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Sammanfattning

Denna avhandling handlar om modeller inom partikelfysik, vilka beskriver
naturens minsta beståndsdelar. En atom består av en kärna och elektroner.
Kärnan består av protoner och neutroner, vilka i sin tur består av kvarkar och
gluoner. Dessa partiklar samt hela den flora av andra partiklar som bara går
att skapa vid experiment är vad som studeras inom partikelfysiken.

Den dominerande teorin inom partikelfysiken är standardmodellen. Stan-
dardmodellen formulerades på 1970-talet och har sedan dess utsatts för
många tester. De allra flesta delarna av teorin är bekräftade och teorin be-
skriver nästan all data på ett tillfredsställande sätt. Den enda partikeln som
finns i standardmodellen som inte upptäckts än är Higgs-partikeln, vilken ger
de andra partiklarna sin massa.

Det finns fyra krafter i naturen: starka kraften, svaga krafter, elektromagne-
tism och gravitation. Den starka kraften håller ihop atomkärnor och den sva-
ga kraften ger upphov till vissa typer av radioaktiva sönderfall. Elektromag-
netismen beskriver växelverkan mellan allt som har elektrisk laddning, tex.
atomkärnan och elektronerna. Standardmodellen beskriver den starka, svaga
och elektromagnetiska kraften, men säger ingenting om gravitation då gravi-
tationen är mycket svagare än de andra krafterna och därför är i det närmaste
omöjlig att mäta vid partikelfysikexperiment.

Hur små strukturer man kan studera är omvänt proportionellt mot den
energi man använder. Det vill säga, desto större energi desto mindre ska-
lor kan man studera. För att kunna göra kunna studera naturens minsta
beståndsdelar behövs väldigt kraftfull utrustning. Metoden som används är
att accelerera partiklar till mycket hög energi och låta dem kollidera. De par-
tiklar som produceras vid kollisionen studeras sedan och kan användas för att
dra slutsatser om strukturerna hos de partiklar som skapats vid kollisionen.
De flesta partiklar man är intresserad av är instabila och sönderfaller snabbt
vilket gör att man bara kan studera deras sönderfallsprodukter. Experimen-
ten inom partikelfysik är ganska dyra att bygga och därför finns det endast ett
fåtal i världen. Just nu håller LHC, som är det största experimentet hittills, på
att starta och förhoppningsvis kommer vi att få se nya resultat inom något år.

Denna avhandling rör mest den del av standardmodellen som beskri-
ver den starka kraften. Teorin kallas för QCD (Quantum Chromo Dyanmics)
och beskriver många experiment väl. På grund av komplexiteten hos QCD
använder man sig av Monte Carlo-tekniker för att simulera experimentella
resultat. Monte Carlo går ut på att man genererar händelser slumpmässigt en-
ligt en fördelning given av en modell av problemet. Inom QCD används dels
rent teoretiska härledningar och dels modellering som är mer kopplade till ex-
periment för att få en god beskrivning av fysiken. Monte Carlo-modeller har
använts för att beskriva mängder av data.
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En sorts observabler som används mycket i den här avhandlingen är vad
som kallas för jettar. Det hela kommer från att vid en partikelkollision är de
utgående partiklarna inte jämt fördelade över alla vinklar utan tenderar att
klumpa ihop sig inom mindre områden. En sådan klump med partiklar kallas
för en jet.

Inom partikelfysiken letar man ständigt efter ny fysik. Det finns mängder
av mer eller mindre lovande kandidater att studera då data från nästa expe-
riment kommer att börja analyseras. Partiklarna som eventuellt kommer att
skapas kan bara detekteras via deras sönderfall och en stor del av dessa nya
partiklar kommer, om de existerar, att visa sig i form av tillstånd med många
jettar. Samma tillstånd kan dock produceras genom QCD och detta utgör den
experimentella bakgrunden. För att kunna göra en noggrann mätning av sig-
nalen behöver man god kännedom om bakgrunden.

Problemet är att befintliga modeller inte beskriver tillstånd med många
jettar på ett tillfredsställande sätt. Den fysik som styr skapandet av jettar har
delvis approximerats bort då teorin modifierats för att kunna användas i Mon-
te Carlo-simuleringar. Detta är ett välkänt problem inom partikelfysiken och
behöver åtgärdas för att få en bra beskrivning av bakgrunden till ny fysik.

Denna avhandling handlar om att utveckla nya modeller som bättre be-
skriver tillstånd med många jettar. Dessa modeller implementeras sedan som
en del av befintliga Monto Carlo-program och kan jämföras med data. I de
första två artiklarna ligger fokus på att använda metoderna för att göra så go-
da förutsägelser som möjligt för observabler som är av intresse för experimen-
talister. De tredje artikeln är en utvärdering av befintliga metoder med hjälp
av en enklare process, vilket visade på flera svagheter i algoritmerna. Den av-
slutande artikeln är en vidareutveckling av metoden som användes tidigare
för att kunna genomföra beräkningar med ännu bättre noggranhet.
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Introduction

This thesis is about improving the precision of calculations involving the
strong interaction. The strong interaction is the force that holds the nucleons
(protons and neutrons) together in the nucleus and describes the interaction of
particles inside the nucleons, known as quarks and gluons. The theory of the
strong interaction is called Quantum Chromo Dynamics (QCD). The theory
was formulated in 1970s, but even today provides us with challenges when
used to describe experiments.

QCD is part of a bigger theory known as the Standard Model. The Stan-
dard Model is the dominant theory of particle physics today and can account
for almost all the experimental data within particle physics. The model is de-
scribed in the next section.

To probe the interactions of quarks and gluons one needs to go to energies
which are high enough to break the bound states of quarks. This means going
to energies that are larger than roughly 1 GeV. The highest possible energies
(apart from cosmic rays) can be accessed through collider experiments, where
two beams of particles are accelerated and collided head on. This produces
a vast number of outgoing particles, which are tracked and measured by a
detector. All the results in this thesis are calculated for collider experiments.

To be able to understand the physics in such an event one needs good tools
for understanding the dynamics involved. Due to the complexity and non-
linearity of QCD, the only viable way to simulate the final state particles that
show up in the detector is to use Monte Carlo techniques. To do this, each
part of the collision is described using different models and these are used
to generate events distributed randomly in accordance with the models. In
practice, complete software packages are written with the goal of producing
events that resemble those recorded by the experiments as closely as possible.

One feature that is present in particle physics collisions is that particles are
rarely produced isotropically, but rather appear bunched together in a region
of solid angle. Such a bunch of particles is called a jet. The main goal of this
thesis is to improve the description of states with several jets. The production
of jets, especially at wide angles, is described by QCD at short distances. The
long distance physics describes the structure within the jets and the process of
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2 Introduction

particle production known as hadronization. The methods presented in this
thesis are ways of combining the short and long distance descriptions within
one framework where the models has been implemented using Monte Carlo
techniques.

Although events with several jets have a fairly low production rate, they
are still of major importance for particle physics, since they are used as discov-
ery channels for many proposed theories of new physics. To be able to under-
stand the new physics one needs a good description of both the signal and the
background, where the dominant background is usually multi-jet states pro-
duced through QCD. Failing to understand the background makes analysis of
new physics a lot more difficult and more prone to systematic errors.

i.1 The Standard Model

The main theory of particle physics today is the Standard Model. The model
includes the electromagnetic, weak and strong interactions. Gravity has not
been included since the force is too weak to be seen in particle physics exper-
iments. The Standard Model is a quantum field theory, which is a framework
developed by unifying classical field theory, quantum mechanics and special
relativity. The combination of the three theories leads to a general framework
and specific field theories can be constructed by introducing something called
gauge invariance. This means that one requires everything to be invariant
both under the normal symmetries from quantum mechanics and special rela-
tivity and a chosen symmetry group. In order to maintain this new symmetry
one has to introduce a specific set of dynamics, depending on which symmetry
was introduced. The tricky thing is knowing which symmetries to introduce
and there is no good answer to why we should use the specific symmetries
present in our models apart from the fact that they describe reality well. For
an introduction to particle physics and quantum field theory see [1, 2].

The symmetry group that produces the interactions in the Standard Model
is U(1) × SU(2)× SU(3). U(1) is a complex phase and SU(2) and SU(3) are uni-
tary matrices with determinant one and rank two and three respectively. The
invariance under U(1) and SU(2) leads to the theory of the electroweak inter-
action. The particles mediating the electroweak interactions are the photon
(γ), W+, W− and Z0. The photon is responsible for all the electromagnetic in-
teractions and has no mass. The other electroweak gauge particles are massive
and are only seen in much rarer processes. The most widely known example
of the weak interaction is the β-decay in atomic nuclei.

The symmetry group SU(3) is responsible for generating the strong inter-
action. The strong charge is called color and can take the value of red, green,
blue and their respective anti-colors. The sum of the three colors is charge
neutral. The strong force only has one massless mediator known as the gluon,
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Figure i.1: The elementary particles and their interactions

which also carries color and anti-color charge.
The matter in the Standard Model belong to two different groups of parti-

cles, quarks and leptons. The quarks can interact through electromagnetic,
weak, and strong interactions, with the strong interactions being the most
dominant. The quarks come in six different flavors: down, up, strange, charm,
bottom and top. The leptons include charged leptons and neutrinos. The
charged leptons are the electron, muon and tau. The corresponding neutrinos
are known as the electron neutrino, muon neutrino and tau neutrino. Charged
leptons can interact electromagnetically and weakly, while the neutrinos can
only interact weakly. Each particle also has an anti-particle with equal mass
and opposite charge. The matter particles and which gauge particles they can
interact with are illustrated in figure i.1.

The matter within the Standard Model can be split up into three genera-
tions of particles with similar properties, but with different masses. The three
generations are (d, u, e, νe), (s, c, µ, νµ), and (b, t, τ, µe). All second and third gen-
eration quarks and charged leptons have a short lifetime and all ”normal”
matter is made from up and down quarks and the electron. The more exotic
particles are produced in experiments through highly energetic collisions.

The final piece of the Standard Model is the Higgs particle. The role of
the Higgs particle is to provide mass for the all the particles within the Stan-
dard Model (including itself). So far the Higgs particle is only a postulate and
has not been confirmed experimentally. The LHC experiment (described in

i



4 Introduction

section i.3) may provide an answer to whether the Higgs exists or not soon.
Although the Standard Model describes the vast majority of experimental

data quite well, there are still several unanswered questions. Lots of theories
have been proposed to extend the Standard Model, collectively known as BSM
(Beyond the Standard Model) theories. This topic is very broad and has not
been included in this thesis.

i.2 QCD

The particles that interact through QCD is limited to quarks, anti-quarks and
gluons (collectively called partons). Quarks carry color charge, anti-quarks
carry anti-color charge, and gluons have both color and anti-color charge. The
gluons mediate the force, but interact through QCD themselves.

The parameter that determines the strength of a force in quantum field
theory is called a coupling. The couplings in the Standard Model have a de-
pendence on energy or distance through something called renormalization.
Renormalization is a way of systematically removing infinities from the the-
ory, where certain terms are absorbed into the couplings giving them a scale
dependence. The scale is therefore referred to as the renormalization scale.

For the electromagnetic and the weak force the coupling gets stronger as
one goes to higher energy or shorter distance, but for the strong force the op-
posite is true. The strong force is weaker at small distances and high energies
and gets stronger as the distance between particles increases. The fact that in
QCD the force is weak at small distances is known as asymptotic freedom and
the discovery was awarded the Nobel prize in physics 2004.

The fact that the force gets stronger at large distances has profound conse-
quences. It means that strongly interacting particles can only be observed in
color-neutral bound states, which is a property known as confinement. Any
attempt to separate a quark or gluon from its bound state results in the pro-
duction of new color-neutral particles rather than a free quark or gluon. Al-
though confinement is widely accepted based on experimental results, it is
still an open problem to prove that the theory of QCD leads to confinement.
Bound states of colored particles are called hadrons and can occur in two main
varieties: baryons and mesons. Baryons are states with three quarks (or three
anti-quarks) and mesons consist of one quark and one anti-quark.

The property of asymptotic freedom means that in the short distance
regime, physics can be described well by perturbation theory, by expanding
the problem in powers of the strong coupling. Here, everything can (in princi-
ple) be calculated from first principles. However, apart from simple cases the
calculations quickly grow in complexity and there are still many challenges
that remains to be solved before we have a complete understanding of pertur-
bative QCD.
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At longer distances perturbation theory no longer works and one has to
use phenomenological models. The main challenge here is to describe the
transition from partons to hadrons and the models are known as hadroniza-
tion models. When perturbation theory no longer works, QCD can only be
used as an approximate guide and the resulting models have a number of
parameters that need to be fit to data.

There is, however, a strong correlation between what happens at short dis-
tances and what appears in the final state. A hard emission at high energy is
believed to cause more final state hadrons to be formed in that direction. This
means that the jets in the final state are correlated to reactions which have hard
perturbative emissions.

The jets in the final states are defined using a jet algorithm. The most com-
mon ones are cone algorithms and clustering algorithms. Cone algorithms
define a jet as a set of particles within a cone in angular space and with an
energy above a certain threshold. Clustering algorithms work by computing
the distance between pairs of particles according to a measure defined by the
algorithm. The jets are then clustered by repeatedly merging the pair with
minimum distance until a cutoff is reached.

Jets can be defined both for the perturbative emissions and the final state
hadrons. The jet structure at the perturbative level is strongly correlated to the
jet structure of the final hardons. Improving the description of hard emissions
should also lead to a better description of jets.

i.3 Experiments

To be able to study the interactions of quarks and gluons one has to go to
energies high enough to be beyond the typical energies of hadronic bound
states. The main way of doing this is through collider experiments, where
two beams of particles are accelerated and collided. The particles inside the
beam interact and the outgoing particles are detected using various types of
detectors.

Four main experiments are of interest in this thesis: LEP, HERA, Teva-
tron and LHC. The LEP experiment was an electron positron collider placed
at CERN, outside Geneva, which operated from 1989 to 2000. The incom-
ing particles only carry electroweak charge, providing a cleaner environment
compared to situations where the incoming particles carry color charge. The
LEP experiment has generated an abundance of precision measurements of
the strong force and the data is still widely used to test and tune models.

The second experiment of relevance is the HERA experiment which was
conducted at DESY, in Hamburg, from 1992 to 2007. The experiment collided
protons with electrons or positrons. This allowed one to use the electron as a
probe to determine the structure of the proton.

i
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The largest high energy particle collider currently running is the Tevatron
at FNAL, near Chicago. The experiment has been running since 1987 and is
scheduled to shut down in 2009. Protons are collided with anti-protons at cen-
ter of mass energies of 1.96 TeV. This experiment is famous for discovering the
top quark in 1995. The use of protons in the initial state makes it possible to go
to higher energies compared to using electrons, due to smaller energy losses
from synchrotron radiation. However, the proton contains lots of quarks and
gluons causing a lot of debris to be generated in the collisions, which makes
precision measurements difficult. Machines like this are, however, well suited
for discovering new physics.

The newest experiment is the LHC, also at CERN, which is currently un-
dergoing startup. The experiment is designed to collide protons at a center
of mass energy of 14 TeV. The increase in energy provides good hope that
new physics can be discovered. This will be the only high energy particle col-
lider experiment that will be running in the near future. Other experiments
are planned but all decisions are postponed until the first data from the LHC
arrives.

One of the big theoretical challenges within the phenomenology commu-
nity is how to use all the data from LEP, HERA and the Tevatron to make the
best predictions for LHC. Each experiment contributes with its own piece of
information, where LEP gives you high precision and a clean environment to
study QCD, HERA provides extensive studies of the proton structure and the
Tevatron has a similar experimental setup to the LHC. Ideally, data from all
the experiments should be considered to get the best possible predictions.

i.4 Matrix elements

To calculate a process in QCD, the Feynman diagrams for the relevant pro-
cess are constructed. A Feynman diagram is a way to draw an interaction
within quantum field theory. By convention, matter particles such as quarks
are drawn with solid lines, gluons with spirals and other gauge bosons such
as the photon with wiggly lines. Each vertex in a Feynman diagram conserves
energy and momenta, but internal particles do not need to have their physical
mass. Figure i.2 shows some examples of Feynman diagrams that contribute
to e+e− annihilation into hadrons. Details on how to calculate Feynman dia-
grams can be found in [2].

For QCD purposes the way the diagrams are classified is by which order
of the strong coupling (αs) is involved and how many loops are present. The
order in αs is specified by how many strong vertices are present, and the num-
ber of loops is equal to the number of momenta that are not constrained by
external legs. The diagrams are usually calculated as a function of the energy
and momentum of the outgoing particles. The energy and momentum of the
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Figure i.2: Some of the lowest order Feynman graphs that contribute to e+e− to
hadrons

outgoing particles is referred to as the phase space. All the outgoing particles
are required to be on mass shell and energy and momentum is conserved.

The easiest diagrams to calculate are those without any loops, known as
tree-level diagrams, since they do not involve any integrals over unknown
momenta. For any configuration where all the particles have non-zero mo-
mentum and no particles are collinear, all tree-level diagrams are finite. How-
ever, in the phase space region where particles are either soft (low energy) or
collinear the diagrams may contain poles, which lead to logarithmic diver-
gences. The calculation needs to be regulated in these regions, usually by a
cutoff in phase space which is frequently specified using a jet algorithm.

If one uses the tree-level matrix element to calculate a jet cross section by
integrating over the phase space according to the jet definition, one arrives at
a cross section which is the inclusive jet cross section. This means that one cal-
culates the sum of the cross sections of all states with the number of specified
jets and all higher jet multiplicities.

There have been several techniques developed to calculate tree-level ma-
trix elements. The property most often used is to project the external legs
onto helicity states, which are amplitudes where the spin is parallel or anti-
parallel with the momentum. When using helicity states, many of the dia-
grams turn out to be zero and the calculations are simplified. After the dia-
grams have been calculated one has to address the issue of integrating the re-
sulting amplitude over the specified phase space, which can be quite challeng-
ing for states with several outgoing particles. The integration is usually done
with Monte Carlo techniques combined with analytical calculations to deter-
mine the structure of the divergences. Some programs like MADEVENT [3]
or ALPGEN [4] automatically generate and sum all the diagrams and outputs
events generated randomly in accordance with the matrix element. The pro-
grams are currently limited to cases with up to 6 or 7 outgoing particles due
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to the rapid increase in complexity of the calculations when increasing the
number of outgoing particles.

The singularities in the soft and collinear limit indicate that there are other
graphs which become important. The way to improve this situation is to in-
clude diagrams with loops. There is, however, a new difficulty arising not
present in tree-level graphs, namely that all loop diagrams are infinite and
frequently negative. Only the sum of all the diagrams to the same order in αs,
integrated over soft and collinear emissions, is a finite quantity. The way to do
these calculations is to introduce a regularization scheme. The most common
way is to do an analytical continuation of the number of space-time dimen-
sions to 4 − ǫ, which makes all the loop integrals converge. The result can be
summed and finally one can take the limit ǫ → 0.

The minimum expansion of the tree-level matrix element is to include the
first loop. To make the one-loop matrix element calculation finite one has to
include configurations with one more parton and choose a scheme to deter-
mine if the extra parton should be considered resolved or if the extra emission
should be clustered and the state added to the one-loop matrix element. The
scheme to determine if a parton is resolved is required to treat all configura-
tions which contain divergences as unresolved. For example a jet algorithm
might be a suitable way to classify emissions. Which scheme is suitable is
also dependent on the observable one wishes to study. The observable should
ideally have no dependence on unresolved partons.

Using one-loop matrix elements is a big improvement over the tree-level
matrix element, since it resolves some of the issues of divergences. There is
also the issue that one has to pick a renormalization scale when calculating
matrix elements and the sensitivity to this scale is greatly decreased with the
first loop. However, there are still ambiguities regarding how to map differ-
ent parton multiplicities to one another and when to consider a parton unre-
solved.

One popular scheme for calculating one-loop matrix elements is known as
Catani–Seymour [5, 6] dipole subtraction, which is based upon mapping be-
tween different multiplicities using phase-space maps transforming two par-
tons into three. The scheme is used to calculate a term which is added to the
one-loop matrix element and subtracted from the matrix element with one
more parton in such a way that all singularities cancel. This scheme has been
used for various calculation of one-loop diagrams. There are currently efforts
to automate the process and to extend the calculations to processes with more
external legs and hopefully in a few years we should have automated matrix
element generators available just as with tree-level matrix elements.
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i.5 Parton showers

Partons showers are used to provide a good description of collinear and soft
emissions. The main concepts are described here and a more extensive in-
troduction can be found in [7, 8]. To describe the soft and collinear limit one
needs to correctly treat the poles that causes divergences in tree-level matrix
elements. By studying a single soft or collinear emission, the probability of
having such an emission can be formulated in terms of rather simple functions
called splitting functions. The second ingredient in parton showers is the as-
sumption that the emissions can be ordered by performing the emissions that
are associated with a short distance first and those at longer distance later.
This means that the splitting function can be used consecutively, ordered by a
variable related to distance or energy.

The application of splitting functions makes the probability of emissions
approximately equal to the corresponding tree-level diagram, which is known
as the real part of the emissions. To approximate the effect of including all the
diagrams with loops, known as virtual diagrams, one multiplies the proba-
bility of an emission by the probability of not having en emission at a higher
scale. This no-emission probability is known as the Sudakov form factor and
is given by exponentiating the integral of the splitting function. The proce-
dure is similar to calculating the probability of a radioactive decay, where the
probability of a decay should be multiplied by the probability that it has not
already happened.

The parton shower is formulated in a probabilistic description, where one
emission is considered at a time. This is ideal for implementation in a com-
puter program using Monte Carlo techniques. At each step of the program,
all the relevant emission probabilities and Sudakov form factors are calculated
and an emission is generated. Using this procedure, one can build up events
with many outgoing partons, which would have been impossible using the
full matrix element. An illustration of a shower is shown in figure i.3.

If the emissions are strongly ordered, meaning that each emission happens
at a much smaller value of the ordering variable compared to the previous
emission, then the shower is a good approximation and this applies to the bulk
of the cross section. There are important exceptions though, mainly when one
has several hard partons at wide angle, which corresponds to a final states
with several hard jets. In this case, the terms neglected when formulating the
shower become important and the result becomes unreliable.

The parton shower also has the nice feature that the events are completely
exclusive. This means that the shower determines the probability for specific
parton configurations with no other emissions. The final step of producing
the hadrons seen by experiments is done by more phenomenological models.
The two main models used for this purpose are the ”Lund string model” [9]
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Decreasing Virtuality

Figure i.3: An example of what the evolution of a quark anti-quark pair could be in a
parton shower. The emissions are ordered in virtuality and as one goes to lower values
more emissions are resolved.

and ”Cluster fragmentation” [10]. However, both these models only work if
they are provided with exclusive states where all the collinear and soft partons
simulated correctly.

For the matrix elements the accuracy was described in orders of αs, but
that is clearly not the way to go for parton showers. Instead one counts which
logarithms have been summed correctly. The dominant contribution to an
emission probability is when the emission is both soft and collinear, which
results in one order of the strong coupling and two logarithms (one from the
soft pole and one from the collinear pole). One can sum the contributions
from consecutive emissions including all terms of the type αn

s log2n, which is
known as the leading-log (LL) approximation. Just about any parton shower
is accurate to LL. The problem of the LL approximation is that there is a big
freedom in how to do your calculations, which can lead to vastly different
results. Most things measured would depend on effects that are beyond LL,
but so far no one has been able to construct a shower which achieves the next
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level of accuracy, which is next-to-leading log (NLL) (also correctly summing
all terms of order αn

s log2n−1).

Beyond LL there are a number of corrections that are implemented in most
parton shower algorithms, where some corrections have been derived from
theory and some can be considered more as choices. The main corrections
that can be derived from theory are all formally on the NLL level, but they
don’t make the shower accurate to NLL. Energy momentum conservation is
obviously a desirable property of any program and can be included by giving
a recoil to existing partons when a new parton is emitted. It does, however,
leave some options for how to distribute the recoil that are not given by theory.
Another effect that is also included is the running of the strong coupling by
letting αs depend on each scale of the emissions in the shower. The splitting
functions contain terms beside the leading pole, which give contributions at
NLL and are also included. There is also a relation between the angles of
emission that can be derived from soft gluon interference, which means it is
theoretically motivated to order emissions in decreasing angle (apart from the
ordering already present in the cascade).

Even with these corrections implemented there are also choices to be con-
sidered. The main choice is which ordering variable to use in the shower. The
most common choices are to order the shower in angles, virtuality or trans-
verse momentum. To order the shower in angles is to promote the angular or-
dering discussed earlier to the level of being the ordering variable, which has
some nice theoretical features, but it also has several drawbacks which include
not being Lorentz invariant. Using virtuality ordering is good to cover the en-
tire phase space, but it has a tendency to overdo it by not respecting angular
ordering. This can be corrected by a separate veto on emissions. Transverse
momentum has no obvious downsides, but it does lack some of the advan-
tages of the other ordering schemes. There are many of more choices to be
made in a parton shower, for further details read the manuals of the various
programs.

The parton showers form the basis for the Monte Carlo event generators,
which are widely used in experimental particle physics. The two most famous
general purpose programs are PYTHIA [11] and HERWIG [12]. PYTHIA is avail-
able both with virtuality ordering and with transverse momentum ordering
and uses Lund string fragmentation. HERWIG uses an angular ordered shower
and the hadronization is done using cluster fragmentation. Another com-
monly used program is ARIADNE [13], which is used extensively in this thesis.
The program is based on a cascade of color dipoles [14, 15] and is ordered in
transverse momentum. ARIADNE does not contain any fragmentation routines
and uses the PYTHIA implementation of string fragmentation instead. More
recently a new program called SHERPA [16] has been written, which is mainly
focused on including matrix elements together with the shower. The shower
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in SHERPA is very similar to the virtuality ordered shower in PYTHIA and the
PYTHIA implementation of string fragmentation is used for the hadronization.

i.6 Merging matrix elements with parton showers

In the previous two sections, two different methods for calculating cross sec-
tions for parton configurations have been described. Matrix elements have
the best description for hard emissions, but cannot describe collinear and soft
emissions properly. The parton shower on the other hand can handle collinear
and soft emissions, but neglects terms that are important for describing hard
emissions. The best thing would be if the two approaches could be combined
in a consistent way, especially for observables that are dependent on hard
physics such as the cross section for states with several hard jets, or jet cor-
relations.

i.6.1 Reweighting splitting functions

The first approach that was used to improve the parton showers using ma-
trix elements was to reweight the first branching probability [17–19]. This
means that one replaces the branching probability of the first emission with
the branching probability from the matrix element. This solutions corrects
the first emission according to the matrix element and has become a standard
feature in many of the processes in the parton shower implementations. The
only problem is that the method is quite hard to generalize to more than one
emission.

i.6.2 Tree-level matrix elements

More general schemes are necessary if one wants to accurately describe states
with many jets. The next step to go beyond the reweighting described above,
is to use tree-level matrix elements with higher parton multiplicities together
with the shower. The goal of the algorithms is to be able to use the auto-
mated tools for generating events according to the matrix element and feed
the results into the parton shower programs to be able to simulate final state
hadrons.

There are several algorithms that address the problem and they all face
the same two main issues, namely to divide the phase space for emissions
between the matrix element and the parton shower and to make the matrix
elements exclusive. There are a few more things that need to be included,
such as reweighting the events with a running coupling, but these are straight
forward to implement. The methods used in the different merging algorithms
are somewhat different, but the goal of each one is the same.
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The first problem of splitting the phase space is usually solved by a cut on
the matrix element and the same cut as veto on the parton shower. The goal is
to have two regions of phase space, one for the matrix element and one for the
parton shower, that together cover the entire phase space for emissions with
no overlaps. The border between the two regions is known as the merging
scale.

The second problem is to make the matrix elements exclusive. This is
solved by introducing (approximate) Sudakov form factors. The problem is
that the matrix elements have no intrinsic ordering, which is required for the
Sudakov form factors in the shower. This means that an ordered chain of
emissions has to be constructed and used for the Sudakov form factors.

The first algorithm to be published was the CKKW (Catani–Krauss–Kuhn–
Webber) [20] algorithm which was originally formulated for e+e− annihilation,
but later extended to hadron collisions [21]. The CKKW algorithm is formu-
lated using the k⊥-algorithm [22, 23], which is a jet algorithm that works by
merging the closest partons according to a transverse momentum (k⊥) dis-
tance measure. The emission phase space is split by saying that emissions
above a cut in k⊥belongs to the matrix element and below the same value the
shower can perform emissions. First, events are generated according to the
matrix element with a cutoff in the k⊥-distance between the partons. Then
the k⊥-algorithm is used to construct a shower history, which in turn is used
to calculate analytical Sudakov form factors and to reweight αs. Finally, the
shower is invoked with a veto on the k⊥-measure of subsequent emissions.

Another algorithm was developed in parallel by Leif Lönnblad [24], which
is similar to the CKKW algorithm and was later called CKKW-L. The algo-
rithm was first published for e+e− and extended to hadrons collisions in paper
I [25] in this thesis. In CKKW-L, any cutoff can be used to remove the diver-
gent parts of the matrix element. First, each event is generated according to
the matrix element. Then the algorithm specifies that one should construct
a shower history by finding all possible ways the shower could have gener-
ated the state and pick one randomly with a probability proportional to the
product of the emission probabilities involved. The aim is to calculate the best
guess of how the shower could have generated the state. This has the advan-
tage that the shower can be used to generate the Sudakov form factors, since
they are by definition equal to the no emission probability of the shower. Af-
ter the state has been reweighted with the Sudakov form factors, the shower
is invoked with a veto on the first emission.

In [26] an algorithm called the Pseudo-Shower algorithm was introduced.
This algorithm works by using a jet clustering algorithm (which could be the
k⊥-algorithm or something similar) both as a cutoff for the matrix element
and to construct a shower history, similar to the CKKW algorithm. Then
the shower is used to generate Sudakov form factors by invoking the entire
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shower and clustering back to jets. The jet scale is compared to the values
from the clustering, which is used to determine if the event is kept. Finally,
the shower is invoked with a veto so that emissions do not go above the softest
emission in the matrix element state.

The MLM [27] algorithm is the easiest one to implement. Events are gen-
erated according to the matrix elements with a cut using a jet observable.
A shower history is constructed using the k⊥-algorithm, but used only to
reweight αs. To generate the Sudakov form factors and to shower the event,
the shower is simply invoked on the state given by the matrix element with no
veto on emissions. Jets are clustered and events where the shower has created
extra jets are discarded.

i.6.3 One-loop matrix elements

As one-loop calculations are becoming available it would be a logical step to
use them together with the parton showers as well, which would be a signif-
icant improvement over the previously discussed algorithms. Working with
one-loop matrix elements is a bit tricky since they include both the real emis-
sion terms and parts of the virtual corrections in the Sudakov form factor.

The first method for dealing with one-loop matrix element was MC@NLO
[28], which uses the assumption that all the poles in the matrix element are
also in the shower. Therefore the shower is used to regularize the different
matrix elements. The shower term is subtracted from the real part and added
to the virtual contribution. In this way, once the shower is invoked it should
give a good sample back. One of the disadvantages of MC@NLO is that it can
generate events with negative weights.

The other method of dealing with one-loop matrix elements is the
POWHEG [29, 30] method. It works by adding together both the real and
virtual contributions to one sample and then adding the emission back using
the real part of the matrix element as splitting function. The shower can be
added afterwards with a veto to restrict the shower to generate emissions in
the phase space not covered by the first emission.

Both algorithms work adequately for the case that they address, but they
are both limited by only being able to include one one-loop matrix element.
One advantage of the tree-level merging algorithms discussed earlier is that
they can work with many multiplicities at a time, allowing one to generate
samples with matrix element corrections for several extra jets. The methods
above do one order better in αs, but can only include one specific multiplicity.
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i.6.4 More general algorithms

Considering the current progress in automating various matrix element pro-
cesses one would like to develop the algorithms further to include one-loop
matrix elements for different multiplicities and ideally even be able to go be-
yond that. Such an algorithm would greatly improve the accuracy of the
results once automated tools become available. There have been several at-
tempts at more general algorithms [31–34], but these are to be considered work
in progress.

Our algorithm for merging matrix elements with loops and the parton
shower is presented in paper IV [35]. A method is presented for using the
shower to calculate all the necessary weights for including the matrix element
along the same lines as CKKW-L.

i.7 Introduction to papers

All the papers in this thesis are about improving the simulation of events using
matrix elements. The main focus is getting a better description of the produc-
tion of jets and associated observables such as jet scales and jet correlations.
Two main processes have been studied: W production in proton collisions
with extra jets (W + jets) and e+e− annihilation into hadrons.

The reason that W + jets was studied is that this process is the major back-
ground for top production, some Higgs production scenarios and many of the
proposed discovery channels for beyond the Standard Model physics. To un-
derstand what to expect from these channels one needs accurate simulation
of the background. As discussed earlier the multi-jet states are not accurately
described by parton showers and matrix element corrections are therefore im-
portant.

The other process that is studied in the papers is e+e− annihilation into
hadrons. The reason this process was chosen is since it is the cleanest and
simplest possible process. There are a number of complications that have to be
included in hadron collisions, related to the structure of the proton, which can
be avoided entirely. There is also abundant precision data avaliable from the
LEP experiment. All these properties makes the process ideal for improving
the understanding of the algorithms and as a testing ground for new ideas. I
belive it is important to validate all algorithms for e+e− before applying them
to more complicated cases.

i.7.1 Paper I

Paper I is an extension of the work published by Leif Lönnblad a few years
earlier [24]. In the original publication of the matrix element correction algo-
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rithm, later called CKKW-L, it was described for e+e− and implemented for
up to four outgoing partons. In this paper the same algorithm is extended to
also include incoming hadrons.

Incoming hadrons lead to a number of extra complications. The most im-
portant being the structure of the partons inside the proton that needs to be
modeled. This is done using parton distribution functions (PDF) which are
included in the emission probability of certain types of emissions. The algo-
rithm was applied to ARIADNE which uses semiclassical approximations for
the proton structure and this is treated specifically in the paper. The solution,
however, is quite general and can be used for regular PDFs as well.

There is also another challenge that only appears with incoming hadrons,
which is a number of new types of diagrams. Most importantly, one of the
initial state splittings is not included in ARIADNE and this issue is addressed.
There is also a new class of diagrams that cannot be simulated by the cascade
at all and we also introduce a prescription for how to deal with these.

The algorithm is applied to W-production with extra QCD jets and the pro-
cess is simulated with up to four extra jets at Run II of the Tevatron. Several
observables are plotted including jet scales and some observables showing jet
correlations. It is shown in the paper that there are important effects from
including matrix elements as compared to running the plain shower.

i.7.2 Paper II

Paper II is a collaboration between several of the authors of the main programs
for matrix element merging. We made a collective effort to try to make the best
possible prediction of W + jets. All the methods are described and results are
presented for the LHC and the Tevatron. The observables chosen in this paper
are typical observables that could be used by the experiments. While they may
not be exactly what will be used, they should provide a good benchmark.

The rest of the paper is dedicated to investigating the systematics of the
various algorithms. The effects from changing the merging scale and from
changing the scale in the strong coupling constant is investigated.

To get a reasonable idea of the systematics when simulating W + jets one
needs both to use different methods for the simulations and to investigate the
systematics within each method. This paper includes both aspects and our
goal is to deliver something that is useful for the experimentalists.

i.7.3 Paper III

In paper III we went back to e+e− to try to understand the algorithms better.
e+e− is a lot simpler than hadron collisions since one does not have to include
anything about the structure of the proton. This does, however, not mean that
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it is easier to get good results for e+e−, since removing the complication of
incoming hadrons also removes things that are tunable. There is also more
data with better precision avaliable for e+e− compared to W production in
hadron collisions, which leaves smaller room for error.

In this paper we use the simplest possible process, which is one extra par-
ton, as a benchmark for the various merging algorithm. This is a convenient
choice since a solution by reweighting the first splitting function is also avail-
able for this process. Ideally all algorithms should perform well for such a
simple case, but we show that there are significant problems in several of the
approaches.

The problems found were mostly related to using different ordering vari-
ables in the merging as compared to the shower. We show in this paper that
even though one might a priori believe that these effects are small, they can
vastly change the final result.

i.7.4 Paper IV

In paper IV we present a new way of doing matrix element merging, where
matrix elements with loops including different parton multiplicities can be
merged with a parton shower. The method presented is along the same lines
as the CKKW-L algorithm, where the shower is used to calculate all the cor-
rections to the matrix element. However, the ideas are more general and can
be applied to any CKKW-like algorithm.

The method is based on the idea that one can subtract the terms corre-
sponding to the first two orders in αs from the parton shower. Then one can
add events generated according to one-loop matrix elements and dressed with
the shower. Together, the result is that the matrix element determine the two
first orders in αs, but all higher order terms are taken from the shower. Some
extra complications, which occur if the ordering variable used in the shower
is different from the variable used to define the merging scale, are resolved.

The explicit solutions are presented for e+e− collisions and the extra com-
plications related to proton structure are to be solved in a later publication.
The algorithm has been implemented in ARIADNE with the matrix elements
generated by PYTHIA. It turns out that a modified treatment of αs in the shower
is required, since the matrix element contains pieces that cannot be repro-
duced in the shower and results in different values of the strong coupling.
The algorithm is shown to be consistent with regard to changing the merging
scale and changing the renormalization scale.

