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Sammanfattning

Många av er har kanske redan hört uttrycket partikelfysik, men kanske inte alla
vet vad det handlar om. Detta är en gren av fysiken som studerar system av
mycket små objekt, allmänt kallade partiklar. Med små menar vi en miljondels
miliarddels meter (vilket är exempelvis protonens radie) eller ännu mindre.

För att undersöka partiklarnas egenskaper, behöver vi både ett teore-
tiskt och ett experimentellt angreppssätt. Det teoretiska angreppssättet pro-
ducerar modeller för att studera partiklars beteende. Det experimentella an-
greppssättet mäter olika partikelegenskaper (massor, sönderfallstid och så vi-
dare). Kopplingen mellan dessa två är fenomenologi som beräknar och jämför
teoretiska förutsägelser med experimentell data. Arbetet samlat i denna av-
handling faller inom detta sista område av partikelfysiken.

I vanlig materia finns protoner, neutroner och elektroner, men det finns
också många fler sorters partiklar. Några av dessa återfinns till exempel i jor-
dens atmosfär. De är subatomära partiklar som rör sig genom universum och
växelverkar med atmosfärens partiklar. Dessa partiklar är också lätta att pro-
ducera i partikelkolliderare. Metoden som används är att accelerera partiklar
till mycket hög energi och låta dem kollidera. De partiklar som produceras vid
kollisionen studeras sedan och kan användas för att dra slutsatser om struk-
turen hos de partiklar som skapats vid kollisionen.

I denna avhandling fokuserar vi på en speciell sorts partiklar kallade meso-
ner. De är inte elementära, utan består av två elemntarpartiklar kallade kvarkar.

Det finns en teori för att beskriva samspelet mellan kvarkar som kallas
Kvantkromodynamik. Denna teori beskriver framgångsrikt kvarkar och kraften
mellan dem vid väldigt höga energier. Men i en sådan framställning är det
mycket svårt att utföra beräkningar för mesoner vid låg energi. Det kan endast
göras med mycket stor datorkraft. Därför har en annan metod utvecklats och
detta är Kiral Störningsteori. Den beskriver de fysiskaliska systemen i termer av
mesoner istället för kvarkar. En sådan teori förenklar avsevärt beräkningarna
eftersom den bortser från mesonernas interna dynamik. Kiral Störningsteori
gör det möjiligt att med framgång modellera många processer, exempelvis
sönderfall av tunga mesoner till lättare eller spridningsprocesser. Bland de
mesonerna fokuserar vi på de lättaste, som är pioner, kaoner och η-mesoner.

Kiral Störningsteoris största fördel är att den tillåter studier av proces-
ser genom successiva approximationer. Åtminstone i princip kan vi få pre-
cisa förutsägelser om vi adderar tillräckligt många steg. Men vi måste också
klargöra vilka av dessa som ger stora bidrag och vilka som med säkerhet kan
försummas. Detta är en fråga vi undersöker i denna avhandling.

Det finns också flera okända parametrar i Kiral Störningsteori som måste
bestämmas från experimentella data. Eftersom alla beräkningar vi gör är be-
roende av dessa okända konstanter, är det viktig att fastställa dem. Detta är
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ett annat problem som vi undersöker i denna avhandling.
Kiral Störningsteoris standardformulering är bara giltig om mesonerna är

mjuka, det vill säga de måste ha låg energi. Å andra sidan produceras det
också mesoner med hög energi, även kallat hårda. Vad kan vi göra i dessa
fall? Är det fortfarande möjligt att använda Kiral Störningsteori till en viss
del? Svaret är ja. Det finns fortfarande några viktiga korrektioner som vi kan
beräkna. Vi undersöker också dessa möjligheter genom att utvidga den Kiral
Störningsteorin till ett större energiintervall. Denna utvidgning kallas Kiral
Störningsteori för hårda pioner.





To Giuliana
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Introduction

i.1 Introduction

Particle physics is a branch of physics studying systems composed of extremely
small objects, called generically particles. With small we mean sizes of order
10−15 meters (which is e.g., the radius of a proton) or even smaller.

To investigate the properties of the particles there are basically two ap-
proaches needed. A theoretical one, whose task is mostly to produce models
for studying particle behaviours, and an experimental one, so that their
properties (masses, decay times and so on) are measured. The link between
the two is phenomenology that mostly calculates and compares the theoretical
predictions with experimental data. The work collected in this thesis finds its
location in this last field of particle physics.

More specific, we study a particular type of particles called mesons, and
among them we will focus on the lightest ones. The mesons are composite sys-
tems. So they are not elementary objects, but are rather constituted by point-
like particles. The mesons are not easy to find in ordinary matter. They have
first been observed as products of cosmic rays interacting in the atmosphere
of the earth, but are mostly produced and studied doing particle experiments.

There exists a theory, the so-called quantum chromodynamics, describing the
interactions of the mesons’ constituents. Unfortunately doing calculations in
such a framework is prohibitive when we deal with low energetic mesons.
They can be performed only by heavily using computer power. Therefore a
different approach has been developed to deal with this problem. This is the
effective field theory one. The underlying idea is to find a way to predict mea-
surable quantities by successive approximation. For some theories even that
is not at all straightforward and can be done only by simplifying the system
under study. This is achieved, for example, by not trying to describe the inter-
nal dynamics of the mesons and promoting the mesons as the relevant degrees
of freedom. In the case of quantum chromodynamics such an effective field
theory exists and it is called Chiral Perturbation Theory.

i



2 Introduction

In this introduction we try to give an idea of how Chiral Perturbation
Theory is built up and how we can calculate physical observables starting
from the basis. In these first sections no preliminary knowledge is needed,
but further down the subject matter will become more and more complicated.

Hereafter we list the contents of the different sections. Section i.2 deals
with the basic units of measure we use throughout this thesis, which are also
widely adopted in several branches of particle physics. We also try there to
give an idea of which kind of objects we are studying, namely of the scales
they live at. In Section i.3 we introduce the constituents of matter and name
the main forces among them. In Section i.4 we shortly describe the mathe-
matical background needed for our purposes: Quantum Field Theory. This
is commonly used when we want to deal with systems that are both micro-
scopic (small distances) and relativistic (high velocities) as the particles are.
Section i.5 explains the basics of effective field theories. The largest part of
this introduction is Section i.6. It focuses on Chiral Perturbation Theory in its
standard formulation. The work done during my PhD is mainly in this frame-
work. Section i.7 presents an extension of Chiral Perturbation Theory over
a wider energy range. This is called hard pion Chiral Perturbation Theory.
Section i.8 shortly introduces another effective theory called Heavy Quark Ef-
fective Theory used to include more mesons in the description. Section i.9 is
devoted to a method used to attack involved calculations in particle physics:
lattice quantum chromodynamics. We try to show there how Chiral Pertur-
bation Theory and lattice quantum chromodynamics need each other to reach
further progress. Finally a summary of the four publications included in this
thesis closes the introduction.

i.2 Units and typical scales in particle physics

Before entering into the technical aspects, it is important to know which are
the typical scales and units used in particle physics and throughout this the-
sis [1]. We will therefore devote this section to an overview of the orders of
magnitude involved. The calculations are much simplified by the use of units
such that h̄ = c = 1, called natural units. The speed of light has the value
c ≈ 3 × 108m/s. Instead of using the meter, we can also decide to use a new
unit of length (or a new unit of time) defined by the statement that in these
units c = 1. Then, the velocity v of a particle is measured in units of the
speed of light, what is very natural since we typically deal with relativistic
objects. The Planck constant h̄ has instead dimensions [energy] × [time]. We
can choose units of time such that h̄ = 1. Then all multiplicative factors of h̄
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Leptons

Flavour Mass Charge

e 0.511 MeV −1
νe < 0.5 MeV 0

µ 105.7 MeV −1
νµ < 0.19 MeV 0

τ 1.777 GeV −1
ντ < 18.2 MeV 0

Quarks

Flavour Mass Charge

u 1.7 − 3.3 MeV 2/3
d 4.1 − 5.8 MeV −1/3

c 1.18 − 1.34 GeV 2/3
s 80 − 130 MeV −1/3

t 170 − 174 GeV 2/3
b 4.13 − 4.37 GeV −1/3

Table i.1: The elementary constituents of matter. The electric charge is given in units
of e, charge of an electron. The values for the masses are taken from [2]

and c disappear from our equations and

[v] = dimensionless, [energy] = [momentum] = [mass],

[length] = [mass]−1. (i.1)

The first two equations follow immediately from c = 1 while the third fol-
lows from h̄ = 1. Thus all physical quantities have dimensions that can be
expressed as powers of mass or, equivalently, as powers of length or of mo-
mentum.

Once we settle our favourite units we can look at which are the typical en-
ergies, masses, lengths involved. For convenience we express all of them us-
ing eV (and its positive or negative powers). This is defined as the amount
of kinetic energy gained by a single unbound electron when it accelerates
through an electric potential difference of 1 Volt. Here we typically deal with
distances of order of 10−15m ≈ (0.2 GeV)−1 and with masses of order of
10−27 kg ≈ 0.5 GeV. So for example the proton has an approximate radius

of 1 GeV−1 and a mass around 1 GeV.

i.3 Constituents and particles

Ordinary matter can be understood in terms of neutron n, proton p, (which
are hadrons, from the Greek stout particles) and of electron e and electronic
neutrino νe (which are leptons, i.e. light particles). However there exist many
more particles than these. Let us show briefly how they are organized and
their main features.

i



4 Introduction

The leptons are ,as far as we know, fundamental point-like spin 1/2 par-
ticles. Two main classes of leptons exist: charged leptons (also known as the
electron-like leptons), and neutral leptons (the neutrinos). The best known of
all leptons is the electron e which is found in atoms and is directly tied to all
chemical properties. The leptons are divided into families as shown in the left
side of Table i.1. The first family is the electronic one, comprising the elec-
tron e and electron neutrinos νe. The second is the muonic, with muon µ and
muonic neutrino νµ; and the third is the tauonic, composed by the tau τ and
tau neutrinos ντ .

For each of the leptons listed in Table i.1 there exists also a corresponding
antiparticle. These are particles with the same kinematical properties (such
as mass and spin) as the corresponding particle, but with opposite internal
quantum numbers (as the electric charge). For example the “antielectron” is
called positron e+ and has the same mass and spin as the electron but positive
charge.

Besides the leptons there are the hadrons which are subdivided into
baryons, with half-odd integral spin, and mesons, with integral spin. Hun-
dreds of baryons and mesons have been found and they are all listed in [2].
They can be organized according to regular patterns. For example there exist
eight mesons which have mass lower than all the other hadrons and they all
have spin equal to 0 and the same parity. These mesons are commonly repre-
sented as in Figure i.1. The reason why such regular patterns exist is that the
hadrons are not fundamental particles, but composite states of more funda-
mental entities called quarks. So far we have proof of the existence of six kinds
of quarks (and the corresponding antiquarks), all listed in Tab. i.1.

Baryons turn out to be bound states of three quarks while mesons are
quark-antiquark states. This thesis deals only with the mesons, and mainly
focuses on the lightest eight of Figure i.1. These are composed of the lightest
quarks, namely u, d and s.

Now that we have settled the scene as far as regards the objects under
study, we can look at their interactions. These, in the framework of Quantum
Field Theory, happen thanks to the exchanges of special particles called gauge
bosons. In particle physics the relevant interactions and their gauge bosons
are:

• Electromagnetic interaction: It is mediated by the photon, which is a
massless gauge boson. Particles with a non-zero electric charge feel this
interaction. It is the force responsible for the binding of the electrons to
the nuclei in atoms and molecules.

• Weak interaction: It is mediated by the massive W± and Z bosons
(whose masses are of order 100 GeV). This interaction can occur e.g. be-
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Figure i.1: The lightest “octet” of the mesons. The single components are called pions

(π+, π0, π−), kaons (K+, K0, K−, K
0
) and eta (η). The number between parenthesis

are the masses of each particle expressed in MeV. The least massive hadron after these
ones is the ρ meson with a mass of 770 MeV [2].

tween leptons alone, leptons and quarks, quarks alone. It is responsible
for the β-decay, where a decaying nucleus emits an electron and a neu-
trino.

• Strong interaction: The gluon is the massless gauge boson mediating this
interaction. It takes place between quarks or also between gluons. It is
the force that keeps the quarks bound together into hadrons. This thesis
is devoted to the study of this interaction. The quantum field theory that
describes it is called quantum chromodynamics (QCD). In this theory
the particles that are assumed to interact strongly, i.e. the quarks, have a
charge (analogous to the electric one) called colour. This is the reason for
the word chromo in QCD.

Now that we have summarized which are the objects we are dealing with,
we can turn to a short introduction of the mathematical description of such
objects. This will be the subject of the next section.

i.4 Quantum field theory (QFT)

Considering the difficulty of the subject, giving a short summary of quantum
field theory is a highly non-trivial task. We point out that this is not the aim of
this section. Here we only mean to list very briefly the principles that will turn
out useful for the next sections. Some textbooks for further reading are [3–5].

i
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i.4.1 Fields, Lagrangians and free fermions

In field theories the particles are represented by fields which are special func-
tions of time and of the spatial coordinates, collected all in the four vector x.

In QFT there are different kinds of fields. The scalar, usually denoted with
φ, represents spin-0 bosons, while the spinor ψ identifies fermions. This dis-
tinction is based on the fact that the fields follow different quantization rules
according e.g. to the spin of the particle. In QFT φ and ψ are not only simple
functions, but they are a superposition of annihilation and creation operators.
As the names suggest the creation operators act on the vacuum state to pro-
duce field states of given momenta and spins, while the annihilation operators
transform back these states to the vacuum [4].

As remarked in Section i.3, there are also special spin-1 bosons called gauge
bosons. They are the responsible for mediating the interactions and are often
represented with the symbols Aµ for the photon and the gluon, Wµ and Zµ

for the weak gauge bosons.

The fundamental quantity that is built up starting from these objects is the
so-called Lagrangian density L. In natural units it has dimension [mass]4 [6].
The reason why such a quantity is so important is that it rules the way the
system under study evolves from one configuration to another [4]. In classical
field theory it does so along the “path” for which its integral over space and
time (called action) S =

∫
d4xL is minimum . In quantum mechanics, the sys-

tem does not follow a single path whose action is stationary, but its behaviour
depends on all permitted paths and the value of their action. The action cor-
responding to the various paths is used to calculate the path integral, that
gives the probability amplitudes of the various outcomes. Richard Feynman’s
path integral formulation of quantum mechanics is inspired by the stationary-
action principle, but it replaces the classical notion of a single, unique trajec-
tory for a system with a sum, or functional integral, over the infinite number
of possible trajectories to compute a quantum amplitude. In QFT, that is a
combination of classical field theory and quantum mechanics, the Lagrangian
and the action play again a leading role in ruling the evolution of a system.
QFT can be formulated using functional methods along the lines of quantum
mechanics. We remark however that while there the dynamical variable is the
position of a particle, in QFT the dynamical variable is the whole field at each
point in space-time.

Typically a Lagrangian density contains (as in classical field theory) a ki-
netic term, a mass term if the particle under study is massive and the interac-
tion terms, that as the name suggests describe the interactions between parti-
cles. As an example we can take a look at the Lagrangian density for a free
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fermion of mass m, the so-called Dirac Lagrangian1

LDirac = ψ̄(iγµ∂µ − m)ψ . (i.2)

where ∂µ is a shorter notation to indicate the partial derivative ∂/∂xµ. In (i.2)
γµ are the so-called Dirac matrices entering into our equations every time we
have to make manifest the intrinsic spin properties of the particles. In (i.2),
ψ̄ = ψ†γ0 is the adjoint field, describing an antiparticle of the fermion corre-
sponding to ψ. One example of a particle/antiparticle pair are the electron e−

and its antiparticle the positron e+. The first term in (i.2) is the kinetic term.
It contains the partial derivative of the field ψ. The second term is instead the
mass term. Starting from (i.2) it is possible to write down the equations of mo-
tion, analogous to the Euler-Lagrange equations of classical mechanics. Those
would describe then how a massive free fermion evolves.

i.4.2 Symmetries and interactions

In (i.2) we have shown the Lagrangian of a non interacting fermion. These
fermions can be identified with the leptons and the quarks of Section i.3. As
was said above, from the Lagrangian (i.2) we can derive the equations of mo-
tion and thus the dynamics of a free fermion. However we would also like to
discover how the particles interact. Therefore we need to add in (i.2) terms de-
scribing such interactions. To this goal we introduce the concept of symmetry
that will be the topic of this section.

Suppose that we want to describe the interactions of a particle φ with
a certain Lagrangian L(φ, ∂µφ). When we apply a transformation to the
field φ → φ′, the Lagrangian containing those fields will become in general
L(φ, ∂µφ) → L(φ′, ∂µφ′). We say that the Lagrangian is invariant under a
transformation if its form remains unaffected i.e. if L(φ′, ∂µφ′) = L(φ, ∂µφ).
In this case one can also say that the Lagrangian is symmetric under that par-
ticular transformation.

Symmetries are relevant because they provide us with a powerful tool to
describe our systems [7]. This is true both in QFT and in classical field theory.
Indeed the Noether theorem states that each symmetry for the Lagrangian
leads to a conservation law for a current/charge. This is extremely impor-
tant because such a conservation can be used to infer information about the
evolution of our particles. (Think for example of the conservation of energy)

Symmetries play a leading role also in deciding how to include the inter-
actions between particles in the Lagrangians. The reason is that symmetries

1It is costumery to use the word Lagrangian referring to the Lagrangian density, although
strictly speaking the two quantities are not the same thing. The Lagrangian is indeed the integral
over the spatial-coordinates of the Lagrangian density. In the following we will also drop this
distinction for brevity.

i
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can be manifest. Imagine to have particles interacting with each other. In
general it is hard to imagine how the interactions among them occur, and
therefore how to build up the Lagrangian. However looking at the outcomes
of such interactions it is often possible to recover some patterns (as in the
spectra of the hadrons in Section i.3). Those are usually consequences of the
symmetries of the Lagrangians. Once these are identified it is possible to
build up operators containing the chosen particle field content and respecting
such symmetries, i.e. invariant under the appropriate field transformations.

One example of Lagrangians with interactions is given by quantum electro-
dynamics (QED) [5]. We can start from the free fermion Lagrangian in (i.2).
Our aim is to add an interaction term such that for the new Lagrangian the
charge density vector current is conserved. Such a current can be represented
by the term2 −Qeψ̄γµψ where Qe is the charge of the particle described by
ψ. Noether’s theorem guarantees that such a current is conserved because the
Lagrangian (i.2) is symmetric under the global transformation for the fields

ψ → ψ′ = e−iQϑψ . (i.3)

Invariance under (i.3) allows us to change the phase of the field by the same
amount at each space-time point. This appears unnecessarily restrictive in a
local field theory. We shall therefore demand invariance with respect to the
more general local transformation

ψ → ψ′ = e−iQϑ(x)ψ . (i.4)

where now ϑ(x) is a real valued function of x. The invariance under (i.4)
can be achieved by adding a new field, the gauge boson Aµ representing the
photon, and two new terms in the free Lagrangian (i.2):

LQED = ψ̄(iγµ∂µ − eQγµ Aµ − m)ψ − 1

4
FµνFµν . (i.5)

One can verify that the field Aµ must transform as Aµ → A′
µ = Aµ + 1

e ∂µϑ(x)

so that (i.5) is invariant for ψ → ψ′ as in (i.4). The term − 1
4 FµνFµν has been

included to provide a kinetic term for the new field Aµ. Fµν is defined as

Fµν = ∂µ Aν − ∂ν Aµ . (i.6)

This term is also symmetric and contains only the Aµ field.
The interaction term −eQψ̄γµ Aµψ of (i.5) is composed by two different

elements. One is the coefficient Qe called coupling. The other is the part con-
taining the fields and is called operator. This new term −eQψ̄γµ Aµψ will affect

2It can be shown that ψ̄γµψ correctly behaves as a vector under Lorentz transformations. see
e.g. [4].
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the equation of motions of the particle ψ. The operator part describes how this
modification occurs, while the coupling determines how strong the change is,
namely how strong is the electromagnetic interaction.

i.4.3 Probability amplitudes, perturbation theory and Feyn-
man diagrams

We have seen that the Lagrangians provide us with a set of field operators
and couplings, but we must still work out their experimental consequences.
First of all we must point out which are the quantities we aim at calculating.
In a quantum-mechanical system the probability amplitude for a specific
process to occur is the one important prediction we need. Once this is found,
we can derive our physical observables as e.g. scattering cross sections3,
decay rates and so on. We are thus trying to calculate expectation values of
specific operators given by our Lagrangians over particle states.

We must now address the question of how to compute such probability
amplitudes from the fundamental theory. Unfortunately it is usually not
possible to solve explicitly the equations of motion for interacting theories
like (i.5). Therefore we need to find approximate solutions. If the coupling is
small enough, for example smaller than 1, it can be treated as a perturbative
parameter. The approximate solutions can then be obtained treating the
interacting terms as perturbations added to the free particle solution.

We will not attempt to describe in detail how to calculate the probability
amplitudes. For our purposes it is enough to know that there exists a rela-
tion, developed by Feynman, between contributions to the expansions and di-
agrams representing the particle processes [4]. Such a correspondence is very
useful not only to perform the calculations, but also to identify and visualize
quite easily the different contributions.

Let us show a few examples of Feynman diagrams for QED described by
the Lagrangian in (i.5). We remark that a field is represented in our diagrams
by a line: a straight line for a lepton or a quark ψ, while we use a wiggly line
for the photon Aµ. An interaction is a vertex point where ψ and Aµ lines meet.
(i.5) tells us that whenever such an interaction occurs a coupling must arise
and therefore we know that a diagram like the one in Figure i.2 (1) will be of
order eQ.

The ψ lines in Figure i.2 contain arrows as well. They help in reading how
the process happens. E.g. reading the diagram from left to right we can say

3The scattering cross section is a quantity reflecting the probability that a given scattering
reaction will occur. It can be interpreted as the effective area that a target particle shows to the
incoming one.

i
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(1)

≈ Qe

(2)

≈ (Qe)2

Figure i.2: Two Feynman diagrams for QED. The wiggly lines represent photons, while
the straight lines are fermions (leptons or quarks). The diagram on the left contains
only one vertex therefore it is of order Qe. The one on the right instead contains two
vertices, thus it is of higher order (Qe)2. The second diagram contains also an internal
line: the propagator of a photon.

that a particle ψ is incoming, meets the photon and continues its course. But
it is also possible to read the diagram from right to left. In this case we would
have an antiparticle ψ̄ incoming, interacting and going out. Or also it might
as well represent a photon creating a particle antiparticle state.

Notice that where there is a vertex we must make sure that the conservation
rules are satisfied. E.g. the vectorial sum of the momenta of all the outgoing
and incoming particles must be zero.

We can also encounter diagrams with internal lines as the one in Fig-
ure i.2(2). Such internal lines are called propagators and they represent the
propagation of free particles between two points in space-time. Their mathe-
matical expressions can be obtained from the Lagrangian without interactions.
For instance for the fermions this would be the Green function of the Dirac op-
erator in (i.2)

i(∂µγµ − m)SF(x − y) = iδ4(x − y) , (i.7)

where SF(x − y) is the Fourier transform of the propagator. (i.7) can be solved
by Fourier transforming both sides of the equation [4]. The solution reads

SF(x − y) =
∫

d4 p

(2π)4
S̃F(p)e−ip(x−y) =

∫
d4 p

(2π)4

i(pµγµ + m)

p2 − m2
e−ip(x−y) (i.8)

where S̃F(p) is the propagator.
A similar procedure can be applied to the photons, but then the operators

to be used are in the last term of (i.5).
We can draw many different diagrams, each containing more and more

lines and vertices. Perturbation theory lets us order them and determine
which are the largest contributions.

In QED the perturbative parameter is the coupling, therefore it is enough to
count how many vertices appear in each diagram to organize the expansions.
For other theories the expansion might be organized in terms of different pa-
rameters. This is indeed the case of many effective field theories.
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i.5 Effective field theories

The basic premise of all the effective theories is that dynamics at low-energies
(or large distances) do not depend on the details of the dynamics at high-
energies (or short distances) [6, 8, 9]. For example, if we want to study the
motion of a macroscopic object, a ball, we will not care at all about the internal
dynamics of the molecules, atoms, nuclei or quarks. These will not macro-
scopically produce any significant modification. The reason is that the macro-
scopic object lives at scales (meters) widely separated from e.g. the quarks’
ones (≈ 10−15 meters).

When we say low energy physics we mean those processes that happen at
a energy smaller than a certain scale Λ. The value of such a scale depends
on the particular system we study. Low-energy physics can be described
using an effective Lagrangian that contains only a few degrees of freedom,
ignoring additional degrees of freedom present at higher energies. This is
clearly an approximation to the problem, which can always be improved
adding corrections induced by the neglected energy scales. Eventually we
will need to check that a more complete description including all the degrees
of freedom (both heavy or light) gives the same outcomes as the effective
theory, at least approximately.

So let us show how an effective field theory is built up. First remember
that since we are talking about relativistic microscopic particles we are bound
to use QFT. We must find a good set of variables to describe the dynamics of
the system under study, which means we must select the relevant degrees of
freedom. Thus we select the fields we want to include in our description and
we build up the Lagrangian starting from them. As explained in Section i.4.2
to do this we find out the symmetries of the system and write down all the
operators invariant under those symmetries. The resulting Lagrangian is a
sum of operators Oi [8]

L = ∑
i

ciOi . (i.9)

As remarked at the end of Section i.4.2 the operators Oi are built up of the
fields and their derivatives. In (i.9) the constants ci are couplings. They deter-
mine how important the operator they multiply is.

We are already facing a problem in (i.9). In principle there is no limit to the
number of operators satisfying the symmetries we have required. But we can-
not calculate the probability amplitudes with an infinite number of operators.
However dimensional analysis offers us a way out. As was said in Section i.2,
the Lagrangian density has dimension 4 in power of masses thus each term
ciOi in the sum (i.9) must have dimension 4. As was explained in Section i.4.3
this means that if the dimension of the operator Oi is di then the coupling ci

i
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must have dimension −di + 4.
There is another striking feature in (i.9) that we have not observed yet. The

operators Oi contain only the light degrees of freedom, the light fields. On the
other hand, as was mentioned at the beginning of this section, this Lagrangian
must be equivalent to a complete one where also the heavy degrees of freedom
are included. The information from these heavy degrees of freedom can only
be encoded then in the ci which therefore must somehow depend on the high
energy scales, so on Λ.

This last consideration, together with the dimensional analysis done be-
fore, leads us to assume that the ci-couplings scale as

ci ≈
1

Λdi−4
. (i.10)

This assumption imposes an ordering in the operators of (i.9). If Oi has a large
dimension di (di > 4) the corresponding coupling ci is small. This means
that the dynamics predicted by that term of the Lagrangian are suppressed
and therefore can be neglected at a first approximation. The operators of (i.9)
are thus ordered according to their dimensions. The larger the dimension
of Oi the less important the corresponding term of L is. As a consequence
also the observables calculated in the effective field theory framework will be
ordered in an expansion of terms of increasing importance. In Section i.6.3 we
will explain how this expansion for the observables works and what are the
quantities that determine the sizes of the various orders in the theory.

Beware that (i.10) is an assumption and it is anyway not enough to guar-
antee that the resulting expansions are convergent and ordered in terms of
increasing importance. It is our task to check whether it is the case. This is in-
deed an important test for any effective field theory. Paper I will deal precisely
with such a check in a very successful effective field theory: Chiral Perturba-
tion Theory (ChPT) [10, 11]. This theory will be the subject of the rest of the
thesis.

We stress also that while the form of the operators Oi in (i.9) can be inferred
by the symmetries and the field content, we do not have any information on
the couplings ci. We need phenomenology to infer their values. This is also
another limit of the effective field theories. Paper II will explore this problem
in the case of ChPT.

i.6 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) [10, 11] is the effective field theory of the
strong interactions at low energy. In this section we first focus on QCD and on
the need of an effective field theory approach [7, 8, 12, 13]. We show then the
properties used to build up ChPT.
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i.6.1 QCD and chiral symmetry

In Section i.4.2 it was remarked how important the Lagrangian is in our stud-
ies. In some cases it can be extremely difficult to extract useful predictions
even when the Lagrangian is well-known. The usual way to calculate physi-
cal observables from the Lagrangian is through the use of perturbation theory.
This means that if the coupling that governs the interaction is smaller than
1 it is possible to order the different contributions to physical observables in
terms of increasing powers in the couplings and thus in decreasing order of
importance. To obtain a prediction it is therefore sufficient to add enough
contributions to this perturbative expansion.

In the case of QCD at low energy (i.e. E < 1 GeV ≡ Λ), it is unfortunately
not possible to achieve such a perturbative expansion. The coupling for the
strong interaction αs is small only for very energetic interactions, but for low-
energy processes αs can be very large. Indeed the value of αs turns out to
be dependent on the energies (technically it is called running coupling). αs is
very large around 300 MeV ≈ ΛQCD. One way to avoid this problem is to
develop an effective theory and recover an expansion as the one explained in
Section i.5. To build up such a theory let us first show the QCD Lagrangian4

L = ∑
i=u,d,s,c,b,t

ψ̄i(iγµ∂µ + gs Aµγµ − mi)ψi −
1

4
GµνGµν (i.11)

where Aµ is the gluon field and Gµν is the gluon field strength tensor. It is
defined as

Gµν = ∂µ Aν − ∂ν Aµ − gs f Aµ Aν , (i.12)

where the f -coefficient collects the structure constants of the group
SU(3)colour. Keep in mind that we have dropped colour indices in (i.11)
and in (i.12). As you can see from (i.12) Gµν contains only gluon fields and it
is the operator for the gluon kinetic energy and its self-interactions. In (i.11)
g2

s /(4π) = αs. The field ψi refers to a quark of type (flavour) i and of mass mi.
For completeness we should also add a term as θGµνGαβǫµναβ to (i.11), which
is the so called θ-term. The numerical value of the coupling θ is very small
(θ < 10−10). A lot of interesting physics arises from such a term. However we
will not consider its effects in here, since it is beyond the scope of this thesis.
For more detailed explanations we recommend [7, 11].

The QCD Lagrangian in (i.11) has a very special feature. To make it evident

4(i.11) is achieved similarly to the QED Lagrangian in (i.5). This time L is required to be
invariant under local transformations in SU(3)colour. The reader can find the definition of the
group SU(n) in the text after (i.15).

i
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we must first define left-handed and right-handed fields starting from the ψi:

ψR =
1

2
(1 + γ5)ψ ψL =

1

2
(1 − γ5)ψ (i.13)

and thus ψ = ψL + ψR. The QCD Lagrangian rewritten in terms of these left-
and right-handed fields and after using some γ-matrix algebra reads

L = ∑
i=u,d,s,c,b,t

ψ̄iL(iγµ∂µ + gs Aµγµ)ψiL + ψ̄iR(iγµ∂µ + gs Aµγµ)ψiR

−miψ̄iLψiR − miψ̄iRψiL −
1

4
GµνGµν . (i.14)

The Lagrangian in (i.14) has most terms diagonal in the indices L, R, while the
mass terms are off diagonal. If we drop these mass terms the Lagrangian is
invariant under the following rotations in the flavour indices of the left- and
right-handed fields5:

ψiR → ψ′
iR = (gR)ijψjR gR ∈ SU(n f )R

ψiL → ψ′
iL = (gL)ijψjL gL ∈ SU(n f )L (i.15)

where SU(n) is the special unitary group defined as the group of n × n unitary
matrices with determinant 1. It has dimension n2 − 1. In (i.15) gR(L) are global
transformations, i.e. they do not depend on the space-time coordinates.

Of course the masses are not really zero, but for the less massive quarks
(u,d,s)6 this might be a good approximation. SU(n f )L(R) becomes then

SU(3)L(R) and the QCD Lagrangian acquires an approximate SU(3)L ×
SU(3)R = G global symmetry which is the so-called chiral symmetry. From
now on we restrict ourselves to these light quarks. We will see how to include
the heavy quarks in this description later on when we will deal with another
effective field theory: Heavy Quark Effective Theory.

Chiral symmetry should however be visible in the spectrum of the (light)
hadrons. If this symmetry were exactly realized hadrons with the same mass
and spin but opposite in parity should appear (see for an explanation e.g. [12]).
But this turns out not to be the case. One could point out that the symmetry is
not really realized because the masses of u, d, and s quarks are small but not
zero. On the other hand if this were the only source of the symmetry break-
ing there would still be pair of hadrons with the same spin and with similar

5In fact the Lagrangian is also invariant under transformations of U(1)V (ψ → ψ′ = eiϑψ) and
of U(1)A (ψ → ψ′ = eiϑγ5 ψ). The first leads to the conservation of the baryon number. The second
is only a symmetry of the classical Lagrangian but it is broken at the quantum level. Their effects
are beyond the scope of this thesis and therefore hereafter we drop them.

6It is actually an even better approximation for only u and d quarks. The chiral symmetry
group is then SU(2)L × SU(2)R and in this case we would talk about two-flavour ChPT.
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masses but opposite parity. I.e. the spectrum would at least approximately
show the existence of parity doublets. If one looks at the spectrum this is
clearly not the case: there are no obvious parity partners with a mass close
to e.g. the π mesons. The possible candidates are very far away in mass and
have in general very different properties.

