p′(i)} is some
other permutation. Without any loss of generality we might as well assume
p′4 = 4. Then we can always start by putting 4 next to p′3 in the step 4∗1 →
5∗. In the next step we can then always isolate (p′34) = (p′3p′4) in a 2-cycle.
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We then have an element (0π(1)π(2))(p′3 p′4) where (π(1), π(2)) = (p′1, p′2)
or (p′2, p′1). Finally we can separate(0π(1)π(2)) → (0)(π(1)π(2)) to reach
(0)(p′1 p′2)(p′3 p′4). To summarize, we can go through the following steps

4∗1 → 5∗ → 3∗2 → 1∗22, (IV.C1)

and reach any element in 1∗22 using at most 3 steps.
4∗1 → 3∗24∗1 → 3∗24∗1 → 3∗2: Here we can go in either 2 or 4 steps. We then want to go to

an element (0p′1 p′2)(p′3 p′4). Again we start by putting 4 to the right of the
number which appears to the left of it in (0p′1 p′2)(p′3 p′4). If this number is 0
(i.e. if p′1 = 4), we can go from 5∗ to 2∗3, putting 0 and 4 in 2∗. Then we just go
back to 5∗ to obtain (0p′1 p′2 p′3 p′4) or (0p′1 p′2 p′4 p′3). In either we case we can
split this chain into (0p′1 p′2)(p′3 p′4). Thus we go through

4∗1 → 5∗ → 2∗3 → 5∗ → 3∗2. (IV.C2)

If p′1 6= 4, we go from 5∗ to 3∗2, isolating 4 and its partner in 2. If the three
elements in 3∗ are not in the right order, we can split 3∗ into 1∗2 and then go
back to 3∗. Thus we can go through the steps

4∗1 → 5∗ → 3∗2 → 1∗23 → 3∗2. (IV.C3)

4∗1 → 2∗34∗1 → 2∗34∗1 → 2∗3: We here want to go to the element (0p′1)(p′2 p′3 p′4). Again we
start by putting 4 together with its final partner (4 is always put to the right of
its partner). If its partner is 0, we can first go from 5∗ to 3∗2 and then go back
to 5∗ so that the elements (p′2 p′3 p′4) have the correct permutation. Then we
can in one step go the final configuration, and thus complete the process

4∗1 → 5∗ → 3∗2 → 5∗ → 2∗3. (IV.C4)

If 4 is in the 3-cycle in the final element, we can go from 5∗ to 3∗2 and then to 5∗

again to put all the elements together in the correct positions. This is possible
since all three elements in the final 3-cycle must have the correct permutation.
Then we can finish by going from 5∗ to 2∗3. Thus we can choose the path

4∗1 → 5∗ → 3∗2 → 5∗ → 2∗3. (IV.C5)

Here the 2-cycle in 3∗2 contains 4 and its partner.
4∗1 → 1∗44∗1 → 1∗44∗1 → 1∗4: Here we want to reach an element (0)(p′1 p′2 p′3 p′4). Since we

always put 4 (without loss of generality we can assume p′4 = 4) next to its
partner in the first step, all we need to do is to isolate them (p′3 and p′4) in a 2-
cycle by going from 5∗ to 3∗2. Then we go to 1∗22, after which we can simply
join 22 to 4, to obtain any desired state. We thus have the path

4∗1 → 5∗ → 3∗2 → 1∗22 → 1∗4. (IV.C6)

IV



188
On the Dipole Swing and the Search for Frame Independence in the Dipole

Model

4∗1 → 5∗4∗1 → 5∗4∗1 → 5∗: We can here use at most 3 steps. The final element we want to
reach has the form (0p′1 p′2 p′3 p′4). There are two cases, either 4 and its partner
are linked to 0, or they are not. If they are, we can split 5∗ into 3∗2 where 3∗

contains 0, 4 and its partner. Then the other two elements can always be put
back in 5∗ in the right position, so that we reach any 5∗ element by

4∗1 → 5∗ → 3∗2 → 5∗. (IV.C7)

In the second case, 4 and its partner are not linked to 0 (they are p′2 and p′3).
Then we can split 5∗ into 2∗3 where 3 contains 4, its partner and one of the
other two elements. They will automatically have the correct permutation,
and we can then get the desired state by joining 3 and 2∗ into 5∗. Then we
have used the path

4∗1 → 5∗ → 2∗3 → 5∗. (IV.C8)

We have thus seen that we can reach any arbitrary state in N = 5 from 4∗1 by
combining at most 3 swings with a splitting.

Below we list the cases where we start from 2∗21. In this case we have an
initial element (0p1)(p2 p3)(4). By using a splitting first, we can either go to
3∗2, or to 2∗3.

2∗21 → 5∗2∗21 → 5∗2∗21 → 5∗: First we fix 4 and its partner as usual. If the partner is p1, we
can separate (0p1 4) into (0)(p1 4), and then we can join (p1 4) with (p2 p3)
to obtain an element in 1∗4. Then in one step we can go to the desired 5∗

state. If its partner is 0, and the other three elements do not have the correct
permutation, we can isolate two of them in a 2-cycle (after putting 3∗ and 2
into 5∗), and then put them back into the 5∗ state in the correct position. Thus
we can through the two paths

2∗21 → 3∗2 → 1∗22 → 1∗4 → 5∗, (IV.C9)

2∗21 → 3∗2 → 5∗ → 3∗2 → 5∗. (IV.C10)

If the final partner of 4 is either p2 or p3, we first go to 2∗3. Then it is easily
seen that the two paths,

2∗21 → 2∗3 → 5∗ → 3∗2 → 5∗ (IV.C11)

2∗21 → 2∗3 → 5∗ → 2∗3 → 5∗, (IV.C12)

can take us to any arbitrary element in 5∗.
2∗21 → 1∗42∗21 → 1∗42∗21 → 1∗4: If 4 is next to either p2 or p3, we can directly from 2∗3 go to 5∗,

and then to 1∗4. If 4 is next to p1, we can from 3∗2 go to 1∗22 and then in one
more step we can reach any 1∗4 state. Thus we can follow the paths

2∗21 → 2∗3 → 5∗ → 1∗4 (IV.C13)

2∗21 → 3∗2 → 1∗22 → 1∗4, (IV.C14)
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to reach any state in 1∗4 in maximum 3 steps.
2∗21 → 1∗222∗21 → 1∗222∗21 → 1∗22: If 4 is next to p1 we can finish in 2 steps, 2∗21 → 3∗2 → 1∗22.

If 4 is next to either p2 or p3, we can first join 2∗3 into 5∗, and then isolate 4
and its partner in the 2-cycle in 3∗2. Then we need only one more step. We
thus have the steps

2∗21 → 2∗3 → 5∗ → 3∗2 → 1∗22. (IV.C15)

2∗21 → 3∗22∗21 → 3∗22∗21 → 3∗2: If p1 is partner to 4, we need at most go to 1∗22 from 3∗2, and
then back to 3∗2 to finish. If 4 is next to 0, we can first go to 5∗ from 3∗2, and
then split 5∗ into the desired 3∗2 state. If 4 is next to p2 or p3, we can again go
to 5∗ and then directly to 3∗2. Thus we have the steps

2∗21 → 3∗2 → 1∗22 → 3∗2 (IV.C16)

2∗21 → 3∗2 → 5∗ → 3∗2 (IV.C17)

2∗21 → 2∗3 → 5∗ → 3∗2. (IV.C18)

2∗21 → 2∗32∗21 → 2∗32∗21 → 2∗3: If 4 is in the final 2-cycle (i.e. next to 0), all we need to do is to
join 3∗2 into 5∗, after which we can extract the final 3-cycle in one step. If one
the other hand 4 is in the final 3-cycle, we are after one step either finished, or
we can from 2∗3 go to 5∗, putting 0 and its final partner together, after which
we can split 5∗ split into 2∗3, obtaining the desired state. Thus we can go
choose one of the paths,

2∗21 → 3∗2 → 5∗ → 2∗3 (IV.C19)

2∗21 → 2∗3 → 5∗ → 2∗3. (IV.C20)

Finally, we check the case when we start from 1∗31.
1∗31 → 1∗221∗31 → 1∗221∗31 → 1∗22: Here we only need two steps:

1∗31 → 1∗4 → 1∗22 (IV.C21)

which can be easily seen.
1∗31 → 1∗41∗31 → 1∗41∗31 → 1∗4: This case is almost trivial, and we can see that we need at most

three steps:
1∗31 → 1∗4 → 1∗22 → 1∗4. (IV.C22)

1∗31 → 3∗21∗31 → 3∗21∗31 → 3∗2: If 4 appears in the 2-cycle in 3∗2, all we need is to take the
steps

1∗31 → 1∗4 → 1∗22 → 3∗2. (IV.C23)

In the second step we here isolate 4 and its partner in one of the 2-cycles. If 4
instead appears in 3∗, we can go through either 1∗31 → 1∗4 → 5∗ → 3∗2, or
1∗31 → 2∗3 → 5∗ → 3∗2, depending whether or not 4 appears next to 0 in the
final configuration.