Finally results for hadronic jet and shape observables are presented and
compared to LEP data. ARIADNE already describes these observables quite
well and the results from the implementation of our algorithm in ARIADNE

shows similar agreement. The implementation is intended as a proof of con-
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cept and hopefully it can be extended to also include incoming protons soon.

i.7.5 List of contributions

• Paper I: In this paper I have contributed by doing a big part of the theo-
retical work and the entire computer implementation and simulation. I
have made all the figures, but only written minor parts of the text.

• Paper II: The author list of this paper is rather long and the people are
listed alphabetically, but a few of us did more work than the others. The
people who had a leading role in writing the paper are Michelangelo
Mangano, Leif Lönnblad and myself. Apart from taking a leading role
in the collaboration, I was also responsible for producing all the results
marked ARIADNE, the final data processing and making all the plots and
several pieces of the text.

• Paper III: In this paper I have done the main part of the theoretical work
and I wrote most of the computer implementation and I did most of
simulations. I have also made all but one of the figures and written most
of the text.

• Paper IV: The basic idea presented in this paper came from Leif
Lönnblad. However, I have done most of the theoretical calculations
and I have done all the computer simulations. I wrote most of the text
and made all of the plots.
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I.1 Introduction

Parton Shower based Monte Carlo Event Generators (PSEGs) have developed
into essential tools in High Energy Physics. Without them it is questionable
if it at all would be possible to embark on large-scale experiments such as the
LHC. Although they are based on leading logarithmic approximations and
phenomenological hadronization models, they are typically able to describe
hadronic final states in great detail and, especially at LEP, with great precision.
However, there are problems. The description of final states which include
more than three hard jets is not very good, and when it comes to collisions
with incoming hadrons, the precision is generally lacking, especially for small-
x processes. In this article we will address both these problems.

The problem with describing several hard, well separated jets is inherent
in the leading log approximations, since they assume that there is strong or-
dering between parton emissions, and hence only give a good description of
soft inter-jet and collinear intra-jet emissions. Typically it is possible to cor-
rectly describe one additional hard jet on top of the hard sub-process used as
starting point, by applying correction factors to the basic splitting functions.
However, to go beyond one additional jet is more difficult.

To describe events with several hard partons we can use so-called Matrix
Element Generators (MEGs), where the parton distributions can be generated
according to exact tree-level matrix elements. Unfortunately these matrix el-
ements are divergent in the soft and collinear limits and a cutoff is needed
to avoid these regions of phase space. However, to generate realistic events
we need to hadronize the partons into jets of hadrons, and all reasonable
hadronization models require that also soft and collinear parton emissions are
modeled correctly. Hence the need for combining matrix element generators
with parton showers.

Combining these two approaches is, however, not trivial. The matrix ele-
ments describe inclusive events, ie. events with at least n partons above some
cutoff, while parton showers are exclusive and describe events with exactly n

partons. Naively adding parton showers to events generated by a MEG will
therefore give a very strong dependence on the cutoff used in the MEG, even
if great care is taken to avoid double-counting by only adding parton showers
below that cutoff.

A solution for this problem was presented by Catani et al. in [1]. The pro-
cedure, generally referred to as CKKW, relies on applying a jet clustering algo-
rithm to partonic event from a MEG generating zero, one, two, etc. additional
hard jets above some cutoff according to exact tree-level matrix elements. The
repeated clustering of two jets into one is then used to construct an ordered set
of scales corresponding to consecutive parton emissions. These scales are used
to calculate Sudakov form factors corresponding to no-emission probabilities,
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which are used to reweight the MEG events to make them exclusive. A par-
ton shower can then be added with a special veto to avoid double-counting
of emissions above the cutoff. In this way it was shown that the dependence
on the cutoff cancels to next-to-leading order accuracy. The dependence was,
however, still quite visible, giving rise to annoying discontinuities in some
observables.

The basic CKKW prescription was somewhat improved [2] when imple-
mented for the Dipole Cascade model [3, 4] in the ARIADNE program [5].
Rather than using a jet clustering algorithm to construct a set of scales, the
ARIADNE procedure involves constructing complete intermediate states corre-
sponding to a series of emissions which the dipole cascade could have used
to produce a given state obtained from a MEG. A special veto algorithm is
used to calculate exactly the Sudakov form factors the cascade would have
used to produce the state, which are then used for reweighting. In addition
a special treatment of the MEG-produced states with highest multiplicity was
introduced, avoiding the restriction which disallowed additional jets above
the cutoff in the original CKKW paper. It should be noted that both these
improvements are of “cosmetic” nature, in that the cutoff dependence is still
formally only canceled to next-to-leading order accuracy.

Both these procedures were originally developed for e+e−. Recently there
has been some developments in applying them to hadronic collisions, in par-
ticular for the W+jets process, by Krauss et al. [6–8] and Mrenna and Richard-
son [9]. An alternative procedure has also been developed by Mangano
[10, 11], which is similar in spirit to CKKW, but which has a simpler inter-
face between the MEG and PSEG. This development is very important for the
LHC, where W+jets is an important background for almost any signal of new
physics.

In this article we describe the extension of the CKKW procedure for the
dipole cascade in ARIADNE to handle hadronic collisions, again concentrat-
ing on the W+jets process. The goal is to obtain a procedure which gives as
small cutoff dependence as was achieved for e+e−. However, we also expect
to see differences w.r.t. the procedures of Mrenna, Richardson and Krauss,
since the dipole cascade model for collisions with incoming hadrons [12,13] is
different. The standard initial-state parton shower approaches, such as those
implemented in PYTHIA [14, 15], HERWIG [16] and SHERPA/APACIC++ [17, 18],
as well as the Sudakov form factors used in CKKW, correspond to a DGLAP-
resummation [19–22] of leading logarithms of the hard scale. In the dipole
cascade, however, also some terms corresponding to logarithms of 1/x are
resummed. Although not formally equivalent to neither BFKL [23–25] or
CCFM [26–29] evolution, it has proven to be able to describe most features
small-x final states at HERA, where all DGLAP-based parton showers fail.
Now, W+jets is conventionally not considered to be a small-x process because
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of the hard scale, mW, being large, but at the LHC the collision energies are so
large there may be substantial effects of terms proportional to αn

s log(
√

S/mW)n,
where mW/

√
S ∼ x ∼ 0.005.

The layout of this article is as follows. We will first recap the main points
of the CKKW procedure in section II.2.1. Then, in section I.3, we describe the
dipole cascade model and CKKW implementation for e+e− annihilation, fol-
lowed by a description of the dipole cascade for incoming hadrons in section
I.3.2. In section I.4 we will describe our CKKW implementation for W+jets,
and hadronic collisions in general, starting with the construction of interme-
diate states in I.4.1, followed by the reweighting procedure in I.4.2. The results
of our investigation of its performance are presented in IV.4. Finally in section
IV.5 we present our conclusions.

I.2 CKKW

When generating events with a PSEG, the procedure is to start from a primary
hard sub-process, typically a 2 → 2 process such as e+e− → qq̄ or qq̄ → W → ν̄e,
and then to let the incoming and outgoing quarks and gluons evolve a parton
cascade in an iterative 1 → 2 branching procedure. The emissions are ordered
according to some evolution scale ρ, where the maximum scale, ρ0 is typically
given by the hardest scale in the primary sub-process, and the minimum is
some cutoff scale of the order of one GeV, typically tuned to match a particular
hadronization model.

We can write the exclusive cross sections for in this way generating
0, 1, 2, . . . additional partons above the cutoff, ρc, as

σ+0 = σ0 ∆S0
(ρ0, ρc)

dσ+1 = σ0 αs(ρ1)cPS
11 ∆S0

(ρ0, ρ1)∆S1
(ρ1, ρc)dρ1dΩ1

dσ+2 = σ0 αs(ρ1)αs(ρ2)cPS
22 ∆S0

(ρ0, ρ1)∆S1
(ρ1, ρ2)∆S2

(ρ2, ρc)dρ1dΩ1dρ2dΩ2

...

dσ+n = σ0 cPS
nn∆Sn

(ρn, ρc)
n

∏
i=1

αs(ρi)∆Si−1
(ρi−1, ρi)dρidΩi

... (I.1)

where the ordering is ρ0 > ρ1 > . . . > ρn > ρc and Ωi symbolizes the phase
space variables defining the ith emission in addition to ρi (typically some mo-
mentum fraction, zi, and some azimuth angle φi). ∆Si

(ρi, ρi+1) is the so-called
Sudakov form factor giving the probability that no emissions occurred from
the state with i additional partons between the scales ρi and ρi+1. The coeffi-
cients cPS

nn are basically products of splitting functions which depends on ρi and
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Ωi, and we assume an implicit sum over all possible flavour combinations. As
we will see below, the cPS

nn may also include ratios of parton density functions
(PDFs) in the case of incoming hadrons.

The Sudakov form factors are formally resummations of virtual diagrams
to all orders and can, in principle, be calculated analytically. They would then
only depend on the limiting scales, as is done in the standard CKKW proce-
dure. However, when explicitly interpreted as a no-emission probability in a
PSEG, as is done eg. in ARIADNE, it basically depends on all momenta in the
partonic state. The typical form of the Sudakov is

∆S(ρi, ρi+1) = exp

(

−
∫ ρi

ρi+1

dρ

ρ
αs(ρ)

∫

dzP(z)

)

, (I.2)

which, of course, can be expanded in a series in αs, and we can rewrite the
exclusive cross sections as

σ+0 = σ0 (1 + cPS
01 αs + cPS

02 α2
s + . . .)

dσ+1 = σ0 αscPS
11 (1 + cPS

12 αs + cPS
13 α2

s + . . .)dρ1dΩ1

dσ+2 = σ0 α2
s cPS

22 (1 + cPS
23 αs + cPS

24 α2
s + . . .)dρ1dΩ1dρ2dΩ2

...

dσ+n = σ0 αn
s cPS

nn(1 + cPS
n,n+1αs + cPS

n,n+2α2
s + . . .)

n

∏
i=1

dρidΩi

... (I.3)

to emphasize the resummation aspect. We note that even though all the co-
efficients cPS

ij are divergent in the soft and collinear limit when ρc → 0, the

resummation to all orders in the Sudakovs gives a finite result for each of the
cross sections. Also, when integrated over the allowed phase space the cross
section of the primary sub process σ0 is retained,

∞

∑
0

σ+i = σ0. (I.4)

In contrast a MEG will generate inclusive partonic states with the cross
sections for generating at least 0, 1, 2, . . . additional jets given by
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σ+0 = σ0

dσ+1 = σ0 αscME
11 dΩ1

dσ+2 = σ0 α2
s cME

22 dΩ1dΩ2

...

dσ+n = σ0 αn
s cME

nn

n

∏
i=1

dΩi

... (I.5)

where the Ωi symbolizes all phase space variables defining the ith parton, and
the coefficients cME

ii are calculated using the exact tree-level matrix elements
(including PDFs in the case of incoming hadrons). Clearly we can not simply
add these cross sections, especially since each of the coefficients are divergent
if the soft and collinear limits are not cut off properly.

The advantage of using a MEG is that the exact tree-level matrix elements
are used, which means that also states with several hard partons are described
correctly. This is not the case for the PSEG, where the coefficients are given by
products of splitting functions, which is only a good approximation in the
limit of strongly ordered emissions. On the other hand a MEG will not cor-
rectly treat soft and collinear partons, where the coefficients are large and need
to be resummed to all orders, as in a PSEG, to give reliable results. Clearly it
would be highly desirable to combine the two approaches.

It should be noted that for the first emission in a PSEG is typically quite
easy to modify the splitting functions to correctly reproduce the exact matrix
element, effectively replacing cPS

11 with cME
11 , and in most PSEGs this is the de-

fault behavior for most primary sub-processes [3, 5, 13, 30–38].

I.2.1 The original CKKW procedure

Comparing eqs. IV.1 and IV.7 the solution should be obvious. Use a MEG to
generate up to N additional partons above some cutoff, ycut, but reweight the
generated states with the Sudakov form factors, and then add a parton shower
with the requirement that no partons above ycut are emitted. This is the essence
of the CKKW procedure. To calculate the Sudakov form factors we need an
ordered set of emission scales, which is not provided by the MEG, since there
all possible diagrams are added coherently and emission scales are not well
defined. In the original CKKW procedure, the k⊥clustering algorithm [39, 40]
was used to define an ordered set of scales which were used to analytically
calculate the Sudakov form factors. A reweighting was also done to use a
running αswith the constructed scale as argument. The resolution variable of
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the k⊥-algorithm was also used for the cutoff in the MEG, which is not the
same as the evolution variable in the PSEG. To ensure a full coverage of the
phase space the parton shower was therefore added with the maximum scale
as starting point, but vetoing all emissions corresponding to the k⊥-algorithm
resolution variable above ycut to avoid double-counting.

It was shown that this procedure removes the dependence on the MEG
cutoff, ycut, to next-to-leading logarithmic accuracy. However, there was still a
clearly visible discontinuity in some generated distributions.

I.2.2 CKKW in hadronic collisions

To extend this algorithm to be used for hadronic collisions is conceptually
straight forward. In [7] and [9] the standard CKKW procedure was extended
to hadronic collisions in general and for the W+jets process in particular, and
implemented for the APACIC++, HERWIG and PYTHIA PSEGs. The principle is
the same as for e+e−. Jet construction is done with the k⊥-algorithm modified
for hadronic collisions according to [41]. The resulting ordered set of scales
is used in the analytic Sudakov form factors (in [9] a Sudakov veto algorithm
similar to the one in ARIADNE was used for the PYTHIA implementation), and
the events from the MEG was reweighted with these and the properly scaled
αs. The MEG states with highest multiplicity was treated in the same way as
in the ARIADNE implementation above.

There are some issues which need to be treated with special care. In a
PSEG, the initial states emissions are generated in a backward evolution pro-
cedure which besides the standard partonic splitting functions also involves
ratios of PDFs. The leading order cross section is given by

dσ0 = dσhh→W = ∑
q,q′

x fq(x+ , µ2)x fq′ (x−, µ2)σ̂qq′→W(x+x−S)
dx+

x+

dx−
x−

, (I.6)

where the scale µ2 = m2
W = x+x−S. Making one step in the backward evolution

with a g → qq̄ splitting will be performed with a probability

dP(Q2, z) = αsPg→q(z)
x+
z fg( x+

z , Q2)

x+ fq(x+, Q2)
∆S(Q2

max, Q2)
dQ2

Q2
dz, (I.7)

where the Sudakov form factor can be formulated both with (PYTHIA) and
without (HERWIG) ratios of PDFs. Both choices are formally equivalent in the
leading-log approximation, but only the former choice corresponds exactly to
a no-emission probability. The maximum scale is typically given by m2

W, and
the Sudakov form factor corresponds to a leading-log DGLAP resummation1.

1Also next-to-leading logarithmic Sudakov form factors may be used [1], although these may
become larger than unity, disabling the interpretation as no-emission probabilities.
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However, clearly there is nothing in the real world preventing emissions with
a scale above m2

W, and such parton states will be generated by the MEG. In [7]
states with one or more partons emitted at a scale above m2

W are treated as
coming from a separate class of primary sub-processes, and the Sudakov form
factors are added only for additional emissions with a maximum scale given
by the smallest of the constructed scales above m2

W.
Although the resulting procedures in [7] and [9] are shown to be fairly

cutoff insensitive, there is still some dependence, and it may be worth while
to extend also the ARIADNE implementation of CKKW to hadronic collisions to
see if a better result can be achieved. As for the standard CKKW this extension
is in principle straight forward. However, there are some tricky issues, mainly
to do with the treatment of parton densities, and to describe how we deal
with these, we first have to describe how hadronic collisions are implemented
in ARIADNE.

I.3 The dipole cascade model

ARIADNE implements the dipole cascade model which is quite different from
conventional parton cascades. Rather than iterating 1 → 2 parton splittings,
gluons are emitted from colour-dipoles between colour-connected partons re-
sulting in 2 → 3 parton splittings. This model has several advantages. Since
gluons are emitted coherently by colour-connected partons, there is no need
for explicit angular ordering. In addition, the evolution variable is defined as
a Lorentz-invariant transverse momentum which also is a suitable scale to be
used in αs. The evolution variable is defined as (for massless partons)

p2
⊥ =

s12s23

s123
, (I.8)

where parton 2 is the emitted one and sij and sijk are the squared invariant
masses of the two- and three-parton combinations.

The probability for an emission is given in terms of the dipole splitting
functions, which depend on p2

⊥ and a Lorentz invariant rapidity defined as

y =
1

2
ln

s12

s23
. (I.9)

The probability of a gluon emission from a dipole between two partons i, j is
then given by

dP(p2
⊥, y) = αs(p2

⊥)Dij(p2
⊥, y) × (I.10)

× exp

(

−
∫

p2
⊥

dp
′2
⊥

p
′2
⊥

∫

dy′αs(p
′2
⊥)Dij(p

′2
⊥, y′)

)

dp2
⊥

p2
⊥

dy,
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where exp(. . .) is the Sudakov form factor. The dipole splitting functions, Dij,
depends on which partons are involved according to

Dqq̄(p2
⊥, y) =

2

3π

x2
1 + x2

3

(1 − x1)(1 − x3)
(I.11)

Dqg(p2
⊥, y) =

3

4π

x2
1 + x3

3

(1 − x1)(1 − x3)
(I.12)

Dgg(p2
⊥, y) =

3

4π

x3
1 + x3

3

(1 − x1)(1 − x3)
(I.13)

where xi are the resulting energy fractions of the emitting partons in the orig-
inal dipole rest system, xi = 2Ei/

√
s123, related to p2

⊥ and y according to

y =
1

2
ln

(

1 − x3

1 − x1

)

, p2
⊥ = s123(1 − x1)(1 − x3). (I.14)

It can be shown that the dipole splitting functions are equivalent to the stan-
dard Altarelli–Parisi splitting functions in the relevant soft and collinear lim-
its [3]. We also note that the Dqq̄ exactly corresponds to the leading order
e+e− → qgq̄ tree-level matrix element.

Another feature of the dipole cascade, which will turn out to be important
for the CKKW implementation, is that all partons are always on shell through-
out the cascade. This is possible since the recoil from the emitted parton can
be absorbed by the two emitting ones. In contrast, a conventional parton cas-
cade does not have on-shell intermediate states, and the full kinematics of an
event is not constructed until all the scales in the complete shower have been
generated. While the energy loss of the emitting partons are defined in the
splitting functions in eqs. (I.11)–(I.13), the transverse recoil is chosen accord-
ing to principles detailed in [5].

It can be noted that the “inverse” of the dipole cascade is a well-behaved
jet clustering algorithm. In fact such an algorithm has been constructed, the
DICLUS algorithm [42], based on successive clusterings of three jets into two,
using the p⊥in eq. (I.8) as resolution scale, which has been shown to have
many attractive features [43].

There are, however, also some disadvantages with the dipole cascade
model, the main one being that it only deals with gluon emissions, and the
splitting of gluons into qq̄ pairs must be added by hand, both for final-state
[44] and initial-state [35] splitting.

The initial-state splitting will be described in section I.3.4 below. Final-state
splittings are simply added as a possibility for a dipole connected to a gluon to
split this gluon into a qq̄-pair in addition to emit a gluon. Here, the standard
Altarelli–Parisi splitting function is used, divided between the two dipoles
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connected to the gluon. This will result in a new dipole splitting function,

D
qq̄
ig =

ξ

4π

(1 − x2)
2 + (1 − x3)

2

1 − x1
. (I.15)

In the original formulation, the splitting was divided equally between the two
dipoles connected to the gluon, ie. ξ = 0.5. However, in the current ARIADNE

implementation, a larger fraction is given to the smaller of the dipoles ig and
gj, hence for the ig dipole we have ξ = sgj/(sgj + sig).

Although these splitting do not come in naturally in the dipole picture,
they can be incorporated in a consistent way and the resulting implementation
in ARIADNE is probably the best model for describing both e+e− final states at
LEP [45], and DIS final states at HERA [46].

I.3.1 ARIADNE and CKKW

The ARIADNE implementation of CKKW for e+e− is described in detail in [2].
Considering the nature of the dipole cascade it may seem reasonable to use
the dipole clustering algorithm in DICLUS to construct scales, rather than using
the k⊥-algorithm. However, in the ARIADNE implementation a step further is
taken. For each partonic state generated by a MEG, all possible dipole cascade
histories are constructed, basically answering the question how would ARIADNE

have generated this state? A specific history is then picked by weighting possible
histories with the product of the corresponding dipole splitting functions. The
implementation depends on the MEG generating specific colour connections
among the partons. Although this information is not physical, it is usually
provided by MEG programs. (See discussion in ref. [47]). In principle one
could choose between all possible colour connections in the same way as dif-
ferent histories are considered, but as most MEGs supply colour information
this is not necessary.

From a MEG generated state with n additional partons, we can construct,
not only an ordered set of emission scales, p2

⊥n, p2
⊥n−1, . . . p2

⊥1, but also the cor-
responding set of intermediate states, Sn−1, Sn−2, . . . S0. As in the standard
CKKW, the reweighting with the correct scales in αs is done using just the con-
structed scales. However, the Sudakov form factors are calculated using the
fact that ∆Si

(p2
⊥i, p2

⊥i+1) exactly corresponds to the probability that no emis-
sion occurred from state Si between the scales p2

⊥i and p2
⊥i+1. Hence, letting

ARIADNE make a trial emission, starting from the state Si with p2
⊥i as the maxi-

mum scale and throwing away the MEG event if the trial emission was above
p2
⊥i+1, will exactly correspond to reweighting with the same Sudakov form

factor, ∆Si
(p2

⊥i, p2
⊥i+1), which ARIADNE would have used when generating the

event.
A special treatment is given the trial emission from the MEG generated

state, Sn. Rather than using the cutoff, p2
⊥c, from the dipole cascade, the event
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is thrown if the emission is above the cutoff used in the MEG, while if the emis-
sion is below, the emission is kept and the cascade is continued down to p2

⊥c
to produce a full ME+PS event. In addition, if n = N, the highest number of
additional partons generated from the MEG, the emission from SN is always
kept. This was not done in the original CKKW prescription, but is clearly
needed, since otherwise we would never get events with N + 1 additional par-
tons above the cutoff. In later developments of CKKW such a treatment has
been added [7, 9, 48].

I.3.2 The dipole cascade model for incoming hadrons

In contrast to conventional parton shower models, the dipole cascade model
does not separate between initial- and final-state gluon radiation. Instead,
gluons are always emitted from final-state dipoles as in the e+e− case. The
cleanest situation is in the DIS electro-production case, where the leading or-
der process is eq → eq, ie. a quark is being kicked out of a hadron. A gluon
may then be emitted from the colour-dipole between the struck quark and the
hadron remnant, using the same dipole splitting function as in the e+e− case
in eq. (I.11). There is one major difference though. In the e+e− case, both the
quark and anti-quark can be considered point-like, but in the DIS case only
the struck quark is point-like (at least up to the resolution scale, Q2, of the ex-
changed virtual photon) while the hadron remnant is an extended object with
a size of roughly one fermi. Just as for the electromagnetic case, radiation of
wavelengths much smaller than the size of the antenna is suppressed.

I.3.3 Gluon emission from an extended source

In [12] it was argued that only a fraction of the hadron remnant is effectively
taking part in the emission. For a gluon emission at the scale p2

⊥ this fraction
is given by

a(p⊥) =

(

µ

p⊥

)α

, (I.16)

where µ parameterizes the inverse size of the remnant and α reflects the di-
mensionality of the emitter. If only that fraction of the remnant momentum
is allowed to take part in the emissions, this corresponds to a sharp cut in the
allowed phase space for gluon emission, limiting the transverse momentum
mainly in the remnant direction according to

p⊥ <
Wa(p⊥)

e+y + a(p⊥)e−y . (I.17)

Here we note another major difference as compared to conventional initial-
state parton showers. From eq. (I.17) it is easy to see that the maximum scale
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is given by

p⊥max =

(

W2µα

4

)

1
2+α

, (I.18)

which may be much larger than Q2 which is used as the maximum scale in
conventional PSEGs, especially for small x values since W2 ≈ Q2/x. Since the
maximum scale is also used in the Sudakov form factors, these do not only
correspond to a standard DGLAP resummation of leading logarithms of Q2,
but in the dipole model they also resum, at least partially, logarithms of 1/x.
Note however, that there is no formal equivalence to BFKL or CCFM evolu-
tion. There is another similarity though. Even though the emissions in the
dipole model are ordered in p⊥, they are not ordered in rapidity, and con-
versely, following the emissions in rapidity from the struck quark the trans-
verse momenta of the gluons will be unordered as in BFKL and CCFM.

In the implementation in ARIADNE, the sharp cutoff in p⊥is replaced by a
smooth function, Θ(p2

⊥, y), with some power suppression for emissions violat-
ing eq. (I.17). Concentrating on the soft and collinear limits, where the split-
ting function is simply ∝ d ln p2

⊥dy, we can write the probability of emitting a
gluon as

dP(p2
⊥, y) =

4αs

3π
Θ(p2

⊥, y)∆S (W2, p2
⊥)

dp2
⊥

p2
⊥

dy (I.19)

Comparing this to the corresponding initial-state q → q splitting in a conven-
tional parton shower, (cf. eq. (I.7)) where we have

dP(Q2, z) =
4αs

3π

1

1 − z

x+
z fq( x+

z , Q2)

x+ fq(x+, Q2)
∆S(Q2

max, Q2)
dQ2

Q2
dz, (I.20)

and noting that in this limit

1

z(1 − z)

dQ2

Q2
dz =

dp2
⊥

p2
⊥

dy, (I.21)

we see that the suppression function, Θ, corresponds to the ratio of PDFs

Θ(p2
⊥, y) → z

x+
z fq( x+

z , Q2)

x+ fq(x+, Q2)
(I.22)

The fact that only a part of the remnant takes part in a gluon radiation also
means that only a fraction of it will obtain a transverse recoil in an emission.
This is handled by the addition of so-called recoil gluons and is described in
some detail in [5]. These recoil gluons will not be relevant for this report,
however they will play a role when implementing CKKW in ARIADNE for DIS
and we will come back to them in more detail in a future publication [49].
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For W production in hadronic collisions, the primary sub-process is qq̄ →
W and the initial dipole from which gluons are radiated is between the two
remnants. The model is now the same as in DIS. However, since both rem-
nants are extended, the cutoff in eq. (I.17) becomes

p⊥ <
Wa1(p⊥)a2(p⊥)

a2(p⊥)e+y + a1(p⊥)e−y , (I.23)

and the maximum scale is

p⊥max =

(

W2µα1

1 µα2
2

4

)
1

2+α1+α2

. (I.24)

Again the sharp cutoff is replaced by a power suppression of transverse mo-
menta above the limit in eq. (I.23). Rather than introducing recoil gluons to ab-
sorb the transverse recoil, we note that any emission from the primary dipole
corresponds to initial-state radiation, for which it is natural that the recoil is
taken by the W (otherwise it would not be possible to produce a W with non-
zero transverse momentum). In [13] the choice was to always transfer the
transverse recoil to the W in the first emission, while in subsequent emissions,
the recoil is only transferred if the emitted gluon is close to the W in phase
space.

I.3.4 Sea-quark emissions from remnant dipoles

Besides gluon radiation, there is also a possibility that one of the quarks fusing
into the W is a sea-quark, in which case it could have come from a perturba-
tive splitting of a gluon as in eq. (I.7). As for the final-state gluon splitting
into qq̄, this process does not come in naturally in the dipole model. Instead
it is added by hand as an explicit initial-state splitting. This procedure is de-
tailed in [35], and is based on different treatments of the remnants depending
on whether a valence- or a sea-quark entered into the primary sub-process. A
sea-quark is picked with the probability x fsq(x, Q2)/(x fsq(x, Q2) + x fvq(x, Q2))

and in this case the complex remnant containing the anti-sea-quark and the va-
lence quarks is split into a colour-singlet hadron containing the anti-sea-quark
and a simple remnant. The sharing of longitudinal momentum is inspired by
the string fragmentation function as explained in detail in [12]. A dipole con-
nected to such a remnant is now allowed to emit the anti-sea-quark in a way
similar to a standard initial-state parton shower, except that the ordering is in
transverse momentum, changing eq. (I.7) to

dP(p2
⊥ , z) = αsPg→q(z)

x+
z fg(

x+
z , p2

⊥)

x+ fq(x+, p2
⊥)

∆S(p2
⊥max, p2

⊥)
dp2

⊥
p2
⊥

dz. (I.25)
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As for the case of final-state gluon splitting, there is now in the W-production
case several competing processes which can occur in the primary dipole, and
after generating one emission of each, the one which gave the largest p⊥ is cho-
sen. If the emission of an anti-sea-quark is chosen, it will form a new dipole
with the remnant of the hadron to which it previously belonged. The trans-
verse recoil is taken by hard subsystem, just as in a standard parton shower,
where the hard subsystem in our case is the W and any other parton which
has been previously emitted.

It may seem counterintuitive that the essentially non-perturbative splitting
of the remnant is allowed to affect perturbative emissions. However, the split-
ting will mainly influence the region very close to the remnant, which is typ-
ically out of reach for current experiments. Nevertheless, we will investigate
alternative treatments in a future publication.

Emitting an anti-sea-quark means that we have now extracted a gluon from
the incoming hadron. In a standard parton shower scenario it would then be
possible to evolve this gluon backwards either with a g → g splitting or a q → g

splitting. In ARIADNE, the former is modeled by gluon emissions from either
of the two dipoles connected to the two remnants. In this case we use the same
suppression function as in eq. (I.19), but comparing to eq. (I.25) we find that it
now corresponds to the ratio of gluon densities,

Θ(p2
⊥, y) →

x+
z fg( x+

z , Q2)

x+ fg(x+, Q2)
, (I.26)

where the extra factor z in eq. (I.22) is absent since this is now included in the
gluon splitting function. The initial-state q → g splitting is not included in the
ARIADNE program, but it could in principle be added in the same way as the
sea-quark emission. Again we will investigate this in a future publication.

Clearly, the dipole model for incoming hadrons has some conceptual prob-
lems, especially when it comes to initial-state g → q splittings. However, it also
has some advantages. The first emission is quite easily modified to correctly
reproduce the leading order matrix element, both for DIS and W-production.
Also, a larger part of phase space is available for gluon emissions as com-
pared to DGLAP based initial-state parton showers. This enables ARIADNE to
reproduce small-x observables in DIS, such as the forward jet rates, where no
conventional shower succeeds. Below we shall also see that ARIADNE gives a
somewhat harder peak in the W p⊥-spectrum than conventional parton show-
ers, which we know peaks below the data measured at the Tevatron.

Now that we have explained how ARIADNE handles W-production in
hadronic collisions, we can proceed with describing how to combine it with
a fixed-order tree-level MEG. As for the e+e− case it will involve construct-
ing all possible cascade histories of a produced MEG state, the reweighting
with Sudakov form factors using a Sudakov-veto algorithm, and finally the
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reweighting with αs as well as with ratios of PDFs and the suppression func-
tion, Θ.

I.4 ARIADNE and CKKW for W production

The states delivered by a MEG contains information about the momenta,
colour connections and types of the incoming and outgoing particles in the
generated sub-process. The states are generated according to exact tree-level
matrix elements, using a fixed αs evaluated at some scale Q2

0 and weighted
by the relevant parton densities typically evaluated at the same scale. Q2

0 is
usually taken to be the cutoff scale used to regularize soft and collinear diver-
gencies.

I.4.1 Constructing the emissions

To construct a dipole cascade history of this state it is first necessary to intro-
duce the remnants so that all outgoing coloured particles from the sub-process
are connected with dipoles. This is done in the same way as for standard
ARIADNE. In figure I.1 the different possible connections of dipoles to the rem-
nants are described schematically for W-production in pp̄ collisions. We see
that if a gluon has been extracted from a baryon (lower part of figure I.1b),
there are two remnants one containing a quark connected to parton in the end
of anti-colour line of the gluon, and one di-quark connected to the end of the
colour line. Furthermore, if a sea-quark is extracted from a proton (upper part
of figure I.1a), the parton in the end of its colour line will be connected with a
di-quark remnant, while the anti-sea-quark will form a hadron together with
the remaining valence flavour, as described in section I.3.4 above. Similarly,
if an anti-sea-quark is extracted (upper part of figure I.1b), the parton in the
end of its colour line will be connected with a single quark remnant, while the
sea-quark will form a hadron together with the remaining valence flavours.
Finally if a valence quark is extracted (lower part of figure I.1a), the remnant
is a di-quark which is connected with the parton on the end of the colour line.

The construction will now proceed iteratively, with each step correspond-
ing to the inverse of an emission in the dipole cascade. All possible construc-
tions will be made, and afterwards one of them will be picked. In each of the
construction steps we must determine

• the scale of the corresponding emission;

• the value of splitting function to be used to give different weights to
different possible construction paths;

I



38 W+jets matrix elements and the dipole cascade
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Figure I.1: Different ways dipoles are connected (dashed arcs) depending on which
kind of parton is extracted from a baryon. Filled ovals corresponds to colour-singlet
hadrons, while open ovals represents coloured remnants.

• the ratio of PDFs or the value of the suppression function which would
have been used in the corresponding emission (which will be used to
reweight the events);

• and way the momentum of the emitted parton is distributed among the
emitters.

In the last point, there will usually be three partons constructed into two,
which means that the total energy and momentum is always conserved with
all partons staying on-shell. However, the orientation of the final two partons
in the rest system of the construction needs to be specified.

Some of the possible construction steps correspond to emissions from
dipoles between partons from the hard sub-process, and these are the same
as in e+e−. Then there is a group of construction steps which involve hadron
remnants, which are particular to hadronic collisions in general and to W-
production in particular. In appendix III.1 we present a complete list of all
possible construction steps

After the construction procedure we are normally left with several possible
cascade histories. Most of these will end up in a zeroth order state contain-
ing only remnants and one W with no transverse momentum. There will be
some diagrams generated by the MEG which never could have come from an
ARIADNE cascade. One example is the initial-state q → g splitting discussed
in the end of section I.3.4, in which case the constructed state is accepted any-
way. However, there are also diagrams, such as the one in figure I.2, which
could not be produced even by a conventional parton shower. In this case
the construction is stopped before reaching the zeroth order state, and this
state is then treated as a separate leading order process and the reweighting is
only applied to additional partons (similarly to the treatment in [7] mentioned
above).



I.4 ARIADNE and CKKW for W production 39

p̄

p

ū
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Figure I.2: An example of a W-strahlung diagram. Such diagrams are not modeled by
standard ARIADNE.

The resulting alternative cascade histories may or may not have an ordered
set of constructed scales. When choosing a history according to their weights
given by the products of the splitting functions, we first only consider true
ARIADNE histories with ordered scales. Only if no such histories were found,
the other histories are considered. Histories corresponding to figure I.2 will
only be considered if no full constructions are found.

I.4.2 Reweighting the events

For a given MEG state, Sn, with n additional jets, we have now constructed
a dipole cascade history with complete intermediate states, Sn, . . . , S0, and
the corresponding emission scales, p⊥n, . . . , p⊥1, and we can proceed with the
reweighting.

First we note that the MEG has used PDFs typically evaluated at the cutoff
scale, Q2

0 with x+ and x− given by the light-cone momentum fractions of the
partons, i and j, entering the hard sub-process. This should be compared with
the starting point for a normal parton cascade generation, where we just have
a qq̄′ → W sub-process, and the PDFs are evaluated at the scale m2

W and x′+
and x′− given by the corresponding momentum fractions for the q and q̄′. Our
strategy is to follow the ARIADNE cascade as closely as possible, just replacing
the product of dipole splitting function with the exact tree-level matrix ele-
ment, so to get the same starting point, we take the q and q̄′ of the state S0 and
their x′+ and x′−, and reweight the event with

ω0 =
x′+ fq(x′+, m2

W) · x′− fq̄′(x′−, m2
W)

x+ fi(x+ , Q2
0) · x− f j(x−, Q2

0)
. (I.27)

If a construction instead ended in a state such as the one in figure I.2, the

I
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corresponding incoming partons and their momentum fractions are used in-
stead with the scale given by m2

H , the squared invariant mass of the hard sub-
process.

Then we reweight with all the PDF ratios, RPDF
i , determined in the con-

struction,

ω1 =
n

∏
i=1

RPDF
i . (I.28)

This comes about since the exact tree-level ME used corresponds to the prod-
uct of splitting functions, while in a parton cascade we also have ratios of
PDFs as in eqs. (I.20) and (I.25). Depending on the emission, these ratios can
be either 1 for a final-state emission, the ratio of PDFs for the case of initial-
state q → g and g → q splittings, the suppression function Θ for an initial-state
g → g splitting and Θ/z for an initial-state q → q splitting (cf. eqs. (I.22) and
(I.26)). We note that for a conventional parton cascade, where the Θ functions
would be replaced by ratios of PDFs, the ω0 and ω1 weights would basically
cancel each other, which is why these did not show up in the procedures in [7]
and [9].

We then reweight with the correct scales in αs according to

ω2 =
∏

n
i=1 αs(p2

⊥i)

αs(Q2
0)

n
. (I.29)

Again, for the situation in figure I.2, the first two scales are taken to be m2
H .

Finally we need to reweight with the Sudakov form factors in ARIADNE.
This is done with the same Sudakov-veto algorithm as was presented in sec-
tion I.3.1. There are, however a few details which should be mentioned.