Another mechanism to break the symmetry exists. This is called sponta-
neous symmetry breaking (SSB). We will not explain here the details of this pro-
cedure. We refer the reader to [7, 13] for further explanations. Here it suffices
to know that this corresponds to have a symmetry in the Lagrangian that is
not satisfied by the vacuum state. This is instead only symmetric under trans-
formations of a subgroup of the original symmetry. In the case of low energy
QCD the subgroup is7 H = SU(3)V . The notation used to summarize the
situation is

G = SU(3)L × SU(3)R −→ H = SU(3)V

The so-called Goldstone theorem dictates that this SSB gives rise to a certain
number n of massless particles known as Goldstone bosons. n is the number
of broken generators. In QCD we have 16 generators for the group SU(3)L ×
SU(3)R and 8 generators in the final group SU(3)V . The number of broken
generators is 16 − 8 = 8, so 8 Goldstone bosons should arise.

Since chiral symmetry for QCD is also explicitely broken, due to the pres-
ence of the small quark mass terms, it is possible to show that the Goldstone
bosons arising are not massless and are thus called pseudo-Goldstone bosons.
Their masses must however be rather small since they arise from the light
quark masses. They are then identified with the 8 lightest mesons reported in
Figure i.1.

We end this section with a remark. It is an assumption that the SSB mech-
anism for chiral symmetry takes place. Its correctness is confirmed by several
phenomenological observations [12,13] and a few theoretical indications. One
of them was cited above: the non-existence of parity doublets in the hadronic
spectrum.

i.6.2 Local chiral symmetry

Before entering into the construction of ChPT we need another ingredient:
the external fields formalism. This was introduced in [11] to simplify the calcu-
lations and to include interactions like the electromagnetic and some of the
weak ones. Furthermore it allows to perform calculations maintaining the
chiral symmetry throughout. This section is devoted to introduce these fields
that will be used in Section i.6.3 to build up the ChPT Lagrangian.

7Actually LQCD is only approximately symmetric under SU(3)V transformation. It would be
an exact symmetry if mu = md = ms.

i
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We consider again the Lagrangian for three-flavour QCD dropping the
mass terms and the gluon tensor field Gµν. But we incorporate now also a
few new fields called external fields (or sources)

Lmi=0 = ∑
i,j=u,d,s

ψ̄iL(iγµ∂µ + gs Aµγµ)ψiL + ψ̄iR(iγµ∂µ + gs Aµγµ)ψiR

−ψ̄iL(s − ip)ijψjR − ψ̄iR(s + ip)ijψjL + ψ̄iL(vµ − aµ)ijψjL + ψ̄iR(vµ + aµ)ijψjR .

(i.16)

In (i.16) there are four new fields s, p, vµ, aµ. These depend on the space-time
coordinates and are Hermitian 3× 3 matrices. As was stressed in Section i.6.1,
chiral symmetry for the massless QCD Lagrangian is a global symmetry, but
thanks to these new sources it is possible to promote8 it to a local symmetry for
the Lagrangian in (i.16). We assume the operator (gL, gR) ∈ SU(3)L × SU(3)R,
depending now on the space-time coordinates, to act on the fields as

ψL → gLψL ψR → gRψR (s + ip) → gR(s + ip)g†
L

lµ ≡ (vµ − aµ) → gLlµg†
L − i∂µgLg†

L rµ ≡ (vµ + aµ) → gRrµg†
R − i∂µgRg†

R .

(i.17)

By plugging the transformation rules (i.17) in (i.16) it is possible to show that
the Lagrangian (i.16) is invariant under local chiral transformations. This is
due to the particular transformations of the fields lµ and rµ.

Normally the external fields we have introduced are identified with spe-
cific quantities to include new interactions. For example if we identify the
field vµ with a photon field eQAµ where

Q =
1

3





2 0 0
0 −1 0
0 0 −1



 (i.18)

we can recover the electromagnetic interactions. Furthermore the field s pro-
vides us with a very elegant way to include also the quark masses. We can
indeed identify

s = M =





mu 0 0
0 md 0
0 0 ms



 . (i.19)

i.6.3 Chiral Perturbation Theory formalism

We are now ready to build up the effective field theory for QCD at low energy.
We do it step by step.

8Note that there are no kinetic terms for the external fields, hence they are not gauge fields.
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First we must select the degrees of freedom. As was mentioned at the be-
ginning of Section i.6.1, in the low-energy domain a thorough analysis of the
QCD dynamics in terms of quarks and gluons is a highly non perturbative
problem. A description in terms of the hadronic states seems more adequate.
We have seen that there are 8 pseudo-Goldstone bosons arising from the SSB
of chiral symmetry identified with the mesons in the octet of Figure i.1. No-
tice that there is a mass gap separating these pseudoscalars from the rest of the
hadronic spectrum, the next particle in mass, the ρ meson, being away from
the octet. This allows us to build an effective field theory containing only the
Goldstone bosons as degrees of freedom and basically forgetting about the
quarks and gluons. The fields representing the mesons of the octet must be
organized in a convenient way. Group theory helps us in this respect. Keep in
mind that the SSB pattern is

G = SU(3)L × SU(3)R −→ H = SU(3)V .

It is possible to show that there is a one to one correspondence between the
Goldstone bosons and the elements of the quotient G/H [12]. This is defined
as the set of all the left cosets {gH|g ∈ G}. The correspondence is due to the
fact that the space G/H is of dimension nG − nH = 8. One then needs as many
coordinates to label the elements of G/H as there are Goldstone bosons. Thus
we can identify the fields φi(x) representing the Goldstone bosons with the
coordinates of G/H. The fields are seen as a mapping between the x space-
time and G/H.

We make use of this correspondence to find a convenient way to collect our
Goldstone fields. To show how we need a bit of group algebra. If we pick an
element g = (gL, gR) ∈ G we can uniquely characterize the corresponding left

coset gH through the matrix U = gRg†
L ∈ SU(3). This corresponds to pick the

representative of each coset such that the identity transforms the left sector.
Indeed for any element (gLh, gRh) in the coset gH we have

(gLh, gRh) = (gLh, gRg†
LgLh) = (1, U)(gL, gL)h . (i.20)

Since (gL, gL)h also belongs to H it follows that gH = (1, U)H.
Thanks to the correspondence between Goldstone bosons and the left

cosets, U is a suitable candidate to collect the Goldstone fields. How does
the matrix U transform under g′ = (g′L, g′R) ∈ G? We need to show what
happens to the coset represented by U

g′gH = (g′L, g′R)(1, U)H = (g′L, g′RU)H = (1, g′RUg′†L )(g′†L , g′†L )H . (i.21)

So when we move from the coset gH to g′gH, U must transform as

U → g′RUg′†L . (i.22)

i
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Remember that we are considering local transformations, which means that
gL, gR and U depend all on x.

Summarizing, we have discovered that the SU(3) matrix U is suitable to
collect the Goldstone bosons and we also know its transformation properties
(i.22) under chirality. Now we can decide in which way the Goldstone fields
are organized inside U. A customary choice is

U = exp

(

i
√

2

F0
φ

)

, (i.23)

where φ is a hermitian 3 × 3 matrix:

φ =






1√
2

π0 + 1√
6

η π+ K+

π− − 1√
2

π0 + 1√
6

η K0

K− K̄0 − 2√
6

η




 . (i.24)

Once we have selected the object we want to work with, i.e. the fields φ
organized in the matrix U in (i.23), we can focus on the symmetries of the
Lagrangian. If we want an effective field theory for the strong interactions
we need the Lagrangian to satisfy the same symmetries as QCD. Therefore
we will need Lorentz, parity, time-reversal invariance and also local chiral
symmetry (which now is also a symmetry for LQCD thanks to the external
fields). To write down all the possible operators we introduce the notation

〈A〉 = TrA (i.25)

where A is an operator and the trace is over the flavour indices. Now we
are ready to find the most general operators starting from our building block,
the U matrix of (i.23) [13]. As was mentioned in Section i.5, we order the
possible operators in the Lagrangian according to their dimensions. At order
p0 we cannot form operators with derivatives because they would introduce a
dimension (a derivative is equivalent to a momentum). Therefore we are left
with:

L0 = α0〈U†U〉 + α1detU + α∗1detU†. (i.26)

(i.26) is just a constant since U ∈ SU(3) thus U†U = 1 and detU = 1. A
constant clearly does not provide us with any information for the dynamics
of the system and thus it can be dropped. Now we can try to go to order
p. At this order though we cannot write down any invariant operator. If
we include a partial derivative ∂µ we would need two of them to preserve

Lorentz invariance, so the corresponding operator would be of order p2. As a
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consequence we cannot have operators at order p (or at any odd power of p).
We arrive then at order p2 and the Lagrangian reads

L2 =
F2

0

4
〈DµU†DµU + χU† + Uχ†〉 (i.27)

where the external fields introduced in Section i.6.2 are hidden in Dµ and in χ

DµU ≡ ∂µU − irµU + iUlµ χ ≡ 2B0(s + ip) = 2B0M . (i.28)

As you see in the Lagrangian of (i.27) we have also introduced two con-
stants in front of the operators: F0 and B0. These are two couplings and they
have the role in ChPT of the ci in (i.9). As was said earlier we need to in-
fer their values from experiments. In order to identify from which physical
observables we can find out their values, we must look at the operators they
multiply and check which are the processes they are responsible for. This will
partially be the subject of the next section.

In the next sections we will often talk about the expansion that ChPT leads
to. This is organized in powers of momenta p and mass. Let us try to explain
a bit better this point. When we want to calculate an observable we need
to take matrix elements of the operators in the Lagrangian. At sufficiently
low energies, such matrix elements are small since each derivative becomes a
factor of the momentum p. From the discussion in Section i.5 the coefficient of
an operator with d derivatives behaves as 1/Λd−4. Therefore the effect of a d
derivatives vertex is of order pd/Λd−4 and at an energy small compared to Λ,
the more derivatives are involved the smaller is the contribution to the matrix
element. In the following we will talk only about the momentum expansion,
but we should keep in mind that it is also in fact a mass expansion. This is
both a consequence of what was said in Section i.2, but also because we are
restricting ourselves to low-energies so the masses and the momenta of the
particles are of the same order of magnitude, less than 1 GeV. Notice that in
the Lagrangian (i.27) the external fields appear as well. The fields ℓµ and rµ

count as a derivative so as p, while s and p contribute as p2.

i.6.4 Decay constants and meson masses at lowest order
(O(p2))

In this section we aim at showing shortly the meaning of the coupling con-
stants arising in the leading order Lagrangian (i.27) of ChPT . In this way we
also show briefly how we calculate physical observables with this theory [8].

First of all we need to expand the exponential U (i.23) in the meson fields.
For our purposes it in enough to arrive at the second order

U = 1 + i

√
2

F0
φ − 1

F2
0

φ2 + . . . , (i.29)

i



20 Introduction

π+ W+

µ+

ν̄µ

Figure i.3: The Feynman diagram corresponding to the leptonic decay for the π+ me-
son. The field aµ in (i.30) can be identified with the W+ gauge boson responsible for
the weak decays. Notice that now we use a straight line to represent the whole meson
π+. This is due to the fact that our relevant degrees of freedom are not the quarks
any longer, but the mesons, as explained in Section i.5. The black dot is the interaction
vertex 〈aµ∂φµ〉 of ChPT, whose coupling is F0.

and a similar expansion holds for U†. We can substitute these expansions in
the Lagrangian (i.27). From the term DµU†DµU we obtain, among the other
terms,

1

2
〈∂µφ∂µφ〉 − i

√
2F0〈aµ∂φµ〉 + . . . . (i.30)

In (i.30) there are two terms. In the first one the kinetic terms for the pseu-
doscalar mesons in the octet are collected. In the second one instead we have
an interaction term of the mesons in φ with the external axial field aµ. This
interaction is the one responsible for the leptonic decays of the mesons. The
corresponding Feynman diagram for a decay of a π+ is depicted in Figure i.3.
The coupling of such an interaction is F0. If we want to calculate the prob-
ability amplitude of the π+ meson to decay we need to evaluate the matrix
element between the state |π+〉 and the vacuum 〈0| of the hadronic part of the
operator describing the weak interaction

〈0|i
√

2F0∂µπ+|π+〉 ≡ i
√

2Fπ pµ . (i.31)

From (i.31) we infer that the coupling F0 is nothing else than the physical
decay constant of the pion Fπ at the lowest order in the chiral expansion.
Therefore if we content us with lowest order predictions we have a way to
measure F0.

We can also discover something about the masses of our mesons. We focus
on the term χU† + Uχ† in (i.27) and substitute the expansion in (i.29). We
obtain the term

〈−2B0Mφ2〉 . . . . (i.32)
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Evaluating explicitely the traces in (i.32) it is possible to recognize the mass
terms for the mesons. We define m̂ = (mu + md)/2 and set mu = md = m̂9. At
leading order the several masses read

M2
π = 2B0m̂ , M2

K = B0(m̂ + ms) , M2
η =

2

3
B0(m̂ + 2ms) . (i.33)

From (i.33) we conclude that the meson masses depend linearly on the quark
masses. (i.33) leads to a relation between the squared meson masses known as
the Gell-Mann Okubo relation

3M2
η = 4M2

K − M2
π . (i.34)

If we substitute in (i.34) the experimental masses quoted in Figure i.1 we find
less than 10% discrepancy from experiments. Considered that (i.34) is valid
at the lowest order in the chiral expansion and up to O(mu − md) corrections
this is a very good result.

Notice that the relations in (i.33) can be used to estimate the values of the
quark masses. These are free parameters for QCD and thus unknown.

There is still one coupling in (i.27) whose meaning is not entirely clear.
It is B0. We have seen it appears as a coefficient of proportionality in (i.33).
However it can be also related to another quantity: the vacuum expecta-
tion value of the scalar bilinears ψ̄iψi. In (i.16) the operator ψ̄iψj is coupled
with sij to preserve chiral symmetry. The operator ψ̄iψi thus corresponds to

the term 2B0(U + U†)ii in L2. Substituting in the expansion of U we obtain
2B0(U + U†)ii = 4B0 + . . . where the ellipsis stands for higher order terms in
the expansions of U. If we evaluate the expectation value of this operator on
the vacuum state we find the result

〈0|ψ̄iψi|0〉 = −F2
0 B0 . (i.35)

Since 〈0|ψ̄iψi|0〉 cannot be invariant under separate right handed and left
handed SU(3) transformations, the quantity on the left side of (i.35) charac-
terizes the non invariance of the QCD vacuum state under chiral symmetry.
B0 is then a measure on how the vacuum breaks chiral symmetry. The masses
of the mesons have the form

M2 = mq × (−〈0|ψ̄iψi|0〉) ×
1

F2
0

(i.36)

i.e. they depend on both the explicit (through the quark mass mq) and sponta-
neous (through the vacuum condensate) breaking of chiral symmetry.

9Thus we also neglect the mixing term arising between the η and the π0.

i
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Notice that (i.36) tells us that in principle to measure B0 we need to have
full experimental control on the masses (both of the mesons and of the quarks).
But this is not possible, since we cannot vary the masses in experiments. As
will also pointed out in Section i.9 and in paper II this is the problem behind
all the determinations of the couplings related to the masses [14].

i.6.5 Power counting

In Section i.5 we have already indicated that the effective Lagrangian can be
written in terms of a sum of Lagrangians ordered by the dimensions of their
operators as in (i.9). In ChPT after the O(p2) Lagrangian we can decide to go
to higher order and build up the O(p4) one containing operators of dimen-
sion 4

L4 = L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈DµU†DνU〉
+L3〈DµU†DµUDνU†DνU〉 + L4〈DµU†DµU〉〈χ†U + χU†〉
+L5〈DµU†DµU(χ†U + U†χ)〉 + L6〈χ†U + χU†〉2

+L7〈χ†U − χU†〉2 + L8〈χ†Uχ†U + χU†χU†〉
−iL9〈FR

µνDµUDνU† + FL
µνDµU†DνU〉

+L10〈U†FR
µνUFLµν〉 , (i.37)

where the operator F
L(R)
µν contains only the external fields lµ (rµ).

Each of the operators in (i.27) and (i.37) can contain in principle as many
mesons as wanted. These arise from the expansions of the U matrix, as was
shown in Section i.6.4. As a consequence we can draw infinitely many Feyn-
man diagrams. We clearly cannot calculate contributions from an infinite set
of diagrams10. One might wonder whether with ChPT we can predict any
quantity at all.

Luckily also the Feynman diagrams, as the Lagrangians, can be ordered in
a systematic way according to the expected size of their contributions. This
is once again done through a power counting of the momenta in the different
parts of the diagram. Thus if we want to calculate an observable we first must
decide at which order in the momentum expansion we want to stop to get the
desired precision. Then we calculate as many diagrams as needed.

The procedure is illustrated in Figure i.4.

A tree level diagram (see Figure i.4(1)) with a vertex from L2 in (i.27) counts
as two powers of momenta since it always contains two derivatives or M2.

10Unless we manage to find some recursive formulas to resum the infinite series, but this is a
very difficult task and not yet accomplished.
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(1)

≈ p2

(2)

≈ 1/p2

(3)

∫

d4p ≈ p4

(4)

≈ (p2)2 (1/p2)2 p4 = p4

(5)

≈ (p2) (1/p2) p4 = p4

Figure i.4: In the upper part of the figure we list the power counting rules. While the
two diagrams below are loop diagrams [13]. More details about the rules and the loops
diagrams can be found in the text.

An internal line (Figure i.4 (2)) counts as 1/p2. This is because from (i.27)
the mathematical expression of the propagator is 1/(p2 − m2).

Finally there are the loop diagrams as (4) and (5) in Figure i.4. In those
diagrams appear internal lines in closed loops whose momenta are not
constrained by the conservation of momentum for each vertex. Therefore
when we encounter such kind of diagrams we must integrate over all the
possible internal momenta running in the loop. This integration counts as p4

and is shown by the counting rule in Figure i.4 (3). The two loop diagrams
(4) and (5) in Figure i.4 turn out to both count as p4. As long as p is small, the
momentum is a good perturbative parameter of our expansion and thus p2

diagrams give larger contributions than the p4 ones.

There is an issue that we have not addressed yet. We said before that when
we encounter a loop diagram we need to integrate all the momenta over all
the spacetime. This often leads to diagrams that give infinitely large contri-
butions. On the other hand the resulting physical observables must not be
infinite.

In ChPT and in general in QFT such divergencies are canceled with a
renormalization procedure. It basically consists of including in the theory other
sources of infinities such that they cancel the loop ones. Similar approaches
have been powerful and successful also in other quantum field theories as e.g.
QED where a similar problem arises. In ChPT the “counter” infinities are in-
troduced by redefining the couplings of the higher order Lagrangian L4 in the

i
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following way

Li = Lr
i (µ) − Γi

32π2
λ0 + · · · . (i.38)

In (i.38) λ0 contains the divergent part. Γi are constants chosen such that the
λ0 divergencies correctly cancel with the loop ones. Lr

i (µ) is the finite part of
the coupling Li and it will in general depend on a scale µ called renormalization
scale. This scale is introduced to make sure that the results are dimensionally
consistent, but it is an arbitrary scale. Eventually it is important to check that
the predictions for the physical observables are independent of µ.

Therefore to renormalize a loop diagram of order p4 we use a tree level
diagram with a vertex from L4 (i.37) which is also of order p4. It is important
that the two diagrams are of the same order, otherwise it is not possible to sum
them up and correctly cancel the divergencies.

All what was said so far is not only valid at the p4 order. In general to cal-
culate a physical observable at order p2n we must include the loop diagrams
with vertices from the Lagrangians L2n′ with n′ < n, and also tree level dia-
grams from L2n.

i.6.6 The main prediction of ChPT at O(p4): chiral logarithms

One might wonder how the results based on one loop calculations look like.
We notice first that the quantities predicted by ChPT are always dependent on
the squared momenta of the external mesons and the meson masses. Usually
the results are split in different contributions, each of them attributed to a set
of diagrams. The tree level Feynman diagrams usually have a polynomial
dependence on the momenta and masses.

From the loop diagrams arise also more complicated functions of the
masses and of the momenta that typically have a logarithmic form. Thus they
are usually called chiral logarithms. Let us show how they come out. As an
example we take the easiest loop function that one might encounter in doing
loop calculations

1

i

∫
d4k

(2π)4

1

k2 − M2
. (i.39)

where M is the mass of the particle in the loop. (i.39) is a loop integral where
the propagator 1/(k2 − M2) gets integrated over all the possible momenta k.
(i.39) enters in the evaluation of diagrams such as (5) in Figure i.4 or the one
in Figure i.5. We do not go into the details on how this integral is solved. The
procedure to arrive to the solution in (i.42) below is called regularization and
can be found in [15]. We just say that to compute (i.39), the integral is per-
formed in d = 4 − 2ǫ dimensions. In order to maintain correct dimensionality
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Figure i.5: An example of one-loop diagram contributing to the meson masses. The
vertex comes from L2 in (i.27).

while regularizing the integral we shall also modify the measure

∫
d4k

(2π)4
→ µ2ǫ

∫
ddk

(2π)d
, (i.40)

while µ is a arbitrary parameter used to recover the correct dimensions and
has dimension of a momentum. It is the same scale appearing in (i.38). So the
integral reads in d dimensions

A(M2) =
µ2ǫ

i

∫
ddk

(2π)d

1

k2 − M2
. (i.41)

The result turns out to be written in terms of an expansion in ǫ

A(M2) =
M2

16π2

[

λ0 − ln

(
M2

µ2

)]

+ O(ǫ) , (i.42)

where λ0 = 1/ǫ+ constants. λ0 of (i.42) is again the same appearing in (i.38).

We need the result when d = 4 i.e. when ǫ → 0. Thus the λ0 term in
(i.42) is divergent. The divergency is canceled thanks to the redefinition of the
couplings as shown in (i.38) of Section i.6.5. The logarithms instead remain
present in the final results of the physical observables. They also turn out to
be the largest contributions in each order (after the leading one).

To understand this we can consider, as an example, the diagram in Fig-
ure i.5 [9]. It contributes to the meson masses at one loop. The vertex is from

L2 and it contributes with a coefficient F−2
0 . The contribution from the loop

integral is instead A(M2) in (i.42). The O(p2) term is listed in (i.33) for the
different mesons. After the divergencies are canceled, the mass gets contribu-
tions of the size

O(p2) ≈ m2
0 , O(p4)loop ≈ m4

0

(4π)2F2
0

ln
m2

0

µ2
. (i.43)
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The tree-level diagram with vertices from L4 contributes to the mass as
Lr

i (µ)m4
0/F2

0 . As discussed in Section (i.5), the couplings scale in powers of

Λ so to be suppressed order by order. At O(p2) the coupling is F2
0 , therefore

we can assume Lr
i (µ) ≈ F2

0 /Λ2. So the size of the corresponding contribution
to the masses is

O(p4)tree diagram ≈ m4
0

Λ2
. (i.44)

We can compare the O(p4)loop with the O(p4)tree diagram. Since Λ ≈ 1 GeV
in ChPT and since F0 ≈ 90 MeV, we have 4πF0 ≈ Λ. At a first sight
O(p4)tree diagram ≈ O(p4)loop. However 2 . ln µ2/m2

0 . 4 choosing11

µ = Λ = 1 GeV and m0 . 0.4 GeV. Thus a term with a logarithm is somewhat
enhanced relative to the corresponding tree-level contributions. This means
that the terms containing chiral logarithms give us an indication of the size
of the higher order corrections and often correspond to the most important
part of the predictions in ChPT at higher orders. This is also the reason why,
in evaluating observables in ChPT, one first focuses on calculating the loop
diagrams.

Anyway keep in mind that if we want to predict an observable precisely
at the selected order the chiral logarithms alone are usually not enough. We
also need to know the contributions of the polynomials and the couplings they
contain. Moreover if one is willing to go to even higher orders e.g. O(p6) the
couplings of the L4 Lagrangian will also be multiplied by chiral logarithms.
Their determination is therefore an important task, but unfortunately a non
straightforward one.

In ChPT it is especially made difficult by their number. We have already
seen that in the leading order Lagrangian of (i.27) two unknown couplings
appear (F0 and B0). At O(p4) there are 10 more, the Li of (i.37). When we
go to even higher order O(p6), 90 extra couplings, denoted Ci, have been
found [16]. Inevitably, whenever a precise prediction is wanted, also a pre-
cise determination of such couplings is needed.

i.7 Hard pion Chiral Perturbation Theory

We have studied so far a theory suitable to describe interactions between
mesons at low energies, namely soft mesons. What happens if a hard meson
arises? As explained in Section i.6.5, the power counting of ChPT breaks down
in this limit. The momentum of the mesons would not be any longer a good
perturbative parameter and not even the ordering of the Lagrangians would
work properly. For example in this case operators containing 4 derivatives,
as the ones of L4 would not necessarily lead to smaller contributions than the

11This is the usual choice for µ in ChPT, but remember that µ is an arbitrary scale.
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ones with 2 derivatives of L2. The typical process affected by such an issue
is, for example, the decay of a heavy particle into one (or more) light hadrons.
In this case the outgoing mesons produced can acquire a large energy that
prevents the use of ChPT.

Nevertheless for some processes it is important to know the mass depen-
dence of the amplitudes, and thus the contributions of the chiral logarithms,
in the whole energy range. The reason will be shortly explained in Section i.9.
Keep in mind that a chiral logarithm has the form m2 log m2/µ2 with m the
mass of the light mesons in the loop, as seen in (i.42).

In such a framework performing loop calculations for hard mesons seems
to be unreasonable, but it turns out not to be the case. To understand this,
we first notice that the chiral logarithms are obtained from the loop integrals.
The part of the integral responsible for such logarithms is the infrared [10,17].
Namely where the integration variable k of (i.41) is small. At least one of
the particles inside of the loop is soft in that regime. This indicates that the
chiral logarithms are still calculable, even though the momenta of the external
mesons are large [18–20].

The problem then becomes whether the hard external mesons do affect the
results for the chiral logarithms through operators containing many deriva-
tives. Let us try to explain this point a bit better with an example. We consider
the loop diagram in Figure i.5. In standard ChPT the vertex of the diagram
contains an operator from the Lagrangian L2 so with two derivatives (or a
m2). For soft mesons the insertion of an operator with more derivatives would
lead to a diagram of higher order. For example if it were an operator of L4 the
loop diagram in Figure i.5 would be of order p6. If the external mesons are
soft (p is small) the higher order diagram is suppressed compared to the lead-
ing one. But if the external mesons are hard the higher order diagram is not
suppressed and it must be included in the calculation. These new diagrams
might spoil the dependence on the masses and lead to large terms with differ-
ent dependencies on the light meson masses. We are talking about e.g. terms
proportional to m which are larger than m2 log (m2/µ2).

In the work done so far it has not been the case [18–21]. Process by
process it has been proven that such diagrams are in fact proportional to
the ones containing only leading order operators up to small terms of order
m2 without logarithms. The coefficient of proportionality depends on the
hard quantities (heavy masses or large momenta squared). For this reason
ChPT is still enough to predict the light mass dependence: we can perform
loop calculations including only the leading order diagrams. However we
lose predictivity on the part containing the hard quantities. To achieve it
we would need all the diagrams, also those with operators containing more
derivatives.

i
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This extension of ChPT is called hard pion ChPT and it is at a preliminary
stage. There is yet no concrete proof that it is applicable in all the processes,
but there are arguments that suggest so. So far it has only been applied up to
order O(m2 log (m2/µ2)). Paper III and IV develop this extension for a few
processes. Some of them also involve heavy mesons which are not in the octet
of Figure i.1. Therefore a modification of ChPT is needed to include them in
the study. The next two sections will focus exactly on such modification called
Heavy Meson ChPT.

i.8 Heavy Quark Effective Theory

Chiral Perturbation theory is not the only effective field theory treated in the
papers that form this thesis. Paper III and IV deal indirectly also with another
effective field theory called Heavy Quark Effective theory (HQET). It can be
used, as its name suggests, to describe the role of heavy quarks (namely the
c and b quarks in Table i.1) in QCD [22]. The theory is relevant for our aims
when it is combined with ChPT to study the dynamics of the heavy mesons
and their interactions with the light pseudoscalar mesons in the octet. This
combination is called Heavy Meson ChPT (HMChPT) [23] and it will be the
subject of the next section. Here we describe very briefly and schematically the
symmetries leading to HQET, that are also at the basis of HMChPT [23–25].

We have seen that the light u, d and s quarks have masses small compared
to the non perturbative strong dynamics scale Λ. Consequently it is a good ap-
proximation to take the limit where these masses disappear and use the arising
chiral symmetry to predict their dynamics. Analogously the QCD Lagrangian
shows other symmetries when the masses of the c and b quarks (which are
larger then Λ) are instead sent to infinity. In this limit QCD acquires a spin-
flavour symmetry which has important applications for mesons containing a
single heavy quark.

We consider a Qq̄ meson where Q denotes the heavy quark, and q̄ the light
antiquark. This is a bound system whose binding arises exactly from the non-
perturbative strong dynamics. The typical size of a momentum transfer be-
tween Q and q̄ is then of order Λ. Indicating with v the four-velocity of the
heavy quark Q, the variation ∆v due to such momentum transfer will be of or-
der Λ/mQ. Being mQ ≫ Λ, ∆v is small, so the velocity of Q does not change
with time. We can think that Q behaves like a static source of “strong force”
and the relevant meson dynamics reduces to that of the light degrees of free-
dom affected by such a source. This means that as long as mQ is large, it does
not matter which is exactly its value and thus which particular Q we are de-
scribing: the dynamics are unchanged under the exchange of heavy flavour.
This is in practice heavy flavour symmetry.

There is also another symmetry that can be made manifest in the heavy
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Meson Mass Quark Content JP

D+ 1.869 GeV cd̄ 0−

D∗+ 2.010 GeV cd̄ 1−

D0 1.864 GeV cū 0−

D∗0 2.006 GeV cū 1−

D+
s 1.968 GeV cs̄ 0−

D∗+
s 2.112 GeV cs̄ 1−

Table i.2: The lowest-mass D mesons. The masses are all quite similar and close to 2
GeV. The differences in the spin doublets can be explained adding 1/mQ corrections.
Notice also the presence of the SU(3)V symmetry pattern discussed in Section i.6.1:
exchanging the light antiquark does not produce large differences in masses. A similar
pattern is found also for B mesons (composed by a b quark and a light quark), showing
the correctness of heavy flavour symmetry. They have however a larger mass, around
5 GeV.

quark limit. The QCD Lagrangian in (i.11) shows that the strong interactions
occur due to the interactions with gluons, indicated by the fields Aµ. The

operators responsible for that have the form ψ̄iγ0 A0ψi + ψ̄i~γ · ~Aψi. Such term
is similar to the QED one appearing in (i.5). As in QED the second term is
related to the (chromo-)magnetic moment [4], whose dependence on the mass
is 1/mQ. Therefore it can be neglected for heavy quarks [7]. The first term is
instead spin independent. To see it, one can use the Dirac-representation of
the γ matrices and notice that γ0 does not mix the different spin-components
of the ψi-spinor. So it corresponds to a spin conserved interaction leading to
heavy spin symmetry.

These symmetries are approximately valid and there is no evidence for a
spontaneous breaking as for chiral symmetry. Indeed such symmetries can be
found in the spectra of the hadrons. For example the D mesons, composed by
a c quark and a light antiquark, are organized in doublets of spin 0 and 1 with
approximately the same mass as shown in Table i.2

Notice that identifying the symmetries we also discover the good quan-
tum numbers to describe a heavy-light system such as the D or the B mesons.
These are the four velocity v and the spin of the heavy quark (or of the light
degrees of freedom) SQ (sℓ).

Also in HQET we can introduce a perturbative approach. The expansion
parameter in this case is 1/mQ. Such corrections can be systematically in-
cluded as it was done for ChPT. Notice that we expect such an expansion to
work better for hadrons containing a b quark than for those containing a c
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quark, since 1/mb < 1/mc.

We do not give further details about HQET since it is of little relevance
for the results presented in the papers. In the next section we focus on the
combination of HQET with ChPT.

i.8.1 Heavy Meson Chiral Perturbation Theory

Here we very shortly sketch the theory used to study heavy-light mesons and
their interactions with the pseudoscalar mesons. This has been extensively
used in paper III and IV. However since the main topic of those papers was
hard pion ChPT we try to give in this section only a few ideas on how HM-
ChPT is built up. This description is far from being complete. We recommend
the interested reader to check for details the book [22].

As was done with ChPT, here we need to identify the degrees of free-
dom organized in a convenient way, the symmetries used to build up the
Lagrangians and look for a well defined power counting.

We need to deal with two different kinds of mesons: the light pseudoscalar
mesons, that can be nicely organized in the matrix U of (i.23), and the heavy
mesons D and B. As illustrated in Table i.2 they appear in the spectrum in
spin doublets and flavour triplets. It is therefore convenient to collect them
in a unique object Ha, where a is a flavour index. Ha must contain the two

mesons in the doublets: the spin-1 meson field P
∗µ
a , which is a vector under

Lorentz transformations, and the spin-0 Pa, which is instead a pseudoscalar.