IV
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Figure IV.C1: Class diagrams for the evolution N = 7 → N = 8. Here for simplicity
we do not draw lines between the un-circled classes.

1∗31 → 5∗1∗31 → 5∗1∗31 → 5∗: Here we can again have 4 either to the right of 0 or not. If not,
we just take the steps 1∗31 → 1∗4 → 1∗22 → 3∗2 → 5∗. If it is next to 0, we
instead take the steps 1∗31 → 2∗3 → 5∗ → 3∗2 → 5∗.

1∗31 → 2∗31∗31 → 2∗31∗31 → 2∗3: If 4 appears in 3, we can just go through 1∗31 → 1∗4 → 5∗ →
2∗3 and finish. However, if 4 is next to 0, N − 1 swings are not enough to go
to (04)(p1 p3 p2) as we have already discussed in the main text. We have also
already noted that this is not a problem for the frame independence. With this
remark we finish the case N = 4.

IV.C.2 N = 7

As a more complicated case, consider the evolution N : 7 → 8. The class
diagram for the evolution is shown in fig IV.C1. Here it is obviously quite
tedious to explicitely check all possible connections. However, one can now
use the results from the previous cases to simplify the analysis. For example,
let us consider the case where we want to go from 7∗1 to 1∗322. If 7 appears
in the final 2-cycle, we can pull it out together with its partner after 2 steps,
and the question is then whether we can go from 6∗ to 1∗32 in 5 steps, and we
know from the case N = 5 that this is indeed possible. If 7 appears in the final
3-cycle, we can after 4 steps isolate it with its partners, and then we need to go
from 5∗ to 1∗22 in 3 steps, which we also know is possible. Another example
is if we want to go to a final configuration in 2∗42, where 7 appears in 2. After
2 steps, 7 and its partner can again be isolated, and we then need to go from 6∗

to 2∗4 in 5 steps. Again we know that this is indeed possible. We can similarly
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work out the rest of the cases. It is also interesting to note that we can here go
from 1∗331 to 2∗33 in 7 steps, even if the initial and final states differ by the
orientations of the two triangular loops.

IV
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We have in earlier papers presented an extension of Mueller’s dipole cas-
cade model, which includes subleading effects from energy conservation and
running coupling as well as colour suppressed effects from pomeron loops via
a “dipole swing”. The model was applied to describe the total cross sections in
pp and γ∗p collisions. In this paper we present a number of improvements of
the model, in particular related to the confinement mechanism. A consistent
treatment of dipole evolution and dipole–dipole interactions is achieved by
replacing the infinite range Coulomb potential by a screened potential, which
further improves the frame-independence of the model. We then apply the
model to elastic scattering and diffractive excitation, where we specifically
study the effects of different sources for fluctuations. In our formalism we
can take into account contributions from all different sources, from the dipole
cascade evolution, the dipole–dipole scattering, from the impact-parameter
dependence, and from the initial photon and proton wavefunctions. Good
agreement is obtained with data from the Tevatron and from HERA, and we
also present some predictions for the LHC.

V
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V.1 Introduction

In high energy pp scattering the cross section for parton–parton subcollisions
becomes larger than the total cross section. This means that on average there
are more than one subcollision in a single event, and it was early suggested
that hard subcollisions dominate the features of high energy scattering and
are the cause of the rising cross section. This is also the basic assumption
in the model by Sjöstrand and van Zijl [1] implemented in the PYTHIA event
generator, which is able to describe many features of high energy collisions.

That perturbative dynamics dominate high energy collisions is also sup-
ported by the large intercept of the BFKL pomeron. Via unitarity and the AGK
cutting rules, the large subcollision cross section and high probability for mul-
tiple collisions have also strong implications for diffraction. Hard diffraction
was first observed by the UA8 collaboration at the CERN Spp̄S collider [2],
and has later been studied in much more detail both at the Tevatron (see
eg. [3, 4]) and at HERA (see eg. [5, 6]).

Multiple collisions, unitarity and saturation are conveniently studied in
terms of dipoles in transverse coordinate space. The dipole model by Golec-
Biernat and Wüsthoff (GBW) [7, 8] has successfully described both F2 and
diffraction in DIS. Mueller’s dipole cascade model [9–11] reproduces the lead-
ing log (linear) BFKL equation, and includes also multiple collisions and sat-
isfies the unitarity constraint. The multiple collisions correspond to pomeron
loops. Mueller’s model includes, however, only such loops which are cut in
the particular Lorentz frame used in the calculation, but not loops which are
fully contained in one of the individual dipole cascades. Many attempts (see
for example [12,13] and references therein) have been presented including e.g.
2 → 1, 2 → 4 or more complicated dipole vertices, but so far no explicitly
frame-independent formalism has been presented.

An important part of the NLL corrections to the BFKL equation are re-
lated to energy conservation [14], and in a series of papers [15, 16], we have
developed Mueller’s model to include both effects of energy–momentum con-
servation and effects of pomeron loops and saturation inside the cascade evo-
lution via a 2 → 2 dipole transition, called a dipole swing. The swing does
not reduce the number of dipoles, rather the saturation effect is achieved as
the ”new” dipoles are smaller, and therefore have smaller cross sections. Al-
though not explicitly frame independent, the numerical result is almost inde-
pendent of the frame used for the calculations. With a simple model for the
proton in terms of three dipoles, the Monte Carlo implementation also repro-
duces the total cross section both for DIS at HERA and for pp scattering from
ISR energies to the Tevatron.

In this paper we will first make some technical improvements related to
confinement, and then use the model to study diffractive scattering at HERA
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and the Tevatron. The perturbative calculation has some problems in the IR
region, especially with a running coupling, and a cutoff for large dipoles is
essential for the frame independence and the good agreement with data. We
here propose to treat this effect of confinement by everywhere replacing the
Coulomb colour-electric potential by a screened Yukawa potential.

Both the screening length and the size of the initial proton wave function
are determined by the confinement mechanism. In the MC implementation
these two quantities are assumed to be of the same size. This implies that for
pp-collisions and DIS at high Q2 the model has only two tunable parameters;
besides ΛQCD only the confinement scale denoted by rmax. For smaller Q2

the result is, however, also sensitive to the quark masses in the virtual photon
wave function. The value of rmax turns out to be very important in order to
obtain the correct normalization for σtot in pp collisions, but the increase of
σtot with the center of mass energy is found to be much less sensitive to this
parameter. Once rmax is fixed to obtain the correct normalization for σtot in pp
scattering, the DIS cross section is obtained without any further changes.

Our treatment of elastic scattering and diffractive excitation is based on
the eikonal approximation and the Good and Walker picture [17]. The result
is determined by the fluctuations in the collision process originating from the
initial wave functions of the proton and the virtual photon, from the dipole
cascades and from the dipole–dipole scattering probability. In our formalism
all these different components give important contributions. One result of this
is that the impact parameter profile is less steeply falling, i.e. less black and
white and more “grey”, than in models where the dominant fluctuations are
assumed to come from fluctuations in the impact parameter, b.

The distribution in the mass, MX , of the diffractive state can be obtained
by a study of the collision in different Lorentz frames, as discussed by Hatta
et al. [18]. (It is here essential that we have a frame-independent formalism.)
However, in addition to the fluctuations included in this reference and in the
GBW approach, we also include fluctuations in the evolution of the proton
target.