The starting scale for the trial emission from the leading order state, S0, is
given by p2

⊥max = W2/4, where W is the total invariant mass of the hadronic
collision, ie. the same as for the standard ARIADNE treatment of W production.
For the situation in figure I.2, m2

H is used instead.

If the constructed cascade history contains unordered scales, such that
p2
⊥i < p2

⊥i+1, the two corresponding emissions will be treated as a combined
emission with p2

⊥i+1 as the scale. The Sudakovs will be generated with a trial
emission from the state Si−1 with a minimum scale of p2

⊥i+1 and a trial emission
from the state Si+1 with a maximum scale of p2

⊥i+1, while there is no Sudakov
generated from the state Si.

Finally, in the trial emission from the state Sn, for n < N, when checking if
the resulting partons are above the jet cutoff used in the MEG, possible recoil
gluons are not considered. Such recoil gluons may appear in ARIADNE, but
they are typically rather soft, and including them would very often result in
the emission being below the cutoff, even if the emitted gluon is not.
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I.4.3 The full algorithm

We can now summarize the full algorithm. The way it is used below results in
weighted events. This is because of the complicated reweightings which takes
place. However, all weights are positive, and by carefully choosing the PDFs
and αs used in the MEG, it should be possible to have a vetoing procedure so
that all events end up with unit weight.

1. First the number of partons, n ≤ N, to be generated is chosen according
to the integrated tree-level matrix elements in the MEG, using a cutoff
Q2

0 in the jet resolution scale given by the longitudinally invariant k⊥-
algorithm. A fixed αs is used and the PDFs are typically sampled at the
Q2

0 scale.

2. Then the MEG is told to generate the momenta of the state with n ad-
ditional partons according to the tree-level matrix element. Since we do
not want any events below the cutoff in the dipole cascade, the invari-
ant p2

⊥ of the partons is checked, and if anyone is below p2
⊥c, the state is

rejected and the procedure is restarted at step 1.

3. Now, all the intermediate states Sn−1, . . . , S0 and scales p2
⊥n, . . . , p2

⊥1 are
constructed according to the procedure in section I.4.1, resulting in a
possible dipole shower history of the generated Sn state.

4. The event is reweighted by the weight factors given in eqs. (I.27)–(I.29).

5. We now make a trial emission with the dipole cascade from the state S0,
starting from the maximum scale p2

⊥max = W2/4. If this emission is at a
scale above p2

⊥1, the event is rejected and we restart from step 1. If not,
a trial emission is performed from the state S1 with a maximum scale
of p2

⊥1. If this emission is at a scale above p2
⊥2 the event is rejected and

we restart from step 1. This procedure is repeated for all states down
to Sn−1. If no rejection has been made, a trial emission is made from
the ME-generated state with n additional partons starting from the scale
p2
⊥n. There are now two cases

(a) If n = N the trial emission is always kept and the dipole cascade
is allowed to continue down to the cutoff p2

⊥c and the event is ac-
cepted.

(b) If n < N, and all parton pairs pass the cut, Q2
0, used in the MEG, the

event is rejected and we restart from step 1. If any of the partons fail
the cut, the trial emission is accepted and the dipole cascade is al-
lowed to continue down to the cutoff p2

⊥c and the event is accepted.

I
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I.5 Results

To test our algorithm, we have generated W++njet events, with n ≤ N = 4 with
the MADGRAPH/MADEVENT program [50] for a pp̄ collider at a total energy of
1960 GeV, ie. corresponding to the Tevatron run II. The longitudinally invariant
k⊥-algorithm was used2 to regularize the cross section, using cutoffs Ecut =

12, 22 and 50 GeV. We used the CTEQ6L [51] PDF parameterization using E2
cut

as scale. E2
cut was also used as the scale in αs. The event was generated with

unit weight and was then reweighted according to the algorithm in section
I.4.3. To avoid wildly fluctuating weights due to the ratios of PDFs, arising
from situations in which the events in MADGRAPH had large x values where
the PDF is very small, the W+ was required to have limited rapidity, |y| < 2.5,
and all partons were required to have a limited pseudorapidity, |η| < 2.5. For
the same reason, when constructing the remnants, both the valence- and sea-
quark alternatives were used with appropriate weights, rather than choosing
between the two as described in section I.3.4.

In the following we will use the notation MENPS for results from our new
algorithm using W++0,. . . ,W++N jets from MADGRAPH (the individual contri-
butions from W+ + n jets are denoted MEnNPS), while ARIADNE will denote
results obtained with the default ARIADNE treatment.

As mention above, ARIADNE by default already has a matrix element cor-
rection for the first emission in W production3. Hence, as a first test of our new
algorithm is to run it with N = 1, in which case we should get the same result
as the standard default ARIADNE. In fact, had the construction procedure been
exact, the results would be exactly the same. Of course, the construction can
never be really exact, but for only one additional jet it is fairly close.

In figure I.3 we show the p⊥ spectrum of the W+ for the new algorithm
with N = 1, ME1PS, compared to default ARIADNE. Clearly the agreement is
very good. In particular we note that there is no significant discontinuity or
other strange behaviors around the different cutoffs used. This agreement is
not trivial, since the ME1PS curve is a sum of W++0 and W++1 jet event from
MADGRAPH. The fact that there is a small contribution of W++0 event above
the cutoff (and vice versa, some W++1 events below the cutoff) is an effect
of the added cascade. The effect of the cutoffs is not completely invisible,
however, as is clear in figure I.3d, where we enhance the effect by showing the
ratio of p⊥-spectra of ME1PS and ARIADNE for the different cutoffs.

We can now proceed with some confidence to investigate our new algo-
rithm also for higher parton multiplicities in the MEG. Here we will, of course,
expect differences w.r.t. ARIADNE. These differences would be the ones de-

2Using MODE=4211 in the KTCLUS program [41].
3In fact we discovered a small bug in the default ARIADNE treatment, related to a mismatch

between the invariant p⊥and the actual transverse momentum in gluon emissions. This bug has
been fixed in the latest release of ARIADNE.
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Figure I.3: Differential cross section as a function of transverse momentum of the W
for standard ARIADNE compared to the first order matrix element correction for the
different cutoffs (a) 12 GeV, (b) 22 GeV and (c) 50 GeV. In all cases the full line is stan-
dard ARIADNE while the error bars shows the results from ME1PS. The long-dashed
and short-dashed lines indicate the contributions from W+0jet and W+1jet matrix ele-
ments to ME1PS respectively. Plot (d) shows the ratio between the ME1PS distributions
and standard ARIADNE for cutoffs of 12 GeV (full line), 22 GeV (long-dashed line) and
50 GeV (short-dashed line).

sired from replacement of the products of splitting functions with the exact
tree-level matrix elements, and also from the additional processes not present
in the dipole cascade, such as the one in figure I.2. For small scales, these dif-
ferences should be small and we would still like to have a smooth behavior
of any observable sensitive to the cutoff used in MADGRAPH, at least for small
enough Ecut. There may also be differences arising from deficiencies in our
algorithm, since there are now additional construction steps possible.

In figure I.4a we again show the W+ p⊥ spectrum, but now using ME4PS
and comparing with ARIADNE and also with the default PYTHIA parton shower
(which also includes a tree-level matrix element correction for the first emis-
sion). We find that there is now an increase at large p⊥ for the ME4PS case,
which is attributed to the desired higher-order effects. We note that there is
still no dramatic discontinuity around the cutoff.

I
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Figure I.4: (a) Differential cross section as a function of transverse momentum of the
W for standard ARIADNE (full line), ARIADNE with up to fourth order matrix element
corrections (error bars) and PYTHIA with intrinsic transverse momentum of 〈k2

⊥〉 =

1 GeV2 (short-dashed line). (b) is the same concentrating on the small p⊥W region,
where also PYTHIA with intrinsic transverse momentum of 〈k2

⊥〉 = 4 GeV2 is shown
(dotted line).

There is distinct difference in the small-p⊥ behavior for the PYTHIA dis-
tribution. The peak in PYTHIA is shifted towards smaller p⊥, as compared
to ARIADNE, with or without the new matching algorithm. This is a known
problem with PYTHIA, which need an uncomfortably large intrinsic transverse
momentum of the proton to reproduce data. This is shown in more detail in
figure I.4b where we focus on the small-p⊥ part of the spectrum and where we
have two curves for PYTHIA, one with an average squared intrinsic transverse
momentum, 〈k2

⊥i〉, of 1 GeV2 and one with 4 GeV2. Note that also ARIADNE has
an intrinsic transverse momentum, but this is at a typical non-perturbative
value of 〈k2

⊥i〉 = 0.36 GeV2, but the increased possibility of radiating gluons in
the dipole cascade, especially in the direction of the remnants, will give the
slightly harder p⊥ spectrum. From reference [52] we know that PYTHIA can
only describe data with the higher intrinsic transverse momentum4, which is
quite close to ARIADNE5 in figure I.4. Also other DGLAP-based parton show-
ers need a high intrinsic transverse momentum to describe Tevatron data
(HERWIG: 〈k2

⊥〉 ≈ 2.6 GeV2 [53], APACIC++/SHERPA6: 〈k2
⊥〉 ≈ 1.3 GeV2 [7]), al-

though not as high as PYTHIA, a value above one GeV2 is needed and well
above what is required in ARIADNE.

There is still a difference in shape and with the increased statistics collected
in Tevatron Run II, it may be possible to distinguish between the two.

4In later PYTHIA releases the higher value is the default.
5We have not compared directly with Tevatron results here due to uncertainties about the

corrections made to the data.
6APACIC++/SHERPA uses a Gaussian distribution with a width of 0.8 GeV, but centered around

0.8 GeV, while the other programs use a Gaussian centered around zero.
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Figure I.5: Differential cross section as a function of the scale where the jets merge in
the k⊥-algorithm, where di denotes the scale when i jets merge into i − 1 jets. Figures
(a), (b), (c) and (d) shows d1, d2, d3 and d4 respectively. In all cases the error bars show
the results from ARIADNE corrected with up to fourth order matrix elements (ME4PS),
while the contributions from W+0jet, W+1jet,. . . , W+4jets matrix elements are shown
with long-dashed, short-dashed, dotted, lond-dash-dotted and sort-dash-dotted lines
respectively. Also shown are the results from standard ARIADNE (full line).

Next we want to check the cutoff sensitivity also for higher jet rates. We do
that by taking the final events on parton level and cluster them with the same
k⊥-algorithm which was used for the regularization in MADGRAPH, and then
look at what value of the resolution variable, dn, an event is clustered from
n-jets to n − 1-jets. In figure I.5 we show such distributions for n = 1, 2, 3 and
4 for Ecut = 12 GeV, where d3 and d4 are only plotted for values up to 50 GeV

due to limited statistics. We also show the individual contributions from dif-
ferent parton multiplicities delivered by MADGRAPH. We see that there is a
clear difference between ME4PS and ARIADNE for large dn values, which is ex-
pected from the improved treatment of events with several hard jets. We note
that there is a rather smooth transition across Ecut. In figure I.6 we also show
results for Ecut = 22 and 50 GeV, now presented as ratios between ME4PS and
ARIADNE. As expected we here see more clearly where the new matrix ele-
ment treatment sets in above Ecut. In figure I.6 we also show the ratio between

I
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Figure I.6: Distributions in jet merging scales, di, given as ratios w.r.t. standard
ARIADNE. Figures (a), (b), (c) and (d) shows d1, d2, d3 and d4 respectively. The ME-
corrected ARIADNE (ME4PS) is shown for cutoffs of 12 GeV (error bars), 22 GeV (long-
dashed line) and 50 GeV (short-dashed line). Also shown is the results for PYTHIA

(dotted line).

PYTHIA and ARIADNE and we find that, as compared to the effects of the matrix
element corrections, the difference between the two cascades is small.

Next we want to see if the features of the ARIADNE resummation are re-
flected in our new algorithm. As noted before, the emission of gluons are
allowed in a larger phase space region in ARIADNE as compared to a conven-
tional PSEG, hence the no-emission probabilities should be affected. Also, in
a conventional DGLAP-based initial-state PSEG, the parton closest to the W
is also the hardest one. This is not the case for ARIADNE where, effectively,
contributions of emissions with lower p⊥ between the hardest parton and the
W is taken into account, as illustrated in figure I.7a. Possible BFKL effects in
similar situations has previously been investigated in [54]. One observable
which may be sensitive to this difference is the pseudorapidity difference be-
tween the W and a jet, ∆ηWj, which then should be enhanced for large ∆ηWj

in ARIADNE as compared to PYTHIA. This is also the case as shown in figure
I.7b. Of course, the exact tree-level matrix element will also contain contribu-
tions such as the one in I.7a, and we see that the enhancement at large ∆ηWj is
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Figure I.7: Part (a) shows a typical diagram contributing to the pseudorapidity differ-
ence between the W and the hardest jet. Diagrams with soft jets between the W and
the hardest jet can not be generated through DGLAP evolution, but are included in
the matrix element corrections. Plot (b) is a normalized distribution of the difference
in pseudorapidity between the hardest jet and the W, where the jet is defined using
the k⊥-algorithm with a 12 GeV cutoff and the hardest jet has a transverse momentum
greater than 40 GeV. The distribution is shown for ARIADNE (full line), PYTHIA (dot-
ted line), and ME4PS with a 12 GeV and 50 GeV cutoff (long- and short-dashed lines
respectively).

even more significant, when ME corrections are added to ARIADNE with low
enough cutoff. For higher cutoffs there will, of course, be much fewer events
of this type generated by the MEG. It would be interesting to see if includ-
ing CKKW corrections also in PYTHIA would bring it closer to ARIADNE and
ME4PS. This could be expected since including higher order corrections could
in the end make things more insensitive to the particular kind of resummation
used.

One of the advantages of the matrix element corrections is that correlations
between hard partons are more accurately described. This may be important
when eg. estimating backgrounds to different searches. We will here consider
the background to top production at the Tevatron for the semi-leptonic chan-
nel which corresponds to W+4-jets. In a realistic top search one would use
identified b-jets, but since our MADGRAPH events do not include b-quarks we
look at W+4-jets in general.

In figure I.8 we show the W+4-jets background to the top-mass distribution.
We obtained it by using the k⊥-algorithm to cluster four jets and required that
the jet scale was above 12 GeV. Form these we found the two jets j1 and j2 with
an invariant mass m12 closest to the W mass. If no jets with |m12 − mW| < 20 GeV

were found, the event was rejected. Then we selected a third jet, j3, so that the
difference |m123 − mW4| was minimized, where m123 is the invariant mass of jets
1, 2 and 3, and mW4 is the invariant mass of the W+and jet 4. If the difference

I
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Figure I.8: The normalized differential cross section given as a function of the re-
constructed top quark mass for ARIADNE (full line), PYTHIA (short-dashed line), and
ME4PS with 12 GeV cutoff (long-dashed with error bars). Also shown is the results
from the pure tree-level matrix element without parton showers added using a 12 GeV
cutoff (dotted line).

|m123 − mW4| < 20 GeV then the event was accepted and the constructed top
mass is defined as the average of m123 and mW4. Clearly the total cross sec-
tion would be underestimated by the leading-order predictions of PYTHIA and
ARIADNE. In figure I.8 we therefore only show the normalized shape and find
that PYTHIA and ARIADNE are quite similar and that no significant change is
introduced by the matrix element correction to ARIADNE. We also show the re-
sult from using the tree-level 4-jet matrix elements directly, without reweight-
ing and adding a cascade. We find no large differences, although there is a
tendency for the parton shower results to overshoot the pure matrix element
result for small mt and undershoot for large mt. We also see that ARIADNE with
matrix element corrections agree with the pure matrix elements for large mt,
while for small mt it is slightly closer to the parton shower results.

To focus more specifically on angular correlations, we finally look at the
azimuthal angle between the two hardest jets, φ12. This observable is impor-
tant for understanding how higher order emissions influence the transverse
momentum of the W, p⊥W. For φ12 ∼ π, the emission of a second jet decreases
the p⊥W, while for φ12 ∼ 0 the p⊥W is increased. In ARIADNE, after a first emis-
sion of a gluon, a second gluon will be radiated isotropically in azimuth in the
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Figure I.9: Normalized distribution of the azimuthal angle difference between the two
hardest jets defined using the k⊥-algorithm with a 12 GeV cutoff. The distribution is
shown with standard ARIADNE (full line), PYTHIA (short-dashed line), and ME4PS with
12 GeV cutoff (error bars).

rest system of the radiating dipole. Since this dipole is boosted in the direc-
tion of the first gluon, we expect that the second gluon is more likely to go in
the same direction. This is not true for PYTHIA, where successive initial-state
emissions are uncorrelated in azimuth (with the recoils, the net effect is a bias
towards large φ12). In figure I.9 we see the (normalized) φ12 distributions, and
indeed we find that ARIADNE is more biased towards φ12 ∼ 0. Adding matrix
element corrections removes this bias and brings the distribution closer to the
PYTHIA result. Hence this indicates that the azimuthal correlations in standard
ARIADNE are not very well modeled.

I.6 Conclusions

We have presented a way to implement a CKKW procedure for combining
events generated according to tree-level matrix elements for W-production
with the dipole cascade of ARIADNE. Although the basic principles are fairly
simple, the details of our procedure is rather involved, which is mandated by
our aim to become as insensitive as possible to the cutoff needed in the matrix
element generation.

Our strategy is to take any partonic state generated by a MEG and try to

I
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find a likely history of emissions which ARIADNE would have performed in
order to generate this state. Rather than just using the constructed emission
scales to calculate analytic Sudakov form factors to reweight the states, as is
done in the original CKKW procedure, we find exactly the Sudakov form fac-
tors ARIADNE would have used. In addition we reweight the states with the
parton densities functions and the so-called soft suppression function which
ARIADNE would have used.

The PDF reweighting means that the overall normalization of cross sec-
tions are still given by the leading order diagrams used by standard ARIADNE.
However, we expect an improvement of the shapes of final state distributions
as compared to the standard parton shower description.

We have presented several investigations into how the ARIADNE program
is improved by adding matrix element corrections. In some cases we also
compared to the PYTHIA parton shower to get some insight into how well these
standard cascade programs reproduces higher order matrix elements.

In one case we looked at the azimuthal correlation between the two hard-
est jets, and found that the difference between ARIADNE and PYTHIA was large.
When corrected with matrix elements, ARIADNE came much closer to PYTHIA,
indicating that such azimuthal correlations are not handled very well in stan-
dard ARIADNE.

In our quasi-realistic top-background observable we found that ARIADNE

and PYTHIA were quite close and that no drastic effect was obtained by includ-
ing matrix element corrections.

For the W–jet rapidity correlation we again found clear differences between
ARIADNE and PYTHIA, and that these were even enhanced when correcting
ARIADNE with matrix elements. This indicates that such correlations are not
very well described by PYTHIA, while standard ARIADNE does a better job,
although it can be improved.

We believe that the rapidity correlations indicate that non-ordered evolu-
tion is of importance for W-production at the Tevatron. Such evolution is ex-
pected to be important in small-x processes, and the fact that it shows up here,
where x ∼ mW/

√
S ≈ 0.04, may be somewhat surprising. We also believe that

the inclusion of non-ordered evolution is why ARIADNE is able to reproduce
experimental data on the small-p⊥-distribution of the W and Z0, distributions
which can only be described by PYTHIA if an uncomfortably large intrinsic
transverse momentum is added.

The fact that matrix element corrections can give us hints about where un-
ordered evolutions may become important, is an indication that it would be
very interesting to implement CKKW also for DIS7 and compare with HERA
data. Also, at the LHC where W-production may be argued to be a true small-x

process (x ∼ mW/
√

S <∼ 0.006), it should be interesting to study matrix element

7Preliminary results for DIS have already been presented in [55].
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Figure I.10: Symbolic pictures of possible steps which are possible when constructing
possible intermediate partonic states from events generated by a MEG. The different
possibilities are described in the text. The dashed lines indicate colour-connections.

corrections. In fact also Higgs production at the LHC may be considered to be
a small-x process. We will come back to these processes in future publications.
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I.A Construction

Here we describe in some detail the different kinds of steps possible when
constructing intermediate partonic states from events generated by a MEG. In
figure I.10 the different steps are shown schematically.

(a) p1−g2− p3 −→ p1− p3: A gluon, colour-connected to two non-remnant
partons, p1 and p3, is constructed to a single dipole between p1 and p3.
The splitting function is given by one of eqs. (I.11) – (I.13) depending
on whether p1 and p3 are gluons or quarks. The scale is given by the

I
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invariant p⊥ in eq. (I.8). No PDF ratio is relevant. In the rest frame of
the construction, p1 will retain its direction if it is a gluon and p3 is a
quark, and vice versa. If both p1 and p3 are gluons or both are quarks,
the direction of p1 is rotated away from the original p3 direction with
an angle βx2

1/(x2
1 + x2

3), where β is the original angle between p1 and p3.
This corresponds to the standard recoil treatment for gluon emission in
ARIADNE.

(b) p1−q2 q̄3 −→ p1−g. A qq̄-pair is constructed into a gluon as long as
they are each others anti-particles, are connected to different strings, and
the end-points of these strings are not remnants of the same incoming
hadron. The splitting function is given by eq. (I.15). The scale is given
by the invariant p⊥ in eq. (I.8). No PDF ratio is relevant. In the rest
system of the construction, p1 will retain its direction.

(c) p1−g2−r3 −→ p1−r3: A gluon, colour-connected to one remnant, r3 and
one non-remnant parton, p1, is constructed to a single dipole between p1

and r3. The splitting function is given by eqs. (I.11) or (I.12) depending
on whether p1 is a quark or a gluon. If r3 is one of two remnants of the
same hadron (this corresponds to an extracted gluon), the PDF ratio is
taken to be Θ, otherwise it is Θ/z. If a W is present in the event and it is
close to g2, the transverse momentum of the gluon in the center of mass
system of p1 and r3 is given to the W, and the longitudinal momentum is
absorbed by p1 and r3. The scale is given by the invariant p⊥ in eq. (I.8)
(calculated as if no W was close, ie. the transverse momenta of the gluon
is transfered to p1 and r3 with the weight x2

i /(x2
1 + x2

3)). Here close means
that p+g < p+W and p−g < p−W, where p±W is calculated for the con-
structed W momenta. If there is no W close by the momentum of the
gluon is shared by p1 and r3, where r3 retains its direction. The scale is
given by the invariant p⊥.

(d) r1−g2−r3 −→ r1−r3: A gluon connected to two remnants, one from each
incoming hadron, is constructed to a single dipole between the rem-
nants. The splitting function is given by eqs. (I.11). When calculating the
scale a fraction x2

i /(x2
1 + x2

3) of the transverse momenta from the gluon is
transfered to each of the remnants and the scale is given by the invari-
ant p⊥ in eq. (I.8). The PDF ratio is given by the product of the Θ on
each side, divided by z if the corresponding remnant is not one of two
remnants of the same hadron. The transverse momentum of the gluon is
transfered to the W if one is present, otherwise it is transfered to the hard
subsystem containing the rest of the non-remnant partons in the event.
The longitudinal momentum is divided between r1 and r3.

(e) H1 r′3 q2−r3 −→ H1 r′3 h3: This corresponds to the inverse of an initial-
sate g → q splitting. For a quark, q2, connected to a remnant, r3, and
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a hard subsystem, H1 (which contains the W if present), connected to
another remnant, r′3, from the same incoming hadron and arising from
the extraction of a corresponding anti-quark, q̄′, a hadron, h3, is formed
from q2 and r3. The splitting function is the standard Altarelli–Parisi
one, Pg→q(z). The scale is the squared transverse momentum of q2 in the
rest frame of the event. The PDF ratio is the same as would have been
used in a conventional parton shower. The transverse momentum of q2

is transfered to H1, and the longitudinal momentum is shared between
H1, r′3 and h3. The relative sharing of longitudinal momenta between r′3
and h3 is the same as for the original r′3 and r3.

(f) H1 q2 r3 (h3) −→ H1 r3 r′3: A quark, q2, which may have been extracted
from a hadron resulting in a remnant r3 may be absorbed into a the
remnant, constructing an initial-state q → g splitting. The remnant is
split into two, possibly together with a remnant hadron, h3, if q2 was
a sea-quark. The splitting function is the standard Altarelli–Parisi one,
Pq→g(z). The scale is the squared transverse momentum of q2 in the rest
frame of the event. The PDF ratio is the same as would have been used in
a conventional parton shower. The transverse momentum of q2 is trans-
fered to the spectator hard subsystem, H1, and the longitudinal momen-
tum is shared between H1, r3 and r′3. The relative sharing of longitudinal
momenta between r3 and r′3 is the same as for the original r3 and h3 if
h3 was present, otherwise the momenta is shared as is normally done in
ARIADNE when a gluon is extracted from a hadron. Note that there is no
corresponding emission in ARIADNE.

I
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II.1 Introduction

One of the most striking features of LHC final states will be the large num-
ber of events with several hard jets. Final states with 6 jets from tt̄ decays
will have a rate of almost 1 Hz, with 10-100 times more coming from prompt
QCD processes. The immense amount of available phase space, and the large
acceptance of the detectors, with calorimeters covering a region of almost 10
units of pseudo-rapidity (η), will lead to production and identification of final
states with 10 or more jets. These events will hide or strongly modify all pos-
sible signals of new physics, which involve the chain decay of heavy coloured
particles, such as squarks, gluinos or the heavier partners of the top, which
appear in little-Higgs models. Being able to predict their features is therefore
essential.

To achieve this, our calculations need to describe as accurately as possible
both the full matrix elements for the underlying hard processes, as well as the
subsequent development of the hard partons into jets of hadrons. However,
for the complex final-state topologies we are interested in, no factorization
theorem exists to rigorously separate these two components. The main obsta-
cle is the existence of several hard scales, like the jet transverse energies and
di-jet invariant masses, which for a generic multi-jet event will span a wide
range. This makes it difficult to unambiguously separate the components of
the event, which belong to the “hard process” (to be calculated using a multi-
parton amplitude) from those developing during its evolution (described by
the parton shower). A given (n + 1)-jet event can be obtained in two ways:
from the collinear/soft-radiation evolution of an appropriate (n + 1)-parton
final state, or from an n-parton configuration where hard, large-angle emis-
sion during its evolution leads to the extra jet. A factorization prescription (in
this context this is often called a “matching scheme” or “merging scheme”)
defines, on an event-by-event basis, which of the two paths should be fol-
lowed. The primary goal of a merging scheme is therefore to avoid double
counting (by preventing some events to appear twice, once for each path), as
well as dead regions (by ensuring that each configuration is generated by at
least one of the allowed paths). Furthermore, a good merging scheme will
optimize the choice of the path, using the one, which guarantees the best pos-
sible approximation to a given kinematics. It is possible to consider there-
fore different merging schemes, all avoiding the double counting and dead
regions, but leading to different results in view of the different ways the cal-
culation is distributed between the matrix element and the shower evolution.
As in any factorization scheme, the physics is independent of the separation
between phases only if we have complete control over the perturbative ex-
pansion. Otherwise a residual scheme-dependence is left. Exploring different
merging schemes is therefore crucial to assess the systematic uncertainties of
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multi-jet calculations.

In this work we present a comprehensive comparison, for W plus multijet
production, of three merging approaches: the CKKW scheme, the Lönnblad
scheme, and the MLM scheme. Our investigation is an evolution and ex-
tension of the work in [1], where Mrenna and Richardson presented imple-
mentations of CKKW for HERWIG and the so-called pseudo-shower alterna-
tive to CKKW using PYTHIA, as well as the results of an approach inspired
by the MLM-scheme. Our work considers the predictions of five different
codes, ALPGEN, ARIADNE, HELAC, MADEVENT and SHERPA. ALPGEN imple-
ments the MLM scheme, and the results shown here are obtained with the
HERWIG shower; ARIADNE the Lönnblad scheme; HELAC the MLM scheme,
but will show results with the PYTHIA shower; MADEVENT uses a variant of
the MLM scheme, based on the CKKW parametrization of the multiparton
phase-space; SHERPA, finally, implements the CKKW scheme. This list of codes
therefore covers a broad spectrum of alternative approaches and, in particu-
lar, includes all the programs used as reference event generators for multijet
production by the Tevatron and LHC experimental collaborations; for those,
we show results relative to publically available versions, therefore providing
valuable information on the systematics involved in the generation of mul-
tijet configurations by the experiments. A preliminary study, limited to the
ALPGEN, ARIADNE and SHERPA codes, was presented in [2].

While [1] devoted a large effort to discussing the internal consistency and
validation of the meging schemes, we refer for these more technical aspects
to the papers documenting the individual implementations of the meging al-
gorithms in the codes we use [3–7], and we shall limit ourselves here to a
short review of each implementation. We concentrate instead on comparisons
among physical observables, such as cross sections or jet distributions, which
we study for both the Tevatron and the LHC. The main goal is not an anatomy
of the origin of possible differences, but rather the illustration of their features
and their size, to provide the experimentalists with a quantitative picture of
systematics associated to the use of these codes. We furthermore verify that,
with only a few noteworthy exceptions, the differences among the results of
the various codes are comparable in size with the intrinsic systematics of each
approach, and therefore consistent with a leading-logarithmic level of accu-
racy. The quantaties we present correspond to experimental observables and
the differences between the predictions of the various codes that we present
could therefore be resolved by comparing with data.

We begin the paper with a short review of the merging prescriptions and
of their implementations in the 5 codes. We then introduce the observables
considered for this study, and present detailed numerical results for both the
Tevatron and the LHC. We then provide with an assessment of the individual
systematics of each code, and a general discusison of our findings.

II
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II.2 Merging procedures

In general, the different merging procedures follow a similar strategy:

1. A jet measure is defined and all relevant cross sections including jets are
calculated for the process under consideration. I.e. for the production of
a final state X in pp-collisions, the cross sections for the processes pp →
X + n jets with n = 0, 1, . . . , N = nmax are evaluated.

2. Hard parton samples are produced with a probability proportional to
the respective total cross section, in a corresponding kinematic configu-
ration following the matrix element.

3. The individual configurations are accepted or rejected with a dynamical,
kinematics-dependent probability that includes both effects of running
coupling constants and of Sudakov form factors. In case the event is
rejected, step 2 is repeated, i.e. a new parton sample is selected, possibly
with a new number of jets.

4. The parton shower is invoked with suitable initial conditions for each of
the legs. In some cases, like, e.g. in the MLM procedure described be-
low, this step is performed together with the step before, i.e. the accep-
tance/rejection of the jet configuration. In all cases the parton shower is
constrained not to produce any extra jet; stated in other words: config-
urations that would fall into the realm of matrix elements with a higher
jet multiplicity are vetoed in the parton shower step.

The merging procedures discussed below differ mainly

• in the jet definition used in the matrix elements;

• in the way the acceptance/rejection of jet configurations stemming from
the matrix element is performed;

• and in details concerning the starting conditions of and the jet vetoing
inside the parton showering.

II.2.1 CKKW

The merging prescription proposed in [8, 9] is known as the CKKW scheme
and has been implemented in the event generator SHERPA [10] in full general-
ity [11].

In this scheme

• the separation of the matrix-element and parton-shower domains for
different multi-jet processes is achieved through a k⊥-measure [12–14],
where k⊥0 denotes the internal separation cut, also called the merging
scale;

• the acceptance/rejection of jet configurations proceeds through a
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reweighting of the matrix elements with analytical Sudakov form fac-
tors and factors due to different scales in αs;

• the starting scale for the parton shower evolution of each parton is given
by the scale where it appeared first;

• a vetoed parton-shower algorithm is used to guarantee that no un-
wanted hard jets are produced during jet evolution.

In the original paper dealing with e+e− annihilations into hadrons, [8],
it has been shown explicitly that in this approach the dependence on k⊥0

cancels to NLL accuracy. This can be achieved by combining the Sudakov-
reweigthed matrix elements with a vetoed parton shower with angular order-
ing, subjected to appropriate starting conditions. The algorithm for the case
of hadron–hadron collisions has been constructed in analogy to the e+e− case.
However, it should be stressed that it has not been shown that the CKKW
algorithm is correct at any logarithmic order in this kind of process.

For hadron-hadron collisions, the internal jet identification of the SHERPA-
merging approach proceeds through a k⊥-scheme, which defines two final-
state particles to belong to two different jets, if their relative transverse mo-
mentum squared

k2
⊥ij = 2 min

{

p⊥i, p⊥j

}2

[

cosh(ηi − ηj) − cos(φi − φj)
]

D2
(II.1)

is larger than the critical value k2
⊥0. In addition, the transverse momentum of

each jet has to be larger than the merging scale k⊥0. The magnitude D, which
is of order 1, is a parameter of the jet algorithm [15]. In order to completely
rely on matrix elements for jet production allowed by the external analysis, the
internal D should be chosen less than or equal to the D-parameter or, in case
of a cone-jet algorithm, the R-parameter employed by the external analysis.

The weight attached to the generated matrix elements consists of two com-
ponents, a strong-coupling weight and an analytical Sudakov form-factor
weight. For their determination, a k⊥-jet clustering algorithm guided by
only physically allowed parton combinations is applied on the initial matrix-
element configurations. The identified nodal k⊥-values are taken as scales in
the strong-coupling constants and replace the predefined choice in the initial
generation. The Sudakov weight attached to the matrix elements accounts for
having no further radiation resolveable at k⊥0. The NLL-Sudakov form factors
employed, cf. [12], are defined by

∆q(Q, Q0) = exp







−
Q
∫

Q0

dq Γq(Q, q)







,
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∆g(Q, Q0) = exp







−
Q
∫

Q0

dq
[

Γg(Q, q) + Γ f (q)
]







, (II.2)

where Γq,g, f are the integrated splitting functions q → qg, g → gg and g → qq̄,
which are given through

Γq(Q, q) =
2CF

π

αs(q)

q

(

ln
Q

q
− 3

4

)

, (II.3)

Γg(Q, q) =
2CA

π

αs(q)

q

(

ln
Q

q
− 11

12

)

, (II.4)

Γ f (q) =
N f

3π

αs(q)

q
. (II.5)

They contain the running coupling constant and the two leading, logarith-
mically enhanced terms in the limit Q0 ≪ Q. The single logarithmic terms
−3/4 and −11/12 may spoil an interpretation of the NLL-Sudakov form factor
as a non-branching probability. Therefore, Γ(Q, q) is cut off at zero, such that
∆q,g(Q, Q0) retains its property to define the probability for having no emis-
sion resolvable at scale Q0 during the evolution from Q to Q0. These factors
are used to reweight in accordance to the appearance of external parton lines.
A ratio of two Sudakov form factors ∆(Q, Q0)/∆(q, Q0) accounts for the prob-
ability of having no emission resolvable at Q0 during the evolution from Q

to q. Hence, it is employed for the reweighting according to internal parton
lines. The lower limit is taken to be Q0 = k⊥0 or Q0 = D k⊥0 for partons that are
clustered to a beam or to another final state parton, respectively.

The sequence of clusterings, stopped after the eventual identification of a
2 → 2 configuration (the core process), is used to reweight the matrix element.
Moreover, this also gives a shower history, whereas the 2 → 2 core process
defines the starting conditions for the vetoed shower. For the example of an
identified pure QCD 2 → 2 core process, the four parton lines left as a result of
the completed clustering will start their evolution at the corresponding hard
scale. Subsequently, additional radiation is emitted from each leg by evolving
under the constraint that any emission harder than the separation cut k⊥0 is
vetoed. The starting scale of each leg is given by the invariant mass of the
mother parton belonging to the identified QCD splitting, through which the
considered parton has been initially formed.

Finally, it should be noted that the algorithm implemented in SHERPA does
the merging of the sequence of processes pp → X + n jets with n = 0, 1, . . . , N

fully automatically – the user is not required to generate the samples sepa-
rately and mix them by hand.
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II.2.2 The dipole cascade and CKKW

The merging prescription developed for the dipole cascade in the ARIADNE

program [16] is similar to CKKW, but differs in the way the shower history
is constructed, and in the way the Sudakov form factors are calculated. Also,
since the ARIADNE cascade is ordered in transverse momentum the treatment
of starting scales is simplified. Before going into details of the merging pre-
scription, it is useful to describe some details of the dipole cascade, since it is
quite different from conventional parton showers.

The dipole model [17,18] as implemented in the ARIADNE program is based
around iterating 2 → 3 partonic splittings instead of the usual 1 → 2 partonic
splittings in a conventional parton shower. Gluon emission is modeled as
coherent radiation from colour–anti-colour charged parton pairs. This has the
advantage of eg. including first order corrections to the matrix elements for
e+e− → qq̄ in a natural way and it also automatically includes the coherence
effects modeled by angular ordering in conventional showers. The process of
quark–anti-quark production does not come in as naturally, but can be added
[19]. The emissions in the dipole cascade are ordered according to an invariant
transverse momentum defined as

q2
⊥ =

s12s23

s123
, (II.6)

where sij is the squared invariant mass of parton i and j, with the emitted
parton having index 2.