Keep in mind that Ha, P
∗µ
a and Pa travel with constant four-velocity vµ. It

turns out that a convenient way to build Ha is

Ha =
1 + vµγµ

2

[

P
∗µ
a γµ − Paγ5

]

. (i.45)

For brevity we do not explain why this particular form is chosen. The inter-
ested reader can look for further explanation [22]. Notice that Ha is a 4 × 4
matrix in spin indices, the gamma matrix indices. It is also possible to show
that Ha transforms linearly under the heavy quark symmetries.

Since our aim is to combine together HQET and ChPT we need a La-
grangian that satisfies all the symmetries for both theories. To this aim we
need to pick a convenient transformation for H under chiral symmetry. This
is simplified by choosing a different way to organize the pseudoscalar mesons

as well, i.e. from now on we use the matrix u ≡
√

U = ei/(
√

2F0)φ. Notice that u
has a more complicated transformation rule under chiral symmetry than (i.22),
because the square root is a non linear operation. Despite that it turns out that
it is more convenient to use this field rather than U to collect the Goldstone
bosons.
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Starting from uab and Ha we must identify all the operators invariant un-
der heavy quark symmetries and chiral symmetry and then write down the
Lagrangian. This reads

Lheavy = −i TrHav · Dab Hb + g TrHau
µ
abHbγµγ5, (i.46)

where g is the coupling of the heavy meson doublet to the mesons in the octet
and the traces, Tr, are over spin indices, the γ-matrix indices. The indices a, b
run over the light quark flavours. In (i.46) we defined the derivatives

D
µ
abHb = δab∂µHb + Γ

µ
ab Hb,

Γ
µ
ab =

1

2

[

u† (∂µ − irµ) u + u (∂µ − ilµ) u†
]

ab
,

u
µ
ab = i

[

u†(∂µ − irµ)u − u(∂µ − ilµ)u†
]

ab
, (i.47)

The Lagrangian (i.46) satisfies chiral symmetry and heavy quark spin flavour
symmetry.

Let us take a look now at the interactions included in (i.46). They can be
obtained by substituting in Γµ and in uµ the expansions of u and u† in terms
of φ

u = 1 +
i√
2F0

φ − 1

2F2
0

φ2 . . . . (i.48)

Substituting the expression for Ha in (i.45) and doing some γ-matrix algebra
one can study the field content of the interaction terms. So one achieves that
the term in Lheavy (i.46) of the form TrHav · ΓabHb contains interactions of the
type PPMM or P∗P∗MM where M indicates the light mesons and P the heavy

ones. Instead the term TrHau
µ
abHbγµγ5 contains interactions like PP∗M or

P∗P∗M. This second term has a coupling g which is the same, at leading order
in 1/mQ, for the B and the D mesons. This is due to heavy flavour symmetry.

What about the power counting? There are two scales in the game. One is
the scale of ChPT Λ, and the other is dictated by HQET mQ. They both must
be considered. Therefore there are two types of higher order corrections that
can be included: the ones dictated by ChPT and the 1/mQ of HQET.

In paper III and IV HMChPT has been used to calculate the amplitudes for
semileptonic decays of B and D mesons. A semileptonic decay is a decay of a
hadron into other hadrons and leptons (see Figure i.6). The weak interaction
is responsible for these processes. For example the decay B+ → π0µ+ν̄µ is
a semileptonic decay. The problem related to these decays is that the initial
meson is much heavier than the outgoing light meson, allowing this last par-
ticle to acquire a large energy. As we have also discussed in Sections i.6.5,
i.6.6 and i.7 the use of the perturbative expansion of ChPT is valid as long
as the momenta of the mesons in the octet are small compared to the scale

i
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B
+

π
0

W
+

e
+

ν̄e

Figure i.6: The Feynman diagram corresponding to the semileptonic decay for the B+

meson into a π0 and leptons. Similar diagrams can be drawn with different outgoing
hadrons (e.g. Kaons, η meson or D meson) and with different initial hadron (e.g. D
mesons).

Λ ≈ 1 GeV. In the processes involving interactions between light pseudoscalar
mesons and heavy-light systems there are often regions of energy where hard
pseudoscalar mesons appear. In such regions we fail at predicting the energy
behaviour of the physical observables. But the light-mass dependence is still
achievable with the use of hard pion ChPT as it is shown in paper III and IV.

i.9 Interplay between ChPT and Lattice QCD

At the beginning of Section i.6.1 we remarked that although the Lagrangian of
QCD is well known, calculating its predictions is not easy at low energies be-
cause of the non applicability of perturbation theory. To overcome this prob-
lem one can proceed in two ways. One of them is the effective field theory
approach, described in the previous sections. The other one is through Lattice
QCD. This basically consists in calculating observables from first principles.
With the use of the path integral formulation of QCD it is possible to evaluate
numerically functional integrals on a discretized spacetime lattice [26].

Even though this approach is promising, the properties of low-mass par-
ticles (as the pions) have so far been difficult to calculate. The reason is that
light particles can propagate over large distances, but using large lattice vol-
umes in simulations is computer demanding. Therefore the lattice sizes, with
the available computer resources, limit the precision for calculations with light
mesons.

As a consequence most simulations have been performed with heavier
mesons than the physical ones. Presently one typically requires that mπ & 200
MeV (but there are also lattice collaborations that reach smaller values e.g.
mπ ≈ 150 MeV). The results then need to be extrapolated down to the physi-
cal masses, namely at mπ ≈ 139 MeV.

ChPT provides exactly the formulae needed to perform such extrapola-
tions. Indeed, as was also noted in Section i.6.5, the main results are the chiral
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logarithms m2
π log

(
m2

π/µ2
)
, which rule the dependence on the meson masses

of the physical observables.
ChPT, being a low energy effective theory, can be applied only in the region

of energy where the light mesons have a low momentum. This also means
that the lattice results for those processes where the external hadrons have a
large energy cannot be extrapolated at the physical masses. This is the case
of the semileptonic decays of B and D mesons. However as was explained in
Section i.7 the calculation of the chiral logarithms is still possible with the use
of hard pion ChPT. In paper III and IV we calculated such quantities in the
energy range where the momenta of the outgoing light mesons are large. Our
results can be used on the lattice to extrapolate to lower masses even in the
limit of hard external mesons, where standard ChPT is not applicable.

On one side ChPT helps in solving problems of Lattice QCD, but also the
viceversa turns out to be true. Lattice QCD can indeed play a leading role in
the determination of the couplings of ChPT [27].

This can be understood if you think of the quantities on which ChPT de-
pends: external momenta and meson masses. The couplings can either appear
multiplied by the momenta (Type A) or show up multiplied by the masses
(Type B) [14, 28]. This distinction can be inferred by the operators the cou-
plings multiply in the Lagrangian. As far as regards Type A couplings, ex-
periments can help us since it is possible to study the dependence on energy
of the physical observables. But for the Type B couplings this is not true: it
is not possible to vary the masses in experiment, since they are fixed physical
parameters. Lattice calculations instead let us study the mass dependencies
directly from QCD. By fitting their results to the ChPT formulae we can deter-
mine the values of the couplings. Paper II, where a phenomenological global
fit of the couplings is presented, lacks of such kind of information.

i.10 Introduction to papers

Before entering into the short description of the work presented in paper I and
II we summarize the notation we use. The observables are written in ChPT as
sums of different contributions organized in the chiral expansion:

O = Op2 + Op4 + Op6 + . . . . (i.49)

The calculations so far have been done up to order O(p6) in ChPT [13]. L2

is the Lagrangian at O(p2) in (i.27). Its couplings appear in the expansions
(i.49) at order O(p2) through tree-level diagrams, at order O(p4) in one-loop
diagrams and at order O(p6) in two-loop diagrams. L4 is the Lagrangian at
O(p4) in (i.37). The unknown couplings appearing there are the Li. They
contribute at order O(p4) in tree level diagrams and at order O(p6) in one-
loop diagrams. Finally there is L6, the Lagrangian at O(p6). The unknown

i



34 Introduction

couplings appearing there are the Ci. They contribute at order O(p6) through
tree level diagrams.

i.10.1 Paper I

As was also explained in Section i.5, deciding whether the effective field the-
ory expansions of the physical observables converge or not is an important
task. In this paper we study such convergence in the case of ChPT. At order
p6 the study is very difficult due to the large number of unknown couplings
appearing both in L4 and, even worse, in L6. Therefore we develop a strategy
to get rid of them.

As was noted in Section i.6.6 the physical observables in ChPT can be split
in different parts. The polynomial one, coming from the tree level diagrams,
is the only one where the Ci appear. Therefore the dependence of the physical
observables on the L6 couplings is not too complicated. It is then possible
to look for special combinations of observables such that the Ci cancel out.
Studying these combinations we isolate the known p2, p4 and p6 contributions
in a consistent way and test the convergence of the chiral expansion.

The results show that three flavour ChPT works reasonably well, namely
the O(p4) contribution is around 30% of the experimental result and the O(p6)
is around 10%. However we also find a few trouble cases that show violations
from the expected convergence. Notice that, although two flavour ChPT is
expected to converge better, it does not show a net improvement compared to
the three flavour case for the special combinations.

i.10.2 Paper II

Also this paper attacks another problematic feature of ChPT: the unknown
couplings. Here we perform a fit of the Li couplings of L4 in (i.37) using
O(p6) predictions. As input we include all the available phenomenological
information on several processes.

In the O(p6) calculations a large number of L6 couplings contribute. Since
they are so many, we do not have enough constraints to fit those as well. We
are instead forced to rely on estimates of different nature. Basically we con-
sider three different treatments. The first one is resonance saturation, which
is also the most used estimate. In this model the Ci are believed to receive
major contributions from resonances at higher energies. Therefore a matching
between the Lagrangian L6 of ChPT and a Lagrangian describing the reso-
nances is performed. Through this matching we can estimate the values of the
O(p6) couplings. The second one relies on an estimate from a QCD model.
In the third one we allow the L6 couplings to take random values. This last
study shows that many different sets of O(p6) couplings can be chosen and
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those lead to quite different good fits of the Li.
The fits found show significant changes compared to the old ones of [29].

Such changes are mostly due to the different results obtained from new mea-
surements of several observables. Furthermore it is very hard to constrain the
Type B couplings with the available phenomenological information.

Among all the fits of the Li that can be produced, we choose one whose
predictions, unfortunately, still show a few trouble cases. On the other hand
it fits well most of the phenomenological data available. It is clear that further
studies are still needed to cope with these problems.

i.10.3 Paper III

Here we deal with hard pion ChPT applied to semileptonic decays of the B
and D mesons into pions. We use two flavour hard pion ChPT to calculate the
chiral logarithms when the hadronic products of the decays, (i.e. the pions)
have an energy E > 1 GeV.

We show why such an approach can be used in this case, proving that
matrix elements of operators with many derivatives are proportional up to
higher orders, to the leading ones. We also clarify the arguments at the basis
of the extension of ChPT.

Finally, we perform the calculation in the framework of a relativistic the-
ory as well. The motivation is that the approximation of constant velocity
for the heavy mesons, underlying HMChPT, might lead to incorrect chiral
logarithms when hard pions appear. In fact in this last case we should not
use non-relativistic propagators as those implied by HMChPT, but relativis-
tic ones. This modification affects the loop integrals and in principle it can
change the chiral logarithms. To check that this is not the case, as our argu-
ments predict, we calculate also in a relativistic formalism. As expected, this
second calculation gives the same results as the HMChPT one.

As explained in Section i.9, hard pion ChPT can be very useful to perform
chiral extrapolations of the lattice QCD data points in those energy ranges
where standard ChPT does not hold.

i.10.4 Paper IV

This paper extends the use of hard pion ChPT in the three flavour case. So we
can calculate the chiral logarithms for processes involving different hadronic
final states as D → K or D → η. This lets us compare our predictions with
experiments, showing that the contributions from the chiral logarithms are
sizeable and also go in the correct direction.

In this paper we also apply hard pion ChPT at one loop for both the vector
and the scalar formfactor of the pion. We show that the correct chiral loga-
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rithms are predicted even when including two loop diagrams. This is a nice
test of the correctness of our assumptions in a more standard calculation.

We dedicate a section to B → D semileptonic decays, which have been
previously studied in the limit where the velocity of the final D hadron is the
same of the incoming B meson (zero-recoil limit). With the use of hard pion
ChPT we could justify the use of these formulae even away from this limit.
All these calculations are done both in the relativistic formalism of paper III
and in HMChPT. Again we find agreement between the results in the two
frameworks.

i.11 List of contributions

My supervisor Johan Bijnens proposed the basic ideas for all the four projects
included in this thesis. The actual calculations/programming have been done
by the two of us mostly independently and sometimes using different strate-
gies. Most of the times I first produced the results and then my supervisor
compared with his own, but there are also cases where the ordering was in-
verted. Hereafter I list the contributions I gave for the four papers:

Paper I I worked on finding the relations first and independently from my
supervisor. The paper was written by my supervisor. However a few
results were partially reported earlier in the proceedings [30,31], written
by me.

Paper II In a preliminary phase of this project a large amount of time was
spent in converting the programs used to calculate the ChPT amplitudes
from FORTRAN to C++. The actual translation into C++ code was done
mainly by my supervisor but I helped in comparing the results of all
these C++ programs with the old results in FORTRAN.

Besides that, the actual project consisted primarily in writing down a
new C++ program to perform the fits. This was done independently by
the two of us. This project took a long time before being completed, so
first results came pretty much from both sides. I wrote the bulk of the pa-
per that was afterwards revised by my supervisor. Also for this project,
some preliminary results were reported earlier in the proceedings [31],
written by me.

Paper III I calculated the final results using HMChPT. The calculation in the
relativistic framework was first done by my supervisor and then redone
by me. I wrote the bulk of the paper that has been later polished by my
supervisor.



i.11 List of contributions 37

Paper IV I calculated the results for the decays of heavy mesons with HM-
ChPT and in the relativistic theory. I also made the plots for comparing
the outcomes with experimental data. Afterwards my supervisor did
the relativistic formalism calculations independently and checked the
comparison with experiment. He made first the two loop check for the
scalar and vector formfactors of the pions. I wrote the bulk of the paper
that has been then rearranged and revised by my supervisor. i
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I.1 Introduction

Chiral Perturbation Theory (ChPT) [1–3] is the effective field theory for the
strong interaction at low energies. Some recent reviews are [4–6]. In the
mesonic sector many calculations have now been performed to two-loop or
next-to-next-to-leading order (NNLO), see the review [5]. Since in an effective
field theory like ChPT there appear new Lagrangians at every order, tests of
ChPT at NNLO are difficult to perform since for most processes new combi-
nations of these parameters, called low-energy constants (LECs), appear.

One way to test ChPT at NNLO order is to find observables where the same
combinations of LECs appear. Many of these pairs of observables were found
in the explicit calculations but no systematic study had been done. That is the
purpose of this work. We take systematically all observables that can contain
a dependence on the NNLO LECs in ππ and πK scattering, the masses and
decay constants, η → 3π, Kℓ4 and the scalar and vector formfactors and de-
termine how many of these contain the same combinations of NNLO LECs.
Of the 76 observables we include, we find 35 such combinations. These are
discussed in Sects. I.3 to I.12. These allow in principle to test the validity of
three flavour ChPT at NNLO. However, many relations involve poorly known
quantities from the scalar formfactors so we have restricted the numerical dis-
cussion to the ππ, πK and Kℓ4 sector. The tests in the vector formfactors were
already discussed extensively in the earlier work, so we do not present nu-
merical results for those either. We find a mixed picture. Three flavour ChPT
mostly works but there are problems. Some preliminary results were pre-
sented in [7].

We first discuss the ππ threshold parameters relations in both two and
three flavour ChPT in Sect. I.3. After that we restrict ourselves to three flavour
ChPT, first πK threshold parameters relations in Sect. I.4 and the relations be-
tween both sectors in Sect. I.5. Sect. I.6 discusses the relation between Kℓ4 and
πK scattering. For η → 3π we find relations involving the cubic dependence
of the Dalitz plot in Sect. I.7. For the scalar formfactors we find the known re-
lations and one new one, Sect. I.8, but when relating the scalar sector to other
sectors we find several new relations as discussed in Sects. I.9, I.10, I.11 and
I.12. We shortly recapitulate our conclusions in Sect. I.13. For completeness,
we have added in an appendix the correspondence between the subthreshold
and threshold parameters for ππ and πK scattering.

I.2 Notation

The Lagrangian at NNLO contains 90 LECs, called the Ci in [8,9]. Since in this
work we check whether the same combinations of LECs appear we use the
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notation
[A]Ci

= Cr
i -dependent part of A . (I.1)

We also use the notation B0 and F0, the chiral limit of Fπ , the two constants
that appear in the lowest order Lagrangian [3]. For the physical observables
we use for each case the established notation.

We always express dimensionful quantities in the appropriate units of
mπ+ , which is in any case standard practice for many of the quantities we
consider. We use the symbol ρ = mK/mπ to indicate the kaon mass. This way
the relations are easier to write down.

I.3 ππ scattering

The ππ scattering amplitude can be written as a function A(s, t, u) which is
symmetric in the last two arguments:

A(πaπb → πcπd) = δa,bδc,d A(s, t, u) + δa,cδb,d A(t, u, s) + δa,dδb,c A(u, t, s) ,
(I.2)

where s, t, u are the usual Mandelstam variables. The isospin amplitudes
T I(s, t) (I = 0, 1, 2) are

T0(s, t) = 3A(s, t, u) + A(t, u, s) + A(u, s, t) ,

T1(s, t) = A(s, t, u) − A(u, s, t) ,

T2(s, t) = A(t, u, s) + A(u, s, t) , (I.3)

and can be expanded in partial waves

T I(s, t) = 32π
+∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)tI
ℓ(s), (I.4)

where t and u have been written as t = − 1
2 (s − 4m2

π)(1 − cos θ), u = − 1
2 (s −

4m2
π)(1 + cos θ). Near threshold the tI

ℓ are further expanded in terms of the
threshold parameters

tI
ℓ(s) = q2ℓ

(

aI
ℓ + bI

ℓq2 + cI
ℓq4 + dI

ℓq6 + O(q8)
)

q2 =
1

4
(s − 4m2

π), (I.5)

where aI
ℓ, bI

ℓ . . . are the scattering lengths, slopes,. . . and q is the magnitude of
the pion three momenta in the center of mass frame. We studied only those
observables where a dependence on the Cis shows up. Using s + t + u = 4m2

π
we can write the amplitude to order p6 as

A(s, t, u) = b1 + b2s + b3s2 + b4(t − u)2 + b5s3 + b6s(t − u)2

+non polynomial part (I.6)

I
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The tree level Feynman diagrams give polynomial contributions to A(s, t, u)
which must be expressible in terms of b1, . . . , b6.

The threshold parameters a0
0, b0

0, c0
0, d0

0, a2
0, b2

0, c2
0, d2

0, a1
1, b1

1, c1
1, a0

2, b0
2, a2

2,

b2
2, a1

3 are all those that can receive contributions from tree level LECs up to

order p6, but results [10] have only been presented for a0
0, b0

0, a2
0, b2

0, a1
1, b1

1, a0
2,

b0
2, a2

2, b2
2 and a1

3. At present we thus can only use those 11 to test ChPT. We do

not consider b1
3 for which numerical results are also given in [10] since it does

not depend at tree level on any LECs to order p6. For those 11 we obtain the
following five relations:

[

5b2
0 − 2b0

0 − 27a1
1 − 15a2

0 + 6a0
0

]

Ci

= −18
[

b1
1

]

Ci

, (I.7)

[

3a1
1 + b2

0

]

Ci

= 20
[

b2
2 − b0

2 − a2
2 + a0

2

]

Ci

, (I.8)

[

b0
0 + 5b2

0 + 9a1
1

]

Ci

= 90
[

a0
2 − b0

2

]

Ci

, (I.9)

[

3b1
1 + 25a2

2

]

Ci

= 10
[

a0
2

]

Ci

, (I.10)

[

−5b2
2 + 2b0

2

]

Ci

= 21
[

a1
3

]

Ci

, (I.11)

All quantities are expressed in units of m2
π+ . In fact, since these relations hold

for every contribution to the polynomial part, they are valid for the NLO tree
level contribution as well and for two- and three-flavour ChPT. Therefore they
do not get contributions from the Lis at NLO, but only at NNLO via the non
polynomial part of Eq. (I.6).

The first three involve quantities that already have tree level contributions
at lowest order, the fourth starts with tree level at NLO and the last only has
tree level contributions starting at NNLO. The terms in the first three are ar-
ranged such that the quantities starting at lowest order are all on the left-hand-
side.

Let us now look at the numerical results. As experimental input we use
the Roy equation analysis together with input from ChPT and the pion scalar
form-factor done in [10]. In Tab. I.1 we quote the left-hand-side (LHS) and
right-hand-side (RHS) of each of the relations with the threshold parameters
as quoted in [10]. We have added the errors for the several quantities quadrat-
ically which probably results in an underestimate of the error. The results are
quoted in the second column of Tab. I.1. The next columns give the contribu-
tion from pure one-loop at NLO, the tree level NLO contribution at one-loop
using the fitted values of fit 10 in [11], the pure two-loop contribution, and the
Li dependent part at NNLO (called NNLO 1-loop) using again fit 10 of [11].
Of these the tree level NLO contribution must satisfy the relations, the oth-
ers need not. The numerical results have been calculated using the formulas
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of [12]. The column labeled remainder is the result of [10] minus the three-
flavour ChPT prediction. This is thus the contribution of the NNLO LECs and
from higher orders.

The theoretical errors are more difficult to estimate. The error shown in the
sixth column in brackets in Tab. I.1 is obtained by varying all the Lr

i around

the central values of fit 10 of [11] exploring the region with χ2/do f ≈ 1 using
the full covariance matrix as obtained for that fit by the authors of [11]. The
error is then estimated as the maximum deviation observed. The error for the
Lr

i contribution at NLO is not shown since it drops out of the relations.

As we see, the first three relations are very well satisfied. The last two work
at a level around two sigma. Uncertainties on the theoretical results are mostly
on the last quoted digit, no uncertainty due to fit 10 is included. Note that the
ππ threshold parameters were not used as input in fit 10.

We can also check how the two-flavour predictions hold up. Here the ex-
pansion parameter is different. The corrections are in powers of m2

π rather
than in powers of m2

K. The expansion should thus converge better and the
conclusion was drawn in [10] that two-flavour ChPT works for ππ-scattering
at threshold (and even better where they performed their subtractions). We
do not use the numbers quoted in [13–15] since the LECs used there have
been superceded by those of [10] and [11] respectively. Testing our relations
for two-flavour ChPT thus gives a good indication of the best results we can
expect for the three-flavour case. We use the threshold parameters as quoted
in [10] for their best fit of the NLO LECs and using the formulas of [16]. The
result is shown in Tab. I.2. We see the same pattern as for the three flavour
case. The first three relations are very well satisfied while the last two are
somewhat worse but here below two sigma.

An alternative way to look at the results is to directly test the relations. In
the previous tables we have presented results separately for the LHS and RHS
in order to show how well the combinations of the NNLO LECs would be the
same if determined in the two different ways. We can also instead show LHS
minus RHS for our relations which directly tests the loop content of ChPT.
For the ππ and πK case this is equivalent to comparing the exact results for
the dispersive part with the ChPT result for the dispersive part since the sub-
traction constants used in [10] drop out in the relations we consider1. This
is shown in Tab. I.3. We see here also good agreement for the first three and
about two sigma for the last two relations. The results given in Tab. I.3 are de-
picted graphically in Fig. I.1. Keep in mind here that the errors for the disper-
sive result might be underestimated since we combined them quadratically.

1We thank the referee for pointing this out.

I



46
R

el
at

io
n

s
at

o
rd

er
p

6
in

C
h

ir
al

P
er

tu
rb

at
io

n
T

h
eo

ry

[10] NLO NLO NNLO NNLO remainder
1-loop LECs 2-loop 1-loop

LHS (I.7) 0.009 ± 0.039 0.054 −0.044 −0.041 −0.002(3) 0.041 ± 0.039
RHS (I.7) −0.102 ± 0.002 −0.009 −0.044 −0.060 −0.008(6) 0.018 ± 0.002

10 LHS (I.8) 0.334 ± 0.019 0.209 0.097 0.103 0.029(11) −0.105 ± 0.019
10 RHS (I.8) 0.322 ± 0.008 0.177 0.097 0.120 0.034(13) −0.107 ± 0.008

LHS (I.9) 0.216 ± 0.010 0.166 0.029 0.053 0.016(6) −0.047 ± 0.010
RHS (I.9) 0.189 ± 0.003 0.145 0.029 0.049 0.020(7) −0.054 ± 0.003

10 LHS (I.10) 0.213 ± 0.005 0.137 0.032 0.053 0.035(12) −0.043 ± 0.005
10 RHS (I.10) 0.175 ± 0.003 0.121 0.032 0.050 0.029(10) −0.057 ± 0.003
103 LHS (I.11) 0.92 ± 0.07 0.36 0.00 0.56 −0.01(13) 0.00 ± 0.07
103 RHS (I.11) 1.18 ± 0.04 0.42 0.00 0.57 0.03(13) 0.15 ± 0.04

Table I.1: The relations found in the ππ-scattering. The lowest order contribution is always zero by
construction. The NLO LEC part satisfies the relation. Notice the extra factors of ten for some of them.
All quantities are in the units of powers of mπ+ . See text for a longer discussion.
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[10] two-flavour remainder
[10]

LHS (I.7) 0.009 ± 0.039 −0.003 0.007 ± 0.039
RHS (I.7) −0.102 ± 0.002 −0.097 −0.005 ± 0.002

10 LHS (I.8) 0.334 ± 0.019 0.332 0.002 ± 0.019
10 RHS (I.8) 0.322 ± 0.008 0.318 0.004 ± 0.075

LHS (I.9) 0.216 ± 0.010 0.206 0.010 ± 0.010
RHS (I.9) 0.189 ± 0.003 0.189 0.000 ± 0.003

10 LHS (I.10) 0.213 ± 0.005 0.204 0.009 ± 0.005
10 RHS (I.10) 0.175 ± 0.003 0.176 −0.001 ± 0.003
103 LHS (I.11) 0.92 ± 0.07 1.00 −0.08 ± 0.07
103 RHS (I.11) 1.18 ± 0.04 1.15 0.04 ± 0.04

Table I.2: The relations found in the ππ-scattering evaluated in two-flavour ChPT. In
the second column we have used the NNLO results quoted in [10]. Notice the extra
factors of ten for some of them. See text for a longer discussion.

disp/exp NLO NLO+NNLO NLO+NNLO(2)
LR (I.7) 0.111 ± 0.039 0.062 0.087(3) 0.094

10 LR (I.8) 0.012 ± 0.021 0.031 0.010(2) 0.014
LR (I.9) 0.026 ± 0.011 0.021 0.020(3) 0.017

10 LR (I.10) 0.038 ± 0.006 0.016 0.024(2) 0.028
103 LR (I.11) −0.26 ± 0.08 −0.06 −0.11(2) −0.14

LR (I.23) −1.5 ± 0.7 −0.26 −0.34(7) -
10 LR (I.21) −0.05 ± 0.02 0.02 0.03(5) -

100 LR (I.24) 0.36 ± 0.60 0.06 −0.13(13) -
100 LR (I.22) 0.12 ± 0.01 0.03 0.06(1) -
103 LR (I.26) −0.03 ± 0.08 0.07 0.03(2) -

103 LR (I.28) −0.04 ± 0.03 0.00 0.08(5) -
10 LR (I.29) −0.04 ± 0.02 −0.06 −0.07(2) -

LR (I.33) −1.24 ± 0.11 −0.41 −0.74(10) -

Table I.3: Tests of the relations as seen as a test of the loop contributions. disp/exp
are the dispersive and experimental inputs used as described in the text. LR stands for
LHS-RHS. All quantities are in units of mπ+ . Results are shown for the relations for
ππ, πK, ππ vs πK and Kℓ4 vs πK.

aI
ℓ, bI

ℓ. So we introduce the partial wave expansion of the isospin amplitudes

T I(s, t, u) = 16π
+∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)tI
ℓ(s), (I.12)

I
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Figure I.1: The relations with the dispersive/experimental results shown as full lines
with errors, the NLO result as stars and the sum of NLO+NNLO as crosses with the
errors indicated as dashed lines. The scale is arbitrary. The relations appear in the
order given in Tab. I.3. 1-5 ππ, 6-10 πK, 11-12 ππ vs πK and 13 Kℓ4 vs πK.

and we expand the tI
ℓ(s) near threshold:

tI
ℓ(s) =

1

2

√
sq2ℓ

πK

(

aI
ℓ + bI

ℓq2
πK + cI

ℓq4
πK + O(q6

πK)
)

, (I.13)

where

q2
πK =

s

4

(

1 − (mK + mπ)2

s

) (

1 − (mK − mπ)2

s

)

, (I.14)

is the magnitude of the three-momentum in the center of mass system. The
Mandelstam variables are in terms of the scattering angle given by

t = −2q2
πK(1 − cos θ), u = −s − t + 2m2

K + 2m2
π . (I.15)

Again we studied only those observables where a dependence on the Cis
shows up.
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It is also customary to introduce the crossing symmetric and antisymmetric
amplitudes T±(s, t, u) which can be expanded around t = 0, s = u using
ν = (s − u)/(4mK), called the subthreshold expansion:

T+(s, t, u) =
∞

∑
i,j=0

c+
ij tiν2j, T−(s, t, u) =

∞

∑
i,j=0

c−ij tiν2j+1. (I.16)

There are ten subthreshold parameters that have tree level contributions from
the NNLO LECs. In c−01 and c−20 the same combination −C1 + 2C3 + 2C4 ap-
pears [12], thus

16ρ2
[
c−20

]

Ci
= 3

[
c−01

]

Ci
. (I.17)

Eq. (I.17) leads to one relation between the subthreshold parameters.

If we look at the aI
ℓ and bI

ℓ that get contributions from the NNLO LECs
there are 14 such. 7 for each isospin channel. The isospin odd channel only
involves T−:

T1/2(s, t, u) − T3/2(s, t, u) = 3T−(s, t, u) . (I.18)

This combination has only three subthreshold parameters that get indepen-
dent contributions from the NNLO LECs. So for 7 differences of aI

ℓ and bI
ℓ

and three parameters we expect four relations. The threshold parameters are
expressed in units of mπ+ and we use the symbol ρ = mK/mπ . We use the

notation a−
ℓ

= a1/2
ℓ

− a3/2
ℓ

and b−
ℓ

= b1/2
ℓ

− b3/2
ℓ

70ρ3 (ρ + 1)2 [
a−3

]

Ci
= −

(

ρ2 + ρ + 1
) [

a−0
]

Ci
+ 2ρ2

[
b−0

]

Ci

+6ρ2
[
a−1

]

Ci
, (I.19)

140ρ3
(

ρ2 + 1
) [

a−3
]

Ci
=

(

ρ2 + 1
) [

a−0
]

Ci
+ 6

(

−ρ2 + ρ − 1
)

ρ
[
a−1

]

Ci

+12ρ3
[
b−1

]

Ci
, (I.20)

5
(

ρ2 + 1
) [

a−2
]

Ci
=

[
a−1

]

Ci
+ 2ρ

[
b−1

]

Ci
, (I.21)

7
(

ρ2 + 1
) [

a−3
]

Ci
=

[
a−2

]

Ci
+ 2ρ

[
b−2

]

Ci
. (I.22)

We can eliminate
[
a−3

]

Ci
from (I.19) and (I.20) to obtain a relation involving

only ℓ = 0, 1 threshold parameters:

(

ρ4 + 3ρ3 + 3ρ + 1
) [

a−1
]

Ci
= 2ρ2 (ρ + 1)2 [

b−1
]

Ci
− 2

3
ρ

(

ρ2 + 1
) [

b−0
]

Ci

+
1

2ρ

(

ρ2 +
4

3
ρ + 1

) (

ρ2 + 1
) [

a−0
]

Ci
.(I.23)

I
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We prefer to express the other relation in one involving b−2

5 (ρ + 1)2 [
b−2

]

Ci
=

(ρ − 1)2

ρ2

[
a−1

]

Ci
− ρ4 + 2

3 ρ2 + 1

4ρ4

[
a−0

]

Ci

+
ρ2 − 2

3 ρ + 1

2ρ2

[
b−0

]

Ci
. (I.24)

The combination that involves only T+ is

T1/2(s, t, u) + 2T3/2(s, t, u) = 3T+(s, t, u) . (I.25)

This brings in 7 more threshold parameters, but there are 6 fully independent
subthreshold parameters so we expect only one more relation. Using the no-

tation a+
ℓ

= a1/2
ℓ

+ 2a3/2
ℓ

and b+
ℓ

= b1/2
ℓ

+ 2b3/2
ℓ

, we find:

7
[
a+

3

]

Ci
=

1

2ρ

[
a+

2

]

Ci
−

[
b+

2

]

Ci
+

1

5ρ

[
b+

1

]

Ci
− 1

60ρ3

[
a+

0

]

Ci
− 1

30ρ2

[
b+

0

]

Ci
.