In section V.2 we review briefly the dipole cascade model, discuss the mod-
ification of the confinement effect, and demonstrate the frame independence
of the model. In section V.3 we discuss the formalism for elastic and diffrac-
tive scattering, and the effects of the different sources of fluctuations in the
collision process. Our results are presented in section V.4, and the conclusions
in section V.5.

V.2 Dipole Model and Frame Independence

We will in this section briefly discuss the cascade model presented in refs. [15,
16], describe the modified treatment of confinement, and demonstrate the

V
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frame independence by showing some quantitative examples.

V.2.1 Mueller’s cascade model

The model is based on Mueller’s dipole formalism [9–11] in which the small-x
evolution is interpreted in terms of a dipole cascade. The probability per unit
rapidity Y that a dipole (xxx, yyy) emits a gluon at position zzz is here given by

dP
dY

=
ᾱ

2π
d2zzz

(xxx − yyy)2

(xxx − zzz)2(zzz − yyy)2
, (V.1)

and the evolution of the cascade agrees with the leading order BFKL evo-
lution. As a consequence, the total number of dipoles grows exponentially.
This also implies a strong growth for the total cross section which, however,
is tamed by taking multiple dipole interactions into account. The scattering
probability between two elementary colour dipoles with coordinates (xxxi, yyyi)
and (xxx j, yyyj) respectively, is given by

fij = f (xxxi, yyyi|xxx j, yyyj) =
α2

s

8

[

log

(

(xxxi − yyyj)
2(yyyi − xxx j)

2

(xxxi − xxx j)2(yyyi − yyyj)2

)]2

. (V.2)

Since Mueller’s model is formulated in transverse coordinate space, multiple
scatterings can be included in an eikonal approximation, and a unitarised ex-
pression for the total scattering amplitude can be obtained as

T(bbb) = 1 − exp

(

−∑
ij

fij

)

. (V.3)

V.2.2 Energy conservation

The fast growth in leading order BFKL is much reduced by NLL effects. A
large fraction of these corrections is related to energy-momentum conserva-
tion [14]. Using the similarities between Mueller’s cascade model and the
Linked Dipole Chain (LDC) model [19, 20], we implemented energy-momen-
tum conservation in the dipole cascade in ref. [15]. The p⊥ of the partons was
here associated with the dipole sizes in coordinate space. Although the num-
ber of dipoles still increases exponentially, the growth is significantly reduced
and the onset of saturation is delayed.

V.2.3 Initial proton and photon wave functions

Photon

The splitting γ∗ → qq̄ can be calculated perturbatively, and we use the well
known leading order results for longitudinally and transversely polarized
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photons:

|ψL(z, r)|2 =
6αem

π2 ∑
f

e2
f Q2z2(1 − z)2K2

0

(√

z(1 − z)Q2 + m2
f r

)

|ψT(z, r)|2 =
3αem

2π2 ∑
f

e2
f

{

[z2 + (1 − z)2](z(1 − z)Q2 + m2
f )×

K2
1

(√

z(1 − z)Q2 + m2
f r

)

+ m2
f K2

0

(√

z(1 − z)Q2 + m2
f r

)

}

.

(V.4)

Here z is the negative light-cone momentum fraction of the photon carried by
q, and r is the transverse separation between q and q̄, and we consider four
active quark flavours, with an effective light quark mass of 60 MeV and a
charm mass of 1.4 GeV, as described in [21].

Although the wave functions in (V.4) are well known, there are still ambi-
guities in the initial phase of the evolution of the dipole cascade. This prob-
lem is an unavoidable consequence of the difficulty to reconcile the funda-
mentally quantum mechanical process with the semiclassical approximation
represented by the cascade evolution.

For a given W in DIS, the total rapidity range available for final state par-
ticles is given by Y = ln W2/m2

0, where m0 is of the order of1 1 GeV. We use a
Lorentz frame such that an interval Y0 is on the photon side and the remaining
interval Y −Y0 is on the proton side. The kinematics is illustrated in figure V.1,
which shows the phase-space diagram for a DIS event in the ln p⊥, y-plane.
Here the positions of the q and q̄ are also indicated. Their distance in rapid-
ity from the photon end are given by ln p⊥/z and ln p⊥/(1 − z) respectively,
where p⊥ is the transverse momentum of the quark and the antiquark.

In the simulations we have assumed that gluon emission is possible only at
rapidities larger than the rapidity of both q and q̄. We also identify p⊥ with its
typical value 2/r. As can be seen from figure V.1, this implies that the interval
allowed for the photon-initiated cascade is given by

Y
e f f
γ = Y0 − ln

(

p⊥
min(z, 1 − z)

)

= Y0 − ln

(

2

r min(z, 1 − z)

)

. (V.5)

Thus Y
e f f
γ depends on both variables r and z. The total range for the evo-

lution

Yp + Y
e f f
γ = ln W2 − ln

(

2

r min(z, 1 − z)

)

(V.6)

1In the following the scale m0 = 1 GeV will be omitted in writing logarithms.

V



198 Diffractive Excitation in DIS and pp Collisions

lnW

lnQ2

lnQ2

ln pT

ln pT

qq

ln p+

1−z

z

2

Yeff
γ

ln p−

Y0

Y−Y  =  Y

Y=

py=0

y

ln p
2
T

0

Figure V.1: The available phase space for gluon emission in DIS. We have here for
simplicity assumed that z > 1 − z. The vertical dashed line labeled y = 0 denotes the
Lorentz frame in which the collision is studied.

may be larger or smaller than ln 1/x ≈ ln W2 − ln Q2. One could also imagine
other choices, but we want to emphasize that the difference is subleading in
ln W2, and therefore the optimal choice cannot be determined from QCD with
present techniques.

Anticipating the discussion in the following sections, we want in connec-
tion to figure V.1 mention that a calculation of the diffractive cross section
corresponds to events which have a gap at y = 0 in this particular Lorentz
frame. This means that the diffractively excited photon is confined within the
rapidity range Y0 corresponding to a mass limited by M2

X,max ≈ exp Y0.

Proton

The initial proton wavefunction can obviously not be determined by pertur-
bation theory, but has to be specified by a model. Our assumption is that the
initial proton can be described by three dipoles in a triangular configuration,
where the corners could be associated with the three valence quarks. We ad-
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mit that this model has deficiencies, and it should not be used to study the
particle distribution in the proton fragmentation regions. The corner connect-
ing two dipoles in a triangle corresponds to an octet colour charge, and not a
quark triplet, and an alternative model could be three dipoles connected by
a junction in a Y-shaped configuration. This would imply the need for extra
assumptions about the behaviour of the colour-neutral junction, and we also
believe that the enhanced radiation from the three colour octets might mimic
radiation from gluon contributions present in the proton structure also at low
virtuality.

We have tried two different triangular shapes. In the first one the triangle
is assumed to be equilateral. In this case the size of the dipoles is assumed to
be distributed according to a Gaussian

dP1(rrr) = N1 d2rrr exp

(

− r2

r2
max

)

. (V.7)

We found in ref. [16] that this simple model gives a very good agreement with
data on cross sections for both pp scattering and DIS. To test the sensitivity to
this simple assumption, we have now also studied a model where the triangle
is not equilateral, but has an arbitrary shape. Also here the distribution is
given by a Gaussian in the sizes of the three sides, r1, r2 and r3,

dP2(rrr1, rrr2, rrr3) = N2 d2rrr1d2rrr2d2rrr3 exp

(

− r2
1 + r2

2 + r2
3

r2
max

)

δ(rrr1 + rrr2 + rrr3). (V.8)

The results of the two models are very similar, and we will therefore in the
following mainly present results obtained with the simple model given by
dP1(rrr).

The parameter rmax, which determines the initial dipole size in the proton,
is here assumed to be the same as the confinement scale in the cascade evo-
lution and the dipole-dipole scattering (see section V.2.5 below). Along with
ΛQCD, it is one of the essentially two free parameters of our model. We note,
however, that the variation of these two parameters have similar effects. Thus
an increased value for rmax can be compensated by a reduced value for ΛQCD

(and vice versa), leaving the cross sections unchanged as seen in figure V.2.
We note in particular that the energy dependence is rather insensitive to the
parameters chosen.