When applied to hadronic collisions, the dipole model does not separate
between initial- and final-state gluon radiation. Instead all gluon emissions
are treated as coming from final-state dipoles [20,21]. To be able to extend the
dipole model to hadron collisions, spatially extended coloured objects are in-
troduced to model the hadron remnants. Dipoles involving hadron remnants
are treated in a similar manner to the normal final-state dipoles. However,
since the hadron remnant is considered to be an extended object, emissions
with small wavelength are suppressed. This is modeled by only allowing a
fraction of the remnant to take part in the emission. The fraction that is re-
solved during the emission is given by

a(q⊥) =

(

µ

q⊥

)α

, (II.7)

where µ is the inverse size of the remnant and α is the dimensionality. These
are semi-classical parameters, which have no correspondence in conventional
parton cascades, where instead a suppression is obtained by ratios of quark
densities in the backward evolution. The main effect is that the dipole cas-
cade allows for harder gluon emissions in the beam directions, enabling it to
describe properly eg. forward jet rates measured at HERA (see eg. [22]).
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There are two additional forms of emissions, which need to be included in
the case of hadronic collisions. One corresponds to an initial state g → qq̄ [23].
This does not come in naturally in the dipole model, but is added by hand in
a way similar to that of a conventional initial-state parton shower [23]. The
other corresponds to the initial-state q → gq (with the gluon entering into the
hard sub-process), which could be added in a similar way, but this has not yet
been implemented in ARIADNE.

When implementing CKKW for the dipole cascade [6, 24], the procedure
is slightly different from what has been described above. Rather than using
the standard k⊥-algorithm to cluster the state produced by the matrix-element
generator, a complete set of intermediate partonic states, Si, and the corre-
sponding emission scales, q⊥i are constructed, which correspond to a complete
dipole shower history. Hence, for each state produced by the matrix-element
generator, basically the question how would ARIADNE have generated this state
is answered. Note, however, that this means that only coloured particles are
clustered, which differs from eg. SHERPA, where also the W and its decay prod-
ucts are involved in the clustering.

The Sudakov form factors are then introduced using the Sudakov veto al-
gorithm. The idea is that we want to reproduce the Sudakov form factors
used in ARIADNE. This is done by performing a trial emission starting from
each intermediate state Si with q⊥i as a starting scale. If the emitted parton
has a q⊥ higher than q⊥i+1 the state is rejected. This correspond to keeping the
state according to the no-emission probability in ARIADNE, which is exactly
the Sudakov form factor.

It should be noted that for initial-state showers, there are two alternative
ways of defining the Sudakov form factor. The definition in eq. (IV.3) is used
in eg. HERWIG [25], while eg. PYTHIA [26, 27] uses a form, which explicitly in-
cludes ratios of parton densities. Although formally equivalent to leading log-
arithmic accuracy, only the latter corresponds exactly to a no-emission prob-
ability, and this is the one generated by the Sudakov veto algorithm. This,
however, also means that the constructed emissions in this case need not only
be reweighted by the running αs as in the standard CKKW procedure above,
but also with ratios of parton densities, which in the case of gluon emissions
correspond to the suppression due to the extended remnants in eq. (II.7) as
explained in more detail in [6], where the complete algorithm is presented.

II.2.3 The MLM procedure

The so-called MLM “matching” algorithm is described below.

1. The first step is the generation of parton-level configurations for all final-
state parton multiplicities n up to a given N (W + N partons). They are
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defined by the following kinematical cuts:

p
part
⊥ > pmin

⊥ , |ηpart| < ηmax , ∆Rjj > Rmin , (II.8)

where p
part
⊥ and ηpart are the transverse momentum and pseudo-rapidity

of the final-state partons, and ∆Rjj is their minimal separation in the (η, φ)

plane. The parameters pmin
⊥ , ηmax and Rmin are called generation param-

eters, and are the same for all n = 1, . . . , N.

2. The renormalization scale is set according to the CKKW prescription.
The necessary tree branching structure is defined for each event, allow-
ing however only for branchings, which are consistent with the colour
structure of the event, which in ALPGEN is extracted from the matrix-
element calculation [28]. For a pair of final-state partons i and j, we use
the k⊥-measure defined by

dij = ∆R2
ij min(p2

⊥i, p2
⊥j) , (II.9)

where ∆R2
ij = ∆η2

ij + ∆φ2
ij, while for a pair of initial/final-state partons we

have

dij = p2
⊥, (II.10)

i.e. the p2
⊥ of the final-state one.

3. The k⊥-value at each vertex is used as a scale for the relative power of αs.
The factorization scale for the parton densities is given by the hard scale
of the process, Q2

0 = m2
W + p2

⊥W. It may happen that the clustering process
stops before the lowest-order configuration is reached. This is the case,
e.g., for an event like uū → Wcs̄g. Flavour conservation allows only the
gluon to be clustered, since uū → Wcs̄ is a LO process, first appearing at
O(α2

s ). In such cases, the hard scale Q0 is adopted for all powers of αs

corresponding to the non-merged clusters.

4. Events are then showered, using PYTHIA or HERWIG. The evolution for
each parton starts at the scale determined by the default PYTHIA and
HERWIG algorithms on the basis of the kinematics and colour connections
of the event. The upper veto cutoff to the shower evolution is given
by the hard scale of the process, Q0. After evolution, a jet cone algo-
rithm is applied to the partons produced in the perturbative phase of the
shower. Jets are defined by a cone size Rclus, a minimum transverse en-
ergy Eclus

⊥ and a maximum pseudo-rapidity ηclus
max. These parameters are

called matching parameters, and should be kept the same for all samples
n = 0, 1, . . . , N. These jets provide the starting point for the matching
procedure, described in the next bullet. In the default implementation,
we take Rclus = Rmin, ηclus

max = ηmax and Eclus
⊥ = pmin

⊥ + max(5 GeV, 0.2× pmin
⊥ ),
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but these can be varied as part of the systematics assessment. To en-
sure a complete coverage of phase space, however, it is necessary that
Rclus ≥ Rmin, ηclus

max ≤ ηmax and Eclus
⊥ ≥ pmin

⊥ .

5. Starting from the hardest parton, the jet, which is closest to it in (η, φ)

is selected. If the distance between the parton and the jet centroid is
smaller than 1.5 × Rclus, we say that the parton and the jet match. The
matched jet is removed from the list of jets, and the matching test for
subsequent partons is performed. The event is fully matched if each
parton matches to a jet. Events, which do not match, are rejected. A typ-
ical example is when two partons are so close that they cannot generate
independent jets, and therefore cannot match. Another example is when
a parton is too soft to generate its own jet, again failing matching.

6. Events from the parton samples with n < N, which survive matching,
are then required not to have extra jets. If they do, they are rejected,
a suppression, which replaces the Sudakov reweighting used in the
CKKW approach. This prevents the double counting of events, which
will be present in, and more accurately described by, the n + 1 sample.
In the case of n = N, events with extra jets can be kept since they will not
be generated by samples with higher n. Nevertheless, to avoid double
counting, we require that their transverse momentum be smaller than
that of the softest of the matched jets.

When all the resulting samples from n = 0, . . . , N are combined, we obtain an
inclusive W+jets sample. The harder the threshold for the energy of the jets
used in the matching, Eclus

⊥ , the fewer the events rejected by the extra-jet veto
(i.e. smaller Sudakov suppression), with a bigger role given to the shower ap-
proximation in the production of jets. Using lower thresholds would instead
enhance the role of the matrix elements even at lower E⊥, and lead to larger
Sudakov suppression, reducing the role played by the shower in generating
jets. The matching/rejection algorithm ensures that these two components
balance each other. This algorithm is encoded in the ALPGEN generator [29,30],
where evolution with both HERWIG and PYTHIA are enabled. However, in the
framework of this study, the parton shower evolution has been performed by
HERWIG.

II.2.4 The MADEVENT approach

The approach used in MADGRAPH/MADEVENT [31, 32] is based on the MLM
prescription, but uses a different jet algorithm for defining the scales in αs and
for the jet matching. The phase-space separation between the different multi-
jet processes is achieved using the k⊥-measure as in SHERPA (eq. (II.1) with D =

1), while the Sudakov reweighting is performed by rejecting showered events
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that do not match to the parton-level jets, as in ALPGEN. This approach allows
more direct comparisons with SHERPA, including the effects of changing the
k⊥-cutoff scale. The details of the procedure are as follows.

Matrix-element multi-parton events are produced using MADGRAPH/
MADEVENT version 4.1 [33], with a cutoff QME

min in clustered k⊥. The multi-
parton state from the matrix-element calculation is clustered according to
the k⊥-algorithm, but allowing only clusterings that are compatible with the
Feynman diagrams of the process, which are provided to MADEVENT by
MADGRAPH. The factorization scale, i.e., the scale used in the parton densi-
ties, is taken to be the clustering momentum in the last 2 → 2 clustering (the
“central process”), usually corresponding to the transverse mass, m⊥, of the
W boson. The k⊥-scales of the QCD clustering nodes are used as scales in the
calculation of the various powers of αs.

As in the ALPGEN procedure, no Sudakov reweighting is performed. In-
stead, the virtuality-ordered shower of PYTHIA 6.4 [34] is used to shower the
event, with the starting scale of the shower set to the factorization scale. The
showered (but not yet hadronized) event is then clustered to jets using the

k⊥-algorithm with a jet measure cutoff Q
jet
min > QME

min, and the matrix-element
partons are matched to the resulting jets, in a way, which differs from the stan-
dard MLM procedure. A parton is considered to be matched to the closest jet if

the jet measure Q(parton, jet) is smaller than the cutoff Q
jet
min. Events where not

all partons are matched to jets are rejected. For events with parton multiplicity
smaller than the highest multiplicity, the number of jets must be equal to the
number of partons. For events with the highest multiplicity, N jets are recon-

structed, and partons are considered to be matched if Q(parton, jet) < Q
parton
N ,

the smallest k⊥-measure in the matrix-element event. This means that extra
jets below Q

parton
N are allowed, similarly to the Sherpa treatment.

Note that also the standard MLM scheme with cone jets is implemented as
an alternative in MADEVENT and its PYTHIA interface.

II.2.5 HELAC implementation of the MLM procedure

In HELAC [35, 36] we have implemented the MLM procedure as described
above, see section II.2.3. HELAC generates events for all possible processes
at hadron and lepton colliders within the Standard Model and has been suc-
cessfully tested with up to 10 particles in the final state [36–38].

The partons from the matrix-element calculation are matched to the jets
constructed after the parton showering. The parton-level events are generated
with a minimum p⊥min threshold for the partons, p⊥j > p⊥min, a minimum par-
ton separation, ∆Rjj > Rmin, and a maximum pseudo-rapidity, |ηj| < ηmax. In
order to extract the necessary information used by the k⊥-reweighting, initial-
and final-state partons are clustered backwards as described in section II.2.3,

II
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where again the colour flow information extracted from the matrix-element
calculation is used as a constraint on the allowed clusterings. The k⊥-measure,
dij, for pairs of outgoing partons is given by equation (II.9) and for pairs of
partons where one is incoming and one is outgoing by equation (II.10). If two
outgoing partons are clustered, i.e. dij is minimal, the resulting parton is again
an outgoing parton with p = pi + pj and adjusted colour flow. In the case when
incoming and outgoing partons are clustered, the new parton is incoming and
its momentum is p = pj − pi. As a result we obtain a chain of d-values. For ev-
ery node, a factor of αs(dnode)/αs(Q2

0) is multiplied into the weight of the event.
For the unclustered vertices as well as for the scale used in the parton density
functions, the hard scale of the process Q2

0 = m2
W + p2

⊥W is used. No Sudakov
reweighting is applied. The sample of events output, which is in the latest
Les Houches event file format [39], is read by the interface to PYTHIA version
6.4 [34], where the virtuality-ordered parton shower is constructed. For each
event, a cone jet-algorithm is applied to all partons resulting from the shower
evolution. The resulting jets are defined by Eclus

⊥min, ηclus
max and by a jet cone size

Rclus. The parton from the parton-level event is then associated to one of the
constructed jets. Starting from the parton with the highest p⊥ we select the
closest jet (1.5 × Rclus) in the pseudo-rapidity/azimuthal-angle space. All sub-
sequent partons are matched iteratively to jets. If this is impossible, the event
is rejected. Additionally, for n < N, matched events with the number of jets
greater than n are rejected, whereas for n = N, i.e. the highest multiplicity (in
this study, N = 4), events with extra jets are kept, only if they are softer than
the N matched jets. This procedure provides the complete inclusive sample.

II.3 General properties of the event generation for

the study

We present in the following sections some concrete examples. We concentrate
on the case of W+multi-jet production, which is one of the most studied final
states because of its important role as a background to top quark studies at
the Tevatron. At the LHC, W+jets, as well as the similar Z+jets processes, will
provide the main irreducible backgrounds to signals such as multi-jet plus
missing transverse energy, typical of Supersymmetry and of other manifes-
tations of new physics. The understanding of W+multi-jet production at the
Tevatron is therefore an essential step towards the validation and tuning of
the tools presented here, prior to their utilization at the LHC.

The CDF and DØ experiments at the Tevatron collider have reported cross-
section measurements for W+multijet final states, both from Run I [40–43]
and, in preliminary form, from Run II [44]. The Run I results typically re-
fer to detector-level quantities, and a comparison with theoretical predictions
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requires to process the generated events through a detector simulation. These
tests were performed in the context of the quoted analyses, using the LO cal-
culations available at the time, showing a good agreemnt within the large sta-
tistical, systematic and theoretical uncertainties. The preliminary CDF result
from Run II [44] is instead corrected for all detector effects, and expressed in
terms of true jet energies. In this form it is therefore suitable for direct com-
parison with theory predictions. Measurements of Z+multijet rates are also
crucial, but suffer from lower statistics w.r.t. the W case. A Run II measure-
ment of jet p⊥ spectra in Z+multijet events from DØ has been compared to the
predictions of SHERPA in ref. [45], showing again a very good agreement. Pre-
liminary CDF results on the spectra of the first and second jet in Z+jet events
have been compared against parton-level NLO results [46]. For both the W

and Z cases, the forthcoming analyses of the high-statistics sample now avail-
able at the Tevatron will provide valuable inputs for more quantitative analy-
ses of the codes presented here.

For each of the codes, we calculated a large set of observables, addressing
inclusive properties of the events (transverse momentum spectrum of the W

and of leading jets) as well as geometric correlations between the jets. What
we present and discuss here is a subset of our studies, which illustrates the
main features of the comparison between the different codes and of their own
systematics. A preliminary account of these results, limited to the ALPGEN,
ARIADNE and SHERPA codes, was presented in [2]. More complete studies of
the systematics of each individual code have been [3–7] or will be presented
elsewhere by the respective authors.

The existence in each of the codes of parameters specifying the details of
the merging algorithms presents an opportunity to tune each code so as to best
describe the data. This tuning should be seen as a prerequisite for a quantita-
tive study of the overall theoretical systematics: after the tuning is performed
on a given set of final states (e.g. the W+jets considered here), the systematics
for other observables or for the extrapolation to the LHC can be obtained by
comparing the difference in extrapolation between the various codes. Here
it would be advantageous if future analysis of Tevatron data would provide
us with spectra corrected for detector effects in a fashion suitable for a direct
comparison against theoretical predictions.

The following two sections present results for the Tevatron (pp̄ collisions at
1.96 TeV) and for the LHC (pp at 14 TeV). The elements of the analysis common
to all codes are the following:

• Event samples. Tevatron results refer to the combination of W+ and W−

bosons, while at the LHC only W+ are considered. All codes have gen-
erated parton-level samples according to matrix elements with up to
4 final-state partons, i.e. N = 4. Partons are restricted to the light-
flavour sector and are taken to be massless. The Yukawa couplings of the
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quarks are neglected. The PDF set CTEQ6L has been used with αs(mZ) =

0.118. Further standard-model parameters used were: mW = 80.419 GeV,
ΓW = 2.048 GeV, mZ = 91.188 GeV, ΓZ = 2.446 GeV, the Fermi constant
Gµ = 1.16639 · 10−2 GeV−2, sin2 θW = 0.2222 and αEM = 1/132.51.

• Jet definitions. Jets were defined using Paige’s GETJET cone-clustering al-
gorithm, with a calorimeter segmentation of (∆η, ∆φ) = (0.1,6◦) extended
over the range |η| < 2.5 (|η| < 5), and cone size of 0.7 (0.4) for the Tevatron
(LHC). At the Tevatron (LHC) we require jets with E⊥ > 10 (20) GeV, and
pseudo-rapidity |η| < 2 (4.5). For the analysis of the differential jet rates
denoted as di, the Tevatron Run II k⊥-algorithm [15]1 was applied to all
final-state particles fulfilling |η| < 2.5 (5). The k⊥-measure used in the
algorihtm is given by equations (II.9) and (II.10).

In all cases, except the di plots, the analysis is done at the hadron level, but
without including the underlying event. The di plots were done to check the
details of the merging and are therefore done at parton level to avoid any
smearing effects from hadronization. For all codes, the systematic uncertain-
ties are investigated by varying the merging scale and by varying the scale
in αs and, for some codes, in the parton density functions. For ALPGEN and
HELAC, the scale in αs has been varied only in the αs-reweighting of the matrix
elements, while for the others the scale was also varied in the parton cascade.
Note that varying the scale in the final-state parton showers will spoil the tun-
ing done to LEP data for the cascades. A consistent way of testing the scale
variations would require retuning of hadronization parameters. However, we
do not expect a strong dependence on the hadronization parameters in the
observables we consider, and no attempt to retune has been made.

The parameter choices specific to the individual codes are as follows:

• ALPGEN: The parton-level matrix elements were generated with
ALPGEN [29, 30] and the subsequent evolution used the HERWIG parton
shower according to the MLM procedure. Version 6.510 of HERWIG was
used, with its default shower and hadronization parameters. The default
results for the Tevatron (LHC) were obtained using parton-level cuts (see
eq.(II.8)) of pmin

⊥ = 8 (15) GeV, ηmax = 2.5 (5), Rmin = 0.7 (0.4) and match-
ing defined by Eclus

⊥ = 10 (20) GeV, ηclus
max = ηmax and Rclus = Rmin. The

variations used in the assessment of the systematics cover:

• different thresholds for the definition of jets used in the matching:
Eclus
⊥ = 20 and 30 GeV for the Tevatron, and Eclus

⊥ = 30 and 40 GeV for
the LHC. These thresholds were applied to the partonic samples
produced with the default generation cuts, as well as to partonic
samples produced with higher pmin

⊥ values. No difference was ob-
served in the results, aside from an obviously better generation effi-

1More precisely, we used the implementation in the ktclus package [47] (IMODE=5, or 4211).
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ciency in the latter case. In the following studies of the systematics,
the two threshold settings will be referred to as ALPGEN parameter
sets ALptX, where X labels the value of the threshold. Studies with
different values of Rclus and Rmin were also performed, leading to
marginal changes, which will not be documented here.

• different renormalization scales at the vertices of the clustering tree:
µ = µ0/2 and µ = 2 µ0, where µ0 is the default k⊥-value. In the
following studies of the systematics, these two settings will be re-
ferred to as ALPGEN parameter sets ALscL (for “Low”) and ALscH
(for “High”).

The publicly available version V2.10 of the code was used to generate all
the ALPGEN results.

• ARIADNE: The parton-level matrix elements were generated with
MADEVENT and the subsequent evolution used the dipole shower
in ARIADNE according to the procedure outlined in section II.2.2.
Hadronization was performed by PYTHIA.

For the default results at the Tevatron (LHC) the parton-level cuts were
p⊥min = 10 (20), Rjj < 0.5 (0.4) and, in addition, a cut on the maximum
pseudo-rapidity of jets, ηjmax = 2.5 (5.0). The variations used in the as-
sessment of the systematics cover:

• different values of the merging scales p⊥min = 20 and 30 GeV for the
Tevatron (30 and 40 GeV for the LHC). In the following studies of
the systematics, these two settings will be referred to as ARIADNE

parameter sets ARptX.

• a change of the soft suppression parameters in eq. (II.7) from the
default values of µ = 0.6 GeV and α = 1, to µ = 0.6 GeV and α =

1.5 (taken from a tuning to HERA data [48]). This setting will be
referred to as ARs.

• different values of the scale in αs: µ = µ0/2 and µ = 2 µ0 were used
(ARscL and ARscH). This scale change was used in αs evaluations
in the program.

• HELAC: The parton-level matrix elements were generated with
HELAC [35, 36] and the phase space generation is performed by
PHEGAS [49]. The subsequent evolution used the default virtuality-
ordered shower in PYTHIA 6.4 [34] according to the MLM procedure.
Hadronization was performed by PYTHIA.

In the present study, e+νe + n jets and e−ν̄e + n jets samples with n =

0, . . . , 4 have been generated for Tevatron, while for LHC predictions
only e+νe + n jets final states have been considered. The number of sub-
processes (i.e. ud̄ → e+νeuūgg is one for the W+ + 4 jets) in those cases is
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4, 12, 94, 158 and 620 for n = 0, 1, 2, 3, 4 respectively, with the number of
quark flavours being 4/5 for the initial/final states.

The default results for the Tevatron (LHC) were obtained using parton-
level cuts of p⊥min = 8 (15) GeV, ηmax = 2.5 (5), Rmin = 0.7 (0.4) and
matching defined by Eclus

⊥min = 10 (20) GeV, ηclus
max = 2 (4.5) and Rclus

min =

0.7 (0.4). The variations used in the assessment of the systematics cover:

• different thresholds for the definition of jets used in the matching:
Eclus
⊥min = 30 GeV for the Tevatron, and Eclus

⊥min = 40 GeV for the LHC.
In the following studies of the systematics, these two settings will
be referred to as HELAC parameter sets HELptX, where X labels the
value of the threshold.

• different renormalization scales at the vertices of the clustering tree:
µ = µ0/2 and µ = 2 µ0, where µ0 is the default k⊥-value. In the fol-
lowing studies of the systematics, these two settings will be referred
to as HELAC parameter sets HELscL and HELscH.

• MADEVENT: The parton-level matrix elements were generated with
MADEVENT and the subsequent evolution used the PYTHIA shower ac-
cording to the modified MLM procedure in section II.2.4. Hadronization
was performed by PYTHIA.

For the default results at the Tevatron (LHC) the value of the merging
scale has been chosen to k⊥0 = 10 (20) GeV. The variations used in the
assessment of the systematics cover:

• different values of the merging scale k⊥0 = 20 and 30 GeV for the
Tevatron, and k⊥0 = 30 and 40 GeV for the LHC. In the following
studies of the systematics, these two settings will be referred to as
MADEVENT parameter sets MEktX.

• different values of the scales used in the evaluation of αs, in both the
matrix element generation and the parton shower: µ = µ0/2 and
µ = 2 µ0, where µ0 is the default k⊥-value. These two settings will
be referred to as MADEVENT parameter sets MEscL and MEscH.

• SHERPA: The parton-level matrix elements used within SHERPA have
been obtained from the internal matrix-element generator AMEGIC++

[50]. Parton showering has been conducted by APACIC++ [51,52] whereas
the combination of the matrix elements with this parton shower has been
accomplished according to the CKKW procedure2. The hadronization of
the shower configurations has been performed by PYTHIA 6.214, which
has been made available through an internal interface.

2Beyond the comparison presented here, SHERPA predictions for W+multi-jets have already
been validated and studied for Tevatron and LHC energies in [3, 4]. Results for the production of
pairs of W-bosons have been presented in [5].
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For the default Tevatron (LHC) predictions, the value of the merging
scale has been chosen to k⊥0 = 10 (20) GeV. All SHERPA predictions for
the Tevatron (LHC) have been obtained by setting the internally used
D-parameter (cf. eq. (II.1) in section II.2.1) through D = 0.7 (0.4). Note
that, these two choices directly determine the generation of the matrix
elements in SHERPA. The variations used in the assessment of the sys-
tematics cover:

• first, different choices of the merging scale k⊥0. Values of 20 and
30 GeV, and 30 and 40 GeV have been used for the Tevatron and the
LHC case, respectively. In the following studies of the systematics,
these settings will be referred to as SHERPA parameter sets SHktX
where X labels the value of the internal jet scale.

• and, second, different values of the scales used in any evaluation
of the αs and the parton distribution functions3. Two cases have
been considered, µ = µ0/2 and µ = 2 µ0. The choice of the merging
scale is as in the default run, where µ0 denotes the corresponding
k⊥-values. In the subsequent studies of the systematics these two
cases are referred to as SHERPA parameter sets SHscL and SHscH. It
should be stressed that these scale variations have been applied in
a very comprehensive manner, i.e. in both the matrix-element and
parton-showering phase of the event generation.

All SHERPA results presented in this comparison have been obtained with
the publicly available version 1.0.10.

II.4 Tevatron studies

II.4.1 Event rates

We present here the comparison among inclusive jet rates. These are shown
in table II.1. For each code, in addition to the default numbers, we present the
results of the various individual alternative choices used to assess the system-
atics uncertainty. In table II.2 we show the “additional jet fractions”, namely
the rates σ(W + n + 1 jets)/σ(W + n jets), once again covering all systematic sets
of all codes. Fig. II.1, finally, shows graphically the cross-section systematic
ranges: for each multiplicity, we normalize the rates to the average of the de-
fault values of all the codes.

It should be noted that the scale changes in all codes lead to the largest
rate variations. This is reflected in the growing size of the uncertainty with
larger multiplicities, a consequence of the higher powers of αs. A more de-

3For example, the analytical Sudakov form factors used in the matrix-element reweighting
hence vary owing to their intrinsic αs-coupling dependence.
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Code σ[tot] σ[≥ 1 jet] σ[≥ 2 jet] σ[≥ 3 jet] σ[≥ 4 jet]
ALPGEN, def 1933 444 97.1 18.9 3.2
ALpt20 1988 482 87.2 15.5 2.8
ALpt30 2000 491 82.9 12.8 2.1
ALscL 2035 540 135 29.7 5.5
ALscH 1860 377 72.6 12.7 2.0
ARIADNE, def 2066 477 87.3 13.9 2.0
ARpt20 2038 459 76.6 12.8 1.9
ARpt30 2023 446 67.9 11.3 1.7
ARscL 2087 553 116 21.2 3.6
ARscH 2051 419 67.8 9.5 1.3
ARs 2073 372 80.6 13.2 2.0
HELAC, def 1960 356 70.8 13.6 2.4
HELpt30 1993 373 68.0 12.5 2.4
HELscL 2028 416 95.0 20.2 3.5
HELscH 1925 324 55.1 9.4 1.4
MADEVENT, def 2013 381 69.2 12.6 2.8
MEkt20 2018 375 66.7 13.3 2.7
MEkt30 2017 361 64.8 11.1 2.0
MEscL 2013 444 93.6 20.0 4.8
MEscH 1944 336 53.2 8.6 1.7
SHERPA, def 1987 494 107 16.6 2.0
SHkt20 1968 465 85.1 12.4 1.5
SHkt30 1982 461 79.2 10.8 1.3
SHscL 1957 584 146 25.2 3.4
SHscH 2008 422 79.8 11.2 1.3

Table II.1: Cross sections (in pb) for the inclusive jet rates at the Tevatron, according to
the default and alternative settings of the various codes.

tailed discussion on the effects of the scale changes can be found in section II.6.
Furthermore we note that the systematic ranges of all codes have regions of
overlap.

II.4.2 Kinematical distributions

We start by showing in fig. II.2 the inclusive E⊥ spectra of the leading 4 jets.
The absolute rate predicted by each code is used, in units of pb/GeV. The
relative differences with respect to the ALPGEN results, in this figure and all
other figures of this section, are shown in the lower in-sets of each plot, where
for the code X we plot the quantity (σ(X) − σ0)/σ0, σ0 being the values of the
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Code σ[≥1]/σ[tot] σ[≥2]/σ[≥1] σ[≥3]/σ[≥2] σ[≥4]/σ[≥3]

ALPGEN, def 0.23 0.22 0.19 0.17
ALpt20 0.24 0.18 0.18 0.18
ALpt30 0.25 0.17 0.15 0.16
ALscL 0.27 0.25 0.22 0.19
ALscH 0.20 0.19 0.17 0.16
ARIADNE, def 0.23 0.18 0.16 0.15
ARpt20 0.23 0.17 0.17 0.15
ARpt30 0.22 0.15 0.16 0.16
ARscL 0.26 0.21 0.18 0.17
ARscH 0.20 0.16 0.14 0.14
ARs 0.18 0.22 0.16 0.15
HELAC, def 0.18 0.20 0.19 0.18
HELpt30 0.19 0.19 0.18 0.19
HELscL 0.21 0.23 0.21 0.17
HELscH 0.17 0.17 0.17 0.15
MADEVENT, def 0.19 0.18 0.18 0.22
MEkt20 0.19 0.18 0.20 0.20
MEkt30 0.18 0.18 0.17 0.18
MEscL 0.22 0.21 0.21 0.24
MEscH 0.17 0.16 0.16 0.20
SHERPA, def 0.25 0.22 0.16 0.12
SHkt20 0.24 0.18 0.15 0.12
SHkt30 0.23 0.17 0.14 0.12
SHscL 0.30 0.25 0.17 0.13
SHscH 0.21 0.19 0.14 0.12

Table II.2: Cross-section ratios for (n + 1)/n inclusive jet rates at the Tevatron, accord-
ing to the default and alternative settings of the various codes.

ALPGEN curves.
There is generally good agreement between the codes, except for ARIADNE,

which has a harder E⊥ spectra for the leading two jets. There we also find
that SHERPA is slightly harder than ALPGEN and HELAC, while MADEVENT is
slightly softer.

Fig. II.3 shows the inclusive η spectra of the leading 4 jets, all normalized to
unit area. There is a good agreement between the spectra of ALPGEN, HELAC

and MADEVENT, while ARIADNE and SHERPA spectra appear to be broader, in
particular for the sub-leading jets. This broadening is expected for ARIADNE

since the gluon emissions there are essentially unordered in rapidity, which
means that the Sudakov form factors applied to the matrix-element-generated

II



78 Comparative study of various algorithms for merging

 0

 0.5

 1

 1.5

 2

 2.5

≥ 0 ≥ 1 ≥ 2 ≥ 3 ≥ 4

σ
(W

+
/-
+

≥ 
N

 j
e

ts
) 

/ 
<

σ
>

Alpgen
Ariadne

Helac
MadEvent

Sherpa

Figure II.1: Range of variation for the Tevatron cross-section rates of the five codes,
normalized to the average value of the default settings for all codes in each multiplicity
bin.
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Figure II.2: Inclusive E⊥ spectra of the leading 4 jets at the Tevatron (pb/GeV). In all
cases the full line gives the ALPGEN results, the dashed line gives the ARIADNE results
and the “+”, “x” and “o” points give the HELAC, MADEVENT and SHERPA results, re-
spectively.
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Figure II.3: Inclusive η spectra of the 4 leading jets at the Tevatron. All curves are
normalized to unit area. Lines and points are as in fig. II.2.

states include also a log 1/x resummation absent in the other programs.

Fig. II.4a shows the inclusive p⊥ distribution of the W boson, with absolute
normalization in pb/GeV. This distribution reflects in part the behaviour ob-
served for the spectrum of the leading jet, with ARIADNE harder than SHERPA,
which, in turn, is slightly harder than ALPGEN, HELAC and MADEVENT. The
region of low momenta, p⊥W < 50 GeV, is expanded in fig. II.4b. Fig. II.4c
shows the η distribution of the leading jet, η1, when its transverse momentum
is larger than 50 GeV. The curves are absolutely normalized, so that it is clear
how much rate is predicted by each code to survive this harder jet cut. The
|η| separation between the W and the leading jet of the event above 30 GeV is
shown in fig. II.4d, normalized to unit area. Here we find that ARIADNE has a
broader correlation, while HELAC and MADEVENT are somewhat more narrow
than ALPGEN and SHERPA.

In fig. II.5 we show the merging scales di as obtained from the k⊥-algorithm,
where di is the scale in an event where i jets are clustered into i − 1 jets. These
are parton-level distributions and are especially sensitive to the behaviour of
the merging procedure close to the merging/matching scale. Note that in the
plots showing the difference the wiggles stem from both the individual codes
and from the ALPGEN reference. In section II.6 below, the behaviour of the
individual codes is treated separately.

Also shown in fig. II.5 is the separation in ∆R =
√

∆η2 + ∆φ2 between
successive jet pairs ordered in hardness. The ∆R12 is dominated by the
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Figure II.4: (a) and (b) p⊥ spectrum of W± bosons at the Tevatron (pb/GeV). (c) Inclu-

sive η spectrum of the leading jet, for p
jet1
⊥ > 50 GeV; absolute normalization (pb). (d)

Pseudo-rapidity separation between the W and the leading jet, ∆η = |ηW − ηjet1|, for

p
jet1
⊥ > 30 GeV, normalized to unit area. Lines and points are as in fig. II.2.

transversal-plane back-to-back peak at ∆R12 = π, while for larger ∆R in all
cases the behaviour is more dictated by the correlations in pseudo-rapidity.
For these larger values we find a weaker correlation in ARIADNE and SHERPA,
which can be expected from their broader rapidity distributions in fig. II.3.

Finally, in fig. II.6 we show H⊥, the scalar sum of the transverse momenta
of the charged lepton, the neutrino and the jets. This is a variable in which
one often does experimental cuts in searches for new phenomena and is not
expected to be very sensitive to the particulars in the merging schemes. The
results show good agreement below 100 GeV, but at higher values, as expected
from the differences in the hardness of the jet and p⊥W spectra, ARIADNE has a
harder spectra than SHERPA and ALPGEN, while MADEVENT and HELAC has a
slightly softer spectra.

II.5 LHC studies

II.5.1 Event rates

The tables (table II.3 and II.4) and figure (fig. II.7) of this section parallel those
shown earlier for the Tevatron. The largest rate variations is, similarly to the
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Figure II.5: (a)–(c) di (i = 1, 2, 3) spectra, where di is the scale in a parton-level event
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neutrino and the jets at the Tevatron. Lines and points are as in fig. II.2.
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Code σ[tot] σ[≥ 1 jet] σ[≥ 2 jet] σ[≥ 3 jet] σ[≥ 4 jet]
ALPGEN, def 10170 2100 590 171 50
ALpt30 10290 2200 555 155 46
ALpt40 10280 2190 513 136 41
ALscL 10590 2520 790 252 79
ALscH 9870 1810 455 121 33
ARIADNE, def 10890 3840 1330 384 101
ARpt30 10340 3400 1124 327 88
ARpt40 10090 3180 958 292 83
ARscL 11250 4390 1635 507 154
ARscH 10620 3380 1071 275 69
ARs 11200 3440 1398 438 130
HELAC, def 10050 1680 442 118 36
HELpt40 10150 1760 412 116 37
HELscL 10340 1980 585 174 57
HELscH 9820 1470 347 84 24
MADEVENT, def 10830 2120 519 137 42
MEkt30 10080 1750 402 111 37
MEkt40 9840 1540 311 78.6 22
MEscL 10130 2220 618 186 62
MEscH 10300 1760 384 91.8 27
SHERPA, def 8800 2130 574 151 41
SHkt30 8970 2020 481 120 32
SHkt40 9200 1940 436 98.5 24
SHscL 7480 2150 675 205 58
SHscH 10110 2080 489 118 30

Table II.3: Cross sections (in pb) for the inclusive jet rates at the LHC, according to the
default and alternative settings of the various codes.

Tevatron rates, determined by the scale changes (described in more detail in
section II.6). The main feature of the LHC results is the significantly larger
rates predicted by ARIADNE (see also the discussion of its systematics, sec-
tion II.6.2), which are outside the systematics ranges of the other codes. Aside
from this and the fact that SHERPA gives a smaller total cross section (see also
the last part of the discussion of the SHERPA systematics in section II.6.5), the
comparison among the other codes shows an excellent consistency, with a pat-
tern of the details similar to what seen for the Tevatron.
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Code σ[≥1]/σ[tot] σ[≥2]/σ[≥1] σ[≥3]/σ[≥2] σ[≥4]/σ[≥3]

ALPGEN, def 0.21 0.28 0.29 0.29
ALpt30 0.21 0.25 0.28 0.30
ALpt40 0.21 0.23 0.27 0.30
ALscL 0.24 0.31 0.32 0.31
ALscH 0.18 0.25 0.27 0.27
ARIADNE, def 0.35 0.35 0.29 0.26
ARpt30 0.33 0.33 0.29 0.27
ARpt40 0.32 0.30 0.30 0.28
ARscL 0.39 0.37 0.31 0.30
ARscH 0.32 0.32 0.26 0.24
ARs 0.31 0.41 0.31 0.30
HELAC, def 0.17 0.26 0.27 0.31
HELpt40 0.17 0.23 0.28 0.32
HELscL 0.19 0.30 0.30 0.33
HELscH 0.15 0.24 0.24 0.29
MADEVENT, def 0.20 0.24 0.26 0.31
MEkt30 0.17 0.23 0.28 0.33
MEkt40 0.16 0.20 0.25 0.28
MEscL 0.22 0.27 0.30 0.34
MEscH 0.17 0.22 0.24 0.29
SHERPA, def 0.24 0.27 0.26 0.27
SHkt30 0.23 0.24 0.25 0.27
SHkt40 0.21 0.22 0.23 0.24
SHscL 0.29 0.31 0.30 0.28
SHscH 0.21 0.24 0.24 0.25

Table II.4: Cross-section ratios for (n + 1)/n inclusive jet rates at the LHC, according
to the default and alternative settings of the various codes.

II.5.2 Kinematical distributions

Following the same sequence of the Tevatron study, we start by showing in
fig. II.8 the inclusive E⊥ spectra of the leading 4 jets. The absolute rate pre-
dicted by each code is used, in units of pb/GeV.