(I.26)

These relations hold for all tree-level contributions up to NNLO2. In par-
ticular, the lowest order contributions satisfy them.

Note that because of the nonlinearity in s present in (I.14) the higher order
threshold parameters are already nonzero at lowest order. This makes fitting
the threshold-expansion numerically more unstable since we need to use a
fitting polynomial to higher order in q2

πK compared to what was needed for
the ππ case.

The column labeled [17] uses the results of the Roy-Steiner analysis of [17]
of πK scattering. We have combined errors quadratically which due to the
presence of correlations can lead to a serious underestimate of the errors on
the combinations.

The numerical results for the theory are calculated with the formulas of
[18] where the NLO LECs we use are those of fit 10 of [11]. The columns
in Tab. I.4 have the same meaning as in Tab. I.1 and the errors on the ChPT
part have been evaluated as discussed for the ππ case. The first relation is
reasonably well satisfied, somewhat below two sigma. The second relation
has a large discrepancy in view of the experimental error but if we assume a
theory error of about half the NNLO contribution it seems reasonable given
The third relation is well satisfied but the RHS has a rather large experimental
error. The fourth relation does not work well, mainly due to the fact that
we seem to underestimate the value for a−3 . The last relation again works
reasonably well. The same relations but now LHS-RHS are shown in Tab. I.3
and depicted graphically in Fig. I.1. The conclusions are the same.

2This was written wrong in the preliminary report [7].
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[17] NLO NLO NNLO NNLO remainder
1-loop LECs 2-loop 1-loop

LHS (I.23) 5.4 ± 0.3 0.16 0.97 0.77 −0.11(11) 0.6 ± 0.3
RHS (I.23) 6.9 ± 0.6 0.42 0.97 0.77 −0.03(7) 1.8 ± 0.6

10 LHS (I.21) 0.32 ± 0.01 0.03 0.12 0.11 0.00(2) 0.07 ± 0.01
10 RHS (I.21) 0.37 ± 0.01 0.02 0.12 0.10 −0.01(2) 0.14 ± 0.01
100 LHS (I.24) −0.49 ± 0.02 0.08 −0.25 −0.17 0.05(3) −0.21 ± 0.02
100 RHS (I.24) −0.85 ± 0.60 0.03 −0.25 0.11 −0.03(13) −0.71 ± 0.60
100 LHS (I.22) 0.13 ± 0.01 0.04 0.00 0.01 0.03(1) 0.05 ± 0.01
100 RHS (I.22) 0.01 ± 0.01 0.01 0.00 0.00 0.00(1) −0.01 ± 0.01
103 LHS (I.26) 0.29 ± 0.03 0.09 0.00 0.06 0.01(2) 0.13 ± 0.03
103 RHS (I.26) 0.31 ± 0.07 0.03 0.00 0.06 0.05(3) 0.17 ± 0.07

Table I.4: The relations found in the πK-scattering. The tree level contribution to the
LHS and RHS of relation 1 is 3.01 and vanishes for the others. The NLO LECs part
satisfies the relation. Notice the extra factors of ten for some of them. See text for a
longer discussion. All quantities are in the units of powers of mπ+ .

I.5 ππ and πK scattering

If we consider the ππ and πK system together we get two more relations due
to the identities

[b5]Ci
=

[
c+

30

]

Ci
+

3

ρ

[
c−20

]

Ci
, [b6]Ci

=
1

4ρ

[
c−20

]

Ci
+

1

16ρ2

[
c+

11

]

Ci
, (I.27)

where c−ij (c+
ij ) are expressed in units of m

2i+2j+1
π (m

2i+2j
π ). We can express these

relations in terms of the threshold parameters:

6
[

a1
3

]

Ci

= (1 + ρ)
[
a+

3 + 3a−3
]

Ci
, (I.28)

3

[

(1 + ρ)2
[

b2
2

]

Ci

+ 7 (1 − ρ)2
[

a1
3

]

Ci

]

= (1 + ρ)
[

7
(

1 − 4ρ + ρ2
) [

a−3
]

Ci

+
[
a+

2 + 2ρb+
2

]

Ci

]

. (I.29)

Here all the quantities are expressed in powers of mπ+ .

The numerical results are quoted in Tab. I.5. The first relation does not
work but the second is well satisfied. If we look in the numerical results we
see that a−3 plays a minor role in the RHS of the second relation but is impor-
tant in the first, so this could be the same problem that appeared for relation
(I.22). The same relations but now LHS-RHS are shown in Tab. I.3 and de-
picted graphically in Fig. I.1. The conclusions are the same. A related analysis
can be found in [19].

I
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[10], [17] NLO NLO NNLO NNLO remainder
[20], [21] 1-loop LECs 2-loop 1-loop

103 LHS (I.28) 0.34 ± 0.01 0.12 0.00 0.16 0.00(4) 0.05 ± 0.01
103 RHS (I.28) 0.38 ± 0.03 0.12 0.00 0.05 0.04(2) 0.16 ± 0.03
10 LHS (I.29) −0.13 ± 0.01 −0.12 0.00 −0.05 0.02(2) 0.01 ± 0.01
10 RHS (I.29) −0.09 ± 0.02 −0.05 0.00 −0.02 −0.01(1) −0.01 ± 0.02

LHS (I.33) −0.73 ± 0.10 −0.23 0.00 −0.15 −0.05(6) −0.29 ± 0.10
RHS (I.33) 0.50 ± 0.07 0.19 0.00 0.10 0.03(4) 0.18 ± 0.07

Table I.5: The relations found between ππ and πK-scattering lengths and between the
curvature in F in Kℓ4 and πK scattering. See text for a longer discussion. All quantities
are in units of powers of mπ+ .

I.6 Kℓ4

The decay K+(p) → π+(p1)π−(p2)e+(pℓ)ν(pν) is given by the amplitude [22]

T =
GF√

2
V⋆

usū(pν)γµ(1 − γ5)v(pℓ)(Vµ − Aµ) (I.30)

where Vµ and Aµ are parametrized in terms of four form factors: F, G, H
and R (but the R-form factor is negligible in decays with an electron in the
final state). Using partial wave expansion and neglecting d wave terms one
obtains [23]:

F = fs + f ′sq2 + f ′′s q4 + f ′ese/4m2
π + ftσπX cos θ + . . . ,

Gp = gp + g′pq2 + g′′g q4 + g′ese/4m2
π + gtσπX cos θ + . . . (I.31)

Here sπ(se) is the invariant mass of dipion (dilepton) system, and q2 =
sπ/(4m2

π) − 1. θ is the angle of the pion in their restframe w.r.t. the kaon
momentum and t − u = −2σπX cos θ. We found one relation between the
quantities defined in (I.31) and πK scattering:

√
2

[
f ′′s

]

Ci
= 64ρFπ

[
c+

30

]

Ci
. (I.32)

This translates into a relation between πK threshold parameters and f ′′s which,
with all quantities expressed in units of mπ+ , reads:

√
2

[
f ′′s

]

Ci
= 32π

ρ

1 + ρ
Fπ

[
35

6

(

2 + ρ + 2ρ2
) [

a+
3

]

Ci
− 5

4

[
a+

2 + 2ρb+
2

]

Ci

]

.

(I.33)
There is no more relation involving the quantities discussed so far, ππ and πK
scattering, and Kℓ4.

Numerical results for (I.33) are shown in Tab. I.5. The experimental results
is taken from [21] for f ′′s / fs and from [20] for fs. This should be an acceptable
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combination since the central value for f ′s/ fs and f ′′s / fs from [20] are within
10% of those of [21]. The theoretical results are using the formulas of [14, 15]
and fit 10 of [11]. This relation has problems. The sign is even different on
both sides. In both cases we also see that the ChPT series has a large NNLO
contribution. For completeness, LHS-RHS is given in Tab. I.3 and Fig. I.1.

There have been indications from dispersive methods that ChPT might un-
derestimate the curvature f ′′s . Dispersion relations were used in [24] for Kℓ4.
If one looks at Fig. 7 in [11], one can see that the dispersive result of [24] has a
larger curvature than the two-loop result. For this reason, we do not consider
this discrepancy a major problem for ChPT.

I.7 η → 3π

The amplitude for the decay η(pη) → π+(p+)π−(p−)π0(p0) can be written
as

A(η → π+π−π0) = sin ǫM(s, t, u) . (I.34)

Here we used the Mandelstam variables

s = (p+ + p−)2 = (pη − p0)
2 ,

t = (p+ + p0)
2 = (pη − p−)2 ,

u = (p− + p0)
2 = (pη − p+)2, . (I.35)

which are linearly dependent s + t + u = m2
πo + m2

π− + m2
π+ + m2

η ≡ 3s0 ..
G-parity requires the amplitude to vanish at the limit mu = md and therefore
it must inevitably be accompanied by an overall factor of mu − md which we

have chosen to be in the form of sin(ǫ) ≈ (
√

3/4)(md − mu)/(ms − m̂). Since
the amplitude is invariant under charge conjugation we have M(s, t, u) =
M(s, u, t). Similar to the ππ scattering, we can write the amplitude as

M(s, t, u) = η1 + η2s + η3s2 + η4(t − u)2 + η5s3 + η6s(t − u)2

+non polynomial part (I.36)

to NNLO in ChPT. Using the results of [25] we then obtain two relations

[η5]Ci
= 3 [η6]Ci

, (I.37)

[η5]Ci
= −768ρ3

[
c−01

]

Ci
= −π (1 + ρ)

35

2

[
a−3

]

Ci
. (I.38)

Since η5 is not unambiguously determined from the measured Dalitz-plot pa-
rameters and η6 is not measured at all we do not present numerical results for
this. The overall factor sin ǫ itself is part of the uncertainty involved. Unfortu-
nately, no relations are present for η1, . . . , η4 which would have helped in the
numerical prediction for η → 3π using the results of [25].

I
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I.8 Scalar formfactors

The scalar form factors for the pions and the kaons are defined as

FM1 M2
ij (t) = 〈M2(p)|q̄iqj|M1(q)〉, (I.39)

where t = p − q, i, j = u, d, s are flavour indices and Mi denotes a meson state
with the indicated momentum. Due to isospin symmetry not all of them are
independent, therefore we consider only

Fπ
S = 2Fπ0π0

uu Fπ
Ss = Fπ0π0

ss , FK
Ss = FK0K0

ss ,

FK
S = FK

Su + FK
Sd = FK0K0

uu + FK0K0

dd , FπK
S = FK+π0

su . (I.40)

Near t = 0 these are expanded via

FS(t) = FS(0) + F′
St + F′′

S t2 + . . . . (I.41)

The NNLO ChPT calculation for these quantities was performed in [26] where
it was found that the curvatures F′′

S only depend on two of the NNLO LECs.
As a consequence there are four relations

[
Fπ′′

S

]

Ci
= 2

[

FK′′
Su

]

Ci

= 2
[

FK′′
Ss

]

Ci

,

[
Fπ′′

Ss

]

Ci
=

[

FK′′
Sd

]

Ci

,

2
[

FKπ′′
S

]

Ci

=
[
Fπ′′

S

]

Ci
− 2

[
Fπ′′

Ss

]

Ci
. (I.42)

There is also a relation involving the slopes

[
Fπ′

S

]

Ci
− 2

[
Fπ′

Ss

]

Ci
− 2

[

FK′
Sd

]

Ci

+ 2
[

FK′
Ss

]

Ci

− 4
[

FKπ′
S

]

Ci

= 0 . (I.43)

This is a consequence of the “scalar Sirlin” relation derived in general in [26].
In addition to those already known we found a relation between the values

at t = 0 which with ρ = mK/mπ reads

2ρ6 [Fπ
S (0)]Ci

= ρ4
(

2ρ4 − ρ2 − 3
)

[Fπ
Ss(0)]Ci

+
(

3ρ2 − 1
) [

FK
Su(0)

]

Ci

+
(

6ρ4 − 3ρ2 − 1
) [

FK
Sd(0)

]

Ci

+
(

ρ2 + 1
) [

FK
Ss(0)

]

Ci

.(I.44)

The scalar formfactors had a significant dependence on what was used as in-
put for Lr

4 and Lr
6 [26]. The curvature relations were studied there and found

to sometimes work and sometimes not, see Tab. 2 and Sect. 5.5 in [26]. We in-
tend to come back to these relations when constraints on Lr

4 and Lr
6 have been

included in a general fit.
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I.9 Scalar formfactors, masses and decay constants

The three masses M2
π , M2

K, M2
η and decay constants Fπ , FK , Fη are not related,

they all have a different dependence on the NNLO LECs. We do find some
relations however when we combine them with the scalar formfactors. The
two-loop calculations for masses and decay constants can be found in [27, 28]
for π and η and in [27] for the kaon.

There are two relations between the FS(0) and the ChPT expansion of the
masses M2

π , M2
K:

2B0

[

M2
π

]

Ci

=
1

3

{

(2ρ2 − 1) [Fπ
Ss(0)]Ci

+ [Fπ
S (0)]Ci

}

2B0

[

M2
K

]

Ci

=
1

3

{

(2ρ2 − 1)
[

FK
Ss(0)

]

Ci

+
[

FK
S (0)

]

Ci

}

. (I.45)

Remember we express everything in units powers of mπ . One could arrive
to the same conclusion using the Feynman-Hellmann Theorem (see e.g. [29]
or [26]) which implies for q = u, d, s and M = π, K

FM
Sq (t = 0) = 〈M|ūu|M〉 =

∂m2
M

∂mq
. (I.46)

On the other hand the ChPT expansion leads to

[

M2
π

]

Ci

= ∑
i

Ci(mq)
3 = f (mu, md, ms), (I.47)

that is an homogeneous function of order three. Thanks to the Euler Theorem,
[
M2

π

]

Ci
can be written in terms of its derivatives ( f (x) = 1

3 ∑
n
i=1

∂ f
∂xi

xi x ∈
R

n). These are exactly the relations in Eq. (I.45). Something similar holds for
the p4 expression but with a factor 1/2 instead of 1/3.

There are two more relations if we also include the decay constants. The
first one is

(

ρ2 − 1
)2 B0

F0
[FK − Fπ ]Ci

+
(

ρ2 + 1
)

B0

[

M2
K − M2

π

]

Ci

=

(

ρ4 − 1
) [

FKπ
S (0)

]

Ci

+
(

ρ2 − 1
)3 [

FKπ′
S

]

Ci

+
(

ρ2 − 1
)3 (

ρ2 + 1
) [

FKπ′′
S

]

Ci

.

(I.48)

This relation is the same as the one found in [30] for the Kℓ3 scalar formfactor
when one uses

∂µsγµu = (ms − mu) i su , (I.49)
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and rewrites the quark masses into the pion and kaon mass. The second rela-
tion, in the simplest form we found, reads

(

4ρ2 [Fπ ]Ci
− 4 [FK]Ci

) B0

F0
= 2ρ4

[
Fπ′

S

]

Ci
+

(

2ρ6 − ρ4 + ρ2
) [

Fπ′
Ss

]

Ci

+
(

−2ρ4 + ρ2 − 1
) [

FK′
Sd

]

Ci

−
(

ρ2 + 1
) [

FK′
Su

]

Ci

+
(

−3ρ2 + 1
) [

FK′
Ss

]

Ci

.

(I.50)

We have not presented numerical results for the relations in this section
since the assumptions underlying fit 10 of [11] were such that all the left hand
sides evaluate to zero. In addition the right hand sides tend to contain poorly
known quantities.

I.10 Vector formfactors

The vector formfactors have been discussed extensively in [31] and [30]. There
three relations between the curvatures and the the Sirlin relation between the
slopes [32,33] were found. We also find the expected relationship between the
scalar formfactors and the scalar formfactor in Kℓ3 which followed from (I.49).
The numerical results for the relation between the slopes and curvatures were
discussed extensively in [30, 31] and found to work well. So this sector had
the expected total of 7 relations added to those discussed above.

I.11 Scalar formfactors, ππ and πK scattering

There are two more relations when we combine the scalar formfactors and
the scattering amplitudes for ππ and πK scattering. All three quantities are
needed. These relations are rather complicated. The first relation is:

ρ4
[

105a1
3 + 15b2

2 − 3a1
1 + 3b2

0 − 8a2
0

]

Ci

+ (1 + ρ)

(

35ρ4
[
a−3

]

Ci
− 1

3
ρ

[
a−0

]

Ci

)

+
2

ρ + 1
ρ3

[
a+

1

]

Ci
+

2

3
(ρ + 1)

(

ρ2 + 1
)[
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0

]

Ci
+

10

ρ + 1
ρ4(2 + ρ + 2ρ2)

[
b+

2 + 7a+
3

]

Ci

− 10

ρ + 1
ρ3

(

2 + 3ρ + 2ρ2
) [
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2

]
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− 4

ρ + 1
ρ3(1 + ρ + ρ2)

[
b+

1

]

Ci
=

ρ2

8πB0F2
0 (1 − 3ρ2)

[

− (1 − ρ2)
[

FK
Ss(0)

]

Ci

+ 2(1 − 3ρ2 + 3ρ4)
[

FK
Sd(0)

]

Ci
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+ (1 − 3ρ2 + 3ρ4 − 5ρ6 + 2ρ8) [Fπ
Ss(0)]Ci

+
1

2
(1 − 5ρ2 + 8ρ4 − 4ρ6) [Fπ

S (0)]Ci

]

.

(I.51)

The second relation involves even more quantities:

− (1 − ρ4)8πB0F2
0

[

ρ2
[

b0
0 − 12a2

0 + 2b2
0 + 45b2

2 − 315a1
3

]

Ci

+ 210ρ2(1 + ρ)
[
a−3

]

Ci

− 2
1 + ρ

ρ

[
a−0

]

Ci

]

+ 8πB0F2
0 (ρ − 1)

[

120ρ4
[
b+

2 + 7a+
3

]

Ci
− 6ρ2

[
a+

1 + 2ρb+
1

]

Ci

+ 2(1 + ρ)2
[

2a+
0 − 15ρ2a+

2

]

Ci

]

= (1 − ρ2)

[

12(1 − ρ4)(FK′′
Ss − FK′′

Sd ) + 12(1 − ρ2 − 2ρ4)FKπ′
S + 6ρ2(1 + 2ρ2)FK′

Ss

− 12ρ4FK′
Sd + 6ρ2FK′

Su − 12ρ4Fπ′
Ss

]

+ (1 + ρ2)12FKπ
S (0) + 12ρ2FK

Su(0) + 3(−1 + 3ρ2 + 6ρ4)FK
Sd(0)

+ (1 − ρ2)(2 − ρ2 − 8ρ4 − 8ρ6)Fπ
Ss(0) − 2(1 + 2ρ2 + 2ρ4 + 4ρ6)Fπ

S (0) .
(I.52)

I.12 A final relation: Kℓ4, πK scattering and scalar

formfactors

The final relation we found is between Kℓ4, πK scattering and the scalar form-
factors. The version below is the simplest we found.

(1 − ρ2)2(1 + ρ2)B0

[

12
√

2
F0

ρ

(

gp − g′p +

(

(1 − 1

4
ρ2

)

g′′p +
1

2
ρ2 ft

)

−16π
1 + ρ

ρ
a−0 + 70π(1 + ρ)(20ρ2 + ρ4)a−3

]

= 12(1 + ρ2)ρ4FKπ
S (0) + 12ρ6FK

Su(0) + 24ρ8FK
Sd(0)

+2ρ4(1 − ρ4)(1 − 4ρ4)Fπ
Ss(0) − 2ρ4(1 + 2ρ2 + 2ρ4 + 4ρ6)Fπ

S (0) .(I.53)
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I.13 Conclusions

We have performed a systematic search for combinations that allow a test of
ChPT at NNLO order. We have therefore looked at the three masses and three
decay constants, 11 ππ threshold parameters, 14 πK threshold parameters, 6
η → 3π parameters, 10 observables in Kℓ4, 18 in the scalar formfactors and
11 in the vectorformfactors. This means a total of 76 quantities. We found a
total of 35 relations between these. Most of these had been noticed earlier but
we did find several new ones. We have presented the relations in a form as
simple as we found but given the total number they can be rewritten in many
equivalent forms.

These are relations that should allow independent determinations of com-
binations of the NNLO LECs in ChPT. For the vector formfactors this was
already done in [30,31] and partly for the ππ, πK system [12,18,19] and scalar
formfactors [26]. Here we studied in detail the relations for the ππ, πK scat-
tering and Kℓ4 since for these cases enough experimental and/or dispersion
theory results exist. Fig. I.1 is a summary of the numerical relations.

The resulting picture is that ChPT at NNLO works in most cases but there
are some problems. The ππ system alone is working well, the πK system
alone works satisfactorily but with some problems. The same can be said for
the combinations of both systems. A common part in these two cases is the
presence of a−3 . Comparing πK scattering and Kℓ4 there is a clear contradic-
tion. In fact, both sides of the relation seem to be difficult to explain within
ChPT. It was already noticed in [14, 15] that getting such a large negative cur-
vature in Kℓ4 was difficult. It should be noted that none of the quantities in-
volved in the tested relations was used as input for the fit of the NLO LECs
in [11].

Acknowledgements

IJ gratefully acknowledges an Early Stage Researcher position supported by
the EU-RTN Programme, Contract No. MRTN–CT-2006-035482, (Flavianet)
This work is supported in part by the European Commission RTN net-
work, Contract MRTN-CT-2006-035482 (FLAVIAnet), European Community-
Research Infrastructure Integrating Activity “Study of Strongly Interacting
Matter” (HadronPhysics2, Grant Agreement n. 227431) and the Swedish Re-
search Council.



I.A Relation between threshold and subthreshold parameters 59

I.A Relation between threshold and subthreshold

parameters

For completeness we quote here the relations between the threshold and sub-
threshold parameters for the tree level part, i.e. that analytic dependence on
s, t and u. The ππ ones can also be found in [13] and [14, 15]. For the πK case
we have already used the relation (I.17)

πa0
0 = 6b5 + b4 + (3/2)b3 + (3/8)b2 + (5/32)b1 ,

πb0
0 = −2b6 + 18b5 + 3b4 + 3b3 + (1/4)b2 ,

πa2
0 = b4 + (1/16)b1 ,

πb2
0 = −2b6 + 3b4 − (1/8)b2 ,

πa1
1 = (2/3)b6 + (1/3)b4 + (1/24)b2 ,

πb1
1 = (4/3)b6 + (1/2)b4 − (1/6)b3 ,

πa0
2 = (16/15)b6 + (7/30)b4 + (1/30)b3 ,

πb0
2 = (17/15)b6 − (1/5)b5 ,

πa2
2 = (4/15)b6 + (1/30)b4 + (1/30)b3 ,

πb2
2 = (1/3)b6 − (1/5)b5 ,

πa1
3 = (1/35)b6 + (1/35)b5 . (I.54)

π (ρ + 1) a−0 = 24ρ3c−01 + (3/2)ρc−00 ,

π (ρ + 1) b−0 = (36ρ + 24ρ2 + 36ρ3)c−01 − 3ρc−10 + ((3/4)ρ−1 + (3/4)ρ)c−00 ,

π (ρ + 1) a−1 = 12ρ2c−01 + ρc−10 + (1/4)c−00 ,

π (ρ + 1) b−1 = (12 − 6ρ + 12ρ2)c−01 + (−1/2 + (1/2)ρ−1 + (1/2)ρ)c−10

−(1/8)ρ−1c−00 ,

π (ρ + 1) a−2 = (24/5)ρc−01 + (1/5)c−10 ,

π (ρ + 1) b−2 = (−(12/5) + (12/5)ρ−1 + (12/5)ρ)c−01 − (1/10)ρ−1c−10 ,

π (ρ + 1) a−3 = (24/35)c−01 ,

π (ρ + 1) a+
0 = 6ρ2c+

01 + (3/8)c+
00 ,

π (ρ + 1) b+
0 = −12ρ2c+

11 + (6 + 3ρ + 6ρ2)c+
01 − (3/4)c+

10 − (3/16)ρ−1c+
00 . ,

π (ρ + 1) a+
1 = 4ρ2c+

11 + 2ρc+
01 + (1/4)c+

10 ,

π (ρ + 1) b+
1 = (4 − 2ρ + 4ρ2)c+

11 + (ρ−1 + ρ)c+
01 − c+

20 − (1/8)ρ−1c+
10 ,

π (ρ + 1) a+
2 = (8/5)ρc+

11 + (1/5)c+
01 + (1/5)c+

20 ,
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π (ρ + 1) b+
2 = (−(2/5) + (4/5)ρ−1 + (4/5)ρ)c+

11 − (1/10)ρ−1c+
01

−(6/5)c+
30 − (1/10)ρ−1c+

20 ,

π (ρ + 1) a+
3 = (6/35)c+

11 + (6/35)c+
30 (I.55)

It can be checked that these satisfy the relations given in Sects. I.3, I.4 and I.5.
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A new fit is done to obtain numerical values for the order p4 low-energy-
constants Lr

i in Chiral Perturbation Theory. This includes both new data and
new calculated observables. We take into account masses, decay constants,
Kℓ4, ππ and πK scattering lengths and slopes and the slope of the pion scalar
formfactor. We compare in detail where the changes w.r.t. to the 10 year old
“fit 10” come from. We discuss several scenarios for estimating the order p6

constants Cr
i and search for possible values of them that provide a good con-

vergence for the ChPT series. We present two such sets. One big change is
that the fits do not have the expected behaviour in the limit of large Nc as well
as before.
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II.1 Introduction

Since its very beginning Chiral Perturbation Theory (ChPT) [1–3], the effective
field theory of QCD at low energies, has been successful in the description of
several hadronic observables. Unfortunately when one tries to perform loop
calculations to improve the precision of the predictions, one faces a problem.
The couplings appearing in the L4 Lagrangian are many, i.e. 10, and they
must be determined from phenomenology. One of the first determinations
of such couplings was done already in [3]. There most of the next-to-leading
order (NLO) couplings were inferred both from phenomenology and from
considerations lead by large Nc estimates (where Nc is the number of colours).

Considering such good results it is important to decide whether ChPT is a
suitable theory to achieve precise determinations of the hadronic observables.
It urged then to carry on a program and perform next-to-next-to-leading order
(NNLO) calculations [4]. In the last 10 years many two-loop calculations in
three-flavour ChPT have been done, see [5] for a review.

Notice however that going to higher orders raises a serious issue: the num-
ber of the unknown couplings increases rapidly. If on the one side adding loop
diagrams should allow us to include better corrections and improve our de-
scriptions, on the other side, many unknown parameters contribute and this
seriously threatens the predictivity of the theory. Furthermore without know-
ing the values of such constants the convergence of the chiral expansions are
difficult to test, although feasible with the method described in [6].

The two-loop expressions now available can be used to perform a new
global fit at NNLO of some of the next-to-leading-order (NLO) low-energy-
constants (LECs) into the game, the Lr

i . A first attempt was done [7] when
some experimental information was available for the Kℓ4 decay and by esti-
mating the NNLO contributions using dispersive analysis. The fit was refined
later on, when the full NNLO calculation for this process was performed [8,9].
After that many other observables have been calculated at NNLO and many
of them are also better known experimentally. Therefore the time has come
to perform a new fit of the Lr

i couplings at a NNLO precision. In this paper
we present results for such a fit. Some studies using the extra observables but
without performing a full new fit were reported in [10–12]. Notice that in a
preliminary phase we converted all the FORTRAN programs used to evaluate
the amplitudes up to NNLO into C++ code. Our fits are all performed using
such programs.

The paper is organized as follows. In Section II.2 we sketch out the ChPT
formalism and its main underlying ideas. In Section II.3 we review the phe-
nomenological input we used in our results. We also show which are the
Lr

i that give the largest contributions for each observable we included. No-
tice that now much more input is present compared to the past fits [8, 9]. In
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Section II.4 we present the main model we used to estimate the Cr
i , i.e. the

coupling constants appearing in the NNLO Lagrangian. Such an estimate is
usually called the resonance estimate. In Section II.5 we summarize the status
of the main existing NNLO fit so far: fit 10 of [9]. In Section II.6 we show our
main findings using the Cr

i estimates of Section II.4. We quote different fits so
to show how each observable we include affects our findings. The best fit we
get we call fit All and should be considered the main output of this work. This
fit exhibits several differences with fit 10. One especially striking feature is that
it does not respect any longer the large Nc relation 2Lr

1 ≈ Lr
2. We also show

for fit All the convergence of the expansions for masses and decay constants,
which is much improved compared to the one of fit 10. In Section II.6.1 we
perform a fit of the Lr

i using as input different experimental results for the Kℓ4

amplitude. We show that with this input the large Nc relation 2Lr
1 ≈ Lr

2 is bet-
ter satisfied, although the resulting fit is not as good as fit All in convergence
for the masses. In Section II.6.2 we try to justify and test our estimate of the Cr

i .
In Section II.6.3 we compare further the fits obtained using their predictions
for the two-flavour LECs ℓ̄i. Fit All again results as the most convincing one.
In Section II.6.4 we show results for fits based on a different estimate of the
Cr

i couplings that can be found in [13], this is essentially a chiral quark model

estimate (CQM). The fits are not as good as fit All, nor for the χ2 nor for the
convergence of the expansions. Also in this case the large Nc relation is not
satisfied. In Section II.7 we show results for an another treatment of the Cr

i .
We let the Cr

i couplings to take random values, although they are forced to

keep the size 1/(16π2)2. These fits have been done requiring extra constraints
of convergence for mass and decay constant expansions, as explained in Sec-
tion II.7.1. In this way it is easier to select only credible fits. The results of such
a study are finally shown in Section II.7.2. We found very many good fits that
correctly predict all the observables used as input and with low χ2. These fits
are unfortunately different looking from each other. Therefore we can only
show which are the ranges where we found the Lr

i to vary. For some of the
NLO constants such ranges are very wide. This method shows however that
it is possible to fit the NNLO expressions to the observables with Cr

i of the
expected size and it also allows to study well the strong correlations between
the couplings. Finally in the appendix we present a table where we quote our
estimates for the NNLO couplings.

II.2 Chiral Perturbation Theory

We devote this section to a brief description of the formalism of three-
flavour ChPT [1–3]. Introductory references are [14, 15]. The notation in
the following is the same as in [4]. ChPT relies on the assumption that the
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flavour symmetry of QCD is spontaneously broken to the diagonal subgroup,
SU(3)L × SU(3)R → SU(3)V . According to the Goldstone theorem, 8 pseudo
Goldstone bosons then arise. These are identified with the low lying pseu-
doscalar mesons and are organized in a unitary 3 × 3 matrix

u = exp

(
i√
2F

φ

)

, (II.1)

where φ is a hermitian 3 × 3 matrix:

φ =






1√
2

π0 + 1√
6

η π+ K+

π− − 1√
2

π0 + 1√
6

η K0

K− K̄0 − 2√
6

η




 . (II.2)

The Lagrangian describing the low-momentum strong interactions of the light
mesons must be invariant under SU(3)L × SU(3)R local transformations. The
most general lowest order Lagrangian is

L2 =
F2

0

4

(
〈uµuµ〉 + 〈χ+〉

)
, (II.3)

with

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u†} ,

χ± = u†χu† ± uχ†u ,

χ = 2B0(s + ip) .

The fields s, p, lµ = vµ − aµ and rµ = vµ + aµ are the standard external scalar,
pseudoscalar, left- and right-handed vector fields introduced by Gasser and
Leutwyler [2, 3]. The constant F0 and B0 are instead the leading-order (LO)
LECs. The notation 〈X〉 stands for trace over up, down and strange quark
flavour.

Starting from this Lagrangian we can then build up an effective field the-
ory by including loop diagrams and higher order Lagrangians, where oper-
ators of higher dimensions are included. Their coupling constants are then
counter-terms, i.e. their infinities absorb the UV divergences coming from the
loop diagrams. In this way one obtains a theory renormalized order by or-
der. Unfortunately going to higher orders the number of operators allowed
by the symmetries increase and therefore also the number of unknown cou-
pling constants. At NLO there are 12 LECs, called Lr

i , while at NNLO there
are as many as 94, called Cr

i . We will always quote the renormalized versions
where the Cr

i are made dimensionless by using the physical value of Fπ . The
renormalization scale is chosen to be µ = 770 MeV. While there is in princi-
ple enough phenomenological information to fit the first ones, we still need
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to rely on theoretical models or on some other method for the latter ones, as
those described in Sections II.4, II.6.4 and II.7.

II.3 Fitting procedure and input observables

In this section we first show how we perform the fits and then we review
shortly the observables we use as input and their values.

II.3.1 χ2

The fit is performed using MINUIT in its C++ version [16, 17]. MINUIT is a
routine to find the minimum value of a multi-parameter function. The proce-
dure to perform the fits is very similar to the one explained in [9]. The function
to be minimized is the χ2 of the fit. It is obtained summing up the partial con-
tributions χ2

i(part)
for each input observables

χ2
i(part) =

(
xi(meas) − xi(calc)

∆xi

)2

χ2 = ∑
i

χ2
i(part) (II.4)

where xi(meas) are the physical values for each input observables and ∆xi their
associated errors. xi(calc) are the results as calculated by ChPT up to NNLO.
The rest of this section is devoted to list the values and the uncertainties used
for each xi.