The probability for a three-body system to contract to a single point should
be zero, and we have therefore also tested a wavefunction where small r-
values are suppressed but where 〈r2〉 has the same value. We then find es-
sentially the same results for total cross sections, but the reduced initial fluc-
tuations imply that the cross sections for elastic scattering and single diffrac-
tive excitation become larger. This feature will be further discussed in sections
V.3.2 and V.4.

V
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Figure V.2: The total pp cross section as a function of collision energy for various

values of rmax and ΛQCD in units of GeV−1 and GeV respectively.

V.2.4 Dipole swing

One problem with Mueller’s model is the fact that saturation effects are not in-
cluded inside the individual dipole cascades. Thus only pomeron loops which
are cut in the particular Lorentz frame used are taken into account, and the re-
sult is not frame independent. Non-linearities due to multiple interactions
are included, but the evolution of the dipole cascades obey the linear BFKL
equation.

We argued in ref. [16] that the missing saturation effects can be taken into
account by including the so-called dipole swing in the evolution. Although
there is no analytical proof that this would give a frame independent formal-
ism, numerical simulations in a MC implementation showed that the resulting
evolution is approximately frame independent. We will show this in more de-
tail in subsection V.2.6.

The swing is a process in which two dipoles (xxxi, yyyi) and (xxxj, yyyj) are replaced
by two new dipoles (xxxi, yyyj) and (xxxj, yyyi). The process can be interpreted in two
ways. First, as a way to approximate colour quadrupoles as two indepen-
dent dipoles formed by the closest charge–anti-charge pairs. Here the swing is
naturally suppressed by N2

c , and it should be more likely to replace two given
dipoles with two smaller ones. Secondly, we may see it as the result of a gluon
exchange between the dipoles, which results in a change in the colour flow.
In this case the swing would be proportional to α2

s , which again is formally
suppressed by N2

c , compared to the splitting process in (V.1), which is propor-
tional to ᾱ = Ncαs/π.

In the MC implementation each dipole is randomly given one of N2
c possi-
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ble colours. Only dipoles with the same colour can swing, and the weight for
a swing (xxx1, yyy1), (xxx2, yyy2) → (xxx1, yyy2), (xxx2, yyy1) is determined by a factor propor-
tional to

(xxx1 − yyy1)
2(xxx2 − yyy2)

2

(xxx1 − yyy2)2(xxx2 − yyy1)2
. (V.9)

This implies that the swing favours the formation of smaller dipoles. The
number of dipoles is not reduced by the swing, but the fact that smaller dipoles
have smaller cross sections gives the desired suppression of the total cross sec-
tion.

The swing is instantaneous in Y for both the colour multipole and gluon
exchange interpretations. It is therefore not a vertex in the sense of the dipole
splitting whose probability is proportional to ∆Y. In the MC implementa-
tion the swing is formulated as if it was proportional to ∆Y, but its strength is
adjusted so that it is effectively instantaneous. In ref. [22] it is shown that com-
bining the dipole splitting and the dipole swing, one can reproduce all colour
correlations induced from the multiple dipole interactions. This is a necessary
condition for the formalism to be frame independent. In case each dipole is
restricted to single scattering, one can combine a splitting with one swing at a
time to reproduce all correlations, but without this restriction, the maximum
number of simultaneous swings needed in combination with a splitting, for a
system consisting of N dipoles, is N − 1.

V.2.5 Consistent treatment of confinement

As the dipole model is formulated within perturbative QCD, confinement ef-
fects are naturally not included. Obviously, one cannot let the dipoles in the
cascade become too large, and it is then natural to introduce a scale, such as
our rmax parameter, so that large dipoles are suppressed.

Similarly, the scattering of dipoles is calculated perturbatively, and the in-
teraction range is therefore longer than what we would expect from confine-
ment. The formula for fij in (V.2) is just the two dimensional Coulomb poten-
tial which for large distances behaves as

fij ∼
α2

s

8

(xxxi − yyyi)
2(xxxj − yyyj)

2

bbb4
, (V.10)

where bbb = 1
2 ((xxxi +yyyi)− (xxxj +yyyj)) is the impact parameter of the dipole-dipole

collision. Thus the scattering probability falls off only as a power of bbb, and not
as an exponential as one would expect from a confining field. The expression
for fij can be written as

f (xxxi, yyyi|xxx j, yyyj) =
g4

8
(∆(xxxi − xxx j)− ∆(xxxi − yyyj)− ∆(yyyi − xxx j) + ∆(yyyi − yyyj))

2

(V.11)

V
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where ∆(rrr) is the Green’s function given by

∆(rrr) =
∫

d2kkk

(2π)2

eikkk·rrr

kkk2
. (V.12)

To take confinement into account we can replace the infinite range Coulomb
potential with a screened Yukawa potential. This implies that the Coulomb
propagator 1/kkk2 in eq. (V.12) is replaced by 1/(kkk2 + M2), where M = 1/rmax

is the confinement scale. In this case the integral in (V.12) is replaced by

∫

d2kkk

(2π)2

eikkk·rrr

kkk2 + M2
=

1

2π
K0(rM) (V.13)

where K0 is a modified Bessel function. The expression in (V.2) is then replaced
by

fij →
α2

s

2

(

K0(|xxxi − xxxj|/rmax) − K0(|xxxi − yyyj|/rmax) −

−K0(|yyyi − xxx j|/rmax) + K0(|yyyi − yyyj|/rmax)

)2

. (V.14)

For small separations where r << rmax, the function K0(r/rmax) behaves like
ln(rmax/r) and we then immediately get the result in (V.2). For large separa-

tions where r >> rmax, K0(r/rmax) falls off exponentially ∼
√

πrmax
r e−r/rmax,

as expected from confinement.
To be consistent we should then also modify the dipole splitting kernel

accordingly. The dipole splitting probability in eq. (V.1) can be written in the
form

dP
dY

=
ᾱ

2π
d2zzz

(xxx − yyy)2

(xxx − zzz)2(zzz − yyy)2
=

ᾱ

2π
d2zzz

(

xxx − zzz

(xxx − zzz)2
− yyy − zzz

(yyy − zzz)2

)2

. (V.15)

The two terms in this expression are each obtained from the integration

∫

d2kkk

(2π)2i

kkkeikkk·rrr

kkk2
= −∇∇∇

∫

d2kkk

(2π)2

eikkk·rrr

kkk2
. (V.16)

Once again making the change 1/kkk2 → 1/(kkk2 + M2), and noting that

∇∇∇K0(r/rmax) = − rrr

r · rmax
K1(r/rmax), (V.17)

we may replace (V.15) by

dP
dY

→ ᾱ

2π
d2zzz

(

1

rmax

xxx − zzz

|xxx − zzz|K1(|xxx − zzz|/rmax)−

− 1

rmax

yyy − zzz

|yyy − zzz|K1(|yyy − zzz|/rmax)

)2

. (V.18)
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Figure V.3: The quantity ∆σ/σ = (σ(Y0, Y)− σ(Y/2, Y))/σ(Y/2, Y) plotted as a func-
tion of δ = Y0/Y for different collision energies: full line

√
s = 0.4 TeV, dashed line√

s = 1.8 TeV and dotted line
√

s = 3.0 TeV. Also shown is the result excluding the
dipole swing for

√
s = 1.8 TeV (dash-dotted line).

For small arguments K1(r/rmax) ≈ rmax
r , from which get back the result in

(V.15), while for large arguments K1(r/rmax) ∼
√

πrmax
r e−r/rmax, and so once

again we obtain an exponentially decaying field.

V.2.6 Frame independence

We will in this subsection demonstrate the frame independence by showing
some explicite results obtained using the MC implementation.

The cross section obtained when the right-moving (left-moving) cascade is
evolved a rapidity distance Y0 (Y − Y0) is denoted σ(Y0, Y), and in figure V.3
we show the relative difference ∆σ/σ = (σ(Y0, Y) − σ(Y/2, Y))/σ(Y/2, Y)
plotted vs δ = Y0/Y. The figure shows results both including the dipole swing
and without the swing. Without the swing the cross section is too large when
δ → 0 or δ → 1. As expected, the degree of frame dependence is increasing
for larger

√
s, when the saturation effects within cascades become more im-

portant. When we include the swing, we see that the cross section is (within
errors) independent of the Lorentz frame used.