Except for ARIADNE, we find good agreement among the codes, with
ARIADNE having significantly harder leading jets, while for sub-leading jets
the increased rates noted in fig. II.7 mainly come from lower E⊥. Among the
other codes, HELAC and SHERPA have consistently somewhat harder jets than
ALPGEN, while MADEVENT is a bit softer, but these differences are not as pro-
nounced.
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Figure II.7: Range of variation for the LHC cross-section rates of the five codes, nor-
malized to the average value of the default settings for all codes in each multiplicity
bin.
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Figure II.8: Inclusive E⊥ spectra of the leading 4 jets at the LHC (pb/GeV). In all cases
the full line gives the ALPGEN results, the dashed line gives the ARIADNE results and the
“+”, “x” and “o” points give the HELAC, MADEVENT and SHERPA results respectively.
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Figure II.9: Inclusive η spectra of the 4 leading jets at the LHC. All curves are normal-
ized to unit area. Lines and points are as in fig. II.8.

d
σ

/d
p

⊥
W

 (
p
b
/G

e
V

)

(a)
Alpgen

Ariadne
Helac

MadEvent
Sherpa

10
-2

10
-1

10
0

10
1

10
2

10
3

p⊥W (GeV)

-1
-0.5

 0
 0.5

 1

 0  50  100 150 200 250 300 350 400 450 500

d
σ

/d
p

⊥
W

 (
p
b
/G

e
V

)

(b)

25

50

100

250

500

1000

p⊥W (GeV)

-0.6
-0.3

 0
 0.3
 0.6

 0  5  10  15  20  25  30  35  40  45  50

d
σ

/d
η

1
 (

p
b
)

(c)
 10

 20

 30

 40

 50

 60

η1

-1
-0.5

 0
 0.5

 1

-4 -3 -2 -1  0  1  2  3  4

(1
/σ

)d
σ

/d
∆

η

(d)

 0.1

 0.2

 0.3

 0.4

 0.5

∆η

-1
-0.5

 0
 0.5

 1

 0  1  2  3  4  5  6  7  8  9

Figure II.10: (a) and (b) p⊥ spectrum of W+ bosons at the LHC (pb/GeV). (c) η

spectrum of the leading jet, for p
jet1
⊥ > 100 GeV; absolute normalization (pb). (d)

Pseudo-rapidity separation between the W+ and the leading jet, ∆η = |ηW+ − ηjet1|,
for p

jet1
⊥ > 40 GeV, normalized to unit area. Lines and points are as in fig. II.8.
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For the pseudo-rapidity spectra of the jets in fig. II.9 it is clear that ARIADNE

has a much broader distribution in all cases. Also SHERPA has broader distri-
butions, although not as pronounced, while the other codes are very consis-
tent.

The p⊥ distribution of W+ bosons in fig. II.10 follows the trend of the
leading-jet E⊥ spectra. The differences observed in the p⊥W region below
10 GeV are not due to the choice of merging approach, but are entirely driven
by the choice of shower algorithm. Notice for example the similarity of the
HELAC and MADEVENT spectra, and their peaking at lower pt than the HERWIG

spectrum built into the ALPGEN curve, a result well known from the compari-
son of the standard PYTHIA and HERWIG generators. Increasing the transverse
momentum of the leading jet in fig. II.10a does not change the conclusions
much for its pseudo-rapidity distribution. Also the rapidity correlation be-
tween the leading jet and the W+ follows the trend found for the Tevatron,
but the differences are larger, with a much weaker correlation for ARIADNE.
Also SHERPA shows a somewhat weaker correlation, while HELAC is some-
what stronger than ALPGEN and MADEVENT.

For the distribution in clustering scale in fig. II.11, we find again that
ARIADNE is by far the hardest. The results given by the other codes are com-
parable, with the only exception that for the d1 distribution, SHERPA gives a
somewhat harder prediction compared to the ones made by the MLM-based
approaches.

The ∆R distributions, in fig. II.11, show at large separation a behaviour
consistent with the broad rapidity distributions found for SHERPA, and in par-
ticular for ARIADNE, in fig. II.9. This increase at large ∆R is then compensated
by a depletion with respect to the other codes at small separation.

The scalar transverse momentum sum in fig. II.12 shows significantly
larger deviations as compared to the results for the Tevatron. ARIADNE has
a much harder spectra than the other codes, while SHERPA and HELAC are
slightly harder than ALPGEN and MADEVENT is significantly softer. As in the
Tevatron case, it is a direct reflection of the differences in the hardness of the
jet and p⊥W spectra, although the increased phase space for jet production at
the LHC makes the p⊥W contribution less important at high H⊥ values.

II.6 Systematic studies

In this section we present the systematic studies of each of the codes separately
for both the Tevatron and the LHC, followed by some general comments on
differences and similarities between the codes.

In all cases we have chosen a subset of the plots shown in the previous
sections: the transverse momentum of the W, the pseudo-rapidity of the lead-
ing jet, the separation between the leading and the sub-leading jet, and the di
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Figure II.11: (a)–(c) di (i = 1, 2, 3) spectra, where di is the scale in a parton-level event
where i jets are clustered into i − 1 jets using the k⊥-algorithm. (d)–(f) ∆R separations
at the LHC between jet 1 and 2, 2 and 3, and 3 and 4. All curves are normalized to unit
area. Lines and points are as in fig. II.8.
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Figure II.12: The scalar sum of the transverse momentum of the charged lepton, the
neutrino and the jets at the LHC. Lines and points are as in fig. II.8.
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logarithmic spectra. As before, all spectra aside from p⊥W are normalized to
unit integral over the displayed range. The variations of the inclusive jet cross
sections has already been shown in table II.1-II.4 and figs. II.1 and II.7.

To estimate what systematic error can be expected from each code, the ef-
fects of varying the merging scale and changing the scale used in the determi-
nation of the strong coupling is studied (the details for each code is described
in section II.3). The merging scale variations are introduced according to the
definition in each algorithms and should lead to small changes in the results,
although the nonleading terms from the matrix elements always lead to some
residual dependence on the merging scale. In the various algorithms differ-
ent choices have been made regarding how to estimate the uncertainty from
αs-scale variations and this leads to slightly different physical consequences.

In the case of ALPGEN and HELAC, the scale changes are only implemented
in the strong coupling calculated in the matrix element reweighting, but the
scale in the shower remains unchanged. This leads to variations of the result
that are proportional to the relevant power of αs used in the matrix element,
which means that the spectra contains small deviations below the merging
scale and that the deviations grow substantially above the merging scale.

In ARIADNE, MADEVENT and SHERPA both the scale in the αs-reweighting
and the scale in the αs of the shower is changed. In addition to this the scale
used in the evaluation of the parton densities is also changed in SHERPA (this
is discussed further in section II.6.5). Including the scale variations in αs in the
shower changes the fraction of rejected events or the Sudakov form factors
(depending on which algorithm is used), which modifies the cross section in
the opposite direction compared to the scale changes in the matrix element
reweighting. This leads to smaller deviations in the results above the merg-
ing scale and it is also possible to get significant deviations in the opposite
direction below the merging scale, which is mainly visible in the p⊥W spectra.

II.6.1 ALPGEN systematics

The ALPGEN distributions for the Tevatron are shown in fig. II.13. The pattern
of variations is consistent with the expectations. In the case of the p⊥W spectra,
which are plotted in absolute scales, the larger variations are due to the change
of scale, with the lower scale leading to a harder spectrum. The ±20% effect is
consistent with the scale variation of αs, which dominates the scale variation of
the rate once p⊥W is larger than the Sudakov region. The change of matching
scales only leads to a minor change in the region 0 GeV < p⊥W < 40 GeV,
confirming the stability of the merging prescription.

In the case of the rapidity spectrum, we notice that the scale change leaves
the shape of the distribution unaltered, while small changes appear at the
edges of the η range. The di distributions show agreement among the var-
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Figure II.13: ALPGEN systematics at the Tevatron. (a) and (b) show the p⊥ spectrum of
the W, (c) shows the pseudo-rapidity distribution of the leading jet, (d) shows the ∆R
separation between the two leading jets, and (e)–(g) show the di (i = 1, 2, 3) spectra,
where di is the scale in a parton-level event where i jets are clustered into i− 1 jets using
the k⊥-algorithm. The full line is the default settings of ALPGEN, the shaded area is the
range between ALscL and ALscH, while the points represent ALpt20 and ALpt30 as
defined in section II.3.
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Figure II.14: ALPGEN systematics at the LHC. (a) and (b) show the p⊥ spectrum of
the W, (c) shows the pseudo-rapidity distribution of the leading jet, (d) shows the ∆R
separation between the two leading jets, and (e)–(g) show the di (i = 1, 2, 3) spectra,
where di is the scale in a parton-level event where i jets are clustered into i− 1 jets using
the k⊥-algorithm. The full line is the default settings of ALPGEN, the shaded area is the
range between ALscL and ALscH, while the points represent ALpt30 and ALpt40 as
defined in section II.3.
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ious options when
√

di < 10 GeV. This is due to the fact that the region√
di < 10 GeV is dominated by the initial-state evolution of an n = i − 1 parton

event, and both the matching and scale sensitivities are reduced. Notice that
in the ALPGEN prescription the scale for the shower evolution is kept fixed
when the renormalization scale of the matrix elements is changed, as a way of
exploring the impact of a possible mismatch between the two.

For
√

di > Eclus
⊥ the jet transverse energies are themselves typically above

Eclus
⊥ , and the sensitivity to matching thresholds smaller than Eclus

⊥ is reduced,
since if the event matched at Eclus

⊥ , it will also match below that. Here the main
source of systematics is therefore the scale variation, associated to the hard
matrix element calculation for the n = i jet multiplicity. The region 10 GeV <√

di < Eclus
⊥ is the transition region between the dominance of the shower and

of the matrix element description of hard radiation. The structure observed
in the di distributions in this region reflects the fact that shower and matrix
element emit radiation with a slightly different probability. The selection of a
matching threshold, which leads to effects at the level of ±20% and is therefore
consistent with a LL accuracy and can be used to tune to data.

For the LHC, the ALPGEN systematics is shown in fig. II.14. The compari-
son of the various parameter choices is similar to what we encountered at the
Tevatron, with variations in the range of ±20% for the matching-scale system-
atics, and up to 40% for the scale systematics. The pattern of the glitches in
the di spectra for the different matching thresholds is also consistent with the
explanation provided in the case of the Tevatron.

II.6.2 ARIADNE systematics

The ARIADNE systematics for the Tevatron is shown in fig. II.15. Since the
dipole cascade by itself already includes a matrix-element correction for the
first emission, we see no dependence on the merging scale in the p⊥W, ηjet1

and d1 distributions, which are mainly sensitive to leading order corrections.
For the other distributions, we become sensitive to higher-order corrections,
and here the pure dipole cascade underestimates the matrix element and also
tends to make the leading jets less back-to-back in azimuth. The first effect is
expected for all parton showers, but is somewhat enhanced in ARIADNE due
to the missing initial-state q → gq splitting, and is mostly visible in the d2

distribution just below the merging scale. The second effect is clearly visible
in the ∆R12 distribution, which is dominated by low E⊥ jets.

The changing of the soft suppression parameter in ARs has the effect of
reducing the available phase space of gluon radiation, especially for large E⊥
and in the beam directions, an effect, which is mostly visible for the hardest
emission and in the p⊥W distribution. As for ALPGEN, and also for the other
codes, the change in scale mainly affects the hardness of the jets, but not the
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Figure II.15: ARIADNE systematics at the Tevatron. The plots are the same as in fig. II.13.
The full line is the default settings of ARIADNE, the shaded area is the range between
ARscL and ARscH, while the points represent ARpt20, ARpt30 and ARs as defined in
section II.3.

ηjet1 and the ∆R12 distribution.
For the LHC, the ARIADNE systematics is shown in fig. II.16. Qualitatively

we find the same effects as in the Tevatron case. In particular we note the
strong dependence on the soft suppression parameters in ARs, and it is clear
that these have to be adjusted to fit Tevatron (and HERA) data before any
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Figure II.16: ARIADNE systematics at the LHC. The plots are the same as in fig. II.14.
The full line is the default settings of ARIADNE, the shaded area is the range between
ARscL and ARscH, while the points represent ARpt30, ARpt40 and ARs as defined in
section II.3.

predictions for the LHC can be made. It should be noted, however, that while
eg. the high p⊥W tail in fig. II.16a for ARs is shifted down to be comparable to
the other codes (cf. fig. II.10a), the medium p⊥W values are less affected and
here the differences compared to the other codes can be expected to remain
after a retuning.
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This difference is mainly due to the fact that the dipole cascade in ARIADNE,
contrary to the other parton showers, is not based on standard DGLAP evo-
lution, but also allows for evolution, which is unordered in transverse mo-
mentum à la BFKL4. This means that in ARIADNE there is also a resummation
of logs of 1/x besides the standard log Q2 resummation. This should not be a
large effect at the Tevatron, and the differences there can be tuned away by
changing the soft suppression parameters in ARIADNE. However, at the LHC
we have quite small x-values, x ∼ mW/

√
S < 0.01, which allow for a much

increased phase space for jets as compared to what is allowed by standard
DGLAP evolution. As a result one obtains larger inclusive jet rates as docu-
mented in table II.3. The same effect is found in DIS at HERA, where x is even
smaller as are the typical scales, Q2. And here, all DGLAP-based parton show-
ers fail to reproduce final-state properties, especially forward jet rates, while
ARIADNE does a fairly good job.

It would be interesting to compare the merging schemes presented here
also to HERA data to see if the DGLAP based shower would better reproduce
data when merged with higher-order matrix elements. This would also put
the extrapolations to the LHC on safer grounds. However, so far there exists
one preliminary such study for the ARIADNE case only [53].

II.6.3 HELAC systematics

The Tevatron HELAC distributions are shown in fig. II.17. Since HELAC results
presented in this study are based on the MLM matching prescription, we ex-
pect the HELAC systematics to follow at least qualitatively the ALPGEN ones
and this is indeed the case. On the other hand the use by HELAC of PYTHIA, for
parton showering as well as for hadronization, leads to differences compared
to the ALPGEN results, where HERWIG is used. For the absolute rates, especially
in the multi-jet regime, HELAC seems to be closer to MADEVENT that also uses
PYTHIA.

For the LHC, the HELAC systematics are shown in fig. II.18. The systematics
follows a similar pattern compared to that already discussed for the Tevatron
case, with the expected increase of up to 40% from scale variations, due to the
higher collision energy.

4The dipole emission of gluons in ARIADNE are ordered in transverse momentum, but not
in rapidity. Translated into a conventional initial-state evolution, this corresponds to emissions
ordered in rapidity but unordered in transverse momentum.
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Figure II.17: HELAC systematics at the Tevatron. The plots are the same as in fig. II.13.
The full line is the default settings of HELAC, the shaded area is the range between
HELscL and HELscH, while the points represent HELpt30 as defined in section II.3.
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Figure II.18: HELAC systematics at the LHC. The plots are the same as in fig. II.14. The
full line is the default settings of HELAC, the shaded area is the range between HELscL
and HELscH, while the points represent HELpt40 as defined in section II.3.
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II.6.4 MADEVENT systematics

The MADEVENT distributions for the Tevatron are shown in fig. II.19. Also
here, the variations are consistent with the expectations. For the p⊥W spec-
trum, the dominant variations are due to the change of scale for αs, with the
lower scale leading to a harder spectrum. Below the k⊥-cutoff, where the dis-
tribution is determined by the parton shower only, the lower scale gives the
lower differential cross section.

At Tevatron energies, both the p⊥W spectrum and the di spectra are rela-
tively stable with respect to variations of the matching scale. For the di spectra,
the variation in matching scale gives a dip in the region 10 GeV <

√
di < k⊥0,

but is reduced for larger di. The rapidity and jet-distance spectra show a re-
markable stability under both renormalization-scale changes and variations
in the cutoff scale.

For the LHC, the systematics of the MADEVENT implementation are shown
in fig. II.20. The variations in renormalization scale give a very similar effect
as for the Tevatron, with variations up to ±20% on the p⊥ and di spectra. For
variations in the matching scale k⊥0, however, the pattern is slightly different.
This can be most easily understood from looking at the di spectra, since, as in
the Sherpa case, the cutoff scale is defined to be just the di, so the transition be-
tween the parton-shower and matrix-element regions is very sharp. It is clear
from these distributions that the default parton shower of PYTHIA does not re-
produce the shape of the matrix elements at LHC energies even for relatively
small k⊥, but falls off more sharply. There is therefore a dip in all the distribu-
tions around log k⊥0, which gets more pronounced for the higher multiplicity
distributions, and hence gives lower overall jet rates. The p⊥W distributions,
as well as the d1 distributions, are composed of all the different jet-multiplicity
samples, which gives systematically reduced hardness of the differential cross
sections for increased cutoff scales. These effects are clearly visible also in
SHERPA, which uses a PYTHIA-like parton shower and k⊥ as merging scale.
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Figure II.19: MADEVENT systematics at the Tevatron. The plots are the same as in
fig. II.13. The full line is the default settings of MADEVENT, the shaded area is the
range between MEscL and MEscH, while the points represent MEkt20 and MEkt30 as
defined in section II.3.
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Figure II.20: MADEVENT systematics at the LHC. The plots are the same as in fig. II.14.
The full line is the default settings of MADEVENT, the shaded area is the range between
MEscL and MEscH, while the points represent MEkt30 and MEkt40 as defined in sec-
tion II.3.
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II.6.5 SHERPA systematics

The systematics of the CKKW algorithm as implemented in SHERPA is pre-
sented in fig. II.21 for the Tevatron case. The effect of varying the scales in the
PDF and strong coupling evaluations by a factor of 0.5 (2.0) is that for the lower
(higher) scale choice, the W-boson’s p⊥ spectrum becomes harder (softer). For
this kind of observables the uncertainties given by scale variations dominate
the ones emerging through variations of the internal separation cut. This is
mainly due to a reduced (enhanced) suppression of hard-jet radiation through
the αs rejection weights. The differential jet rates, d1,2,3, shown in fig. II.21e–g,
have a more pronounced sensitivity on the choice of the merging scale, lead-
ing to variations at the 20% level. In the CKKW approach this dependence can
be understood since the k⊥-measure intrinsically serves as the discriminator
to separate the matrix-element and parton-shower regimes. Hence, the largest
deviations from the default typically appear at di ≈ k⊥0. However, the results
are remarkably smooth, which leads to the conclusion that the cancellation of
the dominant logarithmic dependence on the merging cut is well achieved.
Moreover, considering the pseudo-rapidity of the leading jet and the cone
separation of the two hardest jets, these distributions show a very stable be-
haviour under the studied variations, since they are indirectly influenced by
the cut scale only. The somewhat more pronounced deviation at low ∆R12 is
connected to phase-space regions of jets becoming close together, which is af-
fected by the choice of the merging scale and therefore by its variation. Taken
together, SHERPA produces consistent results with relative differences of the
order of or less than 20% at Tevatron energies.

The SHERPA studies of systematics for the LHC are displayed in fig. II.22.
Compared to the Tevatron case, a similar pattern of variations is recognized.
The p⊥ spectra of the W+ boson show deviations under cut and scale vari-
ations that remain on the same order of magnitude. However, a noticeable
difference is an enhancement of uncertainties in the predictions for low p⊥.
This phase-space region is clearly dominated by the parton shower evolution,
which in the SHERPA treatment of estimating uncertainties undergoes scale
variations in the same manner as the matrix-element part. Therefore, the es-
timated deviations from the default given for low p⊥ are very reasonable and
reflect intrinsic uncertainties underlying the parton showering. For the LHC
case, the effect is larger, since the evolution is dictated by steeply rising parton
densities at x-values that are lower compared to the Tevatron scenario. The
pseudo-rapidity of the leading jet and the cone separation of the two hard-
est jets show again a stable behaviour under the applied variations, the only
slight exception is the regions of high |ηjet1| where, using a high k⊥-cut, the
deviations are at the 20% level. The effect of varying the scales in the parton
distributions and strong couplings now dominates the uncertainties in the dif-
ferential jet rates, d1,2,3, which are presented in fig. II.22e–g. This time, owing to
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Figure II.21: SHERPA systematics at the Tevatron. The plots are the same as in fig. II.13.
The full line is the default settings of SHERPA, the shaded area is the range between
SHscL and SHscH, while the points represent SHkt20 and SHkt30 as defined in sec-
tion II.3.

the larger phase space, for the low scale choice, µ = µ0/2, the spectra become
up to 40% harder, whereas, for the high scale choice, the spectra are up to
20% softer. The variation of the internal merging scale does not induce jumps
around the cut region, however it has to be noted that for higher choices, e.g.
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Figure II.22: SHERPA systematics at the LHC. The plots are the same as in fig. II.14. The
full line is the default settings of SHERPA, the shaded area is the range between SHscL
and SHscH, while the points represent SHkt30 and SHkt40 as defined in section II.3.

k⊥0 = 40 GeV, there is a tendency to predict softer distributions in the tails
compared to the default. To summarize, the extrapolation from Tevatron to
LHC energies does not yield significant changes in the predictions of uncer-
tainties under merging-cut and scale variations; for the LHC scenario, they
have to be estimated slightly larger, ranging up to 40%. The results are again
consistent and exhibit a well controlled behaviour when applying the CKKW
approach implemented in SHERPA at LHC energies.
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Giving a conservative, more reliable estimate, in SHERPA the strategy of
varying the scales in the strong coupling together with the scales in the par-
ton densities has been chosen to assess its systematics. So, to better estimate
the impact of the additional scale variation in the parton density functions,
renormalization-scale variations on its own have been studied as well. Their
results show smaller deviations wrt. the default in the observables of this
study with the interpretation of potentially underestimating the systematics
of the merging approach. Also, then the total cross sections vary less and be-
come 9095 pb and 8597 pb for the low- and high-scale choice, respectively. Note
that, owing to the missing simultaneous factorization-scale variation, their or-
der is now reversed compared to SHscL and SHscH, whose values are given
in table II.3. Moreover, by referring to table II.4 the cross-section ratios for
e.g. σ[≥1]/σ[tot] now read 0.26 and 0.22 for the low- and high-scale choice, re-
spectively. This once more emphasizes that the approach’s uncertainty may
be underestimated when relying on αs-scale variations only. From table II.3 it
also can be noted that the total inclusive cross section given by the full high-
scale prediction SHscH is – unlike SHERPA’s default – close to the ALPGEN de-
fault. In contrast to the MLM-based approaches, which prefer the factorization
scale in the matrix-element evaluation set through the transverse mass of the
weak boson, the SHERPA approach makes the choice of employing the merg-
ing scale k⊥0 instead. This has been motivated in [9] and further discussed
in [3]. Eventually, it is a good result that compatibility is achieved under this
additional PDF-scale variation for the total inclusive cross sections, however
it also clearly stresses that there is a non-negligible residual dependence on
the choice of the factorization scale in the merging approaches.

II.6.6 Summary of the systematics studies

Starting with the p⊥W spectra, we find a trivial 20 − 40% effect of the scale
changes, with the lower scale leading to a harder spectrum. In the case of
ALPGEN and HELAC, this only affects the spectrum above the matching scale,
while for ARIADNE, MADEVENT and SHERPA there is also an effect below, as
there the scale change is also implemented in the parton shower. For all the
codes the change in merging/matching scale gives effects smaller than or of
the order of the change in αs scale. For ARIADNE, the change in the soft sup-
pression parameter (ARs) gives a softer spectrum, which is expected as it di-
rectly reduces the phase space for emitted gluons.

In the ηjet1 and ∆R12 distributions the effects of changing the scale in αs are
negligible. In all cases, changing the merging/matching scale also has negli-
gible effects on the rapidity spectrum, while the ∆R12 tends to become more
peaked at small values for larger merging/matching scales, and also slightly
less peaked at ∆R12 = π. This effect is largest for ARIADNE while almost absent
for HELAC.
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Finally for the di distributions we clearly see wiggles of varying sizes intro-
duced by changing the merging scales.

II.7 Conclusions

This document summarizes our comparisons of five independent approaches
to the problem of merging matrix elements and parton showers. The codes un-
der study, ALPGEN, ARIADNE, HELAC, MADEVENT and SHERPA, differ in which
matrix-element generator is used, which merging scheme (CKKW or MLM)
is used and the details in the implementation of these schemes, as well as in
which parton shower is used.

We find that, while the three approaches (CKKW, L, and MLM) aim at
a simulation based on the same idea, namely describing jet production and
evolution by matrix elements and the parton shower, respectively, the corre-
sponding algorithms are quite different. The main differences can be found
in the way in which the combination of Sudakov reweighting of the matrix
elements interacts with the vetoing of unwanted jet production inside the par-
ton shower. This makes it very hard to compare those approaches analyti-
cally and to formalise the respective level of their logarithmic dependence.
In addition, the different showering schemes used by the different methods
blur the picture further. For instance virtuality ordering with explicit angular
vetoes is used in SHERPA as well as in the HELAC and MADEVENT approach
employ PYTHIA to do the showering, p⊥ordering is the characteristic feature
of ARIADNE, and, through its usage of HERWIG it is angular ordering that en-
ters into the ALPGEN merging approach. However, although the formal level
of agreement between the codes is not worked out in this publication and
remains unclear, the results presented in this publication show a reasonably
good agreement. This proves that the variety of methods for merging ma-
trix elements and parton showers can be employed with some confidence in
vector boson plus jet production.

The comparison also points to differences, in absolute rates as well as in
the shape of individual distributions, which underscore the existence of an
underlying systematic uncertainty. Most of these differences are at a level
that can be expected from merging tree-level matrix elements with leading-
log parton showers, in the sense that they are smaller than, or of the order of,
differences found by making a standard change of scale in αs. In most cases
the differences within each code are as large as the differences between the
codes. And as the systematics at the Tevatron is similar to that at the LHC, it is
conceivable that all the codes can be tuned to Tevatron data to give consistent
predictions for the LHC. To carry out such tunings, we look forward to the
publication by CDF and DØ of the measured cross sections for distributions
such as those considered in this paper, fully corrected for all detector effects.
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order tree-level matrix element generators with parton-shower models. We
use the most basic benchmark of the O(αS) correction to e+e− → jets, where
the simple kinematics allows us to study in detail the transition between the
matrix-element and parton-shower regions. We find that the CKKW-based
schemes give a reasonably smooth transition between these regions, although
problems may occur if the parton shower used is not ordered in transverse
momentum. However, the so-called Pseudo-Shower and MLM schemes turn
out to have potentially serious problems due to different scale definitions in
different regions of phase space, and due to sensitivity to the details in the
initial conditions of the parton shower programs used.
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III.1 Introduction

Accurate simulations of multi-jet final states are important for current exper-
iments and will become even more so once the LHC starts. At the LHC the
production rate for such states will be large due to the huge available phase
space. Hadronic multi-jet states are used for many of the discovery channels
for new physics and the main irreducible background comes from QCD. A
good theoretical understanding and accurate physics simulations of multi-jet
QCD states are therefore essential tools for understanding and analyzing LHC
data.

To be able to compare the predictions of a model with a collider exper-
iment, a description of final state hadrons is needed. There are a few phe-
nomenological models available to describe the production of hadrons, but
they all require that the perturbative emissions are well described, especially
in the soft and collinear regions, to give reliable results. These collinear and
soft emissions dominate the multi-parton cross section and can be taken into
account to all orders, if one approximates the emissions to be strongly ordered,
as is done in parton shower models. However, when the strong ordering no
longer holds, which is the case if we have several hard and widely separated
jets, the parton shower models become unreliable.

In order to improve the description of multi-jet states, full matrix elements
can be used. These describe the process correctly up to a given order in the
strong coupling constant. However, the matrix elements become difficult to
calculate for high parton multiplicities or if one goes beyond tree-level. They
also contain divergences in the soft and collinear limits and need to be regu-
lated using cutoffs.

The idea behind merging algorithms is to let the matrix elements describe
the hard emissions and use the parton shower to describe the soft and collinear
emissions. To accommodate this, the phase space needs to be split into two
well defined regions, one where emissions are generated by tree-level ma-
trix elements, and one where emissions are generated by the parton shower.
To avoid double counting and dead regions, the two regions should have no
overlaps and together cover the entire phase space. The scale that describes
the border between the regions is called the merging scale.

Some extra care is needed to avoid an artificial dependence on the merging
scale. The matrix elements contain divergences in the soft and collinear re-
gions, whereas the emission probability in these regions in the parton shower
is finite since it is regulated by Sudakov form factors. The effects of the Su-
dakov form factors need to be included in the matrix element part of the phase
space as well, making the state from the matrix element exclusive. Also a run-
ning coupling similar to that of the shower needs to be introduced. If this is
done correctly the dependence on the merging scale should be minimal, how-
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ever, especially for corrections with several extra jets, a small residual depen-
dence on the merging scale from sub-leading terms is basically unavoidable.

There are four main algorithms that address the problem of merging tree-
level matrix elements and partons showers: CKKW [1], CKKW-L [2], Pseudo-
Shower [3], and MLM [4]. CKKW was first published for e+e− collisions [1]
and later extended to hadron collisions [5]. Implementations have been made
in SHERPA [6] and in HERWIG [3, 7]. CKKW has been used in several studies
of vector boson production in hadronic collisions [3, 8–11]. CKKW-L was also
first published for e+e− [2] and later extended to hadrons and applied to W-
production [11, 12]. All the CKKW-L results so far have been calculated using
the ARIADNE [13] implementation. The Pseudo-Shower scheme was published
in [3], where the algorithm was described, and an implementation based on
PYTHIA [14] was applied to both e+e− and hadron collisions. The MLM algo-
rithm has been implemented in ALPGEN [15], MADEVENT [16] and HELAC [17].
There is also one implementation based on HERWIG and MADEVENT, which
was used in [3]. Several studies using MLM have been performed for heavy
quark and vector boson production with incoming hadrons [3, 11, 18, 19]. To
our knowledge no calculation applying MLM to e+e− annihilation has been
published.

Of all the implementations, only the SHERPA implementation of the CKKW
scheme and the ALPGEN and MADEVENT implementations of MLM are pub-
licly available, while the others are obtainable from their respective authours
upon request.

There have been some assessments of the systematics of the various algo-
rithms done already, but the main focus so far has been the case of hadron
collisions. Although collisions with incoming hadrons clearly are the most in-
teresting in light of the upcoming LHC experiments, they also include a lot
of complications, such as uncertainties from PDFs and BFKL-like corrections,
that obfuscate the basic properties of the merging algorithms. e+e− annihila-
tion is much simpler from a theoretical point of view and is therefore more
suitable for testing the basic properties of the different algorithms. We believe
it is essential to test the algorithms for e+e− annihilation before moving on to
hadron collisions.

Systematics for e+e− have been published for CKKW-L [2] and for CKKW
and Pseudo-Shower [3], but the systematics for the Pseudo-Shower approach
was quite limited. These studies are extended in this paper, where the four
algorithms listed earlier are applied to different parton shower implemen-
tations. This allows us to thoroughly test which algorithms live up to their
promises.

To study systematics with as little complications as possible we only look
at the simple case of e+e− → qq̄g. In this case the matrix element correction is
already implemented in most of the parton showers, using a simple reweight-
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ing of the hardest splitting1 [20–23], which makes this process particularly
suitable for testing the various algorithms. Ideally all the calculations should
show small deviations and yield more or less trivial results. However, we find
that this is not the case.

Since the process studied is rather simple, algorithms that perform well
should also be tested with more complicated processes before they can be re-
liably used to predict experimental observables. Some of the complications
that can occur during the merging do not enter if only first order corrections
are applied. However, if an algorithm does not perform well for this simple
process, it is improbable that it will work reliably for more complicated pro-
cesses.

We note that besides the four merging algorithms presented here, there are
also other ways of combining matrix elements and parton showers, e.g. the
methods based on modifyig the tree-level or NLO matrix elements to match
the parton shower (see e.g. [24–32]). Such matching algorithms may also have
a dependence on an artificial matching scale. Although it may be interesting
to also benchmark these algorithms using the simplest e+e− → qgq̄ process, we
have not done so in this paper2.

In this paper we will concentrate on the behavior of the merging schemes in
absolute numbers. It would also be interesting to study their formal properties
in terms of leading double- and single-logarithmic contributions to various
cross sections, which so far has only been done for the CKKW scheme [1]. We
plan to return to such issues in a future publication.

In this article we start by reviewing the theoretical aspects of the four al-
gorithms in section IV.2. Then we move on to showing results from our im-
plementations of the algorithms in section IV.4 and finally in section IV.5 we
present our conclusions.

III.2 Theory

All of the algorithms considered in this paper aim to do a good job of merg-
ing matrix elements and partons showers. The issues that are addressed are
the same, namely to split the phase space in a clean well defined way and to
make the matrix element event exclusive by introducing Sudakov form fac-
tors or using some other similar suppression. The main aim is to minimize
any artificial dependence on the merging scale.

1We refer to these matrix element corrections of only the hardest splitting as reweighting while
the more general schemes on trial here are referred to as merging.

2After we wrote this paper a new algorithm was published [33,34] which used a similar bench-
marking.
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III.2.1 General scheme

The basic steps are common to all the algorithms and can be summarized as
follows:

1. Select a process to be studied and choose a scheme to cutoff the diver-
gences in the matrix elements, typically using a jet measure. Specify the
maximum parton multiplicity to be generated by the matrix elements
(This is currently limited to five or six extra partons for computational
reasons). Calculate the cross section for all the parton multiplicities.

2. Select a parton multiplicity with a probability proportional to its inte-
grated cross section. Generate kinematics according to the matrix ele-
ment.

3. Calculate a weight for the event based on the Sudakov form factors and
the running coupling. Use this weight either to reweight the event or as
a probability for rejecting the event. If the event is rejected generate a
new event according to step 2.

4. Find a set of initial conditions for the parton shower and invoke the
shower. This may include a veto on the emissions from the shower.

All the algorithms considered in this paper do steps 1 and 2 in the same
way, but steps 3 and 4 are done using rather different approaches. Each algo-
rithm has its own way of including the Sudakov form factors and finding a
good set of initial conditions for the shower.

One of the key features that distinguishes the algorithms is the choice of
scales. The algorithms uses different definitions of scales when determining
how to split phase space between the matrix element and the parton shower
and in calculating the Sudakov form factors. Furthermore, these scale defini-
tions may be different from what determines the ordering of emissions in the
parton showers. We show later in this paper that the scale choices have signif-
icant consequences for how well the dependence on the merging scale can be
minimized.

The rest of this section describes the details of each algorithm and their
consequences for the physics result. The descriptions of the algorithms are
limited to e+e− collisions, but, with a few modifications and extensions, they
have all been used to calculate results for hadron collisions.

III.2.2 CKKW

The theoretical foundation for CKKW was published in [1], but the main
points are repeated here for completeness. CKKW is focuses on the Durham
k⊥-algorithm for clustering jets in e+e− [35], where the distance between two
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partons, i and j, is defined as

yij ≡ 2 min(E2
i , E2

j )(1 − cosθij)/E2
CM. (III.1)

The k⊥-algorithm is used to construct a parton shower history from the event
generated according to the matrix element. The algorithm generates a set of
clusterings and corresponding scales, which are later used to calculate the Su-
dakov form factors and the running coupling.

Before going through the CKKW algorithm some notation needs to be in-
troduced. Γq, Γg and Γ f are the branching probabilities for q → qg, g → gg and
g → f f̄ respectively. The Sudakov form factors are then given by

∆q(Q1, Q2) = exp(−
∫ Q1

Q2

dqΓq(Q1, q)) (III.2)

∆g(Q1, Q2) = exp(−
∫ Q1

Q2

dq(Γg(Q1, q) + Γ f (Q1, q))). (III.3)

They can be interpreted as the probability of a parton with the production
scale Q1 not to have a branching above the scale Q2. Note the dependency
on the production scale in the branching probabilities. This means that the
Sudakov form factors used in CKKW do not factorize (∆(Q1, Q2) · ∆(Q2, Q3) 6=
∆(Q1, Q3)). This is also the case for the Sudakov form factors in the angular
ordered shower, where the limits on the integration of the splitting functions
are dependent on the production scale.

The idea of CKKW is to use the full matrix element for the branching prob-
abilities and analytical Sudakov form factors above the merging scale, and
the parton shower below the merging scale. The full CKKW algorithm is the
following:

1. Calculate cross sections and generate events according to step 1 and 2
in section III.2.1. yMS denotes the merging scale which is equal to the
matrix element cutoff, defined in terms of the k⊥-measure in eq. (III.1).
The events are generated using a fixed strong coupling, αsME, and a max-
imum multiplicity, N.

2. Construct a shower history by applying the k⊥-algorithm to the state
from the matrix element. The algorithm is constrained to only allow
clusterings of partons which are consistent with a possible emission
from the parton shower. This yields a set of clustering values y2, ..., yn,
where y2 = 1 > y3 > ... > yn and n denotes the parton multiplicity of the
event from the matrix element. Use the result from the clustering to de-
termine a set of nodes where the partons are merged and the associated
scales, q2

i = yiE
2
CM.

3. Calculate a weight for the running coupling given by ∏
n
i=3 αs(qi)/αn−2

sME.
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4. For each internal line of type i running between a node with scale qj and
qk apply a factor ∆i(qj, qMS)/∆i(qk, qMS), where q2

MS = yMSE2
CM. For exter-

nal lines of type i starting from a scale qj apply the weight ∆i(qj, qMS).
These weights are the Sudakov form factors and they are calculated an-
alytically.