II.3.2 Masses and decay constants

The masses and decay constants of the light pseudoscalar mesons have been
calculated at NNLO in [18]. We use them as physical parameters, namely as
input to calculate the several observables, similarly to what was done in [9].
Their values are given in [19] and are

mπ+ = 139.57018 MeV, mπ0 = 134.9766 MeV, mη = 547.853 MeV,

mK+ = 493.677 MeV, mK0 = 497.614 MeV, (II.5)

Fπ = 0.0922 ± 0.0002 GeV . (II.6)

The measurements in (II.5) and (II.6) differ slightly from the ones used in the
latest full fit [9].

mπ+ = 139.56995 MeV, mπ0 = 134.9764 MeV, mη = 547.30 MeV,

mK+ = 493.677 MeV, mK0 = 497.672 MeV, (II.7)

Fπ = 0.0924 GeV . (II.8)
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Notice that preliminary results of our work have been reported in the pro-
ceedings [20, 21] and several unpublished talks. Those results were based on
the masses of [22], that differ slightly from both (II.5), (II.6) and (II.7), (II.8).

All the new fits shown in this paper have been produced using the values
in (II.5) and (II.6). However we have not observed any substantial modifica-
tion of the outputs when using the old masses (II.7) and pion decay constant
(II.8). As discussed below other changes in experimental input are behind the
changes of central values.

The masses depend at LO on B0m̂ (with m̂ = (mu + md)/2) and on B0ms.
Lr

4, Lr
6, Lr

5 and Lr
8 appear in the expression at NLO. In m2

η there is also a NLO
contribution from Lr

7. The decay constant Fπ depends instead on F0, as an
overall factor, and on Lr

4 and Lr
5.

II.3.3 FK/Fπ

As input observable for our fits we will use the ratio FK/Fπ to eliminate the
dependence on the unknown constant F0, since it contributes as an overall
factor for FK as well. In the end the value of Fπ then determines the value for
F0.

The ratio takes the value [19]

FK

Fπ
= 1.197 ± 0.007, (II.9)

that is also in full agreement with several lattice estimates as reported in [23].
Using FK/Fπ at NLO we are sensitive both to Lr

4 and Lr
5. To perform the fit we

expand the ratio as

FK

Fπ
= 1 +

FK

F0

∣
∣
∣
∣

p4

− Fπ

F0

∣
∣
∣
∣

p4

︸ ︷︷ ︸

NLO

+
FK

F0

∣
∣
∣
∣

p6

− Fπ

F0

∣
∣
∣
∣

p6

− FK

F0

∣
∣
∣
∣

p4

Fπ

F0

∣
∣
∣
∣

p4

+
Fπ

F0

∣
∣
∣
∣

2

p4

︸ ︷︷ ︸

NNLO

, (II.10)

so that we can keep track of the exact contributions from the different orders.
However we also check that the same quantity estimated as

FK

Fπ
=

F0 + FK|p4 + FK|p6

F0 + Fπ |p4 + Fπ |p6

(II.11)

gives approximately the same value1.
Notice the experimental result for the ratio FK/Fπ (II.9) differs substantially

from the one used in [9]. Ref. [9] used FK/Fπ = 1.22 ± 0.01. The change in
FK/Fπ is one of the major sources of difference with [9] as will be shown later
in Section II.6.

1We thank Veronique Bernard and Emilie Passemar for pointing out that these were signifi-
cantly different for some of our preliminary fits.
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II.3.4 The quark-mass ratio ms/m̂

For the masses we have a similar problem, they depend on the quark masses
and on B0. We thus use as was done in [8, 9] the ratio of the strange quark
mass over the isospin doublet quark mass m̂ as input observable. The two
following relations involving the light pseudoscalar meson masses hold at LO
in ChPT

ms

m̂

∣
∣
∣
1

=
2m2

0K − m2
0π

m2
0π

ms

m̂

∣
∣
∣
2

=
3m2

0η − m2
0π

2m2
0π

(II.12)

where with m0 we indicate the meson masses at LO. They are calculated sub-
tracting from the physical values the NLO and NNLO expressions. We in-
clude both relations in (II.12) in the fits. For the pion mass we use the neutral
pion mass mπ0 . In the kaon case we need to correct the physical value for the
mass since its electromagnetic contribution is sizeable. We take the average
between mK+ and mK0 and then we subtract the electromagnetic contribution
as stated by the Dashen’s theorem and an estimate of its violation:

m2
Kav =

1

2
(m2

K+ + m2
K0 − 1.8(m2

π+ − m2
π0)) = (494.50 MeV)2. (II.13)

The factor 1.8 in (II.13) is due to the corrections to Dashen’s theorem where we
use the value of [24].

The value of the quark mass ratio has been calculated by several lattice
collaborations. The authors of [9] used as standard input ms/m̂ = 24 with a
10% uncertainty, but they also checked that ms/m̂ = 26 was compatible. Here
instead we use ms/m̂ = 27.8 as obtained by the Flavianet Lattice Averaging
Group in [23], and we again adopt a 10% uncertainty for the error to be used
in the fits when comparing with the theoretical values (II.12).

In the end the calculated NLO and NNLO masses are used to determine
the lowest order mass or alternatively B0m̂.

II.3.5 Kℓ4 formfactors

The decay K+(p) → π+(p1)π−(p2)e+(pℓ)ν(pν) is given by the amplitude [7]

T =
GF√

2
V⋆

usū(pν)γµ(1 − γ5)v(pℓ)(Vµ − Aµ). (II.14)

In (II.14) Vµ and Aµ can be parametrized in terms of four formfactors: F, G,
H and R. However the R-formfactor is negligible in decays with an electron
in the final state. Using partial wave expansion and neglecting d wave terms

II
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one obtains for the F, G and the H formfactors [25]:

F(sπ , sℓ, cos θ) = fs(sπ , sℓ)eiδs + fpeiδp cos θ + . . . ,

G(sπ , sℓ, cos θ) = gp(sπ , sℓ)eiδp + . . . ,

H(sπ , sℓ, cos θ) = hp(sπ , sℓ)eiδp + . . . , (II.15)

where we also assumed that the p phase is the same for the three formfactors.
In (II.15) sπ(sℓ) is the invariant mass of dipion (dilepton) system, θ is the angle
of the pion in their rest frame w.r.t. the kaon momentum. The F and G form-
factors were calculated at NNLO in [8]. The quantities are especially sensitive
to Lr

1, Lr
2 and Lr

3. Also the H formfactor is known at order p6 [26] but we do
not use it as input observable since it depends on a different set of LECs, those
from the anomalous intrinsic parity sector.

The measured observables are obtained by further parametrizing fs(sπ , sℓ)
and gp(sπ , sℓ) as

fs(sπ , sℓ) = fs + f ′sq2 + f ′′s q4 + f ′esℓ/4m2
π ,

gp(sπ , sℓ) = gp + g′pq2, (II.16)

where q2 = sπ/(4m2
π) − 1. (II.16) can be used to fit the measured data points.

In [9] the preliminary linear fit from the E865 measurement [27] was used as
input. It has the values

fs = 5.77 ± 0.097, f ′s = 0.47 ± 0.15,

gp = 4.684 ± 0.092, g′p = 0.54 ± 0.20. (II.17)

Now more precise results from the NA48/2 experiment are available [28] and
their second order fit of the formfactors read

f ′s
fs

= 0.152 ± 0.009,
f ′′s

fs
= −0.073 ± 0.009,

gp

fs
= 0.868 ± 0.01,

g′p
fs

= 0.089 ± 0.02, (II.18)

Notice that in [28] no measure of fs is reported, therefore we always use the
fs = 5.75 ± 0.097 from the E865 collaboration [29] in our fits. Multiplying by
fs and combining the errors in quadrature we obtain as measures

fs = 5.750 ± 0.097, f ′s = 0.874 ± 0.054, f ′′s = −0.420 ± 0.052,

gp = 4.99 ± 0.12, g′p = 0.512 ± 0.121 . (II.19)

In [28] there is also a linear fit which gives
f ′s
fs

= 0.073 ± 0.004 and thus

f ′s = 0.420± 0.024. Deciding which of the two fits for the Fs formfactor should
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be used is a relevant issue. The problem is how much we can rely on the
curvature of the formfactor Fs. As a matter of fact it is difficult for NNLO
ChPT to reproduce the large negative curvature f ′′s , as was also noted in [6,9].
A dispersive analysis approach combined to two loops ChPT, similar to the
one done for ππ scattering [30], might clarify the situation. An indication of
this is given by Figure 7 of [9]. It is visible there that the dispersive result for
Kℓ4 decay [7] has a larger curvature than the two-loop result [9].

II.3.6 ππ scattering

The ππ scattering amplitude can be written as a function A(s, t, u) which is
symmetric in t, u:

A(πaπb → πcπd) = δa,bδc,d A(s, t, u) + δa,cδb,d A(t, u, s) + δa,dδb,c A(u, t, s) ,
(II.20)

where s, t, u are the usual Mandelstam variables. The three flavour ChPT
calculation of A(s, t, u) was done in [11]. The isospin amplitudes T I(s, t)
(I = 0, 1, 2) are

T0(s, t) = 3A(s, t, u) + A(t, u, s) + A(u, s, t) ,

T1(s, t) = A(s, t, u) − A(u, s, t) ,

T2(s, t) = A(t, u, s) + A(u, s, t) , (II.21)

and are expanded in partial waves

T I(s, t) = 32π
+∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)tI
ℓ(s), (II.22)

where t and u have been written as t = − 1
2 (s − 4m2

π)(1 − cos θ), u = − 1
2 (s −

4m2
π)(1 + cos θ). In (II.22) we indicate with Pℓ(cos θ) the Legendre polyno-

mials. Near threshold the tI
ℓ are further expanded in terms of the threshold

parameters

tI
ℓ(s) = q2ℓ(aI

ℓ + bI
ℓq2 + O(q4)), q2 =

1

4
(s − 4m2

π), (II.23)

where aI
ℓ, bI

ℓ . . . are the scattering lengths, slopes,. . . . These thresholds param-
eters constitute our observables. Currently a very precise determination of
these parameters exists. It is based on a dispersive analysis approach and on
two-flavour ChPT and can be found in [30]. In Table II.1 we quote the values
of the threshold parameters we use in our fits and their corresponding uncer-
tainties, which we took to be double the ones in [30]. For most fits we used
only a0

0 and a2
0 but we have checked that the others listed in Table II.1 are also

II
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a0
0 0.220 ± 0.010 m0

π

b0
0 0.276 ± 0.012 m−2

π

a2
0 −0.444 ± 0.020 10−1m0

π

b2
0 −0.803 ± 0.024 10−1m−2

π

a1
1 0.379 ± 0.010 10−1m−2

π

b1
1 0.567 ± 0.026 10−2m−4

π

Table II.1: The values of the scattering lengths and slopes as found in [30] and our
fitting uncertainties. In the third column the normalization factors are given. We quote
here only those scattering parameters added as input in our fits.

well within the uncertainties quoted. Notice also that the NA48/2 experiment
in [28] obtained compatible values for a0

0 and a2
0 from the measurement of the

δ = δp − δs phase shift in Kℓ4 decays.

II.3.7 πK scattering

The πK scattering process has amplitudes T I(s, t, u) in the isospin channels
I = 1/2, 3/2. They have been calculated at NNLO in ChPT in [12]. As for ππ
scattering, it is possible to define scattering lengths and slopes aI

ℓ, bI
ℓ. So we

introduce the partial wave expansion of the isospin amplitudes

T I(s, t, u) = 16π
+∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)tI
ℓ(s), (II.24)

where Pℓ(cos θ) are the Legendre polynomials. Then we expand the tI
ℓ(s) near

threshold

tI
ℓ(s) =

1

2

√
sq2ℓ

πK

(

aI
ℓ + bI

ℓq2
πK + O(q4

πK)
)

, (II.25)

where

q2
πK =

s

4

(

1 − (mK + mπ)2

s

) (

1 − (mK − mπ)2

s

)

, (II.26)

is the magnitude of the three-momentum in the center of mass system. The
Mandelstam variables are given in terms of the scattering angle θ by

t = −2q2
πK(1 − cos θ), u = −s − t + 2m2

K + 2m2
π . (II.27)
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a1/2
0 0.224 ± 0.044 m−1

π

b1/2
0 0.85 ± 0.08 10−1m−3

π

a3/2
0 −0.448 ± 0.154 10−1m−1

π

b3/2
0 −0.37 ± 0.06 10−1m−3

π

a1/2
1 0.19 ± 0.02 10−1m−3

π

b1/2
1 0.18 ± 0.04 10−2m−5

π

a3/2
1 0.65 ± 0.88 10−3m−3

π

b3/2
1 −0.92 ± 0.34 10−3m−5

π

Table II.2: The values of the scattering lengths and slopes as found in [31]. The un-
certainties quoted here are those used in our fits and are double the ones of [31]. In
the third column the normalization factors are given. We quote only those scattering
parameters added as input in our fits.

(II.25) defines the πK scattering parameters aI
ℓ and bI

ℓ that are our input ob-
servables. These have been computed from Roy and Steiner type equations
in [31]. The results for the s and p waves scattering parameters we use are

reported in Table II.2. For most numerical results we used only a1/2
0 and a3/2

0
but we have checked that all the others agree within uncertainties.

II.3.8 Scalar formfactor

The scalar formfactor for the pion is defined as

Fπ
S (t) = 〈π0(p)|ūu + d̄d|π0(q)〉, (II.28)

where t = p − q. Near t = 0 it is expanded via

Fπ
S (t) = Fπ

S (0)

(

1 +
1

6
〈r2〉π

S t + cπ
S t2 + . . .

)

. (II.29)

The observables 〈r2〉π
S and cπ

S are used as input in our fits. The NNLO ChPT
calculation for these quantities was performed in [10]. The scalar formfactor
cannot be measured experimentally. Measuring the ππ phase shifts and us-
ing a dispersive representation it is possible to infer its energy behaviour and
therefore the values of 〈r2〉π

S and cπ
S [32–34]

〈r2〉π
S = 0.61 ± 0.04 fm2, cπ

S = 11 ± 2 GeV−4. (II.30)
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Notice that the result for 〈r2〉π
S is also compatible with the lattice result of [35].

This is all the information we can extract from the scalar formfactors. Cur-
rently, there are basically no results available for Fπ

s (0) and for the energy
behaviour of the kaon scalar formfactors or of the strange contribution to the
pion formfactor.

II.3.9 Lr
9 and Lr

10

We do not attempt to fit the remaining NLO LECs, Lr
9 and Lr

10. Those LECs

we fit are independent of Lr
9 and Lr

10, or alternatively, none of the observables2

we discuss depend on them. One needs to include additional information to
constrain their values.

Lr
9 appears alone at NLO in the electromagnetic radius of the pion vector

formfactor. The NNLO contribution dependent on the other Lr
i is rather small

[36]. It was therefore possible to fit that constant almost independently from
the other couplings [36]. Furthermore it never appears at NLO in any of the
observables used here as input thus it does not affect much our fits. We always
set Lr

9 = (0.593 ± 0.43) × 10−2 for µ = 0.77 GeV.
Lr

10 can be estimated using τ decays data on the V − A spectral function

[37]. Its value was found to be Lr
10 = (−4.06 ± 0.39) × 10−3 at µ = 0.77 GeV.

However this constant never appears in the observables under study not even
at NNLO. Therefore it does not have any influence on our fits. For this reason
we always set such constant to zero in our fits.

II.4 Resonance estimates for the Cr
i

The many unknown coupling constants that appear in the p6 Lagrangian, the
Cr

i , represent the major problem for performing the fit with a O(p6) preci-
sion. A lot of effort went into trying to estimate them using different models
and treatments. The one we present here, also used in [8], is the resonance
saturation model [38, 39]. It is based on the idea that the LECs encode the in-
formation from physics above ΛChPT ≈ 1 GeV, and that they are dominated
by the physics just above this scale, i.e. the physics of low-lying resonances.
Therefore we need a Lagrangian that describes these new particles and their
interactions with the pseudoscalar mesons of the octet. We include only vec-
tor, scalar and the η′ fields. We use the same estimate described in [8], thus
we refer the reader to that paper for further details, including the Lagrangians
used at the resonance level.

The model is used then to estimate the p6 contributions depending on the
Cr

i . In [8], the heavier mesons were integrated out producing p6 Lagrangians

2with the exception of Kℓ4 where a very small dependence is present for sℓ 6= 0.
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for the pseudo-Goldstone boson. The heavy resonance fields for the vector
mesons produce

LV = − i fχgV√
2M2

V

〈∇λ([uλ, uν])[uν, χ−]〉 +
gVαV√

2M2
V

〈[uλ, f νλ
− ](∇µ[uµ, uν])〉

− igV fV

2M2
V

〈(∇λ f λν
+ )(∇µ[uµ, uν])〉 −

iαV fχ

M2
V

〈[uν, χ−][uλ, f νλ
− ]〉

− fχ fV√
2M2

V

〈(∇λ f
λµ
+ )[uµ, χ−]〉 , (II.31)

and the scalar mesons

LS =
c2

d

2M4
S

〈∇ν(uµuµ)∇ν(uλuλ)〉 +
c2

m

2M4
S

〈(∇νχ+)(∇νχ+)〉

+
cdcm

M4
S

〈∇ν(uµuµ)(∇νχ+)〉 . (II.32)

While for the η′ they obtained

Lη′ = − d̃2
m

2M4
η′

∂µ〈χ−〉∂µ〈χ−〉 (II.33)

In (II.31) and (II.32) f
µν
± are defined as

f
µν
± = u(vµν − aµν)u† ± u†(vµν + aµν)u .

In [8] the above Lagrangians were not rewritten in the standard form of the La-
grangian at p6. That work has since been done using more general resonance
lagrangians in [40,41]. We have checked that the results using the Lagrangians
(II.31,II.32) directly agrees with the same inputs using the Cr

i directly in terms
of resonance parameters as derived in [40,41]. The η′ contribution was rewrit-
ten in the Cr

i in [42].
The values we choose for the different couplings are the same as in [8]

fV = 0.20, fχ = −0.025, gV = 0.09,

αV = −0.014, cm = 42 MeV, cd = 32 MeV,

d̃m = 20 MeV. (II.34)

and the masses are the experimental ones [19].

mV = mρ = 0.77 GeV, mS = 0.98 GeV, mη′ = 0.958 GeV, (II.35)

In Table II.15 in the appendix we quote the Cr
i as estimated through the

resonance model. We did not include more sophisticated resonance models

II
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fit 10 fit 10 iso

103Lr
1 0.43 0.39 ± 0.12

103Lr
2 0.73 0.73 ± 0.12

103Lr
3 −2.35 −2.34 ± 0.37

103Lr
4 ≡ 0 ≡ 0

103Lr
5 0.97 0.97 ± 0.11

103Lr
6 ≡ 0 ≡ 0

103Lr
7 −0.31 −0.30 ± 0.15

103Lr
8 0.60 0.60 ± 0.20

χ2 (dof) - - 0.26 (1)

Table II.3: The results for fit10 of [8] and for a similar fit done without including isospin
breaking corrections for the masses (fit10 iso) and also using the masses in (II.5) and
decay constant Fπ as in (II.6). The uncertainties are those calculated by MINUIT. The
two fits reported are in agreement within uncertainties.

because this would have again increased strongly the number of free param-
eters to be fitted. As discussed below we also have indications that terms
suppressed by 1/Nc, Nc the number of colours, might be important. These
cannot at present be estimated using this type of approach.

II.5 Existing fits

In this section we describe a bit more in detail the earlier fits. The main full
fit done is fit 10 in [9]3. Earlier determination of the Lr

i did not fully include
NNLO effects and we thus do not discuss them here. The values for the Lr

i
obtained in fit 10 are reproduced in Table II.3 in the column labelled fit 10.
This is a full NNLO fit of the Lr

i and it was done including the quantities and
the Lr

i whose value they influence most:

1. masses and pion decay constant with the old values as in (II.7) and (II.8)

2. the Kℓ4 formfactor parameters: fs, f ′s , gs, g′s. They constrained mostly
Lr

1, Lr
2, Lr

3.

3. FK/Fπ = 1.22 ± 0.01, sensitive to Lr
5.

4. ms/m̂ = 24 constrains Lr
7, Lr

8 via the masses in (II.12).

5. Lr
4 ≡ Lr

6 ≡ 0 since they are 1/Nc suppressed couplings.

The Cr
i contributions were estimated using resonance saturation as de-

scribed in Section II.4. They also included there the axial-vector resonances,

3The E865 data were still preliminary then, the main fit in [9] was with older Kℓ4 data.
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p2 p4 p6

m2
π 0.753 0.006 0.241

m2
K 0.702 0.007 0.291

m2
η 0.747 −0.047 0.300

Fπ/F0 1 0.136 −0.075
FK/F0 1 0.307 −0.003
FK/Fπ 1 0.171 0.049

Table II.4: The convergence of the expansion for the meson masses and the decay
constants for fit 10 iso. A similar behaviour holds for fit10. The masses quoted are
normalized to the physical masses, while the decay constants to F0 (F0 = 0.0869 GeV).

although their contribution was rather small. The scale of saturation was set
to µ ≡ 0.77 GeV, but µ = 0.5, 1 GeV were within errors. In fit 10 isospin break-
ing corrections in the masses and decay constants were also included, though
the authors of [9] noticed that the neglect of isospin violation was a good ap-
proximation. Indeed the fits performed including or not these effects are in
agreement within errors as can be seen from Table II.3 comparing the columns
fit 10 and fit 10 iso.

Fit 10 has been so far a quite successful fit. Not only because it already
included many quantities at order p6, but also because the resulting Lr

i nicely
confirmed the estimates from resonance models. These are lead by the large
Nc expansion which predicts e.g. 2Lr

1 ≈ Lr
2 and Lr

4 ≈ Lr
6 ≈ 0. While the second

relation was imposed, the first one was found to be well satisfied. This added
credibility to the fit itself even though it relied on the resonance estimate for
the tree-level p6 contributions.

However the convergence of the perturbative expansion for this fit is not as
expected. The different orders for the masses and decay constants are reported
in Table II.4 for fit 10 iso4. The O(p4) order of the masses turns out to be tiny,
far less than the expected 30%. On the other hand the NNLO contribution is
definitely too large. The sources of this bad convergence are basically two.
First the constraint Lr

4 ≡ Lr
6 ≡ 0 that clearly sends to zero many contributions

coming from the NLO tree-level diagrams. Secondly most of the Cr
i appearing

in the masses expressions are estimated to be zero as well. Therefore they
cannot help in canceling large two-loop contributions. On the other hand the
convergence for the decay constants is quite satisfying.

After fit 10 was performed many other observables have been calculated at
O(p6) in SU(3) ChPT such as the ππ and πK scattering threshold parameters.
Of course it is very important to compare the pure ChPT predictions obtained

4The numbers for fit 10 itself can be found in Table 2 of [10].
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using fit 10 with the values of Tables II.1 and II.2. These comparisons have
been done and can be found in Table 1 of [11] and in Table 4 of [12]. Fit 10 is
mostly in agreement within errors, although there are small discrepancies in
some of the threshold parameters. Some comparison with scalar formfactors
was done in [10]. The last three papers used the same inputs as fit 10 and tried
to vary Lr

4 and Lr
6 to see if some preferred regions could be found. Here we

redo the fit from the beginning with all inputs.

II.6 New Fits

The aim of this section is to show how the new measurements and observables
included in our global fits, change the results compared to fit 10. We have
rewritten as mentioned above all programs into C++ and are using the isospin
symmetric versions of the calculations. We therefore first redid the fit using
the same inputs as fit 10. The outputs are given in Table II.3 in the column
labelled fit 10 iso. This also shows that the minor changes in masses and Fπ as
well the isospin breaking corrections do not affect the fit values appreciably.
We will now add the effects of the changed experimental inputs and of the
additional inputs to see how they change the fitted values of the Lr

i .
In Table II.5 we present several fits. These have all been performed us-

ing the resonance estimate of the Cr
i of Section II.4 and Table II.15 in the ap-

pendix, setting the scale of saturation µ = 0.77 GeV. Furthermore, we used the
new values of the masses and decay constant of (II.5) and (II.6). We remind
the reader that the use of these new parameter-values affects the output only
within the uncertainties. Hereafter we summarize the steps in which we have
included the new information.

NA48/2 The input observables and their values are the same as for fit 10 iso,
but we use the new measurements in (II.19) for the Kℓ4 decay from the
NA48/2 collaboration [28]. The new measurements lead immediately
to a striking feature: the large Nc relation 2Lr

1 ≈ Lr
2 does not hold any

longer. It even turns out that Lr
2 . Lr

1. Notice that, as explained in Sec-
tion II.3.5, the slope f ′s comes from a second order fit of the fs formfactor
and therefore it differs from the one used in fit 10. In Section II.6.1 we
will present also results for the linear fit of the fs formfactor.

FK/Fπ Same as fit NA48/2 but with the new value in (II.9) for FK/Fπ . Lr
5 is

mainly affected and becomes smaller than in fit 10. As a consequence
also the convergence of the decay constants expansion is worsened, e.g.
Fπ/F0|p4 ≈ 0.134 while Fπ/F0|p6 ≈ −0.126.

All⋆ In this fit we include a few more observables, i.e. the ππ scattering pa-

rameters a0
0 and a0

2, the πK scattering parameters a
1
2
0 and a

3
2
0 and the pion
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fit 10 iso NA48/2 FK/Fπ All ⋆ All Cr
i ≡ 0 All p4

103Lr
1 0.39 ± 0.12 0.88 0.87 0.89 0.88 ± 0.09 0.65 1.12

103Lr
2 0.73 ± 0.12 0.79 0.80 0.63 0.61 ± 0.20 0.11 1.23

103Lr
3 −2.34 ± 0.37 −3.11 −3.09 −3.06 −3.04 ± 0.43 −1.47 −3.98

103Lr
4 ≡ 0 ≡ 0 ≡ 0 0.60 0.75 ± 0.75 0.80 1.50

103Lr
5 0.97 ± 0.11 0.91 0.73 0.58 0.58 ± 0.13 0.68 1.21

103Lr
6 ≡ 0 ≡ 0 ≡ 0 0.08 0.29 ± 0.85 0.29 1.17

103Lr
7 −0.30 ± 0.15 −0.30 −0.26 −0.22 −0.11 ± 0.15 −0.14 −0.36

103Lr
8 0.60 ± 0.20 0.59 0.49 0.40 0.18 ± 0.18 0.19 0.62

χ2 0.26 0.01 0.01 1.20 1.28 1.67 2.60
dof 1 1 1 4 4 4 4

Table II.5: Several global fits compared to fit10 iso. For all the fit µ = 0.77 GeV. The errors quoted are the
ones as calculated by MINUIT. The numbers in the row labelled dof are the degrees of freedom for the
fit. See the description in the text for further details on how the fits have been performed. The column
labelled All is our main new result.
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tributions to the masses due to Lr
4 and Lr

6 are not zero, Lr
5 and Lr

8 dimin-
ish.

All This fit is very similar to fit All⋆. Here we adopt the new value for the
quark mass ratio ms/m̂ = 27.8. However we find that using values
for the quark mass ratio between 27 and 29 does not change the results
considerably. The constants Lr

7, that appears in the η mass, and Lr
8 are

strongly affected by this change. This is also relatively true for Lr
4 and

Lr
6. We also tried to perform the same fit but setting Lr

4 ≡ Lr
6 ≡ 0. The

resulting fit is very similar to fit NA48/2 but it has a huge χ2 (χ2 = 45).

Cr
i ≡ 0 In the last column of the table we quote the fit obtained including the

same input as for fit All, but setting all the Cr
i ≡ 0. This fit has been

done to show how the different Cr
i can affect the Lr

i fit. Notice that the
constants Lr

1, Lr
2 and Lr

3 change a lot, while the others stay in the same
area as in fit All. This is not surprising: the last few constants are indeed
primarly fitted from quantities where many contributing Cr

i are large-
Nc suppressed and those which are not are set to zero also in the simple
resonance estimate used.

All p4 Same fit as All but all expressions are now at NLO. Use this fit for one-
loop ChPT results. Note that this produces very high values for Lr

4 and
Lr

6. The underlying reason is that the lower value of FK/Fπ requires a
smaller Lr

5 than before and the pion scalar radius then requires at this
order a larger Lr

4. This effect is also visible in fit All but is reduced when
including the NNLO corrections.

Fit All is what we consider as the present best fit for NNLO ChPT calcula-
tions, it thus superseeds fit 10 of [9].

Let us discuss how the ChPT expansion is affected by the new values for
the Lr

i . The various terms of the mass expansions read for fit All

m2
π |p2 = 1.035 m2

π |p4 = −0.084 m2
π |p6 = +0.049 ,

m2
K|p2 = 1.106 m2

K|p4 = −0.181 m2
K|p6 = +0.075 , (II.36)

m2
η |p2 = 1.186 m2

η |p4 = −0.224 m2
η |p6 = +0.038 ,

while those for the decay constants are

Fπ

F0

∣
∣
∣
∣

p4

= 0.311
Fπ

F0

∣
∣
∣
∣

p6

= 0.108

FK

F0

∣
∣
∣
∣

p4

= 0.441
FK

F0

∣
∣
∣
∣

p6

= 0.216 , (II.37)

FK

Fπ

∣
∣
∣
∣

p4

= 0.129
FK

Fπ

∣
∣
∣
∣

p6

= 0.068 .
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In (II.36) and (II.37) we used the same normalizations as in Table II.4, although
now F0 = 0.065 GeV, this is due to the larger value of Lr

4 which comes however
with a large error. Notice that the convergence of the mass expansions in
(II.36) is improved compared to the one of fit 10 in Table II.4. However (II.36)
looks strange: the LO masses are larger than the physical ones and there are
significant cancellations between NLO and NNLO. Furthermore, even if the
convergence is improved, it is still quite different from the one expected. E.g.
the m2

π |p4 contribution is much smaller than the expected 30% and it is of the

same size as the p6 order. The convergence for the decay constants is a bit
worsened compared to the one of fit 10, due to the low value of Lr

5, but it is
still acceptable. Notice also that when the ratio FK/Fπ is calculated with (II.11)
the resulting value is 1.168, which is 3% smaller than the expected 1.197 . This
can be due to higher order corrections that are included in the ratio of (II.11),
but not in (II.10).

We performed more fits than those quoted in Table II.5. We included more
ππ scattering parameters and πK scattering parameters. We found that these
fits are compatible with fit All of Table II.5 within uncertainties. The same is
true when we add the quantity cπ

s .

II.6.1 Linear fit for Kℓ4 decays

One of the most striking features of the results presented in Table II.5 is that as
soon as the new results from the quadratic fit of the NA48/2 collaboration [28]
are included, the constant Lr

1 and Lr
2 take unexpected values. Indeed, as was

noted above, they do not respect any longer the large-Nc relation 2Lr
1 ≈ Lr

2,
but already in fit NA48/2 they are Lr

1 ≈ Lr
2 while when also the ππ and the

πK scattering lengths are included (fit All) we even obtain Lr
1 > Lr

2. On the
other hand when we calculate the curvature f ′′s using the Lr

i as obtained in
fit All we obtain f ′′s = −0.124 to be contrasted with the experimental value
f ′′s = −0.437. Furthermore, whenever we include as input also f ′′s we again
obtain fits compatible to the ones in Table II.5, but with much larger χ2 (e.g.
χ2 ∼ 35 for fit All) and the largest contribution comes exactly from f ′′s . These
results confirm what was already stated at the end of Section II.3.5, i.e. the
state-of-art ChPT does not reproduce such a large negative bend. Since f ′s and
f ′′s are highly correlated, the linear and the quadratic fit of the Fs formfactor
present rather different slopes.

For such reasons we perform fits using the slope of the linear fit f ′s/ fs =
0.073 [28] as well. The resulting fit, analogous to fit All, is reported in Table II.6.
By inspection one can see that the large Nc relation 2Lr

1 = Lr
2 still does not

precisely hold, but at least 1.4Lr
1 ≈ Lr

2. On the other hand Lr
4 and Lr

6 are again
not suppressed, while Lr

7 and Lr
8 are unexpectedly small. Also all the constants

have large uncertainties.
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All linear

103Lr
1 0.58 ± 0.10

103Lr
2 0.80 ± 0.12

103Lr
3 −3.33 ± 1.42

103Lr
4 0.93 ± 0.31

103Lr
5 0.71 ± 0.24

103Lr
6 0.86 ± 0.87

103Lr
7 −0.04 ± 0.40

103Lr
8 0.02 ± 0.79

χ2(dof) 1.16(4)

Table II.6: The analogous of fit All, but the linear fit of the Kℓ4 formfactors have been
used. The values of the Lr

i are at µ = 0.77 GeV.

The convergence of the chiral expansions is worse than the one for fit All.
The various terms of the mass expansions read

m2
π |p2 = 0.655 m2

π |p4 = 0.370 m2
π |p6 = −0.025 ,

m2
K|p2 = 0.699 m2

K|p4 = 0.181 m2
K|p6 = 0.120 , (II.38)

m2
η |p2 = 0.751 m2

η |p4 = 0.151 m2
η |p6 = 0.098 ,

while those for the decay constants are

Fπ

F0

∣
∣
∣
∣

p4

= 0.355
Fπ

F0

∣
∣
∣
∣

p6

= 0.157

FK

F0

∣
∣
∣
∣

p4

= 0.498
FK

F0

∣
∣
∣
∣

p6

= 0.262 , (II.39)

FK

Fπ

∣
∣
∣
∣

p4

= 0.143
FK

Fπ

∣
∣
∣
∣

p6

= 0.054 .