Figure V.4 shows similar results for DIS. Here the cross section is not ex-
actly frame independent, with a tendency of getting larger as we give more of
the total rapidity interval to the evolution of the photon. (This may not be very
clear from the figures shown but it can be seen more clearly for dipole-proton
scattering where we do not have ambiguities in choosing the Y interval as in
DIS.) There seems to be two causes for this behaviour, and neither of them

V
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Figure V.4: The quantity ∆σ/σ = (σ(Y0, Y)) − σ(0.64Y, Y))/σ(0.64Y, Y), plotted as

a function of δ = Y0/Y in DIS for W = 220 GeV and Q2 = 8 GeV2 (solid line) and
Q2 = 14 GeV2 (dashed line).
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Figure V.5: The quantity ∆σ/σ (as defined in figure V.3) as a function of δ for different

values of collision energy, rmax and ΛQCD (in units of TeV, GeV−1 and GeV respec-
tively) in pp scattering.

are related to saturation or the dipole swing. The first cause is the running
of the coupling, especially when the dipole–dipole scattering amplitudes are
calculated (see next subsection). The second cause is the treatment of energy
conservation in the dipole–dipole scattering. In case we use a fixed coupling
when calculating the scattering amplitude (but still using a running coupling
in the evolution), the result appears to be more frame independent. These
issues need to be handled more carefully, and we intend to look at them in
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Figure V.6: The quantity ∆σ/σ (as defined in figure V.4) as a function of δ in DIS for

W = 220 GeV for different values of Q2, rmax and ΛQCD (in units of GeV2, GeV−1 and
GeV respectively).

forthcoming publications. Note however that the difference is less than 10
percent for both Q2 values, and it is also not dependent on the energy. As our
model is not expected to have a better accuracy than this, we can consider the
model to be essentially frame independent also for DIS.

In figures V.5 and V.6 we also show the same diagrams for different values
of the parameters rmax and ΛQCD, and we can see that a similar behaviour as
in the previous figures. The frame independence of the model is therefore not
dependent on the precise values of these parameters.

Naturally also the elastic cross section must be frame independent. Diffrac-
tion and elastic scattering will be studied in sections V.3 and V.4, and the nu-
merical result for σel is actually also independent of the Lorentz frame used.

V.2.7 Running Coupling

In our simulations we use a running αs both in the dipole splitting and in
the dipole–dipole scattering probability. Recent NLO studies of the dipole
evolution [23,24] have revealed a fairly complicated structure for the running
of αs. However, in [25] this was shown to simplify in the strongly ordered
limits, implying that the relevant scale in the dipole splitting is determined by
min(r, r1, r2), where r is the mother dipole which splits into r1 and r2. This is
also the scale we have been using in our simulations.

For the dipole–dipole scattering, the situation is more complicated. We
have two powers of αs and there are six different scales involved. With the
two colliding dipoles (xxxi, yyyi) and (xxxj, yyyj), we have besides their sizes, also

V
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the distances |xxxi − xxx j|, |xxxi − yyyj|, |yyyi − xxxj| and |yyyi − yyyj| (cf. (V.11) and (V.14)).
Here we have tried two alternatives. In the first case the scale of αs for both
powers is determined by min(|xxxi − yyyi|, |xxxj − yyyj|, |xxxi − yyyj|, |yyyi − xxxj|). In the sec-
ond case, we associate one αs to each of the colliding dipoles and choose
the scales min(|xxxi − yyyi|, |xxxi − xxxj|, |xxxi − yyyj|, |yyyi − xxx j|, |yyyi − yyyj|) and min(|xxx j −
yyyj|, |xxxi − xxx j|, |xxxi − yyyj|, |yyyi − xxx j|, |yyyi − yyyj|) respectively. To avoid divergencies,
αs is frozen below the scale p⊥ = 2/rmax.

It turns out that the degree of frame dependence in γ∗p is similar in both
cases and the results presented in this paper have all been calculated using the
first alternative.

V.3 Diffractive and elastic scattering in the dipole

model

V.3.1 Formalism

In this section we will describe the formulas we are going to use in calculating
the various diffractive and elastic cross sections. We shall rely on the dipole
version of the Good and Walker picture of diffraction [17] where the scatter-
ing eigenstates are given by the dipole states. The identification of the QCD
parton states as the eigenstates of diffraction is due to the work of Miettinen
and Pumplin [26]. The situation is complicated by the fact that the states of
the proton or the virtual photon depend on the Lorentz frame used, and we
will here quite closely follow the formalism presented in [18].

In the Good and Walker picture of diffraction there is a normalized and
complete set of real particle states {|N〉} with fixed quantum numbers. In
addition we have eigenstates of the scattering, {|n〉}, which also form a com-
plete set of normalized states. Assume that we have two incoming particles,
one right-moving particle |R〉 and one left-moving particle |L〉. These parti-
cles can then be diffracted onto the various particle states {|N〉} and {|M〉},
which carry the quantum numbers of |R〉 and |L〉 respectively. The incoming
wave is given by

|ψI〉 = |R, L〉 = ∑
n,m

cR
n cL

m|n, m〉. (V.19)

The scattered wave is obtained by operating with ImTTT on |ψI〉, where TTT is the
scattering operator. It reads

|ψS〉 = ImTTT|ψI〉 = ∑
n,m

cR
n cL

mt(n, m)|n, m〉. (V.20)
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The probability for diffractive scattering is given by

〈ψS|ψS〉 = ∑
n,m

PR
n PL

m[t(n, m)]2 = 〈t2〉R,L. (V.21)

We have here identified |cn|2 ≡ Pn for both R and L with the probability dis-
tribution for the dipole configurations inside the particles. Note that the sum

∑n actually involves a sum over the dipole occupation number n as well as in-
tegrations over the transverse coordinates of each dipole, together with sums
over their colour and spin configurations.

Using the completeness of the states {|N, M〉}, the expression in (V.21) can
be written in the following form:

〈ψS|ψS〉 = |〈R, L|ψS〉|2 + ∑
N 6=R

|〈N, L|ψS〉|2 + ∑
M 6=L

|〈R, M|ψS〉|2 +

+ ∑
N 6=R

∑
M 6=L

|〈N, M|ψS〉|2. (V.22)

Here the first term on the RHS corresponds to elastic scattering, where both
R and L emerge intact from the collision. The second (third) piece gives the
probability of the excitation of R (L) into one of the states N (M) with L (R)
remaining intact. This corresponds to single diffractive excitation. Finally, the
last term takes into account the fact that both R and L may transform into ex-
cited states N and M, which thus corresponds to double diffractive excitation.

We note that the different terms in (V.22) correspond to different averages
of t(n, m)2. The sum of the single diffractive excitation and the elastic cross
section can be calculated as follows

∑
N

|〈N, L|ψS〉|2 = ∑
N

∣

∣

∣

∣

∑
n,m

cN∗
n cR

n PL
m t(n, m)

∣

∣

∣

∣

2

= ∑
N

∑
n,n′

cN∗
n cR

n cN
n′ cR∗

n′ 〈t(n)〉2
L

= ∑
n

PR
n 〈t(n)〉2

L = 〈〈t〉2
L〉R (V.23)

where we used the completeness of the states {N},

∑
N

cN∗
n cN

n′ = δnn′ . (V.24)

Each of the coefficients cn above is to be evaluated at a certain rapidity Y0.
The total rapidity interval between R and L is determined by the total cms
energy

√
s of the process. For pp scattering Y is simply given by ln(s/M2

p),
while the situation is a bit more subtle in DIS. How we determine Y in DIS
was discussed above in section V.2.