5. Reweight the event with the product of the Sudakov form factors in step
4 and the running coupling weight in step 3.

6. Set the starting scale of each parton to the scale associated with the node
in the shower history where it was produced. Invoke the shower and
veto any emission which would give a k⊥-measure above yMS.

The original CKKW procedure [1] contained no special treatment for high-
est multiplicity events. This needs to be included since applying the veto on
emissions in the shower down to the merging scale would prevent events with
more than N jets above the merging scale from being generated. One way to
resolve this is to modify the procedure for highest multiplicity events (n = N)
and use the scale qn instead of qMS in the Sudakov form factors and the vetoed
shower. This is done in [3, 36].

Another issue that needs to be addressed is effects related to the choice
of ordering variable in the shower. The entire theoretical derivation in the
CKKW publication [1] uses only one way of defining scales, namely the
Durham k⊥. While the discrepancy from using a different ordering variable
in the shower may cancel to some accuracy, this is not explicitly shown or
discussed, even though the shower used in the publication is ordered in vir-
tuality. The consequences of applying the scheme to a shower not ordered in
Durham k⊥ are therfore somewhat unclear.

The original CKKW publication [1] claims that this procedure cancels the
dependence on the merging scale to next-to-leading logarithmic (NLL) accu-
racy. However, this claim assumes that the formalism used, including Su-
dakov form factors, jet rates and generating functions, is valid at NLL, but
this proof has never been published.3

III.2.3 CKKW-L

The CKKW-L algorithm goes through the same basic steps as CKKW, but has
a different way of calculating the Sudakov form factors and implementing the
veto in the shower. In the CKKW-L scheme, a full cascade history with in-
termediate states is constructed. What is done is basically to run the cascade
backwards and answer the question “how could the shower have generated
this state?”. This means that the ordering scale in the shower is used when

3The only reference leads to reference 22 in [35], which is marked “in preparation”, and it has
been confirmed by one of the authors of the article that it was never completed.
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clustering the partons. As in the CKKW case, only physically allowed cluster-
ings are considered. However, contrary to CKKW where always the smallest
scale is chosen for each clustering, all possible ordered shower histories are
considered, and one is chosen according to a probability proportional to the
product of the relevant branching probabilities. The chosen shower history is
then used to calculate the Sudakov form factors and the running coupling.

To be able to use this scheme, the parton shower needs to have well de-
fined intermediate states and it is also required that the Sudakov form factors
factorize (∆(Q1, Q2) · ∆(Q2, Q3) = ∆(Q1, Q3)). This is achieved if the Sudakov
form factors only depend on the kinematics of the intermediate state rather
than the production scale. This is for example the case in the dipole shower
used in ARIADNE [13] and the p⊥-ordered shower in PYTHIA [37], but not for
the angular ordered shower in HERWIG [7].

The effects of the running coupling are taken into account by reweighting
with the same αs as in the shower with the constructed scales as input. The
Sudakov form factors are introduced by using the shower to generate single
emissions from the constructed states starting from the constructed scales and
rejecting the event if the emission is above the next constructed scale. This is
known as the Sudakov veto algorithm and it is equivalent to accepting events
with a probability equal to the Sudakov form factor, since by definition the no
emission probability of the shower is equal to the Sudakov form factor.

There are several advantages to this approach. One is that it makes sure
that the Sudakov form factors above and below the merging scale match ex-
actly and another is that any corrections introduced in the shower is also in-
cluded in the Sudakov form factor. This is particularly useful if the splitting
functions have been reweighted with matrix elements, since this makes it pos-
sible to completely cancel the merging scale dependence for first order correc-
tion (shown explicitly below). We also expect that the cancellation of the first
order correction will lead to a smaller merging scale dependence for higher
order processes even though the complete cancellation no longer holds.

We use a slightly different notation in this section to emphasize the differ-
ence in the Sudakov form factors with respect to the ones in CKKW. ∆Sn

(ρ1, ρ2)

denotes a Sudakov form factor for an n-particle state giving the probability
that there is no emission with a shower scale, ρ, between ρ1 and ρ2. The
merging scale uses another notation, QMS, to emphasize that this scale does
not need to be defined in terms of the emission scale in the shower. In fact,
one could in principle use any partonic scale definition for the merging scale.
These are the steps in the CKKW-L algorithm.

1. Calculate cross sections and generate events according to step 1 and 2
in section III.2.1. QMS denotes the merging scale which is equal to the
matrix element cutoff and may be defined using any choice of scale. The
events are generated using a fixed strong coupling, αsME, and a maxi-



III.2 Theory 119

mum parton multiplicity, N.

2. Construct a full cascade history by considering all possible ordered his-
tories and selecting one randomly with a probability proportional to the
product of the branching probabilities. If no ordered histories can be
constructed, unordered ones are considered. This results in a set of in-
termediate states (S2, S3, ...Sn) and scales (ρ2 = ρmax, ρ3, ..., ρn). S2 denotes
here denotes the constructed 2 → 2 process and Sn is the state given by
the matrix element. n is the parton multiplicity in the event, ρmax is the
maximum scale of the process and ρi is the constructed scale where the
state Si−1 emits a parton to produce the state Si.

3. Reweight the events with ∏
n
i=3 αs(ρi)/αn−2

sME.

4. For each state Si (except Sn), generate an emission with ρi as starting scale
and if this emission occurred at a scale larger than ρi+1 reject the event.
This is equivalent to reweighting with a factor ∏

n−1
i=2 ∆Si

(ρi, ρi+1).

5. For the last step there are two cases.

• If the event does not have the highest multiplicity n < N, generate
an emission from the state Sn with ρn as starting scale. If the emis-
sion is above the merging scale QMS, reject the event. Otherwise
accept the event and continue the cascade.

• If the event has the highest possible multiplicity n = N, accept the
event and start the cascade from the state Sn with the scale ρn.

The algorithm introduces all the factors that would have been present if the
event had been generated by the parton shower, except the branching proba-
bility which is taken from the matrix element. To show how this comes about,
a derivation of the parton multiplicity cross sections for a first order matrix
element is shown below. The explicit reweighting of αs is not shown, but is
straight forward to include.

Let ρ0 denote the parton shower cutoff and ΓSn
(ρ) denote the probability

that a state Sn branches at scale ρ. The definition of the Sudakov from factor in
this case is ∆Sn

(ρ1, ρ2) ≡ exp(−
∫ ρ1

ρ2
dρ ΓSn

(ρ)). The exclusive parton multiplicity

cross sections generated by the standard parton shower can be written as

σPS
2 (ρmax, ρ0) = σ0 ∆S2

(ρmax, ρ0) (III.4)

σPS
3 (ρmax, ρ0) = σ0

∫ ρmax

ρ0

dρ ∆S2
(ρmax, ρ) ΓS2

(ρ) ∆S3
(ρ, ρ0) (III.5)

σPS
4 (ρmax, ρ0) = σ0

∫ ρmax

ρ0

dρ ∆S2
(ρmax, ρ) ΓS2

(ρ) ×

×
∫ ρ

ρ0

dρ′ ∆S3
(ρ, ρ′) ΓS3

(ρ′) ∆S4
(ρ′, ρ0). (III.6)

This notation can be generalized to include all higher multiplicity cross sec-
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tions. Let f 3�n(ρ, ρ0) denote the probability of the three-parton state to evolve
into an n parton state between the two given scales. This means that a general
n ≥ 3 parton cross section can be written as

σPS
n (ρmax, ρ0) = σ0

∫ ρmax

ρ0

dρ ∆S2
(ρmax, ρ) ΓS2

(ρ) f 3�n(ρ, ρ0), (III.7)

where

f 3�3(ρ, ρ0) = ∆S3
(ρ, ρ0). (III.8)

f 3�4(ρ, ρ0) =
∫ ρ

ρ0

dρ′ ∆S3
(ρ, ρ′) ΓS3

(ρ′) ∆S4
(ρ′, ρ0) (III.9)

...

The merging scale may be defined using a different way of mapping the
phase space (denoted Q) as compared to the scale used in the shower. The
value of the scale used to define the merging scale and the scale of the shower
can be related if the other variables that determine the shower emission is
included. Let ~x represent the k additional variables used in the shower, which
may include energy fractions and rotation angles. The branching probability
can be written in a way that it includes the dependence on these variables as
long as the following is true.

Γ(ρ) =
∫

dk
~x Γ(ρ,~x) (III.10)

The alternative mapping of phase space is described by the function
QSn

(ρ,~x), which denotes the value of the merging scale measure for a given
shower emission. The lowest order matrix element cross sections are equal to

σME
2 (ρmax, QMS) = σ0 (III.11)

σME
3 (ρmax, QMS) = σ0

∫ ρmax

ρ0

dρ

∫

dk
~x ΓME

S2
(ρ,~x)×

×Θ(QS2
(ρ,~x)− QMS). (III.12)

ΓME
S2

is the branching probability in the matrix element and Θ is the standard
Heaviside function. Note that the equations above only hold if the matrix ele-
ment merging scale is above the shower cutoff everywhere in phase space, but
this can be resolved by discarding all events from the matrix element which
are below the shower cutoff.

The next step is to apply the algorithm to calculate the jet rates at ρ0 for
the merged matrix element and parton shower. The two-jet state is already
the lowest order process, which means no cascade history is constructed and
only the final Sudakov veto down to the merging scale enters. The parton
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multiplicity cross sections become equal to that of the pure shower minus the
cross section for events with the first emission above QMS. The two-jet matrix-
element contributions to the cross sections are equal to

σ2(ρmax, ρ0) = σ0 ∆S2
(ρmax, ρ0) (III.13)

σn(ρmax, ρ0) = σ0

∫ ρmax

ρ0

dρ

∫

dk
~x Θ(QMS − QS2

(ρ,~x)) ∆S2
(ρmax, ρ) ×

×ΓS2
(ρ,~x) f 3�n(ρ, ρ0). (III.14)

When the algorithm is applied to a three-jet event, an emission scale, ρ3,
is constructed. Emissions are generated from the two-jet state and events dis-
carded according to the Sudakov veto algorithm, which is equivalent to in-
troducing a weight ∆S2

(ρmax, ρ3). The cascade is then started from the scale ρ3

and, assuming the three-jet configuration is the highest multiplicity, no addi-
tional Sudakov suppression is included. Using the matrix element cross sec-
tion from equation (III.12) and, assuming that the constructed scale ρ3 is equal
to the scale used in the matrix element, results in the following contributions
to the parton multiplicity cross sections.

σn(ρmax, ρ0) = σME
3 (ρmax, QMS) ∆S2

(ρmax, ρ3) f 3�n(ρ3, ρ0) =

= σ0

∫ ρmax

ρ0

dρ

∫

dk
~x Θ(QS2

(ρ,~x) − QMS) ΓME
S2

(ρ,~x)×

×∆S2
(ρmax, ρ) f 3�n(ρ, ρ0) (III.15)

The following cross sections are the result from adding the contributions
from the two- and three-jet processes.

σME+PS
2 (ρmax, ρ0) = σ0 ∆S2

(ρmax, ρ0) (III.16)

σME+PS
n (ρmax, ρ0) = σ0

∫ ρmax

ρ0

dρ

∫

dk
~x [ΓME

S2
(ρ,~x) Θ(QS2

(ρ,~x) − QMS) +

+ΓPS
S2

(ρ,~x)Θ(QMS − QS2
(ρ,~x))] ×

×∆S2
(ρmax, ρ) f 3�n(ρ, ρ0) (III.17)

From the equations above one can see that the only dependence on the
merging scale QMS is in the integration over the branching probabilities. This
means that the merging scale dependence for this process cancels to the accu-
racy of which the shower generates the first emission. In fact, for the process
studied in this paper, many of the parton shower implementations reweight
the splitting function for the first emission with the matrix element, in which
case the merging scale dependence cancels completely.

III
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III.2.4 Pseudo-Shower

The Pseudo-Shower algorithm is similar in spirit to CKKW-L, but it uses par-
tonic jet observables for the kinematics instead of individual partons. Where
CKKW-L runs the cascade one emission at a time from a given parton state
to calculate no-emission probabilities, in the Pseudo-Shower approach a full
parton cascade is evolved, and the resulting partons are clustered back to jets.
Any standard clustering algorithm, where in each step the pair of particles
which are closest together are clustered, can be used. The same distance mea-
sure is used to define the merging scale as the one used to construct a shower
history for the matrix-element state and the fully showered states. The full
algorithm is defined as follows.

1. Choose a jet clustering scheme to be used in the algorithm and a merg-
ing scale, dMS. Set the matrix element cutoff equal to the merging scale,
calculate cross sections and generate events according to step 1 and 2 in
section III.2.1. The events are generated using a fixed strong coupling,
αsME, and a maximum multiplicity, N.

2. Cluster the partons from the matrix element, using the selected jet
scheme, until a 2 → 2 state is reached. As in CKKW, only clusterings cor-
responding to physically allowed splittings are considered. The result
of the clustering is interpreted as a shower history with a set of states
(S2, . . . Sn) and a set of scales (d̃2 = dmax, d̃3, . . . , d̃n), where n is the parton
multiplicity of the event.

3. For each state Si, except Sn, perform a full shower vetoing any emission
with a jet measure greater than the corresponding scale in the shower
history, d > d̃i. Calculate a set of clustering scales, dj, by clustering the
partons from the shower using the same algorithm as in step 2, but for
practical reasons also allow clusterings corresponding to non-physical

splittings. Reject the event if
√

di+1 >

√

d̃i+1 + δ (the δ is a fudge factor to

be discussed below).

4. For the final state Sn the shower is invoked, vetoing emissions with d >

d̃n. If the event is not a maximum multiplicity event (n < N), the partons
are clustered and the event is rejected if the scale from the clustering
is above the merging scale,

√

dn+1 >
√

dMS + δ. For N = n the event is

accepted except if
√

dn+1 >
√

d̃n + δ.

Although it was not stated in the text in [3], the implementation did in-
clude a reweighting with a running strong coupling ∏

n
i=3 αs(d̃i)/αn−2

sME. The
same reweighting is also included here.

To see the similarity with CKKW-L, consider using the Pseudo-Shower us-
ing a parton shower with an ordering variable equal to the distance scale in
the clustering algorithm used, and with well-defined intermediate states. In
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the strongly ordered limit, the clustering algorithm would then exactly repro-
duce the intermediate states and branching scales in the shower. This means
that evolving a full shower from the state Si, starting from a scale d̃i, clustering
to find a di+1 and rejecting the event if di+1 > d̃i+1 would exactly correspond
to the Sudakov form factor ∆Si

(d̃i, d̃i+1), and the merging scale dependence
for first order matrix element corrections would cancel in the same way as
CKKW-L.

In reality, the clustering does not exactly reconstruct the shower splittings.
If subsequent emissions are not clustered in the same way as the shower emit-
ted them, this can affect the clustering scale of harder emissions. This means
that the scale of the matrix element partons before the shower and the scale
that one gets from the jet clustering after the shower are rarely the same. This
is a significant problem, since the phase space cuts that separate the matrix
element emissions from the partons shower emission is done using two dif-
ferent scales, which leads to dead regions and double counting of emissions
and it also affects the calculation of the Sudakov form factors.

To moderate the effects of having two different scales, the fudge factor δ

(introduced in [3]) was included whenever comparing a scale from the clus-
tering of the matrix element state with a scale from the clustering of the fully
showered state. In [3] the value δ = 2 GeV was used without motivation, theo-
retical or otherwise, but supposedly the parameter needs to be tuned for each
choice of process and merging scale to properly compensate for the mismatch
in scales.

III.2.5 MLM

The MLM algorithm is similar to the Pseudo-Shower in that it also does match-
ing with partonic jet observables. The algorithm is much simpler to imple-
ment compared to earlier schemes discussed. In the MLM merging scheme the
event from the matrix element is simply fed into the parton shower program,
the shower is invoked and the final state partons are clustered into jets. The
algorithm then specifies that the matrix element partons should be matched
to the final state partonic jets, and events are accepted only if all the jets match
and the event contains no extra jets above the merging scale. In this way the
Sudakov form factors are approximated by the probability that there are no
emissions above the merging scale and, at the same time, the parton shower
emissions are approximately constrained to be below the merging scale. The
MLM algorithm is a really convenient way of doing merging since it requires
no modifications to the parton shower program.

Even though MLM has been frequently used, a general version of the al-
gorithm has never been published and all the published algorithms assume
incoming hadrons. Based on [4, 11, 19], we present here our interpretation of
the necessary steps needed for applying the MLM scheme to e+e− collisions.

III
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The first step in an MLM implementation is to choose a jet definition to be
used for the merging scale and the matrix element cutoff. The original MLM
algorithm used cone jet definitions, although there have been implementa-
tions using the k⊥-algorithm, e.g. the MADEVENT implementation in [11] and
the HERWIG implementation in [3]. After specifying a cutoff, events are gener-
ated and the running coupling reweighting is calculated in the same way as
in the CKKW algorithm.

Then the shower is invoked using an appropriate starting scale, which is
defined for each implementations and process. For W-production in hadron

collisions, the scale is set to the transverse mass of the W (
√

m2
W + p2

⊥W) [11],

whereas for the top production implementation it is not specified [19]. In
hadron collision there is some freedom for choosing the starting scale of the
shower, but for e+e− we think that the scale should be set to center of mass
energy, to allow the shower to utilize the full phase space.

After the shower has been invoked the final state partons need to be clus-
tered into jets and matched to the partons from the matrix element. The clus-
tering is done with the same algorithms used to define the merging scale. The
partons from the matrix element are then matched to the clustered jets, in or-
der of decreasing energy. The measure used to match the partons to jets is
some quantity related to the jet clustering. These are all the steps in the algo-
rithm.

1. Select a merging scale, QMS, and a matrix element cutoff Qcut, such that
Qcut < QMS, where the scales are defined using a jet algorithm. Calculate
cross sections and generate events according to step 1 and 2 in section
III.2.1. The events are generated using a fixed strong coupling, αsME, and
a maximum parton multiplicity, N.

2. Cluster the partons from the matrix element using the k⊥-algorithm and
use the clustering scales as in input to αs and reweight the event.

3. Feed the event into a parton shower using the Les Houches interface
[38], setting the scale to ECM, and start the shower.

4. Cluster the partons to jets using the algorithm from step 1 with a cluster-
ing scale set to QMS. Go through the list of partons, in order of decreasing
energy, and match them to the clustered jets. This is done by finding the
jet with the smallest distance to the parton defined using some measure
based on the jet clustering scheme4. If not all the partons match or there
are extra jets, reject the event.

For the highest multiplicity events either use a higher clustering scale
and more relaxed matching criteria or allow extra jets that are softer than
the matched jets.

4This cannot be exactly the same distance measure as in the jet algorithm for reasons to be
discussed in section IV.4
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There are several aspects of this algorithm that needs further explaining.
The reason for having a cutoff below the merging scale is that events slightly
below the merging scale can end up above after the shower. This leaves an
arbitrary choice of matrix element cutoff, but this can be resolved if soft and
collinear particles have a vanishing probability to generate an independent
jet, which means that the result converge when the matrix element cutoff is
lowered. This is a way of getting around the problem that occurred in the
Pseudo-Shower algorithm, namely that the cuts on the matrix element state
and on the partonic jets are not equivalent. However, the convergence needs
to be verified for each implementation and process.

One other aspect that needs further scrutiny is what happens inside the
parton shower program. The main danger is that the program may be given a
state with one or more relatively soft parton and a rather high starting scale,
which means that the shower often ends up emitting harder partons than the
ones already present, leading to an unordered shower. This breaks the strong
ordering approximation, which is fundamental to all parton showers, and the
end result is heavily dependent on how unordered emissions are handled.

To derive some of the properties of MLM, let us assume (as we did in the
Pseudo-Shower case) that the jet clustering is a perfect inverse of the shower
and that the shower has well defined intermediate states. These assumptions
are a bit crude considering the way MLM is used in current implementations,
but it allows for the possibility to do analytical calculations and it should give
some idea of what to expect from the algorithm. Under these assumptions
parton multiplicity cross sections, including the first order matrix element cor-
rections, can be calculated.

The calculations are performed using the same notation as in the section
III.2.3. The merging scale can be defined in terms of the scale in the shower
(ρMS) and starting the scale from the center of mass energy is equivalent to
using the maximum scale (ρmax). The two-jet matrix element contribution to
the parton multiplicity cross sections becomes the same as in CKKW-L.

σ2(ρmax, ρ0) = σ0 · ∆S2
(ρmax, ρ0) (III.18)

σn(ρmax, ρ0) = σ0 ·
∫ ρMS

ρ0

dρ ∆S2
(ρmax, ρ) ΓS2

(ρ) f 3�n(ρ, ρ0) (III.19)

The contribution from the three-jet is different however. The reason is that
there is no Sudakov form factor from a two-particle state included since no
shower history was considered. The contribution to the cross sections is the
following.

σn(ρmax, ρ0) = σ0 ·
∫ ρmax

ρMS

dρ ΓME
S2

(ρ) ∆S3
(ρmax, ρ) f 3�n(ρ, ρ0) (III.20)

III
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The sum of the two contributions become the following.

σ2(ρmax, ρ0) = σ0 · ∆S2
(ρmax, ρ0) (III.21)

σn(ρmax, ρ0) = σ0 ·
∫ ρmax

ρ0

dρ
[

ΓME
S2

(ρ) ∆S3
(ρmax, ρ)Θ(ρ − ρMS)+

+ΓPS
S2

(ρ) ∆S2
(ρmax, ρ)Θ(ρMS − ρ)

]

f 3�n(ρ, ρ0) (III.22)

Comparing equation (III.21) to (III.4) one can see that the two-parton cross
section becomes the correct one. Note that this would not have be the case
if a lower starting scale was chosen for the shower. The higher multiplicity
cross sections contain complications, which can be seen by comparing equa-
tion (III.22) to (III.7). The problem is that MLM does not include the Sudakov
form factor from the S2 state, which means that there will be an additional
dependence on the merging scale as a result of the difference in the Sudakov
form factors. The factor ∆S3

(ρmax, ρ) is where the explicitly unordered shower
occurs and the results are therefore largely dependent on the parton shower
implementation.

Consider, for illustration, using the k⊥-ordered shower of PYTHIA on a
three-parton state. Here the maximum transverse momentum of an emission
is given by half the largest of the qg and gq̄ invariant masses, which for a soft
gluon can be very small. Hence, the Sudakov form factor between ECM and
this transverse momentum would be absent, resulting in a large dependence
on the merging scale.

The actual MLM implementations contain several other complications.
The jet clustering used is not the inverse of the shower and most implemen-
tations use parton showers that do not have well defined intermediate states.
However, none of these aspects can resolve the problem that the Sudakov form
factor is generated using a three-particle state instead of a two-particle state.
The error caused by using the wrong Sudakov form factor is inherent in any
MLM implementation.

III.3 Results

Each of the algorithms described above have been tested for the first order
matrix element correction to e+e− → qq̄ at the Z0 pole. As explained in the
introduction, this matrix element correction can also be included by a simple
reweighting of the first (or hardest) splitting in a parton cascade, thus provid-
ing us with the “correct” answer for comparison. In this way we can check
whether the merging algorithms actually meet their goals of a clean cut be-
tween matrix element and parton shower phase space and a small dependence
on the merging scale. Only if they do achieve these goals on this simple case,
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Figure III.1: The y3 spectra at parton level for PYTHIA, PYTHIA with matrix element
reweighting switched off, ARIADNE and HERWIG.

can we believe that they are likely to achieve their goals when generalized to
higher order matrix elements and more complicated processes.

To have a fair comparison, we have in all cases generated matrix element
events using a cut in the Durham k⊥-algorithm distance measure, y, as defined
in eq. (III.1). Also the merging scale is defined using this distance measure.
The only exception is for the Pseudo-Shower algorithm, where a slightly dif-
ferent scale is used as explained below in section III.3.3. The matrix element
events were generated with MADEVENT (v 4.1.31) [16].

To check the merging scale dependence we look at the distribution which
should be the most sensitive, namely the y3 scale where the k⊥-algorithm clus-
ters three jets into two, when applied to the final parton-level events. We also
look at two hadron-level event shape observables, which have been well mea-
sured at LEP and corrected to hadron level. One is the normalized y3 distribu-
tion of all final state particles measured by ALEPH [39], which shows how the
dependence on the merging scale is reflected in the hadronic final state. The
other is the normalized charged particle thrust distribution measured by DEL-
PHI [40], which is not directly related to the merging scale, but is nevertheless
very sensitive to the leading order matrix element correction.

In figures III.1 and III.2 we present these distributions for the four gener-
ators ARIADNE (v 4.12) [13], HERWIG (v 6.510) [7] and PYTHIA (v 6.413) [37],
which all are equipped with simple matrix element reweighting. We see that

III
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Figure III.2: The y3 spectra for charged and neutral particles (a) and the charged par-
ticle thrust spectra (b) for PYTHIA, PYTHIA with matrix element reweighting switched
off, ARIADNE and HERWIG compared to ALEPH and DELPHI data. The in-sets at the
bottom of the plots show the relative differences between the Monte Carlo results and
data, (σMC − σData)/σData.

they all agree fairly well, which should come as no surprise since they have
all been tuned to fit LEP data.

In figures III.1 and III.2 we also show the results from PYTHIA, with the
matrix element reweighting switched off to give a sense of how large an effects
we should expect from the matrix element corrections. We see that the main
effect is that these distributions are clearly harder than the ones with matrix
element reweighting.

We had planed to also include SHERPA [6] in this comparison and use it
for the CKKW results. Unfortunately we discovered inconsistencies5 in the
results and therefore decided not to use SHERPA at all in this study.

III.3.1 CKKW-L

We start by looking at the results from the CKKW-L scheme. Two implemen-
tations have been considered. We have used the original implementation [2]
in ARIADNE and we have also made an implementation of the first order cor-
rections using the transverse momentum ordered shower in PYTHIA [37, 41].

In ARIADNE the parton evolution is modeled by a dipole cascade [20, 42].
Unlike most other parton showers, the dipole cascade is based around 2 →
3 partonic splittings rather than 1 → 2. This model automatically includes
the coherence effects from emitting gluons from colour-neighboring partons,

5Both the version 1.0.10 and 1.0.11 of SHERPA give different results for the cross section de-
pending on whether weighted or unweighted events are used. Changing between weighted and
unweighted events also gives two different results for the shape observables in version 1.0.10,
neither being consistent with the results from version 1.0.11.
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which means that explicit angular ordering is not necessary. It also means that
the first order matrix element e+e− → qgq̄ is already present in the cascade by
construction. The ordering variable used in the cascade is a Lorentz-invariant
transverse momentum measure

p2
⊥ =

s12s23

s123
, (III.23)

where sij are the invariant masses of the partons and index 2 indicates the
emitted parton. This measure is then also used in the construction of the
shower history in a procedure similar to the DICLUS jet clustering algorithm
[43], but including only physically allowed clusterings.6

We have also implemented the CKKW-L scheme using the transverse-
momentum ordered shower [41] in PYTHIA.7 This cascade exhibits the main
features required by the CKKW-L scheme, namely that it is ordered in trans-
verse momentum and that is has well-defined on-shell intermediate states.
The ordering variable (also called p⊥) is defined in the following way:

p2
⊥ = z(1 − z)Q2 (III.24)

Q2 is the invariant mass of the produced parton and radiating parton and z

is the energy fraction of the radiating parton. The ordering of the shower is
done in a way which incorporates coherence effects without requiring explicit
angular ordering.

There is one significant difference in the PYTHIA implementation, namely
that the constructed history is no longer unique. In PYTHIA there are two possi-
ble ways for the gluon to be emitted (from the quark or the anti-quark), which
means that there are two possible histories to be considered. One history is
selected with a probability proportional to its branching probability.

In figure III.3 we show the parton-level y3 distribution for ARIADNE and
transverse momentum ordered PYTHIA shower with matrix element reweight-
ing.8 Both programs are compared to their respective CKKW-L implementa-
tions with different merging scales, and the figure shows that the cancellation
is almost complete. There are some small discrepancy for the lowest cutoff of
the order of 2%. This is because MADEVENT generated the matrix element with
massless u, d, s and c quarks, where as in ARIADNE and PYTHIA they are given
a small mass, which causes a slight deviation in the emission probability. This
discrepancy can be removed by setting the masses in ARIADNE and PYTHIA

equal to the masses in MADEVENT. No deviations, however, are visible below
the merging scale.

6For higher multiplicities, all possible shower histories are considered. However, for this sim-
ple case there is only one unique history

7Note that this is not a complete implementation, since only the leading order matrix element
correction to e+e− → qq̄ is considered.

8We have used PYTHIA v 6.413, amended with a fix approved by the authors to avoid a bug in
the built-in matrix element reweighting. This bugfix has been included v 6.414.
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Figure III.3: (a) The y3 spectra at parton level for ARIADNE (the first order matrix el-
ement is included by construction) and for the ARIADNE implementation of CKKW-L
corrections with different merging scales. (b) is the same for our PYTHIA implementa-
tion of CKKW-L corrections with different merging scales. The in-sets at the bottom
of the plots show the relative differences between the CKKW-L results and the default
shower, (σCKKW−L − σShower)/σShower.

For completeness we show in figure III.4 the comparison for the hadron-
level observables y3 and thrust for ARIADNE and p⊥-ordered PYTHIA respec-
tively. As expected from the parton-level results, there is no serious depen-
dence on the merging scale.9

III.3.2 CKKW

The CKKW algorithm has been implemented using PYTHIA, with both the p⊥-
ordered and the virtuality ordered shower. The implementations are done
according to the scheme described in section III.2.2. The only difference is that
none of the implementations use the Durham k⊥ as ordering variables, there-
fore setting the starting scale is done differently. The scale of the quark and
anti-quark is set to ECM and the scale of the gluon is set to the p⊥ of the recon-
structed splitting for the p⊥-ordered shower and the virtuality and angle10 of
the splitting for the virtuality ordered shower. For the latter, the scheme is es-
sentially equivalent to what is implemented in SHERPA. The results are shown
in figure III.5.

The results from the p⊥ ordered shower show a smooth transition between
the regions above and below the cutoff. This is to be expected since Durham

9The PYTHIA p⊥-ordered shower has not been properly tuned to LEP data, and we therefore
do not compare it directly to data. However, comparing with figures III.4a and b, it is clear that
the variations due to the merging scale are well within the experimental errors.

10Besides having the virtuality as ordering variable, PYTHIA also imposes a veto on emission
angles to ensure angular ordering.
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Figure III.4: Charged plus neutral particle y3 and charged particle thrust for the
ARIADNE and PYTHIA implementation of CKKW-L corrections with different merging
scales. Figure (a) includes a comparison to ALEPH data and (b) a comparison to DEL-
PHI data, where figure (c) and (d) only compare to the default PYTHIA, since the p⊥-
ordered shower has not yet been tuned to data.

k⊥ is approximately equal to the p⊥ in the shower, which means that the en-
tire procedure becomes similar to CKKW-L with the exception that the Su-
dakov form factors are calculated according to an analytical approximation.
The CKKW results show a slightly higher cross section than standard PYTHIA,
which is attributed to the fact that in the analytical Sudakov form factors the
approximate splitting functions are integrated over parts of phase space where
they are negative. This means that Sudakov form factors cannot be interpreted
as no-emission probabilities in the same way as in the shower and the end re-
sult is a slightly smaller suppression.

Figure III.5b shows the results from the virtuality ordered shower and there
are clear problems. Each CKKW curve has a dip right at the merging scale
and for higher values of y3 they are significantly above the default results
from PYTHIA. One source of problems is that the shower can generate un-
ordered emissions, since an emission which has a high vitruality can have a
low k⊥. This also changes which Sudakov form factor is applied to each re-
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Figure III.5: The y3 spectra at parton level for PYTHIA with p⊥-ordered (a) and virtual-
ity ordered (b) shower (and with the first order matrix element reweighting included)
and for our corresponding PYTHIA implementations of CKKW corrections with differ-
ent merging scales.
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Figure III.6: The maximum Durham k⊥-value of any emission in the cascade for
PYTHIA with p⊥-ordered shower (and with the first order matrix element reweighting
included) and for the two- and three-jet components in our PYTHIA implementation
of CKKW corrections with a merging scale yMS = 10−2. An extra curve is included
to show the two-jet contribution without the suppression from the analytic Sudakov
form factor.

gion of phase space. A derivation of the problems that this can lead to for the
lowest order process is presented in appendix III.1.

To further scrutinize the causes of the problems in the virtuality ordered
CKKW implementation, we have studied the variable used for the shower
veto which is the k⊥-value of the individual emission. Figure III.6 shows the
maximum Durham k⊥-value for the emissions in the shower. The results have
been split into two and three-jet components of the CKKW implementation
using PYTHIA p⊥ and virtuality ordered shower.
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The two-jet events in CKKW is produced by invoking the shower veto-
ing emissions above the merging scale and reweighting with an analytical Su-
dakov form factor. These two steps can be considered separately, which is
illustrated in figure III.6 by having a curve that only includes the veto and not
the reweighting.

For the shower ordered in transverse momentum the three-jet contribution
match the curve from running default PYTHIA fairly well above the merging
scale. This is expected since the ordering in the transverse momentum ordered
shower is fairly close to using Durham k⊥-ordering. The two-jet contribution
is similar in shape but is higher in cross section, which can be attributed to a
smaller suppression from the analytical Sudakov form factors as compared to
the form factors used in the shower. There is a discontinuity at the merging
scale, but it is smoothed out by the shower causing the figure III.5a to appear
somewhat smooth.

With the virtuality ordered shower the results are quite different, which
is caused by using two rather different scales. The problem is that emissions
modifies the phase space for subsequent emissions, and by emitting the par-
tons with highest virtuality first, the hardest emissions in k⊥ are no longer
allowed. When studying the hardest emission according to Durham k⊥, this
results in a shift to smaller values. This is why the PYTHIA curve is signifi-
cantly below the three-jet CKKW curve in figure III.6b. The sum of the two
and three-jet contributions in figure III.6b has two peaks with a clear dip in
between. When the rest of the emissions are included this structure is some-
what smothed out, but the two peaks with a dip in between are clearly visible
in figure III.5b.

It is clear that one has to be a bit careful regarding the choice of shower and
scales in CKKW. One CKKW implementation based on HERWIG was published
in [3] and the results were consistent only after a significant amount of tuning
of scale parameters. A similar procedure could probably be used to make our
results more consistent, but it would add extra somewhat arbitrary parame-
ters to the model. The problem with the ordering of the emissions also leads
to a different colour structure in the events, which was pointed out in [26].

Finally we show the consequences for two experimental observables in fig-
ure III.7. Again, the results of the p⊥-ordered shower has only been compared
to the default PYTHIA, since it is not yet tuned to data. The p⊥-ordered plots
show significant lower values at high y3 and low thrust, which is the result of
the excess in cross section for two-jet events. We also see some trace of the dis-
continuities in figure III.6a, but they have been smoothed out by the shower
and hadronization. The results from the virtuality ordred shower shows the
same dips in the y3 distribtion as in the parton-level plots. The dips are not vis-
ible in the thrust plot, but there are significant deviations from default PYTHIA.
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Figure III.7: Charged plus neutral particle y3 and charged particles thrust for our
PYTHIA implementation of CKKW corrections with transverse momentum and virtu-
ality ordered showers and using different merging scales. Figure (c) includes a com-
parison to ALEPH data and (d) a comparison to DELPHI data, where figure (a) and (b)
only compare to the default PYTHIA, since the transverse momentum ordered shower
has not yet been tuned to data.

III.3.3 Pseudo-Shower

We have implemented the Pseudo-Shower [3] algorithm using matrix element
events generated with MADEVENT and using PYTHIA with both virtuality or-
dered and p⊥-ordered parton shower. The implementation has been done
with the following definition for the jet clustering.

dij ≡ m2
ijEiEj/(Ei + Ej)

2 (III.25)

This is equivalent to the measure in the LUCLUS algorithm11 (and to the k⊥-
definition in eq. (III.24)) in the limit of massless particles. The jet algorithm
was used both to define the merging scale and the clustering of jet observables
as specified by the merging scheme. αs-reweighting has been introduced us-

11Originally included in the JETSET program [44], now a part of PYTHIA as the PYCLUS routine.
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Figure III.8: The d3 spectra at parton level for PYTHIA (with first order matrix element
reweighting included) and for our implementation of the Pseudo-Shower algorithm
using both the vituality ordered and the p⊥-ordered shower. (a) and (c) show the
effects of different valuses of the fudge factor δ with a merging scale of

√
dMS = 5 GeV.

(b) and (d) show the results from different values of the merging scale dMS using a
fudge factor δ = 1 GeV.

ing the scales from the jet clustering, which is happens to be the same scale
definition that is used in the αs evaluation in the PYTHIA shower.

The first thing that is investigated is the effects of different values of the
fudge factor δ introduced in section III.2.4. The most sensitive distribution for
checking the effects is the same variable as the merging scale. Figure III.8a and
III.8c show the d3 distribution at parton level for three different values of δ. In
both figures the curve that shows the smallest deviations is δ = 1 GeV, and
this value is used in the rest of this section. It is clear that there is no smooth
transition between the matrix element and parton shower phase space.