In the light of these results it is rather difficult to draw a conclusion. The
very different predictions for Lr

1 and Lr
2 obtained in fit All and this fit con-

firm that the picture of ChPT for Kℓ4 decays is still incomplete. As mentioned
earlier, we expect a dispersive analysis to produce a larger curvature.

II.6.2 Some small variations on fit All

In the resonance estimate described in Section II.4 there is at least an assump-
tion not entirely justified. We assume the scale at which the saturation hap-
pens to be 0.77 GeV, i.e. the mass of the lowest lying resonance. Nothing
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prevents us to choose a larger or smaller scale, although this is still expected
to be in the same range of energy. To check whether this assumption is safe
we try to fit from data the saturation scale parameter as well. The results are
rather reassuring. Fit All of Table II.5 is completely unaffected by this proce-
dure. The fitted saturation scale is 0.77 ± 0.45 GeV.

The fit in Table II.6 shows a little difference. The fitted saturation scale is
now 0.71 ± 0.31 GeV. However the Lr

i do not change that much and the look
of the fit is pretty much the same as before.

We also attempt to find better estimates of the Cr
i constants releasing the

values of the couplings gV , cd and cm. Again we try to fit them using both
the input of fit All and of the fit in Table II.6 (linear fit of NA48/2 instead
of quadratic). In the first case we find in fact gV and cm close to the ones in
(II.34). They read gV = 0.097 ± 0.123 and cm = 0.045 ± 0.049 GeV. For cd we
find instead a value larger than expected, i.e. cd = 0.093± 0.100 GeV. Anyway
they are all affected by large uncertainties. The Lr

i fit is somewhat compatible
with the one of Table II.5, fit All, within uncertainities because of the large
ranges allowed for gV , cm, cd. The fits are in a very broad minimum here with
only one degree of freedom.

If we apply the same procedure but with the same Kℓ4 input as for Table II.6
(NA48/2 linear fit) we arrive to similar conclusions: the values of gV and cd

are similar to the ones in (II.34), while cd is larger. Again all the resonance
couplings present large uncertainties. The Lr

i are here rather well compatible
with those in Table II.6.

We also try to multiply the Cr
i by an overall constant α and include it as a

fitting parameter. It is encouraging to see that the result is α ≈ 1.03, namely
the best fit is reached with basically the same values of the Cr

i from resonance
estimate. Obviously the fit obtained is very similar to fit All. When we apply
the same procedure to the fit in Table II.6 the constant α takes the value 0.90.
This affects the fit of Table II.6, but still within uncertanties.

From this we conclude that fit All is stable against small changes in the
resonance estimate of the Cr

i .

II.6.3 Adding input: ℓ̄i constants in two-flavour ChPT

The authors of [43, 44] study three flavour ChPT in the limit where the ms

is assumed to be much larger than m̂ and the external momenta. In this
case they can integrate out the strange quarks and SU(3) × SU(3) ChPT re-
duces to SU(2)× SU(2) ChPT. Matching the results from the two frameworks
they calculate explicitely the dependence of the two-flavour LECs (the scale-
independent ℓ̄i and the cr

i ) on the strange quark mass and on the three-flavour
LECs. These relations have been worked out using two different methods at
order p6 in [43, 44].
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fit 10 iso All All linear [23, 30]
ℓ̄1 −0.6 −0.1 −1.9 −0.4 ± 0.6
ℓ̄2 5.7 5.3 5.7 4.3 ± 0.1
ℓ̄3 1.3 4.2 4.1 3.3 ± 0.7
ℓ̄4 4.0 4.8 4.5 4.4 ± 0.4

Table II.7: The values of the scale-independent SU(2) LECs ℓ̄i. In the first three
columns we show the values as predicted by fit 10, fit All and fit All linear. In the
last column we quote the known values from [23, 30]. Notice that the uncertainty over
ℓ̄4 is double the one quoted in [30] due to the still unclear situation for the lattice re-
sults [23].

There exist different evaluations of the ℓ̄i. ℓ̄3 has been estimated rather well
using lattice results [23]. ℓ̄1, ℓ̄2, ℓ̄4 and ℓ̄6 have been obtained by matching two-
flavour ChPT with dispersive results [30], but (contradictory) lattice results
exist for those too [23]. We have increased the error on ℓ̄4 because of this.

In Table II.7 we summarize all the values of these constants and the results
obtained by plugging the Lr

i and Cr
i of fit 10 iso, fit All and fit All linear in the

relations of [43,44]. By comparison of the first three columns with the last one
of Table II.7 it is easy to see that none of the fits correctly reproduces all the ℓ̄i

values. A similar conclusion holds also for the fit in the next-to-last column of
Table II.5, where all the Cr

i are zero. The disagreement with the ℓ̄i in this case

is actually even stronger. These fits encounter particular trouble in fitting ℓ̄2.

We tried to fit the ℓ̄i whose values appear on the last column of Table II.7
in addition to the inputs used for fit All. Not surprisingly it is not possible to
accommodate all those inputs at the same time. The resulting χ2 is approx-
imately 22 and its largest contributions come exactly from the ℓ̄i. Excluding
from the fit ℓ̄2 but including the others improves the situation. The resulting
Lr

i values are very close to the ones of fit All, the most important deviation

being 103Lr
3 = −3.18. The χ2 takes the value 3.15 with 7 degrees of freedom.

Also in this case the value for ℓ̄2 is still far from the expected one.

This is not surprising. In [43] it was found that the constant ℓ̄2 depends on
the couplings Lr

2, Lr
3 and on the combination 2Cr

13 − Cr
11. The authors of [43]

observed there that to find agreement with the determined value of ℓ̄2 the
combination of Cr

i must not be zero. Unfortunately those are two large-Nc

suppressed couplings and therefore they are set to zero in our resonance es-
timate (see Table II.15). We also try to fit those two Cr

i using also ℓ̄2 as input
observable, but this has been unsuccessful as well. In this way we manage to
accommodate the value for ℓ̄2, but then ℓ̄1 is off, since it contains also a differ-
ent combination of Cr

11, Cr
13 and of Cr

6. This last coupling is also Nc-suppressed
and thus estimated to be zero. In the end there is no way out: when we try to
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fit Cr
6 too, there are other quantities taking very different values. The Cr

i are
too correlated to be able to fit only a few of them.

As far as regards the fit in Table II.6 the results for the ℓ̄i are even less clear.
Its predictions are reported in the third column of Table II.7. It is straightfor-
ward to see that now even the predicted ℓ̄1 is off. Of course when we try to fit
all the ℓ̄i the χ2 is very large (χ2 ≈ 37.7). Contrary to what happened for fit
All, the situation does not improve that much when we exclude ℓ̄2. For this fit
seems to be very hard to reach the correct value for ℓ̄1 too. The resulting χ2 in
this second case is 5.82 with ℓ̄1 = −1.4.

Finally an extra cautionary remark. Requiring that the SU(3) ChPT con-
stants predict the values for the SU(2) ones might not be a very safe assump-
tion. What it assumes is that both SU(2) and SU(3) ChPT work well for the
same quantities. For the ππ scattering quantities, which are very much deter-
mined by loop parts, relatively small differences can become amplified in the
resulting values of the LECs.

II.6.4 A chiral quark model estimate for the Cr
i

We discussed above a simple resonance saturation estimate for the NNLO
LECs Cr

i . There are other attempts at predicting these values as well from chi-
ral quark models. As a representative of this we choose [13]. It also is a large
Nc approximation but with a somewhat different pattern than our resonance
saturation. Their method is based on a study of the relation between the chiral
Lagrangian up to order p6 and QCD, they find as expected that the LECs can
be given in terms of some Green functions of QCD. In the evaluation of these
Green functions, several assumptions and approximations are made such that
it is not a full derivation but something like a chiral quark model. Their results
are presented in Table IV of [13].

We also use their estimate to perform the fits. The results can be found in
Table II.8. There are results for two different fits. They have been obtained
including all the observables as for fit All of Table II.5. In the first column
we use the Cr

i as quoted in Table IV of [13], whereas in the second column
we multiply them by an overall constant α that is also fitted. This second fit
was done because we observed that the values for the Cr

i of [13] are somewhat
larger than the ones of the resonance estimates of Table II.15. The fit confirms
this observation and finds as best value for α = 0.27, i.e. Cr

i considerably

smaller than the ones in [13]. The value of the χ2 for the two fits of Table II.8 is
somewhat worse than for fit All. Indeed it seems that it is now very difficult
to fit the slope g′p of the G formfactor for Kℓ4 decay. From the second fit of
Table II.8 one can notice that when the Cr

i are allowed to take smaller values
the Lr

2 constant compensates for that. This allows the fit to reach a better value
for the g′p.
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Cr
i [13] α × Cr

i [13]

103Lr
1 0.66 ± 0.11 0.66 ± 0.10

103Lr
2 0.59 ± 0.13 0.24 ± 0.32

103Lr
3 −2.74 ± 0.48 −1.80 ± 0.75

103Lr
4 0.75 ± 0.16 0.77 ± 0.84

103Lr
5 1.64 ± 0.83 0.83 ± 0.39

103Lr
6 0.64 ± 0.41 0.32 ± 0.99

103Lr
7 −0.25 ± 0.30 −0.15 ± 0.14

103Lr
8 0.76 ± 0.75 0.27 ± 0.23

α – 0.27 ± 0.47

χ2 (dof) 3.71 (4) 1.35 (3)

Table II.8: The results as obtained using the Cr
i estimates of [13]. Both the fits include

the same observables as fit All of Table II.5. In the second column the coefficient α
multiplied by the Cr

i has been included as fitting parameter. The Lr
i are given at µ =

0.77 GeV.

p2 p4 p6

m2
π 0.988 −0.066 0.078

m2
K 1.056 −0.177 0.121

m2
η 1.131 −0.225 0.094

Fπ/F0 1 0.318 0.108
FK/F0 1 0.475 0.198
FK/Fπ 1 0.156 −0.050

Table II.9: The results as obtained using the Cr
i estimates of [13] showing the conver-

gence for the fit where α is left free. The normalizations are the same as explained in
Table II.4. Now F0 = 0.065 GeV.

As can be seen in Table II.9, even the convergence for the masses and decay
constants is worse than the one for fit All reported in (II.36) and (II.37) respec-
tively. Notice that we have not quoted the convergence for the fit obtained
without multiplying the Cr

i by the coefficient α. In fact this is found to be even

worse than the one of Table II.8, the p4 terms being constantly larger than,
although comparable in size to, the p6 ones.

In Table II.10 and II.11 we quote the results obtained with the Cr
i of [13], but

fitting the slope of the linear fit for the Fs formfactor as in the fit of Table II.6.
Conclusions similar to the ones drawn for Table II.8 hold here too.
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Cr
i [13] α × Cr

i [13]

103Lr
1 0.38 ± 0.10 0.35 ± 0.11

103Lr
2 0.88 ± 0.12 0.43 ± 0.30

103Lr
3 −3.20 ± 0.47 −2.04 ± 0.79

103Lr
4 0.42 ± 0.17 0.91 ± 0.35

103Lr
5 1.62 ± 0.77 1.03 ± 0.57

103Lr
6 0.43 ± 0.21 0.87 ± 0.77

103Lr
7 −0.32 ± 0.45 −0.11 ± 0.34

103Lr
8 0.92 ± 1.07 0.17 ± 0.71

α – 0.22 ± 0.47

χ2 (dof) 4.13 (4) 1.20 (3)

Table II.10: The results as obtained using the Cr
i estimates of [13]. Both the fits include

the same observables as the fit in Table II.6, i.e. as fit All but with the linear fit from
NA48/2. In the second column the coefficient α multiplied by the Cr

i has been included
as fitting parameter. The Lr

i are given at µ = 0.77 GeV.

p2 p4 p6

m2
π 0.624 0.384 −0.008

m2
K 0.667 0.189 0.144

m2
η 0.716 0.149 0.135

Fπ/F0 1 0.354 0.142
FK/F0 1 0.531 0.225
FK/Fπ 1 0.177 −0.020

Table II.11: The convergence for the fit where α is left free is shown. The normalizations
are the same as explained in Table II.4. Now F0 = 0.062 GeV. Fit as in rightmost column
of Table II.10.

II.7 Releasing the Cr
i

All the fits presented in the previous section have unusual NNLO corrections
to the masses and many also to the decay constants. In addition, if we in-
cluded the requirement that the ℓ̄i were also fitted well we could not find a
simple good fit.

An additional reason to go beyond what we have is that all the estimates
used above with the exception of the singlet η contribution only contribute to
the NNLO LECs5 that are leading in Nc. In the masses and decay constants

5This is true with the exception of terms involving 〈χ−〉 which can get produced by the equa-
tions of motion.
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in addition the estimates from the resonance exchange give no contribution at
leading order in Nc at all. This is an unsatisfying situation, we do expect that
the masses and decay constants should get some contribution from the NNLO
constants. Inspection of the relations between the ℓ̄i and the SU(3) LECs [43]
shows that only combinations of the Cr

i appear that are suppressed by Nc.

Thus especially the problem with ℓ̄2 above requires some nonzero values for
the Nc suppressed constants.

We could in principle allow all the Cr
i to be free and include them in the fit

as well. However, from our earlier work in [6] it is clear that with the inputs
used at present there are enough free combinations of the Cr

i to fit all physical
inputs directly. For this reason we also have explored another technique of
Cr

i estimate, based on a random walk6 method. Hereafter we describe the
main features of the algorithm used. See also the flowchart in Figure II.1. The
algorithm is a version of simulated annealing.

We first start with an initial set C
r(in)
i = C

r(old)
i . These are chosen to be

1. random (with a size given by 1/3/(16π2)2 for those leading in 1/Nc and
1/3 of that for the subleading ones),

2. all zero

3. as obtained by resonance estimate (see Table II.15)

4. as obtained by multiplying the constants of [13] by 0.27 (see Table II.15).

Then we perform the fit on the Lr
i using those C

r(old)
i . After this we take a

random step according to the formula

C
r(new)
i = C

r(old)
i + C

r(step)
i ≡ C

r(old)
i +

1

(16π2)2
ǫri , (II.40)

where ri in (II.40) is a random number generated through a uniform distribu-
tion in the interval (−1, 1) and we have used ǫ = 0.01 and 0.001. For those

Cr
i that are Nc suppressed we further multiply C

r(step)
i by 1/3. In this way the

random generated Cr
i set still respects the large-Nc suppressions to a certain

extent. We perform the fit of the Lr
i using the new set C

r(new)
i and we check

the χ2 obtained. If the χ2 decreases then we substitute the C
r(old)
i with C

r(new)
i .

Sometimes we also allow C
r(new)
i to be selected even though the correspond-

ing χ2 is not smaller than the previous one (see last step in the flow diagram of
Figure II.1). This is done so to let the Cr

i to take quite different values and thus
to test as many different sets as possible. It is also needed for our algorithm to
be able to move out of local minima. We find that, when we let our algorithm
run long enough, we cover quite many different sets of Cr

i . We chose differ-
ent initial Cr

i to widen their range of variability. In addition we have started

6The idea was born thanks to a discussion with Juerg Gasser and Gerhard Ecker.
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C
r(old)
i ≡ C

r(in)
i and

χ2(old)
≡ χ2(in)

C
r(new)
i = C

r(old)
i + C

r(step)
i

and calculate χ2(new)

χ2(new) < χ2(old)?C
r(old)
i = C

r(new)
i

C
r(old)
i unchanged,

perform a new step

R < e−χ2(new)/T ?

yes

no

yes
no

Figure II.1: Algorithm used to select the random Cr
i . It has been started with different

values of the initial C
r(in)
i , as explained in the text. In the bottom decision square R is

a random number selected with a uniform distribution in the interval (0,1), while T is
a parameter set such that it is of the same order of magnitude of the χ2. More details
can be found in the text.

the random walk from the same starting point several times including differ-
ent random starting points. We chose as random starting points 1/3/(16π2)2

with the extra factor of 1/3 since without the extra 1/3 we never reached a χ2

smaller than one.

The fits are performed including the same input as for fit All but with a few
extra requirements. We add as input the curvature of the scalar formfactor cπ

S
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in (II.30) and all the l̄i of the last column of Table II.7. We do not instead
demand to fit all the ππ and πK scattering parameters, since it costs in terms

of computing time. So, as done for fit All, we include only a0
0, a0

2, a1/2
0 and

a3/2
0 . Notice that we do not find any large discrepancies when we add more

scattering parameters in fit All, as was remarked at the end of Section II.6.
We also require a good convergence of the masses and decay constants

expansions. The reason is that in this way we have the possibility to “select”
those Cr

i granting us convergence for those quantities. This also allows to keep
under control the quality of the fits. Otherwise too much freedom would be
left to the Cr

i constants, and many different fits with a low χ2 but with very
bad convergences, can be reached. Clearly such convergence constraints have
a strong effect on the Lr

i constants as described in the next Section II.7.1.

II.7.1 Convergence constraints

We devote this section to a discussion of the convergence constraints imposed
on the masses and decay constants in the fits with random Cr

i . Let us first
show the case of the decay constants.

We performed the fits constraining the NNLO contributions to Fπ , FK and
FK/Fπ constants to be small, i.e. less than the 10% of the LO ones. Remember
that the expansions for the Fπ and FK decay constants are

FK = F0 + FK|p4 + FK|p6 ,

Fπ = F0 + Fπ |p4 + Fπ |p6 ,

(II.41)

and that in our fits, as explained in Section II.3.2, we include their ratio as

FK

Fπ
≈ 1 +

FK

F0

∣
∣
∣
∣

p4

− Fπ

F0

∣
∣
∣
∣

p4
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+
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F0

∣
∣
∣
∣

p6
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F0

∣
∣
∣
∣

p6

− FK

F0

∣
∣
∣
∣

p4

Fπ

F0

∣
∣
∣
∣

p4

+
Fπ

F0

∣
∣
∣
∣

2

p4

︸ ︷︷ ︸

NNLO

. (II.42)

Specifically the convergence constraints are included through the following
partial χ2

i(part):

χ2
i(part) =

(

Fπ

F0

∣
∣
∣
∣

p6

/0.05

)2

, χ2
i(part) =

(

FK

F0

∣
∣
∣
∣

p6

/0.05

)2

,

χ2
i(part) =

(
FK

Fπ

∣
∣
∣
∣
NNLO

/0.07

)2

, (II.43)

With (II.43) we have been able to find many fits with a good convergence. On
the other hand the NLO contribution for Fπ turns out to be smaller than the
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expected 30%. The reason resides in the third of the relations in (II.43). Requir-
ing all the NNLO pieces for all the decay constants to be small implies that the
single contributions Fπ |p6 and FK|p6 are small. But also the term (Fπ/F0)|2p4

must be small, otherwise the NNLO contribution of FK/Fπ is allowed to be
large. This leads to small NLO corrections for Fπ and thus a F0 ≈ Fπ .

We apply similar restrictions also to the masses

χ2
i(part) =




m2

M

m2
M 0

∣
∣
∣
∣
∣

p6

/0.1





2

(II.44)

where M stands for π, K and η mesons and mM 0 are the leading order contri-
butions to the masses. We have kept the value of ms/m̂ fixed at 27.8 as for fit
All.

We conclude this section with a final remark. One might wonder why we
have not imposed similar constraints also for fit All, since these could improve
the convergence of the expansions. The reason is that when we require them,
we obtain a reasonably good fit (χ2 ≈ 8 with 10 degrees of freedom ) and with
better constrained Lr

4 and Lr
6. But it also causes much worse predictions for

the ℓ̄i, e.g. ℓ̄3 ≈ 6.5.

II.7.2 Results

Now we are ready to show the outcomes of our studies when the Cr
i are set

to random values using the procedure of Figure II.1 and with the constraints
listed in Section II.7.1 above. First of all we must point out that due to the
freedom we allow to the Cr

i many different fits of the Lr
i have a low χ2. We set

initial Cr
i equal to zero, resonance exchange or chiral quark model estimates

as well more random starts. We easily reach χ2 < 1, and we found many
fits with χ2 ≈ 0.5. Reducing the steps of the random walk we can even find
smaller values. However once the χ2 reaches a reasonably low value, e.g. 1,
there is no apparent reason why one should prefer one specific fit to another.
Due to the several different sets of Cr

i under study, we can only quote the

ranges where the Lr
i vary and where we obtain a χ2 < 1. Such ranges are

quoted in Table II.12 and are obtained, starting from different initial sets C
r(in)
i .

Keep in mind that these ranges depend on the Cr
i chosen. Plugging in a Lr

i fit
without the corresponding Cr

i will not produce any sensible results. The way
we determined those numbers is shown in Figure II.2 on the example for Lr

1

where we have plotted a number of fits that gave χ2 < 1 for the different
starting points. We have typically stopped the fits when a χ2 of about 0.4 or
below was found and the tails at low χ2 are an artefact, they were done with
runs with a very low ǫ and a very low T.
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C
r(in)
i resonance zero CQM random

103Lr
1 (0.6, 1.2) (0.5, 1.1) (0.2, 0.6) (0.3, 1.2)

103Lr
2 (0.4, 1.2) (0.2, 0.8) (−0.2, 0.5) (0, 1.6)

103Lr
3 (−5.5,−3.0) (−4.5,−3.0) (−3.3,−1.2) (−6.2,−2.0)

103Lr
4 (0.15, 0.35) (−0.1, 0.25) (−0.1, 0.2) (0.05, 0.35)

103Lr
5 (1.2, 1.6) (1.35, 1.5) (1.25, 1.55) (1.2, 1.6)

103Lr
6 (−0.05, 0.25) (−0.2, 0.2) (−0.15, 0.15) (−0.05, 0.3)

103Lr
7 (−0.45,−0.1) (−0.43,−0.18) (−0.43,−0.24) (−0.45 − 0.2)

103Lr
8 (0.4, 0.8) (0.45, 0.72) (0.5, 0.731) (0.45, 75)

Table II.12: The ranges for Lr
i values as obtained changing the Cr

i according to a ran-
dom walk algorithm. The different ranges correspond to different initial values for the
Cr

i . With CQM we indicate the Cr
i of the chiral quark model. All the fits have a χ2 < 1.

For all the fits µ = 0.77 GeV. See the description in the text for further details on how
the fits have been performed.

The results are rather cumbersome. Lr
1, Lr

2 and Lr
3 look quite free to vary

in large ranges. Notice also that the large Nc relation 2Lr
1 ≈ Lr

2 is still not re-
covered. On the other hand, due to the converge constraints of Section II.7.1
we narrow the intervals for the other constants. Especially Lr

5 takes a large
value and Lr

4 a small one. As explained in Section II.7.1, we essentially require
that FK/Fπ , FK and Fπ have small NNLO corrections which give that FK/Fπ is
given by the NLO and thus determines Lr

5 at a fairly large value. That Fπ has
small corrections at all then in turn requires a fairly small Lr

4. The choice to
constrain the convergence of those quantities is dictated by the lack of infor-
mation to constrain more the Cr

i . When we release such constraints indeed we
find different looking fits, but affected by a bad convergence. Somewhat more
surprising is that the Lr

6 typically takes on values that are smaller than Lr
8.

As you can see no clear final conclusion can be drawn with such results.
When we performed this study we were hoping not to find as many good
fits and smaller ranges for the Lr

i . The study shows instead that it is very
difficult, if not impossible, to narrow the ranges for the Lr

i with such a poor
knowledge of the Cr

i . On the other hand it also shows that fits of the Lr
i with

good convergence do exist, if the Cr
i are changed. In Table II.13 we show

the Lr
i obtained for the smallest χ2 found starting from the resonance estimate

and from fully random Cr
i as described above and we show the convergence

for some quantities in those two fits in Table II.14. The fits with very low χ2 we
have obtained, such as the two shown here, tend to have similar expansions
for the masses and the decay constants. In order to see how the various Cr

i
look like we have added the values for these two fits in the appendix.
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Figure II.2: The values of Lr
1 for the random walk fits of Table II.12. In the plot all the

fits are collected. The ranges of variability for Lr
1 is quite large. In the picture it is also

evident how the two values of the couplings depend somewhat on the different initial
values of the Cr

i constants. The Lr
i are at the scale µ = 0.77 GeV.

We can draw some conclusions by studying correlations. The effect of ℓ̄2 is
very visible if we plot for the various fits with χ2 < 1 Lr

2, which is the NLO
dependence of ℓ̄2 on the LECs, versus 2Cr

13 − Cr
11, which is the dependence

on the NNLO LECs. The tight correlation shows that the NNLO contribu-
tion depends very little on the other Lr

i . More precisely, this shows the NLO
LEC combination at NLO versus the NNLO LEC combination at NNLO and
that the NNLO contribution depends fairly little on the value of the Lr

i . We

get more of those constraints directly. A very similar is from the value of ℓ̄1

shown in Figure II.4. The correlations for other observables tend to be weaker
indicating that the NNLO contributions are more dependent on the value of
the Lr

i for these cases. We show examples with a weaker but still existing cor-
relation in Figure II.5 where the correlations resulting from FK/Fπ are shown
and in Figure II.6 for 〈r2〉π

S . In both cases we have plotted on the horizontal
axis the combination of Lr

i the quantity depends on at NLO and on the vertical
axis the combination of Cr

i the quantity depends on at NNLO.
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Cr
i best reso best random

103Lr
1 0.75 ± 0.09 0.85 ± 0.09

103Lr
2 0.81 ± 0.45 0.54 ± 0.05

103Lr
3 −3.91 ± 0.28 −3.51 ± 0.28

103Lr
4 0.16 ± 0.10 0.20 ± 0.10

103Lr
5 1.40 ± 0.09 1.40 ± 0.09

103Lr
6 0.10 ± 0.14 0.12 ± 0.14

103Lr
7 −0.32 ± 0.13 −0.32 ± 0.13

103Lr
8 0.64 ± 0.16 0.63 ± 0.16

χ2 0.30 (4) 0.36 (3)

Table II.13: The results as obtained using the Cr
i from the best χ2 found starting from the

resonance or from a completely random one as described in the text. The Lr
i are given

at µ = 0.77 GeV. The corresponding Cr
i sets can be found in Table II.15 in appendix.

Cr
i best reso best random

p2 p4 p6 p2 p4 p6

m2
π 0.987 0.021 −0.008 0.993 0.021 −0.012

m2
K 1.057 −0.054 −0.003 1.060 −0.058 −0.002

m2
η 1.132 −0.133 0.001 1.136 −0.135 −0.001

Fπ/F0 1 0.178 −0.010 1 0.187 −0.010
FK/F0 1 0.395 0.009 1 0.404 0.011
FK/Fπ 1 0.217 −0.020 1 0.217 −0.020

Table II.14: The convergence for the best χ2 found starting from the resonance estimate,
here F0 = 0.079 GeV. Fit as in left column of Table II.13. The convergence for the best
χ2 found starting from the fully random estimate, here F0 = 0.078 GeV. Fit as in left
column of Table II.13.

There are also correlation between the fitted values of the Lr
i . Lr

1, Lr
2 and

Lr
3 show a reasonable correlation among themselves but are essentially not

correlated with the others. There are weaker correlations between Lr
4 and Lr

6
and between Lr

7 and Lr
8. These correlations are shown in Figures II.7, II.8, II.9,

II.10, and II.11. We have shown a curve in all plots guiding the eye as well and
given it in the caption of the figure.

Note that throughout this section we have considered all fits with a χ2 < 1
to be essentially possible.
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S .

II.8 Conclusions

In this paper we have shown the results for a new global fit of the Lr
i at NNLO,

with techniques similar to the ones in [8, 9]. Different treatments of the p6
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coupling constants have been considered: the resonance estimate of [8], the
results of [13] and the use of randomly selected Cr

i . The results are difficult
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to interpret and unexpected. All the fits that have been performed using the
NNLO couplings from [8] or [13] show both strong and weak points. The fits
obtained from the randomly selected Cr

i are too different from each other to
draw a final conclusion, although they give a rough indication on where we
can expect to find the values of Lr

i . They also provide a proof of principle
that with reasonable values of the Cr

i a reasonably convergent series for SU(3)
ChPT can be obtained for many quantities.

The fit that presents the least discrepancies and best convergence of the
chiral expansion is fit All in Table II.5, which has been obtained with the res-
onance estimate of the Cr

i . It succeeds in fitting many observables like the
ππ and πK scattering parameters and the slope of the scalar formfactor of
the pion. It also reproduces quite well the experimental results for the fs and
gp Kℓ4 formfactors although it does not predict the curvature of fs. The per-
turbative expansions for masses and decay constants reported in (II.36) and
(II.37) look suspicious but are acceptable. On the other hand it does not sat-
isfy the large Nc relation 2Lr

1 ≈ Lr
2 and it fails in well constraining the Lr

4 and
Lr

6 values. Finally its prediction for ℓ̄2 is far from the current estimate of that
constant. We have at present not included many results from lattice QCD.
We expect that this should improve in a few years allowing for another step
forward in confronting ChPT with data.
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II.A Cr
i values

The aim of this section is to present the values used for the Cr
i . We only present

results for the Cr
i that actually contribute to the observables we have included

in the fits and we indicate with the superscript ∗ the ones that are subleading
in Nc. They can all be found in Table II.15 The column labelled reso is the
resonance exchange estimate of Section II.4. The column labelled CQM is the
estimate of [13] as discussed in Section II.6.4. The values directly from their
model can be found in Table IV of [13]. The values in the column labelled
CQM have been multiplied with nomalization factor α = 0.27 from the fit
in the right column of Table II.8. The normalization from the fit to the linear
NA48/2 input, Table II.10 is a little smaller but essentially the same. The last
two columns are from the random walk/simulated annealing estimates for
the Cr

i reported in Section II.7 from the best χ2 found starting from the reso-
nance estimate and a fully random starting point. These are the Cr

i for the fits
reported in Table II.13.

The main purpose is to show the typical sizes of the Cr
i we obtained for the

fits and that the pattern for the good fits can be quite different.
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Table II.15: The Cr
i constants as obtained by several methods. In the table we quote

105 × Cr
i were the i is given in the first column. The i∗ indicates a Nc suppressed Cr

i .
The second column corresponds to the resonance model of Section II.4. In the third
one we quote the Cr

i of [13] multiplied by α = 0.27. The particular value of α is chosen
fitting it to the input observables together with the Lr

i , as explained in Section II.6.4. In
the last two columns we quote two sets of Cr

i corresponding to the best fits of the Lr
i

when the Cr
i are realesed, as explained in Section II.7. The column labeled best reso

comes from initial values of the Cr
i equal to the ones of the resonance estimate, while

in the column labeled best rand even the initial values of the Cr
i are chosen randomly.

The scale of renormalization for all the sets is µ = 0.77 GeV.

i res CQM best reso best rand
1 1.216 0.866 1.683 −0.733
2∗ 0.000 0.000 0.113 0.280
3 0.000 −0.011 0.324 0.084
4 1.452 0.708 2.225 1.266
5 0.619 −0.231 0.779 1.147
6∗ 0.000 0.000 −0.307 −0.050
7∗ 0.000 0.000 0.350 −0.003
8 0.619 0.528 1.434 0.615
9∗ 0.000 0.000 0.148 −0.194
10 −1.239 −0.240 −0.164 0.307
11∗ 0.000 0.000 −0.112 −0.344
12 −0.619 −0.078 −1.358 −0.512
13∗ 0.000 0.000 0.265 −0.002
14 0.000 −0.190 −0.759 −0.828
15∗ 0.000 0.000 −0.228 −0.233
16∗ 0.000 0.000 0.007 0.063
17 0.000 0.002 0.125 1.121
18∗ −0.202 −0.128 −0.284 −0.063
19 0.001 −0.110 −0.411 −1.147
20∗ −0.002 0.041 −0.335 −0.043
21∗ 0.001 −0.014 0.018 −0.088
22 −0.297 0.062 0.545 1.117
23∗ 0.000 0.000 0.048 0.269
24∗ 0.811 0.370 0.694 0.013
25 −1.838 −1.366 −1.452 1.282
26 −0.284 0.765 −0.597 −0.485
27∗ −0.261 −0.352 −0.228 −0.155
28∗ 0.135 0.069 0.177 0.147
29 −1.363 −0.704 −1.907 −0.785
30∗ 0.270 0.137 0.165 0.545

Continued on next page
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Table II.15 – continued from previous page
i res CQM best reso best rand
31 −0.616 −0.144 −0.389 1.310
32∗ −0.002 0.041 0.291 0.356
33∗ 0.208 0.021 0.291 −0.102
34 1.432 0.363 2.321 1.077
35∗ −0.009 0.039 0.236 0.146
36∗ 0.000 0.000 −0.169 −0.087
63 0.619 0.683 0.665 0.776
64∗ 0.000 0.000 0.389 −0.095
65 1.239 −0.555 0.611 0.432
66 1.049 0.391 1.703 0.416
67∗ 0.000 0.000 −0.304 0.017
68∗ 0.000 0.000 0.002 0.536
69 −0.577 −0.196 −0.664 −0.784
83 0.163 0.016 −0.294 −0.553
84∗ 0.000 0.000 0.357 −0.264
88 −1.383 −1.249 −0.912 −0.331
90 5.069 0.557 5.238 −0.204
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III.1 Introduction

The study of the formfactors of semileptonic B → π and D → π decays has
become a task of primary importance for the determination of the KM matrix
elements |Vub| and |Vcd| respectively. Unfortunately this is a rather difficult
mission. The kinematically accessible region is large, the physical pictures
emerging at the two extremities of the q2 range are quite different, requiring
different approximation methods and this makes calculations directly from
QCD hard.