V
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In Mueller’s dipole model the scattering amplitude t(n, m) is given by the
eikonal form 1 − e−F, where F = ∑ij fij is defined in eqs. (V.2, V.3). The differ-
ent contributions to the diffractive cross section in (V.22) are then given by

dσel

d2bbb
=

〈

1 − e−F

〉2

R,L

(V.25)

dσR
SD

d2bbb
=

〈〈

1 − e−F

〉2

L

〉

R

−
〈

1 − e−F

〉2

R,L

(V.26)

dσL
SD

d2bbb
=

〈〈

1 − e−F

〉2

R

〉

L

−
〈

1 − e−F

〉2

R,L

(V.27)

dσDD

d2bbb
=

〈(

1 − e−F

)2〉

R,L

−
〈〈

1 − e−F

〉2

L

〉

R

−
〈〈

1 − e−F

〉2

R

〉

L

+

+

〈

1 − e−F

〉2

R,L

. (V.28)

Here σR
SD (σL

SD) is the cross section for the diffractive excitation of R (L). Sim-
ilarly σel and σDD stand for the elastic and double diffractive cross sections
respectively. Summing these four contributions we get the total diffractive
cross section

dσdi f f

d2bbb
= 〈ψS|ψS〉 = ∑

n,m

PR
n PL

m [t(n, m)]2 =

〈(

1 − e−F

)2〉

R,L

. (V.29)

Assume now that the state R is evolved up to Y0 while L is evolved up to
Y − Y0, with Y the total rapidity interval. The total and elastic cross sections
given by

σtot(Y) = 2
∫

d2bbb

〈

1 − e−F(bbb)
〉

R,L

and σel(Y) =
∫

d2bbb

〈

1 − e−F(bbb)
〉2

R,L

(V.30)

are necessarily independent of Y0 due to the requirement of frame indepen-
dence.

The diffractive cross section in (V.29) is, however, not independent of Y0.
This expression gives the probability for diffraction at a particular value of
Y0, i.e. the chance that we find a rapidity gap around that particular Y0.
If we calculate e.g. σR

SD at a specific Y0, we obtain the cross section where
the diffractively excited right-moving particle is confined within the rapidity
range (0, Y0). This is approximately equivalent to a maximal diffractive mass
given by M2

X,max ≈ eY0 . Taking the derivative with respect to Y0 therefore

gives the mass distribution dσR
SD/dY0 = dσR

SD/d ln(M2
X).
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For the total diffractive cross section in eq. (V.29) we thus expect, in the
case of the symmetric pp collision, a maximum when Y0 = Y/2, and a de-
crease when either Y0 → 0 or Y0 → Y. For asymmetric scattering as in DIS,
we expect that it is easier to excite the photon. For a right-moving photon the
diffractive cross section should therefore be smallest when Y0 → 0. This dis-
cussion is in accordance with the analysis by Hatta et al. [18]. In this reference
the diffractive excitation of the proton is neglected, while in our formalism we
can also take the proton excitation into account.

The results obtained for pp collisions and DIS are presented in section V.4.

V.3.2 Importance of fluctuations

The impact of fluctuations upon the small-x evolution has gathered consid-
erable interest lately. As mentioned above, the various expressions for the
cross sections in formulas eqs. (V.25)-(V.28) are all obtained by taking differ-
ent averages of the quantity (1 − e−F)2. The diffractive excitation is therefore
completely determined by the fluctuations in the colliding systems and the
interaction probabilities.

Different sources

There are several sources of fluctuations in the various expressions in eqs.
(V.25)-(V.28), related to variations in impact parameter, in the dipole cascades,
and in the initial wave functions for the photons and protons. Many analyses
include part of the fluctuations, assuming this to give the dominant contribu-
tion. Thus the dipole-saturation model by Golec-Biernat and Wüsthoff [7, 8]
takes into account fluctuations in the photon wave function and the emission
of the first gluon in the photon cascade, while the model of Kowalski and
Teaney (KT) [27] emphasizes the fluctuations in the impact parameter. Hatta
et al. [18] includes the fluctuations in the photon cascade, but assumes that
the fluctuations in the proton cascade can be neglected. As a result fits to
data can give different results for the impact parameter profile, and different
approaches can give different ratios for the elastic cross section and diffrac-
tive excitation. As an illustration we will here compare the fluctuations in our
model with those in the Kowalski-Teaney model.

In the KT model the differential dipole-proton cross section in impact pa-
rameter space is given by the eikonal

dσdp

d2bbb
= 2(1 − e−Ω(r,b)/2), (V.31)

where r is the dipole size. The opacity Ω is modeled by a factorized form

Ω(r, b) =
π2

Nc
r2αs(µ2)xg(x, µ2)T(b), (V.32)

V
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where T(b) is the transverse profile function of the proton. In Ω(r, b) there
is also a dependence on W2 ∝ 1/x which is omitted here. To determine the
impact parameter profile it is assumed that the t dependence of the diffractive
vector meson production cross section is given by an exponential, which in
turn implies a Gaussian profile for T(b). The two unknown parameters of this
Gaussian are then determined by a fit to diffractive J/ψ production data.

For a virtual photon the only fluctuations are those in the dipole size, r,
and impact parameter, b. The diffractive cross section is calculated as

σKT
di f f =

∫

d2bbb
∫

d2rrr dz ψγ(r, z, Q2)

(

1 − e−Ω(r,b)/2

)2

, (V.33)

where ψγ(r, z, Q2) = |ψT(r, z, Q2)|2 + |ψL(r, z, Q2)|2.
When comparing the two models it may seem natural to compare Ω(r, b)/2

with the average 〈F〉d,p, where 〈〉d,p denotes the averaging over the dipole and
proton cascades and the proton wavefunction. The corresponding total and
diffractive cross sections would then read

σtot = 2
∫

d2bbb
∫

d2rrr dz ψγ(r, z, Q2)

(

1 − e−〈F(rrr,bbb)〉d,p

)

, (V.34)

σ
(1)
di f f =

∫

d2bbb
∫

d2rrr dz ψγ(r, z, Q2)

(

1 − e−〈F(rrr,bbb)〉d,p

)2

. (V.35)

This is, however, not necessarily correct. The opacity Ω is in the KT model
determined by a fit to data for the total cross section. What is directly deter-
mined is therefore 1 − e−Ω/2, rather than Ω itself. Thus a more direct analogy
to our model would be the quantity 〈1 − e−F〉, which would give the same
total cross section as (V.30) and imply the following form for the diffractive
cross section:

σ
(2)
di f f =

∫

d2bbb
∫

d2rrr dz ψγ(r, z, Q2)

〈

1 − e−F(rrr,bbb)

〉2

d,p

. (V.36)

Note that this is not the same as the elastic contribution in (V.25) since in that
case also the photon wave function is included in the squared average ( (V.25)
is meaningless in DIS since the virtual photon cannot scatter elastically).

The expressions in (V.35) and (V.36) should be compared with the results
in our model, obtained by integrating (V.29) over bbb:

σdi f f =
∫

d2bbb
∫

d2rrr dz ψγ(r, z, Q2)

〈(

1 − e−F(rrr,bbb)
)2〉

d,p

. (V.37)

Such a comparison is interesting as a way to gauge the role played by the
fluctuations.
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Figure V.7: The ratio of the diffractive cross section to the total cross section for MX <

32 GeV2. Our results obtained from (V.37) (full lines) are compared to results obtained
from both (V.35), marked 〈〈1〉〉 in the left figure (dashed lines), and (V.36), marked
〈〈2〉〉 in the right figure (dotted lines). The total cross section is calculated according to
(V.30).

The results obtained from (V.35) and (V.36) are shown in figure V.7, to-
gether with the results obtained from (V.37) which includes all fluctuations.
We immediately notice the very large effects in our model from the fluctua-
tions in the cascades and the proton wave function. The diffractive cross sec-
tion calculated from (V.35) is seen to be a factor 2-3 below the result obtained
from (V.37), while the result from (V.36) is around a factor 4 lower than (V.37).

We conclude that in our model a large fraction of the fluctuations determi-
ning the diffractive cross sections is caused by the dipole cascade evolutions.
In order to obtain a similar result in the KT model it is therefore necessary
to have larger fluctuations due to the impact parameter dependence, which
means an impact parameter profile which is more narrow, i.e. more black and
white compared to Mueller’s dipole cascade model, where the average scat-
tering can be “grey” overall, since the fluctuations in the cascades means that
some events are almost black while other are almost white. This can clearly
be seen in figure V.8 where we compare the impact parameter profile from the
KT model to that obtained from our model. (A similar effect, although less
pronounced, is observed in the profile for pp scattering presented in ref. [16].
Also here the profile obtained in our model has a somewhat higher tail for
large impact parameters than the Gaussian fit to Tevatron data by Sapeta and
Golec-Biernat [28].)