Figure III.8 also showes what happens if the merging scale is varied. The
discontinuities persist for all three values of the merging scale and for the two
different showers and the results are heavily dependent on the merging scale.
The problem is a conseqence of using different ways of defining the scales in
the algorithm, which we discussed in section III.2.4. The results in the rest
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Figure III.9: The Pseudo-Shower results, with
√

dMS = 5 GeV and δ = 1 GeV, split into
two- and three-jet components compared to the default shower in PYTHIA (with first
order matrix element reweighting included). (a) shows the d3 distribution at parton
level and (b) is the largest d-value of the emissions in the shower.

of this section focuses on the Pseudo-Shower implemenation with a vituality
ordered shower, since this was used in the original publication [3].

To demonstrate the different scales used in the algorihtm, the Pseudo-
Shower results have been split up into the contributions from the two- and
three-jet matrix elements. Figure III.9a shows the d3 distribution, where it is
clear that the two-jet contribution displays a sharp cut, but not the three-jet
component. On the other hand, when the largest d-value of the emissions in
the shower is plotted in figure III.9b, the three-jet component has a sharp cut
but not the two-jet curve. This illustrates that different scales are used for the
different jet multiplicities and this is the reason for the problems that appear
close to the merging scale.

To further illustrate the complication with mixing scales for parton split-
tings and partonic jets, we show in figure III.10 the variation of the ratio be-
tween the d3 scale on partonic jet level and the largest generated scale in the
parton shower d>. In a strongly ordered shower this ratio should ideally be
unity, especially for the p⊥-ordered PYTHIA shower in figure III.10a. However,
we find that this is far from the case. Especially for the virtuality ordered
shower in figure III.10b, the correlation between the different scales is very
weak.

Finally two experimental observables are plotted, namely the normalized
y3 distribution for charged and neutral particles and the charged particles
thrust, which are shown in figure III.11. Hadronization smoothes out most
of the discontinuities shown in earlier figures, but it is clear that there are still
problems. The plots show deviations from data and the results are not be
independent of the merging scale.
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ordered one.
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Figure III.11: The charged plus neutral particle y3 spectra (a) and charged particle
thrust spectra (b) for PYTHIA (with first order matrix element reweighting included)
and for our implementation of the Pseudo-Shower algorithms with different merging
scales and δ = 1 GeV compared to ALEPH and DELPHI data.

III.3.4 MLM

To test MLM for e+e− a merging scheme and a parton–jet distance need to
be chosen. Most of the MLM implementations use cone algorithms to achieve
this purpose. In the case of e+e−, we think that a k⊥-based clustering algorithm
is a better choice. We have therefore decided to use the Durham k⊥ algorithm
to define the merging scale and matrix element cutoff.

When it comes to selecting a measure for the parton–jet distance, the natu-
ral choice would be the k⊥-distance between the jet and the parton. The prob-
lem with this approach is that since the k⊥-measure includes the minimum of
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Figure III.12: The y3 spectra at parton level for PYTHIA (a) and HERWIG (b) when starting
from a state with a soft or a collinear gluon with a merging scale of y = 10−3 and the
scale in the Les Houches interface set to ECM.

the two energies it means that soft partons can match jets at very wide angles,
which leads to problems with convergence. Instead we modified the distance
to only use the jet energy.

yjet,parton = 2E2
jet(1 − cos(θjet,parton))/E2

CM (III.26)

For the highest multiplicity treatment we follow the MADEVENT implemen-
tation in [11]. For each highest multiplicity event, jets are reconstructed at a
scale which is the maximum of the merging scale and the smallest distance be-
tween the partons in the matrix element level event, max(yMS, yN). This scale
is also used when matching the jets to partons. This allows extra jets to be
produced if they are softer than those from the matrix element.

The algorithm has been implemented using MADEVENT to generate the ma-
trix element event and both HERWIG and PYTHIA has been used to shower the
events. Before we move on to the results of the merging, some important as-
pects of the showers need to be explained.

Step 3 in the algorithm (described in section III.2.5), where the shower is
invoked, depends on how the state received from the matrix element is treated
in the parton shower program. For the analysis of the merging it is important
to understand how the events are treated internally. In particular the states
containing soft and collinear partons require extra scrutiny since the matrix
element cross section is divergent in these regions.

In the PYTHIA implementation of the Les Houches interface, the limiting
factors for the radiation are the scale from the Les Houches interface, which
is used as a veto, and the energy of the partons, which become the maxi-
mum kinematically allowed value for the invariant mass. No extra vetoes
are applied for emissions at a wide angles. This means that even when soft or
collinear partons are present some events have a lot of emissions, assuming
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Figure III.13: (a) The y3 spectra at parton level for default PYTHIA and our PYTHIA

implementation of the MLM algorithm for yMS = 10−2 and for different values of the
matrix element cutoff. (b) shows the same for HERWIG.

that the scale in the Les Houches interface is set to a high value. Figure III.12a
shows the y3 spectra for a state with a soft gluon and for one with a collinear
gluon with y3 = 10−3 and the scale set to ECM. It is obvious from the figure that
a soft or collinear parton does not limit the emissions significantly.

HERWIG uses a different strategy for the internal choices of scale. Each
parton is given a starting scale which is equal to the product of the four-
momentum of itself and its color neighbour (if a parton has two color neigh-
bours one is chosen at random). The parton is then boosted to the frame where
it is at a right angle compared to its color neighbour and the shower invoked.
Any scale set in the Les Houches interface is included as a veto on the trans-
verse momentum (approximately given by eq. (III.25)) of the emissions. The
y3 histogram from a HERWIG shower are shown in figure III.12b starting from
the same states and from the same scale as in figure III.12a. From the figure
one can tell that a soft parton limits the emission from the shower quite dras-
tically, but for a collinear parton about half of the events show significant jet
activity.

Clearly, the way soft and collinear events from the matrix element give rise
to hard emissions influences the jet matching veto, which is assumed to give
the Sudakov suppression of these events, and the different choices of scales
in the shower can have a big impact on these Sudakov form factors. This
means that one has to be very careful with generalizing the MLM algorithm
to different showers.

The first thing that needs to be verified with our MLM implementation is
if the results converge when the matrix element cutoff is lowered. The results
of the merging are shown in figure III.13 for PYTHIA and HERWIG, with a merg-
ing scale of y3 = 10−2 and three different values for the cutoff. No sign of
convergence is visible in the figure.
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Figure III.14: The charged plus neutral particle y3 spectra (a) and the charged particle
thrust spectra (b) for default PYTHIA and our PYTHIA implementation of the MLM al-
gorithm for three different values of the matrix element cutoff. The HERWIG results are
shown in (c) and (d) respectively.

The problem is related to how HERWIG and PYTHIA treats input with soft or
collinear partons. The MLM algorithm assumes that soft and collinear partons
cannot produce independent jets when fed into the shower. From the earlier
figures it is clear that PYTHIA can produce extra jets both for soft and collinear
partons, whereas HERWIG can only produce extra jets for collinear partons.
This is the reason why PYTHIA diverges faster.

The changes to the parton-level spectra is also visible in the hadron-level
observables, shown in figure III.14. It is clear that changing the matrix element
cutoff also affects the event shape, which diminishes the predictive power of
the model.

In figure III.15 the parton-level y3-spectra is shown with a lower merging
scale. Generally one can say that the discrepancies as compared to the stan-
dard PYTHIA and HERWIG become even bigger. In HERWIG, configurations with
soft gluons cannot generate hard emissions, which means a large fraction of
these events are kept. There is a pole in the soft gluon limit and the cross sec-
tions for these events are therefore rather large, which leads to a continued rise
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Figure III.15: (a) The y3 spectra at parton level for default PYTHIA and our PYTHIA

implementation of the MLM algorithm for yMS = 10−3 and for two different values of
the matrix element cutoff. (b) shows the same for HERWIG.

of the cross section of the MLM-corrected curve for low values of y3, clearly
visible in figure III.15b.

The examples above show that the MLM algorithm is very sensitive to how
emission are generated and it appears to be quite tough to fix this problem.
If the shower generates an emission it risks influencing things at higher jet
scale and if emissions are suppressed it is not possible to control the rise of the
cross section near the soft and collinear limits. In fact, even if the problems de-
scribed in this section can somehow be resolved, the more fundamental prob-
lem, described in section III.2.5, that MLM uses the wrong type of Sudakov
form factors remains unsolved.

III.4 Conclusions

In the previous sections, we have studied in some detail the behavior of four
suggested algorithms, or schemes, for merging fixed order, tree-level matrix
element generators with parton shower generators. We have done so by
considering the simplest possible case of the leading order correction to the
e+e− → hadrons process. This may not be an important use case for these
merging schemes, but since it is such a simple process it is fairly easy to check
whether the schemes actually accomplishes what they set out to do, namely to
correctly populate the phase space above the merging scale with partons de-
scribed by the full matrix element, and with emission from the parton shower
below, and that they do so while correctly resumming large logarithmic con-
tributions from soft and collinear divergencies. In addition, for this process we
also have the “correct” answer available, obtained by a simple reweighting of
the hardest emission in the parton shower.
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Our main finding is that of the four schemes considered, only CKKW and
CKKW-L meets the requirements and that even CKKW has some problems
when using a parton shower with an ordering variable which is very different
from the clustering variable used for the merging scale.

For CKKW-L it was claimed in [2] that the cancellation of the dependence
on the merging scale is complete when using the ARIADNE dipole shower.
Here we show this explicitly and also show that it is still true when using the
transverse momentum ordered shower in PYTHIA. This is not a completely
trivial result, because it involves an additional ambiguity in how to recon-
struct the shower history for PYTHIA which is not present in ARIADNE.

In the CKKW case we also find a near complete cancellation of the merging
scale dependence when using the p⊥-ordered PYTHIA shower. However, when
using the virtuality ordered shower in PYTHIA, we find a clear mismatch near
the merging scale, and we trace this mismatch to different treatments of the
no-emission probability from the gluon when it is emitted above and below
the merging scale, and from possible problems in the parton shower when
unordered emissions are allowed. These problems occur when the ordering
variable is very different from the Durham k⊥-measure used for the merg-
ing scale, which is true for the virtuality ordering, but not for the p⊥-ordered
shower. We expect that this is also the origin of the mismatches found in the
CKKW implementation in HERWIG [3], where an elaborate tuning of the scales
used in the Sudakov and αs-reweighting was needed to minimize the merging
scale dependence. Most likely a similar retuning can be done in the case of the
virtuality ordered shower in PYTHIA.

For Mrennas Pseudo-Shower scheme, we find that the problems are much
more severe. The main problem is that cuts made on parton level for the ma-
trix element are made on the partonic jet level for the parton shower, and we
show that this can never give the clean separation of phase spaces needed to
have independence on the merging scale. This leads to a severe underestimate
of the three-jet rate just above the merging scale. The fudge factor introduced
in [3] can be tuned to hide the problem, but at the expense of overestimating
the three-jet rate below the merging scale due to double-counting.

The MLM scheme is the simplest one to implement, in that it allows the
use of any parton shower generator without modifying its internal behavior.
It also uses partonic jet level cuts, but contrary to the Pseudo-Shower it tries to
avoid mixing them with cuts on the few parton level. Nevertheless, an extra
parton-level generation cut is needed for the matrix element. Supposedly the
results should be independent on this generation cut as long as it is sufficiently
smaller than the merging scale. However, we have found that this is not the
case, and that the result is very sensitive to how the kinematics of the initial
parton state limits emissions from the chosen parton shower. If the emissions
are not limited, events generated close to the generation cut will always have a
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finite possibility to end up above the merging scale, which makes the scheme
very sensitive to the generation cut. If, on the other hand, the emissions are
limited by the kinematics, there is no possibility to obtain the necessary Su-
dakov suppression of soft and collinear divergencies. It is not inconceivable
that the generation cut can be tuned, possibly together with the scale used in
the αs-weighting, to get reasonably smooth distributions, but we feel that this
is just hiding the fact that the MLM scheme has serious flaws.

Having done this investigation of the behavior of the algorithms for the
simplest possible process, the question is if we can make some conclusions
for more complicated processes. Or course, if a scheme does not handle this
simple process well, it is not likely that the situation will improve for more
complicated ones. But also in the case of CKKW-L, complications may occur.

As we go to higher parton multiplicities in the matrix element, we expect
that the actual matrix element correction becomes larger, necessarily giving
rise to discontinuities near the merging scale. These discontinuities should
disappear as the merging scale is lowered and the parton shower splittings
become a good approximation to the full matrix element. However, for this to
work there must not be any artificial dependencies on the merging scale in the
merging algorithm as such, which we have seen is not the case for all schemes.

The really interesting processes are in hadron collisions, where e.g. the stan-
dard model production of a W together with several hard jets is an important
background to almost any search for new phenomena. Here the matching is
complicated as the parton showers also includes initial state evolution of the
incoming partons. Also, care must be taken to treat the parton densities in a
consistent way. This was first investigated for the CKKW scheme in [5], and
later for ARIADNE implementation of CKKW-L in [12]. For the latter it was
shown that the merging scale dependence does indeed cancel for the leading
order correction to W-production. Although it has not been checked explicitly
for the other schemes, there is no reason to expect that the problems we have
found in this paper will go away.

Having said all this, we must ask ourselves how severe the deficiencies
we have found here would be for practical applications at e.g. the LHC. We
are, after all, dealing with tree-level matrix elements and leading log parton
showers which means we will in any case expect large scale dependencies.
And surely these deficiencies results in much smaller uncertainties as com-
pared to using parton showers without matrix element corrections. Indeed,
it was shown in [11] that CKKW, CKKW-L and different MLM implementa-
tions all give consistent results for realistic experimental observables within
reasonable variations of the scales used in αs and parton densities. In fact
the most severe disagreement found was for the ARIADNE implementation of
CKKW-L. However, this had nothing to do with the merging scheme, but is a
consequence of the radically different treatment of the phase space available
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for initial-state radiation in ARIADNE as such, which includes a resummation
of some logarithms of x, not present in conventional initial-state showers.

In [1] a large effort was put into showing that the dependence of the merg-
ing scale vanishes at next-to-leading logarithmic accuracy for CKKW, at least
for a shower which is ordered in the Durham k⊥ variable. Here we have
shown that for the three-jet observables considered here, the dependence van-
ishes completely for CKKW-L. For the Pseudo-shower, the situation is more
difficult to analyze. In the strongly ordered limit we argue that it is equiva-
lent to CKKW-L, which indicates that the dependence on the merging scale
should cancel, at least to leading double-logarithmic accuracy, nevertheless
the dependence is quite large in absolute numbers. For MLM, it is clear that
for the observables considered here, it is questionable if it can reproduce the
correct Sudakov form factors, indicating a dependence on the merging scale
(or rather the cutoff in the matrix element generation) already on the lead-
ing double-logarithmic level. We plan to return in a future publication with a
more formal investigation of the logarithmic accuracy of the merging scales.

In absolute numbers, we have seen that the Pseudo-Shower and the MLM
schemes, and even CKKW for some parton showers, have problems with cor-
rectly populating different regions of phase space. And even if this can be
smoothed out by introducing additional cuts on the matrix element genera-
tion (for MLM), a fudge factor (for Pseudo-Shower) or separately varying the
scale in the αs and Sudakov reweighting (for CKKW with HERWIG [3]) it nec-
essarily means introducing extra parameters which need to be tuned. Indeed,
it is not inconceivable that these extra parameters need to be tuned differently
for different processes and merging scales, and maybe even for different ob-
servables. As a consequence, the predictability of the models will be reduced.
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Mrenna for useful discussions. Work supported in part by the Marie Curie re-
search training network “MCnet” (contract number MRTN-CT-2006-035606).

III.A Different scale definitions in CKKW

To illustrate the origin of the discontinuities found for CKKW when used with
the virtuality-ordered shower in PYTHIA, we here look at the somewhat arti-
ficial example of calculating the differential exclusive three-jet rate, where we
use the notation introduced in section III.2.3.

Assume the parton shower has ordering in ρ, and has auxiliary splitting
variables, ~x, and that the Durham k⊥-measure can be written as a function of
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these variables, y = y(ρ,~x). Now we can write the differential exclusive three-
jet rate above some ρ0 for the plain parton shower case:

dσPS
3

σ0
= ∆PS

S2
(ρmax, ρ)ΓPS

S2
(ρ,~x)∆PS

S3
(ρ, ρ0)dρ dk

~x (III.27)

where ∆S2
(ρmax, ρ) is the Sudakov corresponding to the no-emission probabil-

ity from the two-parton state above ρ, and ∆S3
(ρ, ρ0) is the no-emission proba-

bility from the three-parton state below ρ. We can also write the corresponding
rate for the CKKW scheme:

dσCKKW
3

σ0
≈ ∆CKKW

S2
(ymax, y)ΓME

S2
(ρ,~x)×

∆PS
S2

(ρmax, ρ; < y)∆PS
S3

(ρ, ρ0; < y)dρ dk
~x (III.28)

where ∆CKKW
S2

(ymax, y) is the analytic Sudakov form factor used for reweight-

ing, and ∆PS
S3

(ρ, ρ0; < y) is the parton shower no-emission probability from the
three-parton state between ρ and ρ0 excluding phase space region correspond-
ing to the vetoed emissions with Durham k⊥ above y(ρ,~x). ∆PS

S2
(ρmax, ρ; < y)

is the corresponding no-emission probability for the two-parton state, which
approximates the no-emission probability for the three-parton state above the
scale ρ where the gluon is not allowed to radiate — an approximation which
is valid as long as the gluon is not too hard. Now the CKKW Sudakov can be
approximately written as the no-emission probability

∆CKKW
S2

(ymax, y) ≈ ∆PS
S2

(ρmax, ρ0; > y)

= ∆PS
S2

(ρmax, ρ; > y)∆PS
S2

(ρ, ρ0; > y), (III.29)

where the > y notation indicates that only emissions with Durham k⊥ above y

are considered. Also, we can write

∆PS
S2

(ρmax, ρ) = ∆PS
S2

(ρmax, ρ; > y)∆PS
S2

(ρmax, ρ; < y) (III.30)

and
∆PS

S3
(ρ, ρ0) = ∆PS

S3
(ρ, ρ0; > y)∆PS

S3
(ρ, ρ0; < y) (III.31)

We can now rewrite the two three-jet rates as

dσPS
3

σ0
= ΓPS

S2
(ρ,~x)∆PS

S2
(ρmax, ρ; > y)∆PS

S2
(ρmax, ρ; < y)×

∆PS
S3

(ρ, ρ0; > y)∆PS
S3

(ρ, ρ0; < y)dρ dk
~x

dσCKKW
3

σ0
= ΓME

S2
(ρ,~x)∆PS

S2
(ρmax, ρ; > y)∆PS

S2
(ρ, ρ0; > y) ×

∆PS
S2

(ρmax, ρ; < y)∆PS
S3

(ρ, ρ0; < y)dρ dk
~x (III.32)
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And we find that the only difference, besides the desired ΓPS
S2

→ ΓME
S2

, is that

in the plain shower has a no-emission probability ∆PS
S3

(ρ, ρ0; > y) where CKKW

has ∆PS
S2

(ρ, ρ0; > y). This can be seen as an extra suppression in the plain parton
shower due to the no-emission probability from the gluon at a shower scale
below ρ but at a Durham k⊥-scale above y. Now if the ordering variable ρ is
close to the Durham k⊥, this region will be very small and the mismatch will
be small, as we saw in the case of the p⊥-ordered PYTHIA shower. But for the
virtuality ordering in PYTHIA we have

y = min

(

z

1 − z
,

1 − z

z

)

Q2

E2
CM

(III.33)

and similarly for the angular ordering variable, ξ, in HERWIG we have

y = min(z2, (1 − z)2)
E2ξ

E2
CM

, (III.34)

(where E is the energy of the parent parton in the splitting) and, hence, the
region can become quite large, especially in the regions z → 0 or 1, where the
probability of an emission is large. We note, however, that in PYTHIA the effect
is limited by the presence of an additional angular ordering veto in addition
to the virtuality ordering.
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We extend earlier schemes for merging tree-level matrix elements with parton
showers to include also merging with one-loop matrix elements. In this paper
we make a first study on how to include one-loop corrections, not only for
events with a given jet multiplicity, but simultaneously for several different
jet multiplicities. Results are presented for the simplest non-trivial case of
hadronic events at LEP as a proof of concept.
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IV.1 Introduction

One of the big theoretical challanges with LHC physics is the description of
states with many hard jets. The high energy and large rapidity range for jets at
the LHC means that producing multi-jet events from QCD processes is more
likely than ever before. These states compose the background for many of the
channels that could contain new physics. It is therefore important to get as
good description as possible for the multi-jet states within QCD.

Monte Carlo event generators have become standard tools for simulating
events in a particle collider. These event generators try to simulate events
with all the characteristics of a real event. The theoretical basis is a parton
shower, which is combinded with hadronization models to produce the final-
state hadrons. The hadronization models are phenomenological models that
only work reliably when all the partons in the soft and collinear limit have
been simulated corretly in the shower. Parton showers are based on expand-
ing the emission probabilities in this limit, which makes them suitable to use
together with the hadronization models. Although parton showers have been
used to describe a wide range of results with good accuracy, it is well known
that they cannot give a good description of observables sensitive to emissions
away from the collinear and soft regions.

The way to improve the description of multi-jet states is to include exact
matrix elements. The matrix elements describe these states well, but do not
provide a way of describing emissions in the soft or collinear limit. In fact, the
matrix elements are divergent in these limits and have to be regulated using
a cutoff. To correctly describe the final-state hadrons in multi-jet events, the
matrix elements and the parton shower descriptions need to be combined.
This has been done for tree-level matrix elements using algorithms such as
CKKW [1, 2], CKKW-L [3, 4], MLM [5, 6] and Pseudo-Shower [7].

In recent years a lot of effort has been put into calculating one-loop ma-
trix elements to be able to predict observables to next-to-leading order (NLO)
accuracy. There are several program available to do this, e.g. MCFM [8] and
NLOJET++ [9]. Currently efforts are being made to automate the whole proce-
dure and make more processes available, including significantly higher par-
ton muliplicities (MCFM and BlackHat [10]). The one-loop matrix element
calculations contain important QCD contributions which cannot be simulated
with tree-level matrix elements nor with parton showers. Preferably both the
tree-level and one-loop matrix elements as well as the parton shower should
be used consistently together. Lacking such a complete description, the uncer-
tainties in a given NLO calculation due to parton showers and hadronization
are typically estimated using a separate approximate Monte Carlo simulation.
Alternatively, for certain observables, it is possible to combine a NLO calcu-
lation with analytically resummed parton-shower correction together with a
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semi-universal power correction giving the hadronization correction. How-
ever, it would clearly be advantegous if the one-loop matrix elements could
be used together with parton showers and hadronization models in a more
consistent manner.

A few algorithms have been presented to merge one-loop matrix elements
with parton showers. The two main algorithms are MC@NLO [11, 12] and
POWHEG [13, 14], but they are limited to only include the one-loop matrix
element for the lowest order process. A similar algorihtm for e+e− to three jets
was presented in [15–17]. Other groups have made proposals on how to go
beyond this and include one-loop matrix elements also for higher multiplici-
ties [18–21]1, but none have so far presented a complete implementation.

In this paper we present a general algorithm to include one-loop matrix
elements of any order in the strong coupling together with parton showers.
The idea is to take the first two terms in orders of αs from the one-loop ma-
trix element and all higher order terms from the parton shower. Two different
events samples are generated. The first sample consists of events which are
generated according to one-loop matrix elements and dressed using a par-
ton shower. The second sample are events generated with a parton shower
corrected with tree-level matrix elements, where the first two terms in the αs-
expansion has been subtracted. The procedure is applied to all the different
multiplicities one wishes to calculate and in the end all the samples are added.

Calculating the first two terms in orders of αs in the shower introduces
complications because they include the first term in an expansion of the Su-
dakov form factor. In addition the running αs used in the shower also gives a
contribution to the terms at this order. These complications need to be dealt
with in order to have a consistent algorithm.

Our method uses the same philosophy as CKKW-L, which means that
phase space is split up in two different regions using a merging scale, and
the corrections to the matrix elements are simulated using the shower. How-
ever, it should be noted that most of what is presented here could also be used
together with the CKKW algorithm, where the corrections are calculated an-
alytically. Using the shower rather than doing analytical calculation means
that non-leading terms, such as energy–momentum conservation and recoil
treatments, included in the shower, are also included in the corrections to the
matrix elements.

Although it would be more interesting to simulate jets at the LHC, we limit
ourselves to LEP physics in this paper. The reason is that the inclusion of
parton densities causes a number of additional complications that needs to be
studied further before an algorithm valid also for incoming hadrons can be
presented.

The outline of this paper is the following. In section IV.2 some key concepts

1In particular [18] is very close in spirit to the strategy presented here.

IV
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of parton shower and matrix elments are reviewed, which are then used in
the description of the merging. Section IV.3 describes the various steps in
the algorithm and how to calculate all the terms needed. The algorithm is
implemented toghether with ARIADNE [22] and the results are presented in
section IV.4. Finally in section IV.5 our conclusions are presented.

IV.2 Theory

This section contains some basic properties of parton showers and matrix ele-
ments, including both tree-level and one-loop matrix elements. After the the-
oretical background has been established our algorithm for merging one-loop
matrix elements and parton shower is presented.

IV.2.1 Parton showers

Emissions in the soft and collinear limit can be resummed to all orders using
a parton shower. This is done using only the dominant behavior in this limit,
which is translated into an emission probablility. The other main component
is the assumption that the emissions can be ordered. To make the results ex-
clusive, the probability for emitting a parton also includes the probability that
no emission has occured at a higher scale, which is known as a Sudakov form
factor. The result is a formalism where each emission can be considered indi-
vidually and generated according to a resonably simple probability distribu-
tion, which is ideal for computer simulations.

The parton shower is a good approximation for emissions near the soft and
collinear limits and can give a nice description for a large range of observables,
since the approximation is valid for the bulk of the cross section. There are im-
portant exceptions though, which occur mainly when you have several hard
partons emitted at wide angle.

Different shower models use different choices to specify the ordering vari-
able, the most common choices being transverse momentum, angle and vir-
tuality. To formulate the parton cross sections in a general way we simply
denote the ordering variable ρ. The emission probability is the product of a
splitting function, which is a function of the emissions kinematics, and the
stong coupling αs. Most showers use a running αs with a transverse momen-
tum as the scale, which is not necessarily equal to the ordering variable. How-
ever, here we assume that the ordering variable is the same as the scale in αs

for notiational convenience. The cross sections for the parton multiplicities for
a shower that has evolved down to the shower cutoff (ρc) can be written in the
following way.
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dσ0 = CPS
0 (ΩPS

0 ) ∆S0
(ρ0, ρc)dΩPS

0

dσ1 = CPS
1 (ΩPS

1 ) αs(ρ1)∆S0
(ρ0, ρ1)∆S1

(ρ1, ρc)dΩPS
1

dσ2 = CPS
2 (ΩPS

2 ) αs(ρ1)αs(ρ2)∆S0
(ρ0, ρ1)∆S1

(ρ1, ρ2)∆S2
(ρ2, ρc)dΩPS

2

...

dσn = CPS
n (ΩPS

n )∆Sn
(ρn, ρc)

n

∏
i=1

αs(ρi)∆Si−1
(ρi−1, ρi)dΩPS

n

... (IV.1)

The parton shower phase space is described by

ΩPS
n = (q1, . . . , qm, ρ1,~x1, ρ2,~x2, . . . , ρn,~xn), (IV.2)

where q denotes the momenta of the m (usually two) outgoing partons at Born
level, ρ is the value of the ordering variable and ~x are the other kinemati-
cal variables that describe each emission. ∆Sn

(ρn, ρn+1) denotes the Sudakov
form factor, which is the probability that no emission occurs from the n-parton
state, Sn, between the scales ρn and ρn+1, and the CPS

n -coefficients are the Born-
level matrix element multiplied with the products of splitting functions in the
shower and depend on all ρi and ~xi with i ≤ n.

The Sudakov form factors in the shower is an approximate way of cal-
culating the virtual diagrams to all orders. In the angular ordered shower
in HERWIG this is done by an analytical calculation based on the production
scales of the various partons, but other showers, such as the parton show-
ers in PYTHIA and the dipole shower in ARIADNE, uses the actual parton state
when calculating the Sudakov form factor as an explicit no-emission proba-
bility. The algorithm described in later sections require Sudakov form factors
that factorize (∆Si

(ρ1, ρ2)∆Si
(ρ2, ρ3) = ∆Si

(ρ1, ρ3)), which is the case if the Su-
dakov form factors only depend on the intermediate state. In this paper the
notation used reflects the dependency on the parton state, which is denoted
by a subscript. The Sudakov form factors can explicitly be written

∆Sn
(ρi, ρi+1) = exp

(

−
∫ ρi

ρi+1

dραs(ρ)ΓSn
(ρ)

)

, (IV.3)

where Γ denotes the branching probability for the specific parton state.
It should be noted that the way the virtual corrections are approximated in

the shower means that the sum of all the parton cross sections is equal to the
Born cross section:

∞

∑
i=0

σi =
∫

CPS
0 (ΩPS

0 )dΩPS
0 = σBorn. (IV.4)

IV
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This means that the parton shower does not properly approximate the
higher-order corrections to the total cross section. Instead it is common to
include a K-factor by scaling all the cross sections with the NlLO cross section
divided by the Born cross section. However, it does nothing to improve the
shape observables or the relative abundance of different parton multiplicities.

Measurements of αs have been done with better and better accuracy, typ-
ically using precision data from LEP (see e.g. [23]). If the same values of αs

would be used within a parton shower it would not describe data well. The
reason is that the shower has a tendency to underestimate emission probabil-
ities, especially for hard emissions. The shower therefore gives a better de-
scription of data if a higher value of αs is used. To get the best possible fit, the
parton shower implementations usually make αs tunable. This is frequently
done by doing a one- or two-loop αs evolution and making ΛQCD a parameter
to be fit to data.

Making αs tunable is equal to modifying the scale used in the evaluation of
αs, apart from corrections related to flavour thresholds. This means that it is
possible to use a different scale when evaluating αs and use the world average
αs from precision measurements, which is illustrated in the equation below.

αPS
s (ρ) = αWA

s (bρ) (IV.5)

This is something that is used in later sections of this paper.

It is possible to expand the parton cross sections in the shower in pow-
ers of αs. To do this the exponential in each Sudakov form factors has to be
expanded and the running of the coupling taken into account. The relative
change of the cross section at each order of αs is denoted by cn,m, where n is the
order in αs of the relevant tree diagram and m is the number of loops. Using a
renormalization scale, µ, the parton cross sections in eq. (IV.1) can be written
as

dσ0 = CPS
0 (ΩPS

0 ) (1 + cPS
0,1(ΩPS

0 )αs(µ) + cPS
0,2(ΩPS

0 , µ)α2
s (µ) + . . .)dΩPS

0

dσ1 = CPS
1 (ΩPS

1 ) αs(µ)(1 + cPS
1,1(ΩPS

1 , µ)αs(µ) + cPS
1,2(ΩPS

1 , µ)α2
s (µ) + . . .)dΩPS

1

dσ2 = CPS
2 (ΩPS

2 ) α2
s (µ)(1 + cPS

2,1(ΩPS
2 , µ)αs(µ) + cPS

2,2(ΩPS
2 , µ)α2

s (µ) + . . .)dΩPS
2

...

dσn = CPS
n (ΩPS

2 )αn
s (µ)(1 + cPS

n,1(ΩPS
n , µ)αs(µ) + cPS

n,2(ΩPS
n , µ)α2

s (µ) + . . .)dΩPS
n

... (IV.6)

All the higher order changes to the cross section (except c0,1 in case the Born
level contains no powers of αs, which is assumed here) have a dependence on



IV.2 Theory 157

the renormalization scale, when one expands in terms of a fixed coupling con-
stant. This happens because the shower uses a running αs and when changing
the scale to µ there are residual terms that needs to be absorbed into the parton
shower coefficients. These effects are described further in later sections.

Note that the parton shower provides a value for the parton cross sections
that includes terms of all orders in αs, but the coefficients are only approxi-
mately correct. The goal of merging algorithms is to replace some of the coef-
ficients by the exact results in order to minimize the effects of the approxima-
tions done in the parton shower. In the following we discuss how these terms
can be calculated and what kind of results one can achieve.

IV.2.2 Matrix elements

Processes calculated through matrix elements means that one is calculating
the amplitudes of the Feynman diagrams directly. This is easy to do for 2 → 2

processes, but gets increasingly difficult for larger number of external legs or
if one includes loops.

To calculate an observable using matrix elements is equivalent to exactly
calculating the terms in an αs expansion one term at a time. The advantage
of matrix elements is that they are exact up to the calculated order. In certain
regions of phase space this approach works fine, but for collinear and soft
emissions there are divergencies in the matrix elements which prevents the αs

expansion from converging.
The leading order term for final states with several outgoing partons are

tree-level matrix elements (no loops). If one expands the differential cross
sections in different multiplicities one arrives at the following

dσ0 = CME
0 (Ω0) dΩ0

dσ1 = CME
1 (Ω1) αsdΩ1

dσ2 = CME
2 (Ω2) α2

s dΩ2

...

dσn = CME
n (Ωn) αn

s dΩn

... (IV.7)

where we have used the short-hand notation

Ωn = (p1, . . . , pn+m). (IV.8)

Here p is used to denote the momenta of the outgoing partons in the ma-
trix element. The Born-level diagram considered has m outgoing partons and

IV
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n denotes the number of extra outgoing partons. For simplicity we assume
throughout that the Born-level cross sections does not contain any powers of
αs, but this requirement can easily be relaxed.

The tree-level expansion is divergent and one needs to introduce a phase-
space cut to avoid collinear and soft configurations. Another important prop-
erty of tree-level matrix elements is that they describe inclusive quantities. If
one, e.g., integrates the three-parton matrix element according to a jet defini-
tion, this yields the cross section for a configuration with at least three jets.

There a several methods for calculating tree-level matrix elements which
have been implemented as parts of automated programs. These programs
generate all the possible diagrams, sum them and generate events accordingly.
Examples of such programs include MADEVENT [24] and ALPGEN [25].

There are many uncertainties associated with tree-level matrix element that
can be better controlled if one could include the next order in the αs expan-
sion, which would mean including one-loop matrix elements. One of the
problems with loop matrix elements is that they are infinite and frequently
negative. Only the sum of the associated real emission with the virtual one is
a finite quantity. In practice one assumes that emissions within a region are
unresolved and that their amplitude can be added to the virtual contribution.
There are a few choices to be made, depending on when to consider an emis-
sion unresolved and how to map the unresolved contribution onto the virtual
one.

Most one-loop matrix elements are calculated with a method called
Catani–Seymour dipole subtraction [26, 27]. This method uses a function cal-
culated analytically from dipoles that is added to the virtual contribution and
subtracted from the real contribution. This way of calculating one-loop matrix
elements has been proven to work quite well, but it needs to be modified to
be applied to our algorithm. The reason is that for our matching algorithms to
work, a strict phase space cut is needed to separate resolved and unresolved
emissions. This can be accomplished by modifying the subtraction scheme
outside the singular regions.

If a jet cutoff, ycut, is used to determine when an emission is resolved, and
the renormalization scale is set to µ, one can formulate the cross sections for
one-loop matrix elements in the following way.

dσ0 = CME
0 (Ω0)(1 + αs(µ)cME

0,1 (Ω0, ycut)) dΩ0

dσ1 = CME
1 (Ω1) αs(µ)(1 + αs(µ)cME

1,1 (Ω1, µ, ycut))Θ(y − ycut)dΩ1

dσ2 = CME
2 (Ω2) α2

s (µ)(1 + αs(µ)cME
2,1 (Ω2, µ, ycut))Θ(y − ycut)dΩ2

...

dσn−1 = CME
n−1(Ωn−1) αn−1

s (µ)(1 + αs(µ)cME
n−1,1(Ωn−1, µ, ycut))Θ(y − ycut)dΩn−1
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dσn = CME
n (Ωn) αn

s (µ)Θ(y − ycut)dΩn (IV.9)

When one-loop matrix elements are calculated, the unresolved parton of
the tree-level matrix element with one more outgoing particles needs to be
added. The resolved part is considered to have a higher multiplicity but also
needs to be included in the calculation. This means that the highest multiplic-
ity is always calculated to tree-level accuracy.

The renormalization scale used in the calculation enters not only as a scale
in αs, but also affects the one-loop terms (except for cME

0,1 in case the Born level
contains no powers of αs). It is quite simple to see how the renormalization
scale enter if one considers the running coupling, which can be expanded as

αs(µ′) = αs(µ)

(

1 + αs(µ)
log(µ/µ′)

α0
+O(α2

s (µ))

)

α0 =
2π

β0
=

6π

33 − 2n f
(IV.10)

This means that a change in the renormalization scale of the first term
leaves a remnant term in the next order in αs simply through the running,
which is something that needs to be taken into account if one varies the renor-
malization scale. The effect can be studied by expanding αs explicitly for one
of the multiplicities

αl
s(µ)(1 + αs(µ)cME

l,1 (Ωl , µ, ycut)) = (IV.11)

αl
s(µ′)(1 + lαs(µ′)

log(µ′/µ)

α0
+ αs(µ′)cME

l,1 (Ωl , µ, ycut) + O(α2
s (µ′))),

which leads to the following scale dependence

cME
l,1 (Ωl , µ′, ycut)) = cME

l,1 (Ωl , µ, ycut) + l
log(µ′/µ)

α0
+ O(αs(µ′))). (IV.12)

The renormalization scale can also be used to tune the different jet frac-
tions, which is known as optimized perturbation theory [28]. Going beyond
one-loop matrix elements or going to processes with incoming hadrons, there
is also a renormalization scheme dependence to be considered.