Nevertheless a lot of effort has been put into studying this decay, both in
experiment and in theory. The q2 spectrum has been measured by different
collaborations (CLEO [1, 2], Belle [3], Babar [4] ) The QCD based theoretical
calculations are either on QCD light-cone sum rules (LCSR), which provide
reliable determinations at small q2 [5], or on lattice simulations [6]. In particu-
lar lattice QCD allows to solve the non perturbative QCD effects numerically,
but it is at present limited in the light quark masses that can be reached. Thus
a final extrapolation in the light quark masses is needed.

At low energies Chiral Perturbation Theory (ChPT) [7, 8] provides a way
to do this extrapolation on a theoretically sound basis. For processes with all
pions soft this works fine and was extended to include heavy mesons in [9,10].
The B and B∗ mesons were there included using a heavy quark like formalism
known as Heavy Meson ChPT (HMChPT). This has been used to extrapo-

late the behaviour of the form factors near the endpoint, q2
max = (mB − mπ)2,

where the pions are soft [11, 12]. But a description of the light quark mass
dependence of the form factors in the entire range of energy is still missing.
Therefore we lack extrapolation formulas in the region away from maximum
momentum transfer.

A similar problem exists in the case of Kℓ3 decay. Here two-flavour (SU(2))
ChPT provides a well defined scheme for the calculation of the formfactors

near q2
max = (mK − mπ)2. At other values of q2 including q2 ≃ 0, the (two-

flavour) power counting scheme breaks down due to the presence of a large
momentum pion in the final state. However, the authors of [13] argued that
also in this latter case the coefficient of the chiral logarithm m2

π log m2
π is cal-

culable and thus it can be used for the extrapolations on the lattice at q2 away
from q2

max. In [14] the argument was clarified and extended to the case of the
K → ππ decays. It was also argued there that this was a much more general
circumstance.

The aim of this paper is to perform the same calculations for heavy meson
semileptonic decays. These results can then be used to perform the extrapola-
tion to light quark masses of lattice results also for values of q2 away from the
end-point q2

max. The arguments as presented in [14] show that also in this case
the coefficient of the logarithm should be calculable as discussed in Sect. III.5.



III.2 Heavy Meson Chiral Perturbation Theory 111

The discussion implies that both the HMChPT formalism or a relativistic one
can be used. We have performed the calculations in both formalisms as a con-
sistency check and have also reproduced the known results for the masses,
decay constants and formfactors at q2

max in both.
The paper is structured as follow. After a short description of HMChPT in

Sect. III.2, we introduce in Sect. III.3 the relativistic Lagrangian that we used as
a consistency check, since the off-shell behaviour in both formalisms is rather
different. In Sect. III.4 we define the formfactors involved, and how to in-
clude the weak current in the Lagrangians of both formalisms. Sect. III.5 gives
the arguments why this procedure should produce the correct nonanalytic
behaviour in the light quark masses where they are different from [13, 14]. Fi-
nally the results for the coefficients are shown in Sect. III.6 where we provide
also some checks of the validity of our assumptions. The appendix gives some
results for the needed expansions of the loop integrals.

Throughout the paper we focus on B → πℓνℓ decay, but the same pro-
cedure and calculations go through also in the D semileptonic decays. All
formulas are applicable to both cases. We are extending this work to the three
flavour case as well as to other vector formfactors like B → D [15].

III.2 Heavy Meson Chiral Perturbation Theory

In this section we review the main features of HMChPT [9, 10], see also the
lectures by Wise [16] and the book [17]. Chiral Lagrangians can be used to
describe the interactions of light mesons, as pions and kaons, with hadrons
containing a heavy quark. HMChPT makes use of spontaneously broken
SU(N f )× SU(N f ) chiral symmetry on the light quarks, and spin-flavour sym-
metry on the heavy quarks. This formulation lets us study chiral symmetry
breaking effects in a chiral-loop expansion by simultaneously performing an
expansion in powers of the inverse of the heavy meson mass.

In this paper we deal only with two-flavour ChPT [7] but the theory can be
easily extended in the case of three flavours [8], thus including kaons in the
description. The notation is the same as in [18]. The lowest order Lagrangian
describing the strong interactions of the light mesons is

L(2)
ππ =

F2

4

(
〈uµuµ〉 + 〈χ+〉

)
, (III.1)

with

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u†} ,

χ± = u†χu† ± uχ†u ,

u = exp

(
i√
2F

φ

)

,
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χ = 2B(s + ip),

φ =

(
1√
2

π0 π+

π− − 1√
2

π0

)

. (III.2)

The fields s, p, lµ = vµ − aµ and rµ = vµ + aµ are the standard external scalar,
pseudoscalar, left- and right- handed vector fields introduced by Gasser and
Leutwyler [7, 8].

The field u and uµ transform under a chiral transformation gL × gR ∈
SU(2)L × SU(2)R as

u −→ gRuh† = hug†
L, uµ −→ huµh†. (III.3)

In (III.3) h depends on u, gL and gR and is the so called compensator field. The
notation 〈X〉 stands for trace over up and down quark indices and all matrices
are 2 × 2 matrices.

We now begin with a brief synopsis of the formalism of HMChPT for the
two-flavour case. The three flavour case was the original formulation [9, 10].
In the limit mb → ∞, the pseudoscalar B and the vector B∗ mesons are de-
generate. In the following we neglect the mass splitting ∆ = mB∗ − mB. To
implement the heavy quark symmetries it is convenient to assemble them into
a single field

Ha(v) =
1 + v/

2

[

B∗a
µ (v)γµ − Ba(v)γ5

]

, (III.4)

where v is the fixed four-velocity of the heavy meson, a is a flavour index
corresponding to the light quark in the B meson. B1 = B+, B2 = B0 and
similarly for the vector mesons B∗

µ. In (III.4) the operator (1 + v/)/2 projects
out the particle component of the heavy meson only. The conjugate field is

defined as Ha(v) = γ0H†
a (v)γ0. We assume the field Ha(v) to transform under

the chiral transformation gL × gR ∈ SU(2)L × SU(2)R as

Ha(v) −→ habHb(v) , (III.5)

so we introduce the covariant derivative as

D
µ
abHb(v) = δab∂µHb(v) + Γ

µ
abHb(v), (III.6)

where Γ
µ
ab = 1

2

[
u†

(
∂µ − irµ

)
u + u

(
∂µ − ilµ

)
u†

]

ab
, and the indices a, b run

over the light quark flavours. Finally, the Lagrangian for the heavy-light
mesons in the static heavy quark limit reads

Lheavy = −i TrHav · Dab Hb + g TrHau
µ
abHbγµγ5, (III.7)
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where g is the coupling of the heavy meson doublet to the Goldstone boson
and the traces, Tr, are over spin indices, the γ-matrix indices. The Lagrangian
(III.7) satisfies chiral symmetry and heavy quark spin flavour symmetry.

As a final remark of this section we stress that, in general, the use of HM-
ChPT is only valid as long as the interacting pion is soft, i.e. if it has momen-
tum much smaller than the scale of spontaneous chiral symmetry breaking
(ΛChSB ≃ 1 GeV). In fact, only in this regime the usual ChPT is well defined.
For the semileptonic decays of heavy mesons this range of energy covers just
a small fraction of the Dalitz plot. In Sect. III.5 we will give an argument why
the predictions on the coefficients of the logarithms appearing in the final am-
plitudes are reliable even outside the range of applicability of HMChPT.

III.3 Relativistic Theory

When q2 6= qmax it is possible that in the loops appear very off-shell B and B∗

mesons. This in principle changes the non analyticities in the light masses of
the loop functions and thus it might affect the coefficients of m2

π log m2
π/µ2.

It could be that different treatments of the off-shell behaviour gave rise to
different nonanalyticities. Sect. III.5 argues that this should not be the case.
In order to test this, we are not only calculating using HMChPT but also in a
relativistic formulation. We also add some redundant higher order terms as
an additional check.

For this scope, we construct a relativistic Lagrangian that respects the spin-
flavour symmetries of HMChPT. It is built up starting from Ba and B∗a

µ fields,
but now in the relativistic form, and we treat them as column-vectors in the
light-flavour index a.

Lkin = ∇µB†∇µB − mBB†B − 1

2
B∗†

µνB∗µν + mBB∗†
µ B∗µ, (III.8)

Lint = gM0

(

B†uµB∗
µ + B∗†

µ uµB
)

+
g

2
ǫµναβ

(

−B∗†
µ uα∇µB∗

β + ∇µB∗†
ν uαB∗

β

)

, (III.9)

with B∗
µν = ∇µB∗

ν −∇νB∗
µ, and ∇µ = ∂µ + Γµ. The constant g of (III.9) is the

same in (III.7), M0 is the mass of the B meson in the chiral limit. In (III.8) and
(III.9) we have suppressed flavour indices a, b for simplicity. The fields B and
B∗ transform under chiral transformations as B → hB. The two terms of Lint

in (III.9) contain the vertices BB∗π and B∗B∗π. No interaction of the kind BBπ
appears because it is forbidden by parity conservation.

From Lkin in (III.8) we find the propagators of the B and B∗ meson respec-
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tively:

i

p2 − m2
B

,

−i

(

gµν − pµ pν

m2
B

)

p2 − m2
B

. (III.10)

This is to be contrasted with the propagator 1/v · p in the HMChPT formalism
showing the different off-shell behaviour.

III.4 B → π formfactors: formalism

In this section we review the semileptonic decay formalism. The hadronic
current for pseudoscalar to pseudoscalar semileptonic decays (Pi(q̄i, q) →
Pf (q̄ f , q)ℓ+νℓ) has the structure

〈

Pf (p f )
∣
∣
∣qiγµq f

∣
∣
∣ Pi(pi)

〉

= (pi + p f )µ f+(q2) + (pi − p f )µ f−(q2)

=

[

(pi + p f )µ − qµ

(m2
i − m2

f )

q2

]

f+(q2) + qµ

(m2
i − m2

f )

q2
f0(q2),

(III.11)

where qµ is the momentum transfer qµ = p
µ
i − p

µ
f . In our case Pf is a pion, Pi

is a B meson and qi = b. For example, to find the B0 → π− formfactors we

need then to evaluate the hadron matrix elements of the quark bilinear bγµq,
where q = u.

Heavy quark and chiral symmetry transformation properties of chiral cur-
rents dictate that the matching of QCD bilinears onto operators of HMChPT
take the form [11, 16],

b̄γµ (1 − γ5) qa → icLTr
[
γµ (1 − γ5) u†

abHb(v)
]
,

b̄γµ (1 + γ5) qa → icRTr
[
γµ (1 + γ5) uab Hb(v)

]
. (III.12)

The constants cL and cR have to be equal because of parity invariance, there-
fore we can conclude

b̄γµqa ∝ Trγµ
(

u†
ab + uab

)

Hb(v) + Trγ5γµ
(

u†
ab − uab

)

Hb(v). (III.13)

If no hard pions appear in the final state we can use the definition of decay
constant 〈

0
∣
∣
∣bγµγ5q

∣
∣
∣ B(pB)

〉

= iFB p
µ
B (III.14)

and state cL = cR = 1
2 FB

√
mB. Of course this latter result does not hold for

momenta away from q2
max in which case cL = cR is just an effective coupling,

as explained in Sect. III.5.
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In HMChPT it is convenient to use definitions in which the formfactors are
independent of the heavy meson mass

〈

π(pπ)
∣
∣
∣bγµq

∣
∣
∣ B(v)

〉

HMChPT
=

[
pπµ − (v · pπ) vµ

]
fp(v · pπ) + vµ fv(v · pπ).

(III.15)

In (III.15) v · pπ is the energy of the pion in the heavy meson rest frame

v · pπ =
m2

B + m2
π − q2

2mB
. (III.16)

The formfactors defined in (III.11) and in (III.15) are related by matching the
relativistic and the HMChPT hadronic current:

f0(q2) =
1√
mB

fv(v · pπ), f+(q2) =

√
mB

2
fp(v · pπ). (III.17)

The
√

mB factors in (III.17) are due to the different normalizations for states
used in the two formalisms. In principle the relations in (III.17) are valid only
when q2 ≈ q2

max, i.e. when HMChPT is applicable. On the other hand, for the
arguments shown in Sect. III.5 below, the chiral structure of the formfactors in
QCD and in HMChPT is the same also for q2 away from q2

max. However, this
does not imply that (III.17) holds away from q2

max, at least as far as regard the
tree level term and the leading logarithms.

A matching similar to (III.12) has to be done also for the relativistic theory
described in Sect. III.3. We identify four possible operators1

JL
µ =

1

2
E1tu†∇µB +

i

2
E2tu†uµB +

i

2
E3tu†B∗

µ +
1

2
E4tu†

(
∇νuµ

)
B∗ν, (III.18)

where E1,. . . , E4, are effective couplings. t is a constant spurion vector trans-

forming as t → tg†
L, so that JL

µ is invariant under SU(2)L transformations. The
heavy quark symmetry implies mBE1 = E3. Analogously we can introduce a
JR
µ current and thus an axial-vector J5

µ = JR
µ − JL

µ and a vector JV
µ = JR

µ + JL
µ

current. They are used respectively to evaluate the amplitudes of B → ℓνℓ

and the B → πℓνℓ formfactors as defined in (III.11). We leave the discussion
for the latter in Sect. III.6, while we quote here the results of the B → vacuum
matrix element at one loop

FB = E1

[

1 +
1

F2

(
3

8
+

9

8
g2

)

A(m2
π)

]

(III.19)

1The last one is higher order but we included it since it has a different type of contraction of
the Lorentz indices and as an explicit check on the arguments of Sect. III.5.
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A(m2
π) is defined in (III.25) in the appendix. Here we only quoted the nonana-

lytic dependence on the light quark masses for the one-loop part. We compare
(III.19) with the results obtained with HMChPT [19]. We see that E1 plays the
role of FH in [19] and that the relativistic theory predicts the same coefficient
of the chiral logarithm in A(m2

π).

III.5 Hard pion Chiral Perturbation Theory

In order to study the chiral behavior of the formfactors at q2 away from q2
max

we can not neglect operators with an arbitrary numbers of derivatives on the
external pion since now its momentum is large. Therefore we must take into
account that the usual power counting of ChPT does not work and we can not
be sure a priori that a loop calculation would make sense.

A similar problem arises in the case of Kℓ3 decay. The authors of [13] dealt
with it using SU(2) ChPT to study the amplitudes whether the outgoing pion
was soft or not. They argued they could calculate the corrections of the type
m2

π log m2
π even in the range of energy where the usual ChPT does not work.

Their argument is based on the fact that only the soft internal pions are respon-
sible for the chiral logarithms. These ideas were generalized by the authors
of [14] who made clear that those arguments basically corresponds to use an
effective Lagrangian to describe the hard part of a general loop calculation in
a chiral invariant way. The situation is shown schematically in Fig. III.1. The
underlying argument is the same as the analysis for infra-red divergences.
Since the soft lines do not see the hard or short-distance structure of the di-
agram, we can separate them from the rest of the process. We should thus
be able to describe the hard part of any diagram by an effective Lagrangian.
This effective Lagrangian should include the most general terms allowed con-
sistent with all the symmetries and have coefficients that depend on the hard
kinematical quantities and can even be complex. A two-loop example will be
given in [15]. We expect that a proof along the lines of SCET [20] should be
possible. Once it is accepted that one can do this, a second step is to prove that
the effective Lagrangian one uses is sufficient to describe the neighbourhood
of the hard process and calculate chiral logarithms.

The latter was done in [13] for the case of Kℓ3 decays by showing that the
matrix elements of operators with higher derivatives was proportional to the
lowest order matrix-element up to terms of order m2

π . In particular, the part
including the coefficient of the chiral logarithms m2

π log m2
π has the same co-

efficient relative to the tree level matrix-element as the lowest order operator.
The same was proven for K → ππ in [14].

As a matter of fact, the semileptonic K decay has the same structure heavy
→ light as the B one when MK is treated as large compared to mπ as in [13].
The main differences between the two processes are the energies involved and
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⇒ ⇒ ⇒

Figure III.1: An example of the argument used. The thick lines contain a large momen-
tum, the thin lines a soft momentum. Left: a general Feynman diagram with hard and
soft lines. Middle-left: we cut the soft lines to remove the soft singularity. Middle-right:
The contracted version where the hard part is assumed to be correctly described by a
“vertex” of an effective Lagrangian. Right: the contracted version as a loop diagram.
This is expected to reproduce the chiral logarithm of the left diagram. Figure from [14].

that for the B meson the corresponding vectorial particle B∗ is close to its mass-
shell. So in order to have a sufficiently complete effective Lagrangian in the
neighbourhood we need to include the B∗ as was done in the previous sec-
tions. However, we expect the kind of arguments presented in [13,14] to work
here as well.

We note that the effective Lagrangian needs to be complete enough in the
neighbourhood of the underlying process. That also implies that if we have
two different formalisms, both sufficiently complete, the logarithms should
be the same. In particular, the HMChPT and the relativistic formalism should
give the same results.

We are only concerned with terms of order 1, mπ and m2
π log m2

π , i.e. we
are not trying to calculate terms of order O(m2

π) without logarithms. Here we
restrict our discussion to the case of SU(2) ChPT, and far from q2

max. It is clear
that adding (soft) kaon loops does not change the validity of the arguments.
First we analyze the case of HMChPT and thus we need to look at the matrix
elements 〈π(pπ) |O| B(v)〉 where O can be any of the operators in (III.13) with
possibly more derivatives. We want to show that matrix elements of operators
with higher number of derivatives are all proportional to the lowest order ones
up to terms of order m2

π (and without logarithms) which are of higher order.
We need to look at the cases where extra covariant derivatives Dµ are added in
the operators. We can distinguish different possibilities depending on which
particle the derivative hits.

• The case where it hits an internal soft pion line, leads to
∫

dd p pµ/(p2 −
m2

π) which is always suppressed by three powers of mπ .

• If the derivative hits an internal line which is not soft in a loop, it is
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part of the loop diagram that is described by our effective Lagrangian
and is thus indirectly included via the coefficients. A simple exam-
ple is when a pair of derivatives hits a B-meson. Then we get terms
like

∫
dd p p2

B/(v · pπ − ∆) · · · ≃ m2
B

∫
dd p 1/(v · pπ − ∆) . . . , i.e. some-

thing that is proportional to the lowest order result and that can be in-
cluded modifying accordingly the effective coupling. It corresponds to
change the hard structure of the loop diagram, what can be described by
a proper replacement of the effective coupling, as shown in Fig. III.1.

• All the extra derivatives should thus act on external lines or tree-level
internal lines, i.e. those not in a loop. All these can thus be transformed
into masses of external particles or other kinematical quantities, as here
q2. None of these has terms of order mπ or m2

π log m2
π . The kinematical

quantities we keep fixed and masses have corrections at most of order
m2

π compared to the order 1 terms and the order 1 part can be absorbed
into the coefficient of the lowest order term.

• Note that if the extra derivatives are contracted with a vµ rather than
another derivative this can also be put into the value of the coefficients.

Also in the case of the relativistic theory described in Sect. III.3, we need
to worry if more chiral logarithms arise including operators like the ones in
(III.18) but with extra derivatives. All the above arguments also work except
for derivatives that are contracted with B∗

µ. In this case the extra derivatives
becomes contracted with the momenta in the B∗ propagator or via gµν to the
external current. After that the above arguments again apply. Terms involving
a contraction with B∗ can always be reduced to the simplest one which we
included in (III.18), the E4 term, and so we have also an explicit test of the last
argument.

Near q2
max the above arguments fail since kinematical quantities can con-

tain terms of order mπ . However, here all pion lines are soft and we are in the
regime of validity of standard HMChPT.

The conclusion from this section is that the coefficient of the chiral loga-
rithm m2

π log m2
π is calculable at all values of q2.

III.6 The Coefficients of the Chiral Logarithms

In this section we show the results for the semileptonic decay B → πℓνℓ am-
plitudes. Hereafter, we quote only the relevant terms, i.e. the leading ones
and the chiral logarithms. The tree-level diagrams contributing to the ampli-
tude are shown in Fig. III.2. The results for the formfactors at tree level for
HMChPT are [11, 12]

f Tree
v (v · pπ) =

α

F
, f Tree

p (v · pπ) =
α

F

g

v · pπ + ∆
, (III.20)
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(1) (2)

Figure III.2: The tree-level diagrams contributing to the amplitude. A double line cor-
respond to a B, a zigzag line to a B∗, a single line to a pion. A black circle represents
the insertion of a B → π vector current.

where α is a constant that takes the value
√

mB/2FB at q2
max. We also have

cL = cR = α/
√

2. For the relativistic theory of Sect. III.3 we obtain

f Tree
0 (q2)

∣
∣
∣
q2

max

=
E1

F

1

4
, f Tree

+ (q2)
∣
∣
∣
q2

max

= −1

4

E3

F

mB

q2 − m2
B

g. (III.21)

Near q2
max = (mB − mπ)2 the results are obviously the same, since the propa-

gators in the second equations of (III.20) and (III.21) become respectively 1/mπ

and 1/(2mπmB). The different factor of 2 is due to the different normalization
of states used in HMChPT and in the relativistic formulation. Note that the
relation of the coupling constant to FB is only valid for q2

max = (mB − mπ)2.
The coupling constant are different at the different values of q2 and can even
be complex. The precise form of (III.21) is only valid near q2

max. The full ex-
pressions are more complicated.

To proceed with the calculation at one-loop we need the wavefunction
renormalization Zπ and ZB. They are the same for HMChPT and the rela-
tivistic theory and read:

Zπ = 1 − 2

3F2
A(m2

π), ZB = 1 +
9

4F2
g2 A(m2

π). (III.22)

The one-loop diagrams are shown in Fig. III.3. In Tab. III.1 we present the
results at q2 away from q2

max. To find the results in HMChPT we expanded the
one-loop calculation of [12] at v · pπ → mB, m2

π → 0. In the relativistic theory
we first calculated the formfactors and then we expanded the loop integrals
for m2

π ≪ m2
B, (m2

B − q2). These latter expansions are shown in App. III.1.
We check that the coefficients of the leading logarithms coincide in the two
theories. Summing up all the results in Tab. III.1 and including (1/2)Zπ and
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(3) (4) (5) (6)

(7) (8) (9) (10)

(11) (12) (13)

(14) (15) (16)

Figure III.3: The one-loop diagrams contributing to the amplitude.Vertices and lines as
in Fig. III.2

(1/2)ZB times tree level, we find

fv/p(v · pπ) = f Tree
v/p (v · pπ)

[

1 +

(
3

8
+

9

8
g2

)
1

F2
A(m2

π)

]

,

f0/+(q2) = f Tree
0/+(q2)

[

1 +

(
3

8
+

9

8
g2

)
1

F2
A(m2

π)

]

, (III.23)

i.e. as expected the same coefficients in the two theories. The correction is also
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Diagram fv HMChPT f0 Rel. Th.

(3) 5
24

1
F3 α 5

24F2 f Tree
0 (q2)

(8) 1
2

1
F3 α 1

2F2 f Tree
0 (q2)

fp HMChPT f+ Rel. Th.

(4) 2
6

g
F3

α
v·pπ+∆

1
3F2 f Tree

+ (q2)

(5) 3
8

g
F3

α
v·pπ+∆

3
8F2 f Tree

+ (q2)

Table III.1: The coefficients of the chiral logarithms, A(m2
π), at q2 away from (mB −

mπ)2 from the different diagrams in Fig. III.3. The diagrams not listed in the table
do not contribute with logarithms. The two Lagrangians give the same coefficients
diagram per diagram provided the tree level coefficients are correctly identified.

Diagram fv HMChPT f0 Rel. Th.

(3) 5
24

1
F3 α 5

96
1
F3 E1

(8) 3
2

1
F3 α 3

8
1

F3 E1

fp HMChPT f+ Rel. Th.

(4) 2
6

α
F3

g
mπ

1
12

E3

F3
g

2mπ

(5) 3
8

α
F3

g
mπ

3
32

E3

F3
g

2mπ

(13) − 3
4

α
F3

g3

mπ

1
16

E3

F3
g3

2mπ

(14) 3
2

α
F3

g3

mπ

1
8

E3

F3
g3

2mπ

(15) 1
12

α
F3

g3

mπ

1
48

E3

F3
g3

2mπ

(16) − 1
6

α
F3

g3

mπ
− 1

24
E3

F3
g3

2mπ

Table III.2: The coefficients of the chiral logarithms, A(m2
π), at q2

max from the different
diagrams in Fig. III.3. The diagrams not listed in the table do not contribute to the
chiral logarithms. The two Lagrangians give the same coefficients provided the tree
level coefficients are correctly identified.

the same for the scalar formfactor f0 and for f+. In Tab. III.2 we quote also
the results in the limit q2 = q2

max = (mB − mπ)2 where the two theories must
give the same outcome, being one the relativistic limit of the other. So this is
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another check of the validity of our relativistic theory. Summing up all the
results as explained above we find at q2

max

fv(v · pπ) = f Tree
v (v · pπ)

[

1 +

(
11

8
+

9

8
g2

)
1

F2
A(m2

π)

]

,

f0(q2) = f Tree
0 (q2)

[

1 +

(
11

8
+

9

8
g2

)
1

F2
A(m2

π)

]

,

fp(v · pπ) = f Tree
p (v · pπ)

[

1 +

(
3

8
+

43

24
g2

)
1

F2
A(m2

π)

]

,

f+(q2) = f Tree
+ (q2)

[

1 +

(
3

8
+

43

24
g2

)
1

F2
A(m2

π)

]

, (III.24)

i.e. agreement between the two theories.

As a final check, we notice that the results obtained including only those
diagrams where no B∗ appears (i.e. (1),(3) and (8) in Fig. III.2 and III.3) coin-
cide with the ones in [13] for the K → π amplitudes. The chiral corrections
must agree in these two cases since, as we remarked above, the only difference
between the two processes is the presence of the vectorial B∗ particle.

III.7 Conclusions

In this paper we have calculated the pionic logarithms in the semileptonic
B → π and D → π transitions. We have reproduced the known results near
the endpoint q2 = (mB − mπ)2, Eq. (III.24) and obtained the chiral logarithm
also away from the endpoint in Eq. (III.23) and it was the same for both form-
factors.
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III.A Loop integrals expansions

We collect the relevant expansions of the one-loop integrals needed to eval-
uate the diagrams in Fig. III.3 in the framework of the relativistic theory of
Sect. III.3. In the calculation we need the one-, two- and three-point functions
defined as (d = 4 − 2ǫ)

A(m2
1) =

1

i

∫
ddk

(2π)d

1

k2 − m2
1

(III.25)

B(m2
1, m2

2, p2) =
1

i

∫
ddk

(2π)d

1

(k2 − m2
1)((p − k)2 − m2

2)
(III.26)

C(m2
1, m2

2, m2
3, p2

1, p2
2, q2) =

1

i

∫
ddk

(2π)d

1

(k2 − m2
1)((k − p1)2 − m2

2)((k − p1 − p2)2 − m2
3)

,

(III.27)

with q2 = (p1 + p2)
2. Actually two- and three-point functions with extra

powers of momenta in the numerator contribute too, but we do not intend to
give their definitions here. They can be found in [22] in precisely the form
used here. We only stress that all these functions can be rewritten in terms
of (III.25), (III.26) and (III.27) [23]. The finite parts of A(m2

1) and B(m2
1, m2

2, q2)
are [24]

A(m2
1) = − m2

1

16π2
log

(

m2
1

µ2

)

, (III.28)

B̄(m2
1, m2

2, q2) =
1

16π2

[

−1 −
∫ 1

0
dx log

(
m1x + m2(1 − x) − x(1 − x)q2

µ2

)]

.

(III.29)

In the calculation of the amplitude the three-point function
C(m2

1, m2
2, m2

3, p2
1, p2

2) always depends on the masses as (m2, M2, M2, m2, q2)
with m = mπ , and M = mB. It can be rewritten using Feynman parameters x,
y

C(m2, M2, M2, M2, m2, q2) = − 1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

[

m2(1 − x − 2y + y2)

+M2(x + y)2 + (q2 − M2 − m2)(−y + y(x + y))
]−1

. (III.30)

In order to find the appropriate chiral logarithms we expanded (III.29) and
(III.30) for small m2/M2 . We quote only the terms of the expansions contain-
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ing the chiral logarithms log (m2/µ2)

B̄(m2, M2, q2) = − 1

M2 − q2
A(m2), q2 ≪ q2

max (III.31)

C(m2, M2, M2, m2, q2) = − 1

(M2 − q2)2
A(m2), q2 ≪ q2

max (III.32)

B̄(m2, M2, M2) =
1

2M2
A(m2), (III.33)

B̄(m2, M2, m2) = 0, (III.34)

B̄(m2, M2, (M − m)2) = − 1

mM
A(m2) − 1

M2
A(m2). (III.35)

The expansions of the three-point functions at q2
max are a bit more involved.

The reason is that the reduction formulas present a singularity at q2
max = (M−

m)2 for m2 = 0. Thus we expand each of them directly, from the Feynman
parameter integral, without rewriting them in terms of (III.25), (III.26) and
(III.27). To do this one rewrites the integral in (III.30) using z = x + y as

C(m2, M2, M2, m2, (M − m)2) = − 1

16π2

∫ 1

0
dz

∫ z

0
dy ×

1

[M2z2 + m2 + 2mMy + (m2(−z − y + y2) − 2mMyz)]
.

(III.36)

The part in the denominator in brackets is always suppressed by at least m/M
compared to the first three terms for all values of z and y and we can thus
expand in it. The remaining integrals can be done with elementary means.
The result of the expansion is, quoting only up to the order needed for this
work,

C(m2, M2, M2, M2, m2, (M − m)2) = −1

2

(
1

m2M2
A(m2) +

1

mM3
A(m2)

+
1

M4
A(m2)

)

, (III.37)

C11(m2, M2, M2, M2, m2, (M − m)2) =
1

2

1

mM3
A(m2) +

7

12

1

M4
A(m2),

(III.38)

C12(m2, M2, M2, M2, m2, (M − m)2) =
1

3

1

mM3
A(m2) +

7

12

1

M4
A(m2),

(III.39)

C21(m2, M2, M2, M2, m2, (M − m)2) = −1

6

1

M4
A(m2), (III.40)
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C22(m2, M2, M2, M2, m2, (M − m)2) = − 7

30

1

M4
A(m2), (III.41)

C23(m2, M2, M2, M2, M2, m2, (M − m)2) = −1

4

1

M4
A(m2), (III.42)

C24(m2, M2, M2, M2, m2, (M − m)2) = − 1

12

1

M2
A(m2). (III.43)

The other three-point functions do not give any leading logarithm.
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IV.1 Introduction

As a result of the rapid progress in computer technology, simulations of full
QCD on the lattice are becoming increasingly feasible and thus many results
are now available. To improve their precision it is important to acquire control
on all the sources of systematic errors involved. One of them is due to the fact
that most simulations are done with meson masses larger then the physical
ones. It is therefore essential to perform a chiral extrapolation of the lattice
data points to achieve smaller meson masses.

In this respect Chiral Perturbation Theory (ChPT) [1–3], the effective field
theory of QCD at low energy, plays a key role. This theory can predict the
dependence on the light quark masses of the observables under study, via a
systematic expansion in the masses and momenta of the light mesons using
both the spontaneous and explicit breaking of chiral symmetry. Unfortunately
ChPT is often limited by its range of validity. There exist several processes
where it is applicable only in a small fraction of the allowed range of energy,
while the extrapolations formulas are needed elsewhere. It is the case for ex-
ample of the K → π, D → π, K, η and B → π, K, η transition formfactors
in e.g. semileptonic decays. These processes are very important for the de-
termination of CKM matrix elements, obtained combining knowledge on the
amplitudes from experiments [4–7] and the formfactors calculated on the lat-
tice [8]. The matching between lattice and experimental data is done when the
momentum transfer squared to the vector boson is small, i.e. when a hard ex-
ternal pion arises and thus the power counting scheme of ChPT breaks down.
However it is possible to exploit the chiral symmetry of QCD even there and
predict the dependence on the meson masses of the formfactors using the ar-
guments of hard pion Chiral Perturbation Theory (HPChPT).

This was first studied in [9] where it was applied to the semileptonic decay
K → π using two-flavour ChPT. They argued there that it is possible to calcu-
late the corrections of the type m2

π log m2
π/µ2 even when the squared momen-

tum transfer q2 is very small, i.e. when the outgoing pion is hard. Their argu-
ments are based on the fact that only the soft internal pions are responsible for
the chiral logarithms. These ideas have then been generalized and applied to
K → ππ [10] and to B → πℓνℓ [11], always in the framework of two-flavour
ChPT. In [10, 11] it was made clear that the underlying arguments correspond
basically to separate the hard-structure of a Feynman diagram from the soft
one and use this last one to calculate infrared singularities. The arguments are
essentially the same as those used for photon infrared singularities.