Wave functions

Photon
The photon wave functions in (V.4) for longitudinal and transverse pho-

V
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Figure V.8: The impact parameter profile of dipole–proton collisions for an initial

dipole size r = 2GeV−1 ≈ 0.4fm at two different energies, Y = ln s = 9 and 11. Our
results (solid and dashed lines) are compared to those from the Kowalski–Teaney (KT)
model (dot-dashed and dotted lines).

tons are fully determined by pertubation theory. We note that these wave
functions are not normalized, even for real photons. This is, however, not in
contradiction with the assumption that the states {|N〉} are normalized. The
generic photon state can be written

|γ(Y0)〉 = c
γ
0 (Y0) |γd〉 +

∞

∑
n=1

c
γ
n(Y0) |n〉, (V.38)

where |γd〉 is the component of the photon coupling directly to the quarks.
While the state |γ〉 is normalized, the two separate components above are
not. Rescattering of the component |γd〉 can be neglected, as it is proportional
to αem. It is therefore sufficient to only keep the contribution from |γh〉 =
∑n cn|n〉, which is not a normalized state.

In DIS it is not meaningful to consider the elastic γ∗p scattering, as the
virtual photon can never be detected as a real particle. The closest analogies
to elastic scattering are given by Deeply Virtual Compton Scattering (DVCS)
and the exclusive reactions γ∗p → Vp, with V a vector meson. We will return
to these processes in a future publication.

Proton
The wave function for the proton is much less well defined. The expres-

sions in eqs. (V.7) or (V.8) ought to be interpreted as probability distributions
rather than quantum mechanical wave functions, which can be used to deter-
mine the interference effects present in eqs. (V.25)-(V.28). The fluctuations in
the wave functions influence the terms in eqs. (V.25)-(V.28) in which the av-
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erage of 1 − e−F is taken before the square (i.e. events containing an elastic
proton).

As discussed in section V.2.3 a wave function where three particles can si-
multaneously be in a single point is not realistic. A Gaussian distribution in
impact parameter is usually motivated by the exponential dependence on t for
the elastic cross section. However, the constant t-slope is (except possibly for

the highest Tevatron energy) only valid for |t| < 0.15 GeV2, corresponding to

b > 2/0.4 GeV−1 ≈ 1 fm, and therefore a suppression for small r is still com-
patible with this constraint. Simulations with such a wave function reduces
the fluctuations and increases the cross sections for elastic scattering and sin-
gle diffractive excitation, while leaving the total and the total diffractive cross
sections unchanged, provided the average 〈r2〉 is kept the same.

There is, however, also a more fundamental problem with the proton wave
function. In the Good and Walker formalism the hadronic states {|N〉} form
a complete set. This implies that before the cascade has started, there must be
other hadron states with wavefunctions orthogonal to the proton wavefunc-
tion. This calls for a detailed dynamical scheme describing the relevant de-
grees of freedom for the hadronic states. With the approximation M2

X ≈ exp Y0

these orthogonal states also have the same mass as the proton, which increases
the problem further.

Lacking a real quantum-mechanical description of the proton wave func-
tion, we can still get an upper limit for elastic scattering and single diffraction
by removing the contribution from the initial wave function fluctuations. This
is obtained if we integrate over the initial wave functions in eqs. (V.25)-(V.28)
after taking the squares. Note that the average over different evolutions is still
taken before the square, and therefore the fluctuations in the cascade evolu-
tion and the impact parameter dependence are still included. Note also that
this does not affect the result for the total cross section in (V.30) or the total
diffractive cross section in (V.29) (which also includes the elastic cross section).

Non-leading effects

It was early pointed out by Mueller and Salam [29] that there are extremely
large fluctuations in the leading order cascade evolution. Expanding the ex-
ponential in 〈1 − e−F〉 we have

〈

1 − e−F

〉

=
∞

∑
k=1

(−1)k−1

k!
〈Fk〉. (V.39)

Here 〈Fk〉 could be interpreted as a contribution from the exchange of k pome-
rons, but such an interpretation may be difficult as it was numerically demon-
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strated2 by Salam [30] that 〈Fk〉 ∼ (k!)2, and therefore this series is strongly
divergent. The reason for this is the existence of rare events with a large num-
ber of dipoles and large values of F, which make 〈Fk〉 blow up for large k. On
the other hand, these rare events do not contribute much to 〈1 − e−F〉, since
this expression saturates for large F. Due to these large fluctuations it is there-
fore possible that one can observe events in which there are large saturation
effects, even though the average scattering is still weak. Although such rare
events are less important for the total cross section, they are very essential for
the diffractive cross section.

In leading order the dipole splitting in (V.1) diverges for small dipoles,
and therefore the number of small dipoles depends strongly on the necessary
cutoff. As pointed out in [30] a very essential source of the large fluctuations
is also the occasional creation of a very large dipole. Such a large dipole has a
large probability to split, and the most likely scenario is that it splits into one
very small dipole and one dipole which is almost equally large. The process
is then iterated and the result is a “jet” of many small dipoles.

We note, however, that the very large fluctuations observed by Mueller and
Salam are strongly reduced by non-leading effects. As demonstrated in [15]
energy-momentum conservation has a very strong influence. The production
of small dipoles is suppressed by the conservation of the positive light-cone
momentum p+, while the large dipoles are suppressed by the conservation
of p−. Another non-leading effect comes from the running coupling αs. As
discussed in section V.2.7, the relevant scale in the dipole splitting is deter-
mined by min(r, r1, r2) where r is the mother dipole which splits into r1 and
r2. This suppresses not only the production of very small dipoles, but also
fluctuations where a small dipole splits producing two very large dipoles. We
thus conclude that both effects contribute to a suppression of very small or
very large dipoles, and therefore also of the abovementioned “jets” radiated
from an occasional large dipole. As a result we find in our calculations that
〈Fk〉 grows like k! rather than (k!)2. The ratios 〈Fk〉/(k · 〈Fk−1〉) for dipole-
dipole scattering at Y = 10 are approximately equal to 1.2 for all k between
5 and 9 (larger k-values need very high statistics, and are therefore difficult
to simulate). However, although the fluctuations in the cascade evolution are
strongly tamed by non-leading effects, they are still very important, and have
a large effect on the diffractive cross sections, as seen in section V.3.2 and in
the results presented in the next section.

2The numerical result was anticipated by Mueller [11] who performed analytical calculations
on a simple toy model in which transverse coordinates are neglected.
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Figure V.9: The ratio between the total diffractive and the total cross section (solid
line) together with the contribution from elastic (dashed), single-right (dash-dotted)
and double diffractive (dotted) cross sections at 1.8 TeV, obtained including (a) and
excluding (b) fluctuations in the initial proton wavefunction. In both cases the lower
error band is an estimate from CDF data on single diffraction [31], the middle band
is the CDF elastic cross section [32] and the upper is a sum of the two contributions.
(Thus the contribution from double diffraction is not included in the CDF result.)

V.4 Results on diffraction and elastic scattering

V.4.1 Diffraction in pp collisions

In figure V.9 we show the ratio of the total diffractive, single diffractive and
elastic cross sections to the total cross section at 1.8 TeV as a function of the
Lorentz frame used. Figure V.9a shows the result obtained with the initial pro-
ton wavefunction in (V.7), while figure V.9b shows the upper limit obtained
by integrating over the initial proton wavefunctions after taking the square in
eqs. (V.25)-(V.27). In these figures we also show results from the CDF collabo-
ration.