IV.2.3 Merging parton showers and tree-level matrix ele-
ments

The purpose of merging algorithms is to improve the description of jet observ-
ables without changing things such as the internal jet structure, which is de-
scribed well by the shower. At a more formal level the goal is to replace some
coefficients in the expansion of the parton shower with their correct counter-
parts from the matrix elements.

IV
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There are several algorithms formulated with this purpose in mind. The
main ones are CKKW [1, 2], CKKW-L [3, 4], MLM [5, 6] and Pseudo-Shower
[7]. Their advantages and disadvantages when applied to e+e− annihilation
is discussed thoroughly in [29]. Here the discussion is limited to how the
CKKW-L algorithm can be extended to also include one-loop matrix elements,
but most of the general ideas can be applied also to CKKW.

Before going to one-loop matrix element, the mechanism used to merge
tree-level matrix elements needs to be understood. With tree-level matrix el-
ements two issues need to be resolved, namely to divide the phase space for
emissions between the parton shower and the matrix element and to intro-
duce Sudakov form factors to make the matrix elements exclusive. Essentially
one would like to replace the product of splitting functions present in the cross
sections for various processes in the parton shower with the correct tree-level
matrix element.

The phase space is to be divided in such a way that the region for allowed
emissions from the matrix element and the parton shower cover the entire
phase space with no overlaps. Failing to do this consistently results in dou-
ble counting or dead regions. The scale that defines the border between the
matrix-element and the parton-shower phase space is known as the merging
scale, and is usually defined using a jet clustering algorithm.

The Sudakov form factors are introduced by using a constructed shower
history, which is done by considering all possible shower histories for the
states generated according to the matrix element and selecting one with a
probability proportional to the product of the corresponding splitting func-
tions in the shower. The actual shower is then used for calculating the Su-
dakov form factors, which has the advantage that any non-leading effects that
were introduced in the shower are also included. For further details on this
procedure we refer the reader to [3, 4].

A particular shower scenario is dependent on the emission scales of the
shower (denoted ρ) and other shower variables such as energy fraction and
angular orientation, which are denoted simply by ~x. A complete set of scales
and other variables can be used to yield a shower history composed of specific
states, denoted Si. Looking at the differential exclusive cross section for n

emitted partons, the parton shower yields the following

dσPS
n

dΩPS
n

= KCPS
n (ΩPS

n )∆Sn
(ρn, ρc)

n

∏
i=1

αs(bρi)∆Si−1
(ρi−1, ρi), (IV.13)

where ρ0 is the maximum scale, ρc is the shower cutoff scale and b is the
parameter introduced in equation (IV.5). An overall NlLO K-factor, K =

1 + ∑
l
i=1 kiα

i
s(µ), has also been included.

The above expression is to be compared with the appropriate tree-level
matrix element. The tree-level matrix element is an inclusive quantity and do
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not cover the full phase space, which is denoted by including a step function
with the matrix element cutoff which is set equal to the merging scale, yMS.
The cross section for the tree-level matrix element can be formulated in the
following way.

dσME
n (yMS)

dΩn
= CME

n (Ωn)αn
s (µ)Θ(y(Ωn)− yMS) (IV.14)

By selecting one history out of all possible histories, the matrix element can
be mapped onto the shower phase space formulation, which can be described
by the mapping Ωn 7→ ΩPS

n . The matrix element cross section can be written in
terms of parton shower phase space in the following way.

dσME
n (yMS)

dΩPS
n

= CME
n (ΩPS

n )αn
s (µ)Θ(y(Sn)− yMS) (IV.15)

The Sudakov form factors are then introduced in the same way as in equa-
tion (IV.13). In addition, the coupling constant is reweighted to use the emis-
sion scales instead of a fixed renormalization scale. The procedure results in
the following exclusive cross section.

dσn(yMS)

dΩPS
n

= KCME
n (ΩPS

n )αn
s (µ)Θ(y(Sn)− yMS)∆Sn

(ρn, ρc) ×
n

∏
i=1

αs(bρi)

αs(µ)
∆Si−1

(ρi−1, ρi) (IV.16)

This expression is fully exclusive in the same way as a state generated by
the shower. However, the tree-level matrix element is only allowed to gen-
erate emissions above the merging scale. The scheme therefore needs to be
supplemented by introducing a way of allowing the shower to generate extra
emissions below the merging scale and the methods for accomplishing this is
the subject of the next section.

IV.2.4 Adding parton showers to multi-parton states

If the merging scale, yMS, is defined in the same way as the parton shower
ordering variable, the adding of a parton shower is fairly trivial. For most
parton showers you can simply shower each parton individually and use yMS

as the maximum scale for the ordering variable.
If, however, the merging scale and ordering scale are different, e.g. the

merging scale is defined in invariant mass, while the shower ordering is in

IV
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transverse momentum (as is the case in our studies below in section IV.4), the
problem becomes non-trivial.

In the original CKKW formulation, the problem was solved by introducing
the concept of a “vetoed shower”. Here, each parton is allowed to shower,
starting from a value of the ordering variable typically given by the maximum
possible scale in the Born-level process. Each emission is then checked so that
it if is above the merging scale, yMS, the emission is discarded, allowing the
shower to continue to evolve down to lower evolution scales.

There is, however, a problem with this procedure, as was noted in [13]
and [29], related to the fact that the shower may be allowed to make effec-
tively unordered emissions. To understand the problem, we consider a par-
tonic state corresponding to n parton emissions beyond the Born level. The
state can be mapped onto a set of intermediate states and scales, where ρn

represents the scale of the last emission. Now if the merging scale is very dif-
ferent from the ordering scale, it may very well happen in a vetoed shower
that an emission with y < yMS and ρ > ρn is generated, which breaks the or-
dering, since in the shower such an emission should have been emitted from
an intermediate state. Breaking the ordering results in the wrong colour struc-
ture, which may result in incorrect treatment of coherence effect, and different
kinematics, which may give unwanted suppressions in some regions of phase
space.

So far, two solutions to this problem has been presented. The CKKW-L
approach and the so-called “truncated” vetoed shower. Both approaches re-
quires that not only emission scales are reconstructed as in CKKW, but also
the full kinematics of the complete shower history with on-shell intermediate
states, Si.

The truncated shower [13]2 is a way of allowing the shower to generate
emissions from the intermediate states in the shower history and thereby pre-
serve the ordering. The vetoed shower is started from the Born-level state, S0

with the corresponding maximum scale ρ0 and is vetoed in the same way as
above. When the shower evolution comes down to ρ1, it is stopped and the
reconstructed emission (ρ1,~x1) that was generated by the matrix element is in-
serted by hand. The vetoed evolution is then continued down to ρ2, where
the next reconstructed emission is inserted, and so on, in a way such that the
kinematics of the partons in the original state is minimally disturbed.

The philosophy of the CKKW-L approach is quite different, in that un-
ordered emissions are simply forbidden. This means that as soon as there
is one emission below the merging scale, that emission and all subsequent
emission (above and below the merging scale) are generated by the shower.
When adding a shower to a n-parton state with the reconstructed scale ρn, the

2Here we only give our rough interpretation of the truncated shower. For a more detailed
description we refer to [13]
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shower is started from ρn and the first emission is forced to be below the merg-
ing scale, but later emissions have no such restrictions. The reweighting for
the same state is done by using the full Sudakov form factor down to the scale
ρn. The state which are thus forbidden can be generated by matrix elements
for lower multiplicity together with the shower.

The CKKW-L approach can be applied to the cross section in equation
(IV.16) modifying the last Sudakov form factor and adding a shower. The
first emission is added with the restriction that it should be below ρn and the
merging scale. The emission probability can be described as

dP = αs(bρ)ΓSn
(ρ,~x)Θ(yMS − y(Sn, ρ,~x))∆Sn

(ρn, ρ; < yMS)dρd~x, (IV.17)

where

∆Sn
(ρn, ρ; < yMS) = exp

(

−
∫ ρn

ρ
dρ′d~xαs(bρ′)ΓSi

(ρ′,~x) ×

×Θ(yMS − y(Sn, ρ′,~x))

)

. (IV.18)

In addition to the probability described above the CKKW-L procedure speci-
fies that one should also include the Sudakov form factor between the gener-
ated emission ρn+1 and the previous emission ρn and above the merging scale,
∆Sn

(ρn, ρn+1; > yMS). The cascade is then continued from ρn+1 with no veto.

An alternative way of performing the same calculation is to generate one
emission starting from ρn and discard the entire event if the emission was
above the merging scale. It is equivalent to the above procedure since the
probability for discarding the event is equal to the Sudakov form factor calcu-
lated at the end. This is the way the algorithm was formulated in [3]

The exclusive cross section in equation (IV.16) should be modified accord-
ingly. Assuming that one emission has been added using the procedure de-
scribe above, one can formulate the cross section in the following way.

dσn(yMS)

dΩPS
n

= KCME
n (ΩPS

n )αn
s (µ)Θ(y(Sn) − yMS)∆Sn

(ρn, ρn+1; > yMS)×

×
n

∏
i=1

αs(bρi)

αs(µ)
∆Si−1

(ρi−1, ρi) (IV.19)

Another important issue to consider when adding a parton shower is how
to handle the highest multiplicity states with n = N. Clearly we must here not
veto emissions above yMS, since this would artificially suppress final states
with more than N emissions above this scale. In this case no extra Sudakov

IV



164 Extending CKKW-merging to one-loop matrix elements

form factors needs to be included and the cross section is given by

dσn(yMS)

dΩPS
n

= KCME
n (ΩPS

n )αn
s (µ)Θ(y(Sn) − yMS)×

×
n

∏
i=1

αs(bρi)

αs(µ)
∆Si−1

(ρi−1, ρi). (IV.20)

The only constraint on the shower is that the first emission should be below
ρn.

In the CKKW-L algorithm, emissions are thus corrected with the full matrix
element only if they are among the N hardest (according to the parton shower
ordering) and are all above the merging scale.

IV.2.5 Extending to one-loop MEs

To be able to extend the algorithm to also include one-loop matrix elements a
new set of issues has to be addressed. First and foremost, the one-loop ma-
trix element contains a terms which is one order higher in αs. To be able to
apply a correction, the shower cross section, eq. (IV.13), therefore needs to be
expanded to that level, with a fixed renormalization scale µ. The αs expansion
of the Sudakov form factor and the running coupling can be written

∆Si
(ρi, ρi+1) = 1 −

∫ ρi

ρi+1

dραs(bρ)ΓPS
Si

(ρ) + . . .

= 1 − αs(µ)
∫ ρi

ρi+1

dρΓPS
Si

(ρ) + O(α2
s (µ)) (IV.21)

αs(bρ) = αs(µ)

(

1 + αs(µ)
log(µ/(bρ))

α0
+ O(α2

s (µ))

)

, (IV.22)

where the possibility of modifying the scale used in αs in the shower has been
included from equation (IV.5).

This means the parton shower cross section in eq. (IV.13) can be rewritten
as

dσPS
n

dΩPS
n

= CPS
n (ΩPS

n )αn
s (µ)

[

1 + αs(µ)

{

k1 +
n

∑
i=1

log(µ/(bρi))

α0
(IV.23)

−
n−1

∑
i=0

∫ ρi

ρi+1

dρΓSi
(ρ) −

∫ ρn

ρc

dρΓSn
(ρ)

}

+ O(α2
s (µ))

]

.

Note that the extra term that appears because of the running coupling is equiv-
alent to the term which appears if the renormalization scale of the one-loop
matrix element is changed, derived explicity in equation (IV.12).
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The one-loop matrix elements need to be put through the procedure de-
scribed earlier to construct a shower history. The procedure yields the follow-
ing form for the cross section.

dσME
n (yMS)

dΩPS
n

= CME
n (ΩPS

n )αn
s (µ)

[

1 + αs(µ)cME
n,1 (ΩPS

n , µ, yMS)
]

×

×Θ(y(Sn) − yMS) (IV.24)

The cross section contains the same terms as the tree-level cross section
plus the next order correction to the matrix element, which is a sum of the
virtual diagrams of multiplicity n and the real diagrams with multiplicity n + 1

kinematics below the merging scale yMS.
If the merging scale is defined using the same scale as the ordering variable

in the shower, no further modifications to the matrix element would have been
necessary. However, to preserve the ordering of the shower, extra Sudakov
form factors need to be included. The phase space in question is where emis-
sions have a higher ordering variable (ρ) than the last emission of the matrix
element (ρn) and are below the merging scale. These emissions would violate
the shower ordering and are therefore forbidden, but one still needs to include
virtual corrections in this region, which is done using Sudakov form factors.
The reweighted one-loop cross sections can be written as

dσn(yMS)

dΩPS
n

= CME
n (ΩPS

n )αn
s (µ)

[

1 + αs(µ)cME
n,1 (ΩPS

n , µ, yMS)
]

×

×Θ(y(Sn) − yMS)
n−1

∏
i=0

∆Si
(ρi, ρi+1; < yMS), (IV.25)

where the definition for the Sudakov from factor was presented in equation
(IV.18). Note that no reweighting is necessary for the lowest multiplicity pro-
cesses, since if there are no emissions in the matrix element state, there are no
regions of phase space where the shower can generate emissions violating the
ordering requirement.

The other component that goes into the merging is the shower where all the
terms corresponding to the one-loop matrix element have been subtracted.
When doing the subtraction we choose to work with a cascade which is al-
ready corrected with tree-level matrix elements. The idea is to reweight the
tree-level matrix element the same way as CKKW-L, which is described by
equation (IV.19), and then subtract the terms corresponding to the one-loop
matrix element. Note that one of the Sudakov form factors has a dependency
on the scale of the next emission performed by the shower ρn+1, which was
described in section IV.2.4.

The terms of order αn+1
s in equation (IV.23) needs to modified to comply

with the phase space restrictions of the one-loop matrix element. The shower

IV
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is formulated in a way where emissions can be anywhere within the allowed
shower phase space, whereas the matrix element is restricted to emissions
above the merging scale. This difference in phase space does not affect the
expansion of the running coupling, but must be included in the integration
over the branching probability. The full formula including tree-level matrix
element corrected with CKKW-L and the subtraction of the one-loop terms is
the following.

dσPScorr
n (yMS)

dΩPS
n

= CME
n (ΩPS

n )αn
s (µ) ×

[

K∆Sn
(ρn, ρn+1; > yMS)

n

∏
i=1

αs(bρi)

αs(µ)
∆Si−1

(ρi−1, ρi)

−
n−1

∏
i=0

∆Si
(ρi, ρi+1; < yMS)×

×
{

1 + k1αs(µ) + αs(µ)
n

∑
i=1

log(µ/(bρi))

α0

−αs(µ)
n−1

∑
i=0

∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

−αs(µ)
∫ ρn

ρc

dρd~x ΓSn
(ρ,~x)Θ(y(Si, ρ,~x)− yMS)

}]

(IV.26)

The samples described by eq. (IV.25) and eq. (IV.26) are added together
in the end to form the parton multiplicity cross section for one-loop matrix
elements merged together with parton showers. When implementing the al-
gorithms one also allows for extra emissions generated by the shower with the
requirement that the first such emission should have a lower scale than ρn and
be below the merging scale. The details of the entire procedure is described in
section IV.3.

IV.2.6 Two partons at two loops

In the case of e+e− → hadrons, there is an additional matrix element that can be
included without considering higher order terms in the running of αs, which is
the two-loop matrix element for two partons. The reason is that the leading-
order term for the two-parton cross section does not include αs. The matrix
element is also fairly easy to simulate if one knows the other components at
order α2

s . Working with two-loop terms means that the equation (IV.21) needs
to be expanded one more order including the parameter b, defined in equation



IV.3 The algorithm 167

(IV.5). The expanded Sudakov form factor can be written in the following way.

∆Si
(ρi, ρi+1) = 1 −

∫ ρi

ρi+1

dραs(bρ)ΓPS
Si

(ρ) +
1

2!

(

∫ ρi

ρi+1

dραs(bρ)ΓPS
Si

(ρ)

)2

− . . .

= 1 − αs(µ)
∫ ρi

ρi+1

dρΓPS
Si

(ρ) − α2
s (µ)

∫ ρi

ρi+1

dρ
log(µ/(bρ))

α0
ΓPS

Si
(ρ) +

+
1

2
α2

s (µ)

(

∫ ρi

ρi+1

dρΓPS
Si

(ρ)

)2

+ O(α3
s (µ)) (IV.27)

Apart from the terms above, the K-factor of order α2
s needs to be included,

but for the running αs it is sufficient to include the first order expansion of αs

given by equation (IV.22). The tree-level matrix element can be modified in
the following fashion, which is to be added to the event generated according
to the two loop matrix element.

dσPScorr
2 (yMS)

dΩPS
0

= CME
0 (ΩPS

0 )

[

K∆S0
(ρ0, ρ1; > yMS)−

{

1 + k1αs(µ) + k2α2
s (µ)

−αs(µ)(1 + k1αs(µ))
∫ ρ0

ρc

dρd~x ΓS0
(ρ,~x)Θ(y(Si, ρ,~x)− yMS)

−α2
s (µ)

∫ ρ0

ρc

dρd~x
log(µ/ρ)

α0
ΓS0

(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

+
α2

s (µ)

2

(

∫ ρ0

ρc

dρd~x ΓS0
(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

)2
}]

(IV.28)

This term represents the modified parton shower and added to the two-
parton matrix element calculated at two loops, the cascade becomes corrected
at one order higher in αs. Note that there is a dependence on the scale of the
next emission generated by the shower, in this case ρ1, in the same way as in
equations (IV.19) and (IV.26).

The term described above should be added to the two-parton matrix el-
ement calculated at two-loop accuracy. Since the two-loop matrix element
considered has the lowest multiplicity, no reweighting due to the ordering re-
quirement is necessary. If two-loop matrix elements with higher parton mul-
tiplicity were to be included, they would have to be reweighted in the same
way as the one-loop matrix elements, described in eq. (IV.25).

IV.3 The algorithm

This section describes all the necessary steps needed to generate the actual
events. First the methods for calculating each individual weight is presented
and then each step in the algorithm is described.

IV
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IV.3.1 Calculating the terms

Each of the weights that need to be calculated consists of a number of common
elements. This section describes how to calculate each individual piece. All
the terms are calculated similarly to the CKKW-L approach, which means that
the actual shower is used. However, it should be noted that it is possible
to do calculations along the same lines using the analytical weights in the
CKKW algorithm. Using the actual shower puts a constraint on which parton
showers can be used. The algorithm can only be applied to showers with well
defined intermediate states and Sudakov form factors that factorizes, which is
the same requirement as the CKKW-L algorithm.

The weights described in this section are calculated using Monte Carlo
techniques, which means that there is an element of randomness in each
weight. The calculations presented give the correct value for each weight if an
average value is calculated. In the general framework of Monte Carlo event
generators this does not present a problem.

The simplest weight to be calculated is the plain Sudakov form factor, de-
noted ∆Si

(ρi , ρi+1). This is done by generating one emission with the shower
starting from the state Si and the scale ρi. If the emission is above the scale ρi+1

set the weight to zero, otherwise set it equal to one. This gives the correct be-
havior since by definition the no-emission probability of the shower is equal
to the Sudakov form factor.

The next weight to be described is the Sudakov form factor that is modified
to exclude emissions above the merging scale denoted ∆Si

(ρi , ρi+1; < yMS), de-
fined in equation (IV.18), and is used to reweight the states generated accord-
ing to one-loop matrix elements. In this case two different scales are mixed
and the scheme for the plain Sudakov form factor needs to be supplemented
with an accept/reject scheme. The calculation is described in the following
steps.

1. Feed the state Si into the shower and generate one emissions starting
from a scale ρi. This yields an emission scale ρ and a new state S.

2. Depending on the emission there are three options.

• If the scale of the generated emission ρ is above ρi+1 and if the emis-
sion is above the merging scale (y(S) > yMS) generate a new emis-
sion from the state Si, but this time using ρ as the starting scale.
Repeat step 2.

• If the scale of the generated emission ρ is below ρi+1 set the weight
to one.

• If the scale of the generated emission ρ is above ρi+1 and if the emis-
sion is below the merging scale (y(S) < yMS) set the weight to zero.
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The only other terms that need to be calculated are the integrated branch-
ing probabilities. First the calculation of the term

αs(µ)
∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS) (IV.29)

is described and later it is shown how to extend the calculation to the other
related terms. The calculation is done by generating emissions in the entire
avaliable phase space and counting the total number. The procedure is de-
scribed in the following steps.

1. Use a fixed value for αs = αs(µ) (usually avaliable as an option in a parton
shower program) and generate one emission from the state Si with a
starting scale ρi. This yields an emission scale ρ and a new state S.

2. If the emission has a scale ρ > ρi+1 and is above the merging scale y(S) >

yMS count the emission.

3. Depending on the scale of the emission stop the algorithm or generate
another emission.

• If the scale of the generated emission ρ is above ρi+1 generate a new
emission from the state Si, but this time using ρ as the starting scale.
Repeat step 2 and 3.

• If the scale of the generated emission ρ is below ρi+1 set the weight
to the total number of emission counted in step 2.

The average number of emissions in the algorithm above gives the correct
value for the integral. To show that this is the case consider the probability of
n emissions.

P(n) = ∆Si
(ρi, ρi+1; > yMS)

1

n!

(

αs(µ)
∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

)n

.

(IV.30)
The average number of emission can be written as

∞

∑
n=0

nP(n) = ∆Si
(ρi, ρi+1; > yMS)αs(µ)

∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x)− yMS) ×

∞

∑
n=1

1

(n − 1)!

(

αs(µ)
∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

)n−1

= αs(µ)
∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS). (IV.31)

The same algorithm can also be used to calculate the higher order terms
present in equation (IV.28). The integrated branching probability squared can
be calculated by setting the weight to n(n − 1), where n is the number of emis-
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sions, which gives the correct average since

∞

∑
n=0

n(n − 1)P(n) =

(

αs(µ)
∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x)− yMS)

)2

. (IV.32)

There is one more term to be considered in equation (IV.28), which is

α2
s (µ)

∫ ρi

ρi+1

dρd~x
log(µ/(bρ))

α0
ΓSi

(ρ,~x)Θ(y(Si, ρ,~x) − yMS). (IV.33)

The way this integral is calculated is by an accept/reject scheme. The first step
is to rewrite the term where the value of the logarithm has been divided by its
maximum, which occurs for the minimum possible value of ρ.

(

αs(µ) log(µ/(bρi+1))

α0

)

×

×
(

αs(µ)
∫ ρi

ρi+1

dρd~x
log(µ/(bρ))

log(µ/(bρi+1))
ΓSi

(ρ,~x)Θ(y(Si, ρ,~x)− yMS)

)

(IV.34)

The second factor can now be simulated with a scheme simular to the one
described earlier. The only addition is that emissions are only counted if
log(µ/(bρ))/ log(µ/(bρi+1)) > R, where R is a random number between 0 and
1.

IV.3.2 The steps

To generate the actual events we start with two different samples. One is
generated according to the one-loop matrix element and one generated with
tree-level matrix elements, where both samples are generated using the same
cutoff, yMS. The two samples are generated for all multiplicates except for
the highest one, where only the tree-level matrix element is used. Different
weights are calculated for the events depending on if they were generated
according to a one-loop matrix element or a tree-level matrix element. Event
are generated according to the following steps:

1. Choose a merging scale yMS and use the same scale as matrix element
cutoff. Calculate the cross section for the one-loop matrix element with
multiplicities n < N and for tree-level matrix elements with multiplici-
ties n ≤ N. Choose a matrix element with a probability proportional to
its cross section.

2. Generate an event with a kinematic distribution in accordance with the
chosen matrix element.

3. Construct a shower history by considering all possible histories and se-
lection one with a probability proportional to the corresponding prod-
uct of splitting functions. This leads to a set of states Sn . . . S0 and scales
ρn . . . ρ0.
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4. When generating the first emission from the shower, there are two cases
to be considered.

• If the event was generated according to a one-loop matrix element
or according to a tree-level matrix element with a multiplicity less
than the maximum (n < N), generate one emission starting from
the state Sn with a starting scale ρn, but veto any emission which is
above the merging scale yMS

• If the event was generated according to a tree-level matrix element
and had the highest multiplicity (n = N), generate one emission
from the state Sn with a starting scale ρn.

5. The events are reweighted depending on type:

• If the event was generated according to a one-loop matrix element,
reweight the event with a factor ∏

n−1
i=0 ∆Si

(ρi, ρi+1; < yMS) according
to the steps in subsection IV.3.1.

• If the event was generated according to a tree-level matrix ele-
ment, but did not have the highest multiplicity (n < N), then the
the weight depends on the scale of the emission in step 4, ρn+1.
(If the shower cutoff was reached and no emission generated, set
ρn+1 = ρc.) Reweight the event with

K∆Sn
(ρn, ρn+1; > yMS)

n

∏
i=1

αs(bρi)

αs(µ)
∆Si−1

(ρi−1, ρi)

−
n−1

∏
i=0

∆Si
(ρi, ρi+1; < yMS)

{

1 + k1αs(µ) + αs(µ)
n

∑
i=1

log(µ/(bρi))

α0

−αs(µ)
n−1

∑
i=0

∫ ρi

ρi+1

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x) − yMS)

−αs(µ)
∫ ρn

ρc

dρd~x ΓSi
(ρ,~x)Θ(y(Si, ρ,~x)− yMS)

}

, (IV.35)

according to the steps in subsection IV.3.1.

• If the event was generated according to a tree-level matrix ele-
ment, but had the highest multiplicity (n = N), then the event is

reweighted by ∏
n
i=1

αs(bρi)
αs(µ)

∆Si−1
(ρi−1, ρi).

6. Continue the cascade below ρn+1

IV.4 Results

Our algorithm has been implemented using ARIADNE version 4.12 [22], which
has been modified to include the possibility of calculating the different

IV
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Figure IV.1: The parton-level y3 spectra according to the JADE definition for the sam-
ples corrected with one-loop two-parton matrix element and tree-level three-parton
matrix element. (a) includes all flavours and masses and (b) is with only massless d-
quarks. The in-sets at the bottom of the plots show the relative differences between the
results from NL3 and default ARIADNE, (σNL3 − σARIADNE)/σARIADNE.

weights needed. The matrix elements used is taken from an implementation
in PYTHIA version 6.414 3 [30], where the e+e− matrix elements were calculated
in [31] and parameterized in [32]. The implementation includes the possibil-
ity of generating e+e− events according to zero, one, or two orders in αs. This
means that the four jets can only be generated according to the tree-level ma-
trix element, whereas the three jet contribution can be generated using the
one-loop contribution and the two jet can include up to two loops. The dif-
ferent multiplicities are separated using a cutoff in invariant mass divided by
center of mass energy (Q2/s), which can be varied between 0.01 and 0.05. The
process considered throughout this section is e+e− to hadrons at the Z0 mass
peak.

The first thing to be studied is how the algorithm behaves for the some-
what trivial case of calculating three partons with a tree-level matrix element
and two partons to one loop. To study the effects of the cutoff, the JADE [33]
jet clustering algorithm is used, since it has a jet scale which closely resembles
the scale used for the cutoff, yMS. The matrix elements are calculated using a
fixed value of the αs used in ARIADNE at the renormalization scale, which is set
to mZ (i.e. not using eq. (IV.5) and setting b = 1 in the rest of section IV.2 and
IV.3). The distribution in clustering scale for the third jet for our new proce-
dure4 is shown in figure IV.1 with three different values of the merging scale,
0.01, 0.02 and 0.05 and is compared to the standard ARIADNE shower. The fig-
ure includes one plot with all flavours and masses and one where only mass-
less d-quarks was used. Including quark masses there are some deviations,

3PYTHIA has been modified to allow renormalization scales bigger than the center of mass
energy and to return negative weights instead of rounding to zero for three partons at one loop.

4The results for our new procedure is throughout denoted NL3.
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Figure IV.2: The parton-level y3 spectra according to the JADE definition for the sam-
ples corrected with matrix elements describing two partons at one loop, three partons
at one loop and four partons at tree level. (a) shows the curves for a cutoff of 0.02 and
(b) for a cutoff 0.05. Both figures include curves displaying the various components of
the NL3 samples.

especially close to the cutoff. This is due to slightly different treatments of the
suppression of radiation from heavy quarks (the dead-cone effect). The matrix
element in PYTHIA uses the exact formula, whereas in ARIADNE a more general
approximate formula is used. However, when masses are not included no de-
viations are visible, which should be the case since both the K-factor and the
matrix element correction are present in the shower to this order.

Moving on to the simplest non-trivial case which includes two partons to
one loop, three partons to one loop and four partons to tree level. Also here

IV
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the clustering scale of the third jet using JADE is studied for the same αs, renor-
malization scale and merging scales. The distribution is shown in figure IV.2
together with the various components that make up each distribution. The
cutoff 0.01 is not included since it would have a negative two-parton cross
section, which is not allowed in the PYTHIA routines.

The different components in figure IV.2 can be identified in the following
way. The curves marked one loop are simply the contributions from the one-
loop matrix elements with a Sudakov form factor according to equation (IV.25)
and a shower added below the merging scale, the curves marked PScorr are
the contribution calculated from the tree-level matrix elements according to
equation (IV.26) and the curve marked 4 jet tree-level is the highest multiplic-
ity contribution which is calculated according to equation (IV.20). The dom-
inant contributions are clearly the one-loop matrix elements for two-parton
and three-parton configurations. The four-parton matrix element is also sig-
nificant at the hard end of the spectrum, but the contributions from the modi-
fied tree-level distributions are generally small.

We also note that the modified tree-level contribution (PScorr) have a
slightly negative value. This is a result of the expansion of the Sudakov form
factor together with the running coupling. However, negative weights can be
avoided if one chooses a merging scale defined using the ordering variable in
the shower, and a renormalization scale equal to the merging scale. As long as
the one-loop matrix elements are not themselves negative, which happens for
small enough merging scales, all events would then have positive weights.

One important feature of the algorithm is the possibility of including sev-
eral multiplicities together. The importance of this is illustrated in figure IV.2
by the fact that the two-parton components give a contribution which extend
significantly above the merging scale (while the opposite is true for the three
parton contribution). Clearly it would be problematic to try to describe the jet
distribution using only three- and four-parton matrix elements, although the
calculation would be formally correct to NLO accuracy.

Another thing that is noticeable is that there is a significant overshoot
above the cutoff in figure IV.2. This is attributed to the one-loop term of the
three parton matrix element, which can not be accurately reproduced in the
cascade. The equivalent term in the cascade is calculated using the Sudakov
form factors and the value is significantly smaller than the matrix element.

The whole issue of the one-loop contribution being significantly larger than
the parton shower counterpart has another consequence, namely that the αs

used in the shower is higher than what is fitted to precision calculations,
which include both fixed-order matrix elements and logarithmic resumma-
tions. However, simply lowering αs everywhere would destroy the agreement
between the curves below the cutoff. We therefore both lower the value of αs

and modify the scale used as a argument in the shower by using the param-
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Figure IV.3: The parton-level y3 spectra according to the JADE definition for the NL3

algorithm including a modified way of treating αs.
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Figure IV.4: The parton-level y3 spectra according to the JADE definition for the NL3

algorithm including a modified way of treating αs and the two-parton matrix element
at two loops.

eter b (defined in equation (IV.5)). The value of αs from the PDG [34] which
is αs(mZ) = 0.1176 which corresponds to ΛQCD = 85.8 MeV (assuming a lead-
ing order αs which is used in ARIADNE), which should be compared to the
ARIADNE default ΛQCD = 220 MeV. Figure IV.3 shows the curves using the
PDG value for αs and b = 85.8/220 = 0.389. There is a much better agreement
for values above the cutoff, but there are still some discrepancies.

For the two-parton matrix element the calculation is also available at two

IV
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Figure IV.5: The parton-level y3 spectra according to the JADE definition for the NL3

algorithm including a modified way of treating αs where the renormalization scale has
been varied up and down by a factor of two. (a) includes the one-loop corrections and
(b) includes the two-parton matrix element at two loops.

loops. This was discussed in general in section IV.2.6. In figure IV.4 the two-
loop corrections have been included, still using the same αs treatment as de-
scribed above. There is a clear difference in that the curves no longer overlap
with ARIADNE for values below the merging scale. This happens since the
two-loop contribution is beyond what can be reproduced by ARIADNE.

To check the consistency of the algorithm we have studied the sensitivity to
changes in the renormalization scale. In figure IV.5 the renormalization scale
has been varied up and down by a factor of two, both for the case of one-loop
correction and including two partons at two loops. Overall, the sensitivity to
changes in the renormalization scale is small, with variations of around two
percent in the results. This is expected since all the higher order terms comes
from the shower which is unaffected by the renormalization scale.

Finally our algorithm is compared to data from the DELPHI [35] exper-
iment. It should be noted that all the data are quite well reproduced by
ARIADNE and since we get small deviations in the previous plot, we expect
small differences here as well. The data to be studied are all corrected to the
particle level and includes only charged particles. Figure IV.6 shows the jet
distributions for the third and fourth jet according to the JADE [33] definition
and the Durham [36] definition. The curves include the central merging scale
value of 0.02 with and without the extra two-loop correction. All the results
reproduce the data quite well.

The results from the algorithm has also been compared to the shape ob-
servables thrust and oblateness, which is shown in figure IV.7. The agreement
is again quite good. The curves including the matrix element corrections actu-
ally do a bit better for oblateness, which is to be expected since it is sensitive to
distributions including four jets where we have included the exact tree-level
matrix elements.
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Figure IV.6: Charged particle jet observables compared to DELPHI data and the stan-
dard ARIADNE shower for the NL3 algorithm using a merging scale of 0.02. The follow-
ing jet observables are shown: (a) 3 jet JADE, (b) 4 jet JADE, (c) 3 jet Durham and (d) 4
jet Durham.
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Figure IV.7: The charged particle thrust and oblateness compared to DELPHI data and
the standard ARIADNE shower for the NL3 algorithm using a merging scale of 0.02.

IV.5 Conclusions

We have presented an algorithm for merging one-loop and tree-level matrix
elements with parton showers. The algorithm allows for the inclusion of sev-

IV
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eral different multiplicities, which is important for simulating an entire pro-
cess. For observables where the combination of tree-level and one-loop matrix
elements used gives the correct NLO prediction, our procedure will also give
correct NLO predictions but with a resummation of leading logarithms which
is of the same accuracy as in the parton shower used. The basic principle of
the procedure is quite simple. The first two terms in the αs expansion is sub-
tracted from the shower and the corresponding one-loop matrix element is
added. Although a simple idea, it leads to some complicated issues.

To calculate the first two terms in powers of αs in a parton shower requires
that several different terms are taken into account. Both the first term in the
expansion of the Sudakov form factor and the first term in the running cou-
pling contributes at this level. In this paper these terms were derived and
subtracted from the shower. The calculation was done within a framework
similar to the CKKW-L method, but it is also applicable to CKKW algorithms
in general.

The modified shower is then added to a sample calculated according to
one-loop matrix elements. The requirement on the matrix elements is that one
should be able to specify a phase-space cut which separates the parton multi-
plicities and decides whether or not a parton is to be considered unresolved.
This is not done within the commonly used subtraction schemes, but can be
solved by a modifying the subtraction scheme outside the singular regions.

We have explicitly calculated all the weights without taking into account
the possibility of incoming hadrons, which is going to be the topic of a future
publication. We then implemented the procedure and applied it to the process
e+e− to hadrons. The shower in ARIADNE was used and PYTHIA was used to
generate the matrix elements.

To test the consistency of the algorithm, jet distributions at parton level
were studied. The trivial case of two partons at one loop and three partons
at tree level was found to have only small deviations, which disappeared if
quark masses were excluded. The first nontrivial case was how the algorithm
behaves for two partons at one loop, three partons at one loop and four par-
tons at tree level. This led to a clear overshoot due to the fact that the terms
in the matrix element is significantly bigger than those in the shower, which is
compensated by using a much larger αs in the shower compared to fits using
matrix elements including loops. If the value of αs is adjusted according to our
prescription, the agreement is quite good.

One important aspect of our procedure is the ability to combine several
different parton multiplicities in a consistent way. This allows us to obtain
corrections to a NLO prediction for a given n-jet observable, stemming from
cumulative sub-leading effects from the parton shower added to the (n− 1)-jet
states.

Other aspects of the algorithms was explored, such as including the two-



IV.6 Acknowledgments 179

parton matrix element to two-loop accuracy, which only led to slight changes
below the merging scale. The sensitivity to the choice of renormalization scale
was tested and a change of a factor of two in the renormalization scale results
in changes of around two percent in the results.

The predictions of the algorithm has also been compared to four differ-
ent jets observables and two shape observables measured at LEP. ARIADNE

already provides a good description of the data and including the matrix ele-
ment corrections gives similar agreement.

Overall, the procedure has been shown to be consistent and give good re-
sults at hadron level. These relatively simple cases establish a proof of concept
and a good staring point to explore the additional pieces needed to simulate
processes with incoming hadrons. If the algorithm is developed further and
the matrix element generators improved, then there are good prospects for be-
ing able to merge one-loop matrix elements and partons shower for the more
interesting LHC processes.
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