The results in figure V.9a do not agree well with the data. The elastic cross
section is too low, and the single diffractive cross section σR

SD does not go to

zero when Y0 → 0. In this limit M2
X → m2

p and there should be no phase
space for diffractive excitation. The double diffractive excitation is about 9%,
which is unrealistically high, and this cross section should also approach zero
in the limits Y0 → 0 or Y0 → Y. All these features illustrate the problems with
our initial proton wave function, discussed above. This formalism presumes
that there are other hadronic states which have wavefunctions orthogonal to
the proton wavefunction, and which have approximately the same mass. The
limiting results in figure V.9b, obtained when the fluctuations in the initial pro-
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ton wave function are neglected, do not have this problem. We also see that
these results agree quite well with the experimental estimates, supporting the
assumption that the initial wavefunction fluctuations have a small effect com-
pared to the fluctuations in the cascade evolution and the impact parameter
dependence.

For the elastic cross section we also note (as was claimed above) that it is
approximately frame-independent, as it should be. The upper limit shown in
figure V.9b is around 22%, which agrees well with the value (22.02 ± 0.78)%
from E811 [33], while the value from CDF, (24.6± 0.4)% [32] is a bit larger.

The single diffractive cross section σR
SD (σL

SD) is increasing (decreasing) when
Y0 is increased, and in the model we make the identification of the diffractive
masses:

M
2(R)
X = eY0 GeV2, M

2(L)
X = eY−Y0 GeV2, (V.40)

where for 1.8 TeV we have Y = ln(s/1GeV2) ≈ 15. In figure V.9 we also show
results obtained from the CDF parameterization of single diffractive excitation
[31]:

dσR
SD

d ln M
2(R)
X

=
1

2

D

(b0 + 0.5 ln(s/M
2(R)
X ))

(

s

M
2(R)
X

)ǫ

(V.41)

with D = 2.54± 0.43 mb, b0 = 4.2± 0.5, and ǫ = 0.103± 0.017. Similar results
are also presented by the E710 collaboration [34], although with somewhat
larger errors. Our results in figure V.9b agree quite well with the data, even
if they are a little high for the largest excited masses. Besides not going to 0
when Y0 → 0, the result in figure V.9a also has a much too slow variation with
Y0, meaning a too low value for d σSD/d lnM2

X .
For double diffraction our result for Y0 = 7.5, which corresponds to a cen-

tral gap, is 2.0 mb. Experimental data exist for 900 GeV from the UA5 collab-
oration at the CERN Spp̄S collider [35]. Our result at this energy is 1.8 mb,
which is consistent with the experimental result 4.0 ± 2.2 mb. Our results can
also be compared to the model of Goulianos [36], who argues that σDD should
decrease with energy, due to saturation effects, from around 1.6 mb at 900 GeV
to around 1.3 mb at 1.8 TeV. We also note that our result is consistent with a
factorized dependence on the two masses, as expected from Regge formalism:

dσDD

dM
2(R)
X dM

2(L)
X

= Const. · f (M
2(R)
X ) · f (M

2(L)
X ), (V.42)

where f (M2
X) denotes the distribution for single diffraction in (V.41).

As seen in figure V.2 the same total cross section can be obtained with dif-
ferent sets of values for ΛQCD and rmax. In figure V.10 we see that varying
these parameters, keeping σtot constant, does modify the elastic cross section
somewhat. However, our upper limit is still close to the data, leaving little
room for a contribution from the initial proton wave function.
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√
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cross sections are evaluated at Y0/Y = 0.5, i.e. with a central gap in the cms.

Finally we show in figure V.11 the energy dependence of the total, the total
diffractive (including elastic scattering), and the elastic cross sections, includ-
ing our predictions for the LHC. (The values presented correspond to those
in figure V.9b, i.e. to the more realistic results obtained neglecting the fluctu-
ations in the initial proton wave function.) The diffractive cross section is cal-
culated in the cms with Y0 = Y/2, which demands a central gap and implies
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that the diffractive excitations are limited by M2
X <

√
s · 1GeV. The values we

predict for the LHC are 108, 38, and 26 mb respectively.

V.4.2 Diffraction at HERA

Diffractive excitation has been measured at HERA by the ZEUS [37] and H1
[38] collaborations with two different methods. One is based on an observed
rapidity gap. The ZEUS data obtained with this method [37] give the cross

section integrated over all diffractively excited protons with mass M
(p)
X < 2.3

GeV. Assuming that the contribution from events where the proton is excited
beyond this limit is small, and can be neglected, the result of this method

for M
(γ)
X < M

(γ)
X,max corresponds to our model calculations for σdi f f at Y0 =

ln(M
2(γ)
X,max):

σdi f f (M
2(γ)
X,max) =

∫ lnM
2(γ)
X,max

d lnM
2(γ)
X

dσdi f f

d lnM
2(γ)
X

= σ
(model)
di f f (Y0 = ln(M

2(γ)
X,max)).

The results are shown in figure V.12 and we see a very good agreement with
data, although there is a tendency for our cross sections to decrease a bit too
slowly with Q2.

The cross section for single diffractive excitation of the photon can also be
calculated in our model, and in figure V.13 we present the ratio wrt. the total
diffractive cross section as a function of W for different Q2 and MX . In [37]
the ZEUS collaboration estimated this ratio to be 0.70 ± 0.03, by comparing a
parameterization3 of their diffractive data to results from their leading proton
spectrometer. This results is obtained using the assumption that the ratio is
independent of W, Q2 and MX . Comparing with figure V.13 we find that our
result is consistent with the ZEUS number, but that we predict that the ratio
actually does have a small dependence on MX and Q2.

V.5 Conclusions and Outlook

We have in earlier papers presented an extension of Mueller’s dipole cascade
model, which includes subleading effects from energy conservation and run-
ning coupling as well as colour suppressed effects from pomeron loops. The
model is also implemented in a MC simulation program, which simplifies
the comparison between theoretical ideas and experimental data, and allows
more detailed studies of important non-leading effects. Calculations of total

3Using a modified version of the model in [39].
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Figure V.12: The ratio of the total diffractive cross section to the total cross section as
a function of W, for MX < 4 (a), 8 (b), 16 (c) and 32 GeV (d). Our results are compared
to ZEUS data [37] for Q2 = 4 (full lines and + points), 14 (dashed lines and x points)
and 55 GeV2 (dotted lines and open squares).

cross sections agree very well with experimental results for pp collisions and
deep inelastic electron scattering.

To gain further insight into small-x evolution and saturation, we have in
this paper first presented a number of improvements of the model, in partic-
ular related to the confinement mechanism, and thereafter applied the model
to elastic scattering and diffractive excitation, where we specifically study the
effects of different sources for fluctuations.

A consistent treatment of confinement effects is achieved by replacing the
infinite range Coulomb potential in the dipole splitting and in the dipole–
dipole scattering with a screened Yukawa potential. By equating the screen-
ing length, rmax with the size of the proton entering into its wavefunction, we
were able to get a good, boost-invariant description of the pp and γ⋆ p total
cross sections for a wide range of energies, using basically only two param-
eters, rmax and ΛQCD. This new treatment of confinement has effects on the
boost invariance of the model, further improving the earlier, almost frame in-
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dependent, results.

Our treatment of diffraction is based on the formalism of Good–Walker
and Miettinen–Pumplin. The cross sections for elastic scattering and diffrac-
tive excitation are here determined by the fluctuations in the interaction prob-
ability between different events. Contrary to other calculations, we can in our
model easily consider all different sources for such fluctuations; those stem-
ming from the dipole cascade evolution, the dipole–dipole scattering, from
the impact parameter dependence, and from the initial photon and proton
wavefunctions. We find that all of these sources give important contributions,
apart from the initial proton wavefunction, and together they give a very good
description of data on elastic and single- and doubly-diffractive scattering in
both γ⋆p and pp collisions. We must, however, admit that we do not have a
realistic quantum-mechanical description of the proton state in terms of dy-
namical variables. Here data are best reproduced if the contribution from the
fluctuations in the initial proton state are small compared to the other contri-
butions.
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In a future publication we will use our model to study the quasi-elastic
reactions γ⋆ p → Vp and deeply inelastic Compton scattering (DVCS). In the
future we also want to develop the model further to be able to describe ex-
clusive multi-particle final states. This needs, however, a recipe for how to
handle the virtual dipoles, those which do not participate in the collision and
therefore cannot come on shell and give final state hadrons. To describe par-
ticle production in the proton fragmentation regions would also need a much
improved description of the initial proton state.

V
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