In this paper we use two-flavour HPChPT for the vector and the scalar
formfactors of the pion Fπ

V (s) and Fπ
S (s) at s ≫ m2

π . Our main interest in
this calculation is that it allows a test of the arguments of HPChPT using the
existing two-loop results in standard two-flavour ChPT [12]. For complete-
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ness we also quote the three-flavour HPChPT results for the electromagnetic
formfactor for pions and kaons.

The main new result of this work is the three-flavour HPChPT calculation
of the transition formfactors in vector transitions of B and D to π, K and η and
the Isgur-Wise function in B to D transitions. In the latter case, the calculations
did exist and has been used but the validity of the formulas was not discussed.
Our results improve the comparison between the measured D → π and D →
K formfactors [4]. We also calculate the contributions at the endpoint for all
these transitions where the results for the transitions to η are new.

The paper is organized as follows. In Sect. IV.2 we briefly review ChPT
and heavy meson ChPT (HMChPT). We present the relativistic theory that has
been used to have an extra check of the correctness of our results here as well.
At the end of this section we also summarize the arguments why HPChPT
works, although we refer the reader for further details to Sect. 5 of [11].

In Sect. IV.3 we present the results for pion and kaon formfactors and test
HPChPT using the existing two-flavour two-loop calculations for the pion
formfactors. In Sect. IV.4 we define the formfactors of the heavy to light transi-
tions and present our results for them. We also show here the comparison with
the experimental data from [4] on the D → π(K) transitions . The B → D tran-
sitions are defined and our results for them given in Sect. IV.5. In the appendix
we provide some results for the needed expansions of the loop integrals.

IV.2 Chiral Perturbation Theory

IV.2.1 Standard Chiral Perturbation Theory

In this subsection we briefly describe the formalism of ChPT [1–3] for both
two- and three-flavour ChPT. The notation in the following is the same as
in [13]. The lowest order Lagrangian describing the strong interactions of the
light mesons is

L(2)
ππ =

F2

4

(
〈uµuµ〉 + 〈χ+〉

)
, (IV.1)

with

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u†} ,

χ± = u†χu† ± uχ†u ,

u = exp

(
i√
2F

φ

)

,

χ = 2B(s + ip) .

u parametrizes the oscillations around the vacuum in SU(n)L ×
SU(n)R/SU(n)V ∼ SU(n) for n = 2, 3 the number of light flavours. φ
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is thus a hermitian n × n matrix:

φ =






1√
2

π0 + 1√
6

η π+ K+

π− − 1√
2

π0 + 1√
6

η K0

K− K̄0 − 2√
6

η




 ,

φ =

(
1√
2

π0 π+

π− − 1√
2

π0

)

. (IV.2)

The fields s, p, lµ = vµ − aµ and rµ = vµ + aµ are the standard external scalar,
pseudoscalar, left- and right-handed vector fields introduced by Gasser and
Leutwyler [2,3]. We will use the symbol F throughout this paper but it should
be kept in mind that F can be either the two-flavour constant called F in [2] or
the three-flavour one called F0 in [3].

The field u and uµ transform under a chiral transformation gL × gR ∈
SU(n)L × SU(n)R as

u −→ gRuh† = hug†
L, uµ −→ huµh†. (IV.3)

In (IV.3) h depends on u, gL and gR and is the so called compensator field. The
notation 〈X〉 stands for trace over up,down quark indices for n = 2 and up,
down, strange for n = 3.

Starting from this Lagrangian we can then build an effective field theory
by including loop diagrams and higher order Lagrangians. Introductions to
ChPT can be found in [14, 15].

IV.2.2 Heavy meson Chiral Perturbation Theory

In this subsection we briefly describe the formalism of HMChPT [16–18].
Longer introductions can be found in the lectures by Wise [19] and the book
[20].

The combination of Heavy Quark Effective Theory and of ChPT provides
us with a powerful formalism to study hadrons containing a heavy quark.
This combination is called HMChPT. It makes use of both spontaneously bro-
ken SU(n)L × SU(n)R chiral symmetry on the light quarks, and spin-flavour
symmetry on the heavy quarks. Thus HMChPT involves both a heavy and a
light scale. The first one is the heavy meson mass and rules an expansion in
powers of its inverse. The second is the light meson mass that lets us study
chiral symmetry breaking effects in a chiral-loop fashion as in standard ChPT.

The sector of the Lagrangian involving only light-quarks has already been
discussed above. We now present the heavy meson part of the HMChPT La-
grangian for the three-flavour case [16–18]. Hereafter we concentrate on the

B(∗) mesons, but the same equations hold for the D(∗) mesons as well. In the
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limit mb → ∞, the pseudoscalar, B, and the vector, B∗, mesons are degenerate.
All results in this paper are in the leading order in the heavy quark expansion.
Thus in the following we neglect the mass splitting ∆ = mB∗ − mB. To im-
plement the heavy quark symmetries it is convenient to assemble them into a
single field

Ha(v) =
1 + v/

2

[

B∗
aµ(v)γµ − Ba(v)γ5

]

, (IV.4)

where v is the fixed four-velocity of the heavy meson, a is a flavour index
corresponding to the light quark in the heavy meson. Therefore B1 = B+,

B2 = B0, B3 = Bs, while D1 = D0, D2 = D−, D3 = Ds and similarly for the
vector mesons B∗

µ and D∗
µ. In (IV.4) the operator (1 + v/)/2 projects out the

particle component of the heavy meson only. The conjugate field is defined as

Ha(v) ≡ γ0H†
a (v)γ0. We assume the field Ha(v) to transform under the chiral

transformation gL × gR ∈ SU(n)L × SU(n)R as

Ha(v) −→ habHb(v) , (IV.5)

so we introduce the covariant derivative

D
µ
abHb(v) = δab∂µHb(v) + Γ

µ
abHb(v), (IV.6)

where Γ
µ
ab = 1

2

[
u†

(
∂µ − irµ

)
u + u

(
∂µ − ilµ

)
u†

]

ab
, and the indices a, b run

over the light quark flavours. Finally, the Lagrangian for the heavy-light
mesons in the static heavy quark limit reads

Lheavy = −i TrHav · Dab Hb + g TrHau
µ
abHbγµγ5, (IV.7)

where g is the coupling of the heavy meson doublet to the Goldstone boson
and the traces, Tr, are over spin indices, the γ-matrix indices. The Lagrangian
(IV.7) satisfies chiral symmetry and heavy quark spin flavour symmetry. We
neglect in the following the mass differences for the heavy mesons containing
the same heavy quark.

IV.2.3 Relativistic theory

When the momentum transfer to the light degrees of freedom is not small as
in HPChPT, very off-shell heavy mesons may appear in the loops. Different
treatments of the off-shell behaviour modify the loop-functions. Thus in prin-
ciple it might change the non-analyticities in the light meson masses. If this
were the case, the arguments summarized in Sect. IV.2.4 would be wrong. In
fact, provided that the two formalisms are both sufficiently complete, the soft
singularities must be the same, since they are arising in the same way. This is

IV
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the reason why both here and in [11] we are calculating not only using HM-
ChPT but also in a relativistic formulation as a check on the arguments.

We use a relativistic Lagrangian that respects the spin-flavour symmetries
of HMChPT. It is essentially the same Lagrangian introduced in [11], but now
in the three-flavour case. The Ba and B∗

aµ fields are in the relativistic form and
we treat them as column-vectors in the light-flavour index a.

Lkin = ∇µB†∇µB − m2
BB†B − 1

2
B∗†

µνB∗µν + m2
BB∗†

µ B∗µ, (IV.8)

Lint = gM0

(

B†uµB∗
µ + B∗†

µ uµB
)

+
g

2
ǫµναβ

(

−B∗†
µ uα∇µB∗

β + ∇µB∗†
ν uαB∗

β

)

, (IV.9)

with B∗
µν = ∇µB∗

ν −∇νB∗
µ, and ∇µ = ∂µ + Γµ. The constant g of (IV.9) is the

same in (IV.7), M0 is the mass of the B meson in the chiral limit. The fields B
and B∗ transform under chiral transformations as B → hB. The two terms of
Lint in (IV.9) contain the vertices BB∗M and B∗B∗M for M = π, K, η.

From Lkin in (IV.8) we find the propagators of the B and B∗ meson respec-
tively:

i

p2 − m2
B

,

−i

(

gµν − pµ pν

m2
B

)

p2 − m2
B

. (IV.10)

This is to be contrasted with the propagator 1/v · p in the HMChPT showing
the different off-shell behavior.

IV.2.4 Hard pion Chiral Perturbation Theory

In general, the use of ChPT and HMChPT is valid as long as the interacting
light mesons are soft, i.e. if they have momenta much smaller than the scale of
spontaneous chiral symmetry breaking (ΛChSB ≃ 1 GeV). Only in this regime
is the power counting of ChPT well defined.

On the other hand the arguments presented in great detail in Sect. 5 of [11]
show that the predictions of the soft singularities in the light meson masses ap-
pearing in the final amplitudes are reliable even outside the range of applica-
bility of HMChPT. Hereafter we present a short summary of these arguments,
but for a comprehensive discussion we refer the reader to Sect. 5 of [11].

The underlying idea is that in a loop diagram, the internal soft light mesons
are the source of the infrared non-analyticities arising, even if hard, i.e. large
momentum, light mesons are present. Since the soft lines do not see the hard
or short-distance structure of the diagram, we can separate them from the rest
of the process. We should thus be able to describe the hard part of any dia-
gram by an effective Lagrangian which must include the most general terms
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consistent with all the symmetries. The coefficients of this Lagrangian depend
on the hard kinematical quantities and can even be complex. This Lagrangian
must be sufficiently complete to describe the neighbourhood of the underly-
ing hard process.

Extra caution must be taken to build up the Lagrangian describing the hard
part. As a matter of fact we can not neglect operators with an arbitrary num-
bers of derivatives since the momenta into play can be large. However it turns
out that matrix elements of operators with higher number of derivatives are
all proportional to the lowest order ones up to terms of higher order, i.e. the
coefficients of the leading non-analyticities are calculable in terms of the low-
est order Lagrangians.

We expect that a full power counting can be formulated along the lines of
SCET [21] but the leading prediction can be obtained in the simpler fashion
done here.

IV.3 Pion and kaon formfactors

IV.3.1 Electromagnetic formfactors in three-flavour HPChPT

The vector (electromagnetic) formfactors of the charged pion and kaon are
defined as

〈

π(K)+(p2)
∣
∣
∣jelm

µ

∣
∣
∣ π(K)+(p1)

〉

= (p2 + p1)µF
π(K)
V (s), (IV.11)

with s = (p1 − p2)
2 and jelm

µ = 2
3 ūγµu − 1

3 d̄γµd − 1
3 s̄γµs is the electromagnetic

current. The arguments of HPChPT can be used here as well and we get from
the relevant one-loop diagrams and wave function renormalization that

Fπ
V (s) = F

πχ
V (s)

(

1 +
1

F2
A(m2

π) +
1

2F2
A(m2

K) + O(m2
L)

)

,

FK
V (s) = F

Kχ
V (s)

(

1 +
1

2F2
A(m2

π) +
1

F2
A(m2

K) + O(m2
L)

)

. (IV.12)

The superscript χ here means in the limit mu = md = ms = 0. In the remainder
we will usually drop the O(m2

L) part but all results should be interpreted as up

to analytic terms in the light meson masses squared. The loop integral A(m2)
is defined in the appendix. The result (IV.12) can be calculated directly or by
expanding the known ChPT result [22, 23] for s ≫ m2

L.

IV
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IV.3.2 Vector and scalar pion formfactors in two-flavour
HPChPT

It is important to test the arguments behind HPChPT as much as possible. We
can do a nontrivial test by looking at the two-flavour case for the pion vector
and scalar formfactors. The vector form factor is defined in (IV.11) and the
scalar formfactor is defined by

〈

π0(p2)
∣
∣ūu + d̄d

∣
∣ π0(p1)

〉

= f π
S (0)Fπ

S (s) . (IV.13)

We have factored out here as is customary [2, 12, 22] the value at s = 0. From
the general discussion we again expect that the leading non-analytic correc-
tion should be in both cases of the form

f (s) = C(s) ×
(

1 + α
m2

F2
log

m2

µ2
+ O(m2)

)

. (IV.14)

In principle α could depend on s but it is calculable. C(s) is a free parameter
in HPChPT and can even be complex.

Calculating the formfactors from wave-function renormalization and the
needed one-loop diagrams we obtain

Fπ
V (s) = F

πχ
V (s)

(

1 +
1

F2
A(m2

π)

)

,

Fπ
S (s) = F

πχ
S (s)

(

1 +
5

2F2
A(m2

π)

)

. (IV.15)

Here χ means in the limit mu = md = 0. This agrees with the large s expansion
of the one-loop result of [2].

In normal ChPT these formfactors are known fully analytically up till two-
loop order [12]. We can now choose a value of m2

π and s such that s ≫ m2
π

but with both s and m2
π in the regime of validity of standard HPChPT. The

expansion for s ≫ m2
π can be done and the result should be of the form (IV.15)

where the form of F
πχ
V (s), F

πχ
S (s) follows from the one-loop calculation in the

limit m2
π = 0. This gives

F
πχ
V (s) = 1 +

s

16π2F2

(
5

18
− 16π2lr

6 +
iπ

6
− 1

6
ln

s

µ2

)

,

F
πχ
S (s) = 1 +

s

16π2F2

(

1 + 16π2lr
4 + iπ − ln

s

µ2

)

. (IV.16)

Let us see what happens when the full two-loop results are taken into ac-
count. Our arguments still hold as long as we are working at the desired
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order i.e. O(m2
π). On the other hand now different kind of terms arise.

Some of them are suppressed by m4
π with or without logarithms and so can

be neglected. The ones like s2 or s2 log s2/µ2 and without log(m2
π/µ2) can-

not be predicted by HPChPT and are absorbed in the unknown part of the

coefficient C(s) of (IV.14). Terms like s2 log2 m2
π/µ2 or s2 log m2

π/µ2 can also
arise. Those not only would be large in our limit, but even divergent when

mπ → 0, therefore they must cancel. Terms like sm2
π log2 m2

π/µ2 are pre-
dicted by HPChPT not to occur. Finally there are terms as sm2

π log(m2
π/µ2)

and sm2
π log(m2

π/µ2) log(s/µ2) which are of special interest. The coefficients
of these are predicted by HPChPT. They are given by (IV.16) and (IV.15). Per-
forming the expansion of the full two-loop result for s ≫ m2

π we indeed find
that the result is of the required form with the chiral limit value given exactly
by (IV.16). This is a rather nontrivial check on HPChPT.

IV.4 B → M and D → M transitions

IV.4.1 Definition of formfactors

In this section we review the formalism for the transitions of a B or a D meson
into a light pseudoscalar meson (π, K, η). We restrict ourselves to the case of a
B meson, but the same definitions hold also for the D-decay. All the following
discussion can be found also in [11] for the two-flavour case. We report it
here for the sake of completeness. The hadronic current for pseudoscalar to
pseudoscalar vector transitions (Pi(q̄i, q) → Pf (q̄ f , q)) has the structure

〈

Pf (p f )
∣
∣
∣qiγµq f

∣
∣
∣ Pi(pi)

〉

= (pi + p f )µ f+(q2) + (pi − p f )µ f−(q2)

=

[

(pi + p f )µ − qµ

(m2
i − m2

f )

q2

]

f+(q2) + qµ

(m2
i − m2

f )

q2
f0(q2),

(IV.17)

where qµ is the momentum transfer qµ = p
µ
i − p

µ
f . In our case Pf is a light

pseudoscalar meson, Pi is a B meson and qi = b. For example, to find the
B0 → π+ formfactors we need then to evaluate the hadron matrix elements of
the quark bilinear bγµq, where q = u.

Parity invariance, heavy quark and chiral symmetry dictate that the match-
ing of QCD bilinears onto operators of HMChPT take the form [19, 24],

b̄γµqa ∝ c
{

Trγµ
(

u†
ab + uab

)

Hb(v) + Trγ5γµ
(

u†
ab − uab

)

Hb(v)
}

. (IV.18)

If no hard pions appear in the final state we can use the definition of the decay

IV
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constant 〈

0
∣
∣
∣bγµγ5q

∣
∣
∣ B(pB)

〉

= iFB p
µ
B (IV.19)

and obtain c = 1
2 FB

√
mB. This latter result does not hold for momenta away

from q2
max in which case c is just an effective coupling depending on q2.

In HMChPT the definitions of the formfactors are chosen such that those
are independent of the heavy meson mass. So for example for the B → M
transition

〈

M(pM)
∣
∣
∣bγµq

∣
∣
∣ B(v)

〉

HMChPT
=

[
pMµ − (v · pM) vµ

]
fp(v · pM)

+vµ fv(v · pM). (IV.20)

In (IV.20) v · pM is the energy of the light meson in the heavy meson rest frame

v · pM =
m2

B + m2
M − q2

2mB
. (IV.21)

The formfactors defined in (IV.17) and in (IV.20) are related by matching the
relativistic and the HMChPT hadronic current:

√
mB fp(v · pM) = f+(q2) +

m2
B − m2

M

q2
f+(q2) − m2

B − m2
M

q2
f0(q2)

= f+(q2) − f−(q2), (IV.22)

√
mB

(
fv(v · pM) − fp(v · pM)v · pM

)
= mB

(

q2 − m2
B + m2

M

q2
f+(q2)

+
m2

B − m2
M

q2
f0(q2)

)

= mB

(

f+(q2) + f−(q2)
)

. (IV.23)

The
√

mB factors in (IV.22) and (IV.23) are due to the different normalizations

of states used in the two formalisms. At q2 ≈ q2
max, neglecting terms sup-

pressed by powers of mM and of 1/mB, (IV.22) and (IV.23) become

f0(q2) =
1√
mB

fv(v · pM), f+(q2) =

√
mB

2
fp(v · pM). (IV.24)

We remark that the relations in (IV.24) are valid only when q2 ≈ q2
max contrary

to what was said in the original version1 of [11]. At general q2 away from q2
max

we must use (IV.22) and (IV.23).

1Notice that this does not invalidate the results of [11]. Indeed all the formfactors involved
have the same chiral logarithms, thus the tree-level part can still be factorized out, as shown in
Sect. IV.4.2
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A matching similar to (IV.18) has to be done also for the relativistic theory
described in Sect. IV.2.3. We identify four possible operators2

JL
µ =

1

2
E1tu†∇µB +

i

2
E2tu†uµB +

i

2
E3tu†B∗

µ +
1

2
E4tu†

(
∇νuµ

)
B∗ν, (IV.25)

where E1,. . . , E4, are effective couplings. t is a constant spurion vector trans-

forming as t → tg†
L, so that JL

µ is invariant under SU(3)L transformations.
The heavy quark symmetry implies mBE1 = E3. Analogously we can intro-
duce a right-handed JR

µ current and thus an axial-vector J5
µ = JR

µ − JL
µ and a

vector JV
µ = JR

µ + JL
µ current. They are used respectively to evaluate the am-

plitudes of B → ℓνℓ and the B → M formfactors as defined in (IV.17). We
leave the discussion for the latter in Sects. IV.4.2 and IV.4.4, while we quote
here the expression of the B(Bs) decay constants that can be found evaluating
the B(Bs) → vacuum matrix element at one loop:

FB = E1

{

1 +
1

F2

[(
3

8
+

9

8
g2

)

A(m2
π) +

(
1

4
+

3

4
g2

)

A(m2
K)

+

(
1

24
+

1

8
g2

)

A(m2
η)

]}

,

(IV.26)

FBs = E1

{

1 +
1

F2

[(
1

2
+

3

2
g2

)

A(m2
K) +

(
1

6
+

1

2
g2

)

A(m2
η)

]}

.

(IV.27)

A(m2) is defined in (IV.58) in the appendix. Here we only quote the non-
analytic dependence on the light quark masses for the one-loop part. The
results (IV.26) and (IV.27) agree with those obtained with HMChPT [18]. We
see that E1 plays the role of FH in [18] and that the relativistic theory predicts
the same coefficient of the chiral logarithm in A(m2) as expected.

IV.4.2 The chiral logarithms away from the endpoint

In this section we present results for the formfactors of the vector transitions
B → π, B → K, B → η, Bs → K and Bs → η calculated using three-flavour
HPChPT. The results for the B → π transition in two-flavour ChPT can be
found in [11]. We quote only the relevant terms, i.e. the leading ones which
contain free parameters and the predicted chiral logarithms up to O(m2

M). The
tree-level diagrams contributing to the amplitude are shown in Fig. IV.1. The

2The last one is higher order but we included it since it has a different type of contraction of
the Lorentz indices and as an explicit check on the arguments of HPChPT [11].

IV
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(1) (2)

Figure IV.1: The tree-level diagrams contributing to the amplitude. A double line cor-
responds to a B, a zigzag line to a B∗, a single line to a light meson, i.e. π, K or η. A
black circle represents the insertion of a vector current.

formfactors at tree level read for HMChPT

f Tree
p (v · pM) = CB→M

α

F

g

v · pM + ∆
, f Tree

v (v · pM) = CB→M
α

F
, (IV.28)

where CB→M is a constant that changes depending on the meson transition
and takes the values

CB→M =







1 B− → π0
√

2 B̄0 → π+
√

2 B → K
1√
3

B → η√
2 Bs → K

− 2√
3

Bs → η.

In (IV.28) α is a constant that takes the value
√

mB/2FB at q2
max. We also obtain

c = α/
√

2. Near q2
max = (mB − mM)2 the results remain obviously the same,

but the propagator in the first equation of (IV.28) becomes 1/mM. In the case
of the relativistic theory of Sect. IV.2.3, we distinguish the formfactors for the
two q2 ranges. At q2 away from q2

max

f Tree
+ (q2) = CB→M

{

−1

4

E3

F

mB

q2 − m2
B

g +
1

8

E1

F
− 1

4

E2

F

}

,

f Tree
0 (q2) = CB→M

{

1

8

E1

F

(

1 +
q2

m2
B − m2

M

)

−1

4

(

E2

F
+

E3

F

mB

q2 − m2
B

g

) (

1 − q2

m2
B − m2

M

)}

.

(IV.29)
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At q2 ≈ q2
max (IV.29) simplifies to

f Tree
+ (q2)q2≈q2

max
= CB→M

1

4

E3

F

1

2mM
g, f Tree

0 (q2)q2≈q2
max

= CB→M
1

4

E1

F
.

(IV.30)
We stress once more that the relation of E1 and E3 to FB holds only when q2 ≈
q2

max. As the momentum transfer is out of this range the coupling constant are
different at the different values of q2 and can even be complex.

At one-loop we need to include the contributions of the wavefunction
renormalization Zπ , ZK, Zη , ZB and ZBs . They are the same for HMChPT
and the relativistic theory and read:

Zπ = 1 − 2

3

A(m2
π)

F2
− 1

3

A(m2
K)

F2
,

ZK = 1 − 1

4

A(m2
π)

F2
− 1

2

A(m2
K)

F2
− 1

4

A(m2
η)

F2
,

Zη = 1 − A(m2
K)

F2
,

ZB = 1 +
9

4
g2 A(m2

π)

F2
+

3

2
g2 A(m2

K)

F2
+

3

12
g2

A(m2
η)

F2
,

ZBs = 1 + 3g2 A(m2
K)

F2
+ g2

A(m2
η)

F2
. (IV.31)

The one-loop corrections to the vector current JV
µ are shown in Fig. IV.2.

To find the results in HMChPT we expanded the one-loop calculation of
[25] at v · pM → mB, m2

M → 0. Note however that their results are only valid
near the endpoint. The arguments of HPChPT allow us to use their results
also away from the endpoint.

In the relativistic theory we first calculated the formfactors and then we
expanded the loop integrals for m2

M ≪ m2
B, (m2

B − q2). These latter expan-
sions are given in App. IV.1. Notice that we keep terms of the kind m/M
in the expansion of the C̄ and B̄ functions (IV.65), (IV.66) that had not been
included explicitly in [11]. Those terms could cause corrections like mM/F2

in the final results, that would violate the heavy quark limit M → ∞. We
verified that all these corrections do cancel. To achieve the final results, we
sum up all the contributions coming from the several diagrams and include
the wavefunction renormalization pieces. This corresponds to sum (1/2)ZM

for M = π, K, η and (1/2)ZB or (1/2)ZBs , according to the external legs of
the process under study, multiplied by the tree-level part of the formfactors.
We find for the different transitions that the two formfactors always have the
same chiral logarithms. We can write the results in the form

fv/p(v · pM) = f Tree
v/p (v · pM)FB→M (IV.32)

IV
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(3) (4) (5) (6)

(7) (8) (9) (10)

(11) (12) (13)

(14) (15) (16)

Figure IV.2: The one-loop diagrams contributing to the amplitude. Vertices and lines
as in Fig. IV.1

The chiral logarithms are in FB→M and read for the different transitions

FB→π = 1 +

(
3

8
+

9

8
g2

)
A(m2

π)

F2
+

(
1

4
+

3

4
g2

)
A(m2

K)

F2
+

(
1

24
+

1

8
g2

)
A(m2

η)

F2
,

(IV.33)
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FB→K = 1 +
9

8
g2 A(m2

π)

F2
+

(
1

2
+

3

4
g2

)
A(m2

K)

F2
+

(
1

6
+

1

8
g2

)
A(m2

η)

F2
,

(IV.34)

FB→η = 1 +

(
3

8
+

9

8
g2

)
A(m2

π)

F2
+

(
1

4
+

3

4
g2

)
A(m2

K)

F2
+

(
1

24
+

1

8
g2

)
A(m2

η)

F2
,

(IV.35)

FBs→K = 1 +
3

8

A(m2
π)

F2
+

(
1

4
+

3

2
g2

)
A(m2

K)

F2
+

(
1

24
+

1

2
g2

)
A(m2

η)

F2
,

(IV.36)

FBs→η = 1 +

(
1

2
+

3

2
g2

)
A(m2

K)

F2
+

(
1

6
+

1

2
g2

)
A(m2

η)

F2
. (IV.37)

FBs→π vanishes due to the possible flavour quantum numbers.

In all the transitions we obtain, as predicted by our arguments, the same
coefficients for the relativistic theory. I.e.

f+/0(q2) = f Tree
+/0(q2)FB→M . (IV.38)

The correction is also the same for the formfactors f0 and f+ or for fv and
fp in all the cases. Notice that (IV.33) is also in agreement with the results in
two-flavour HPChPT of [11]

The chiral logarithms for both form factors are always the same in these
decays as can be seen in (IV.38) and (IV.32). This was also already the case for
the Kℓ3 formfactors in HPChPT [9] and we noticed it as well in [11]. It cannot
simply be something like heavy quark symmetry since it is not valid at the
endpoint, see below and [24,25]. This would also not be a valid reason for the
Kℓ3 case. An alternative explanation would be if something similar to Low’s
theorem for electromagnetic soft corrections holds. Low’s theorem states that
the amplitude for the process with Bremsstrahlung is proportional to the am-
plitude without Bremsstrahlung by a factor depending only on the external
legs. A corresponding result holds for the infrared logarithms in virtual pho-
ton diagrams. But, if here there was only dependence on the external legs, we
obtain the relation

FB→K − FB→η − FBs→K + FBs→η = 0 . (IV.39)

Inspection of the results in (IV.37) show that this is not satisfied. The same
argument would have predicted that the chiral logarithms in Fπ

V (s) and Fπ
S (s)

of (IV.15) are the same which is again clearly not the case.

IV
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Figure IV.3: The measurements of CLEO [4] for the formfactor f+(q2) for the D → π
and the D → K semileptonic decays. In the two plots we have divided by the values
of the CKM matrix elements |Vcd| = 0.2253 and |Vcs| = 0.9743 respectively. On the left
we plot only the formfactors without corrections, while on the right we plot each of the
two members of (IV.40).

IV.4.3 Comparison with experiment

We did not find any lattice data published in a form that allows us to test
the chiral logarithms in (IV.37). However, there are published data on the
formfactors in D → π and D → K semileptonic decays. The most precise
data come from CLEO. In [4] are reported the data points of f+(q2)|Vcd| for

D+(0) → π0(+) decays and of f+(q2)|Vcs| for D0(+) → K+(0) decays. We can
then use the known value for the Cabibbo angle to get at the form factors. We
used the PDG value for sin θC = 0.2253 [26] to obtain |Vcd| = sin θC = 0.2253
and |Vcs| = cos θC = 0.9743. In Fig. IV.3 on the left-hand-side we plot the
CLEO data for both D → π and D → K decays. We included only the D0 →
π+(K+) data. A similar study can be done using the D+ → π0(K0) since they
give basically the same data points as isospin symmetry dictates.

The following relation should approximately hold using (IV.38) and the
fact that the lowest order result is the same.

f+ D→K(q2) = f+ D→π(q2)
FD→K

FD→π
, (IV.40)

where FD→π(K) are the logarithmic corrections due to loop diagrams quoted
in (IV.37). The corrections to relation (IV.40) are mainly due to higher order
terms i.e. O(m2

M) without logarithms. We expect these corrections to be about

10%. The value of g2, which enters through the FD→π(K) of (IV.40) is set to
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0.44 [27]. However it does not affect the plots since the coefficients of the chi-
ral logarithms proportional to g2 are the same for the two decays. The scale
of renormalization µ is set to ΛChPT ≈ 1 GeV. In the right plot of Fig. IV.3 the
f +
D→K formfactor almost overlaps the f +

D→π one once the logarithmic correc-
tions are taken into account as (IV.40) indicates. By comparing the left with
the right plots in Fig. IV.3 it is clear that our chiral logarithms compensate for
the differences. Notice also that the FD→π(K) contributes to a good 30% of the
total formfactor but the total correction in the ratio is much smaller. The terms
which depend on g2 also cancel out in the ratio. (IV.40) holds in principle both
for q2 ≪ q2

max and at the endpoint q2 ≈ q2
max. It should be kept in mind that the

endpoint has quite different logarithms which are given below. The q2
max are

rather different in the two decays, being q2
max ≈ (1.86 − 0.49)2 = 1.88 GeV2

for the K channel while q2
max ≈ (1.86 − 0.14)2 = 2.9 GeV2 for the π channel.

Therefore making a similar comparison at large q2 is in practice not possible.

This is the reason why in Fig. IV.3 we stopped at q2 ≈ 1.5 GeV2, the rightmost
point is already rather close to the endpoint for D → K.

IV.4.4 Chiral logarithms at the endpoint

At the endpoint HPChPT is not valid but standard HMChPT is. The B → K
formfactors were calculated in [24] and the B → π, K in [25]. The latter paper
also discussed them in the partially quenched case. We do not show diagram
by diagram results, these can be partly found in [24, 25]. Here we only quote
the final results but we also calculate the results for the B → η transitions.

Again the results in this limit must give the same outcome for the two
theories, since one is the relativistic limit of the other. So this is another check
of the validity of our relativistic theory. Notice that we are performing a three-
flavour calculation and thus there are three light masses entering into the loop-
functions, i.e. mπ , mK and mη . This complicates the structures of the functions
involved and therefore of the non-analyticities arising. For this reason a few
more loop functions are also needed in the relativistic formalism compared
to the two-flavour case [11]. They have been reported in the appendix. We
present the results at q2 = q2

max for each transition using

fp(q2
max) = f Tree

p (q2
max)F

p
B→M , fv(q2

max) = f Tree
v (q2

max)Fv
B→M . (IV.41)

The relativistic theory correctly reproduces all these results provided that the
substitutions f Tree

v (v · p) → f Tree
0 (q2) and f Tree

p (v · p) → f Tree
+ (q2) are per-

formed.

F
p
B→π = 1 +

(
3

8
+

43

24
g2

)
A(m2

π)

F2
+

(

1

4
+

9

4
g2 − m2

π

m2
K

g2

)

A(m2
K)

F2

IV
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+

(

1

24
+
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24
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9
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π

m2
η

g2

)
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F2
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K

)
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F

(
mπ

mK

)

+
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(
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η

)

F2
F

(
mπ

mη

)
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(
11
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+
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)
A(m2

π)

F2
+

(

−1

4
+

3

4
g2 +
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π

m2
K

)

A(m2
K)

F2

+

(
1

24
+

1

8
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)
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η)

F2
− 2

m2
π

F2
F

(
mπ

mK

)

, (IV.42)

F
p
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9
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g2 A(m2

π)

F2
+

(
1
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+

7

4
g2

)
A(m2

K)

F2

+

(

1

6
+
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24
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9
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K

m2
η
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)

A(m2
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F2
+
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g2

(

m2
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η

)

F2
F

(
mK

mη

)

,
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9

8
g2 A(m2

π)

F2
+

(
3

2
+

3

4
g2

)
A(m2

K)

F2

+

(

−1

3
+

1

8
g2 +

m2
K

m2
η

)

A(m2
η)

F2
− 2

m2
K

F2
F

(
mK

mη

)

, (IV.43)

F
p
B→η = 1 +

(

3

8
+

33

8
g2 − 2

m2
π

m2
η

g2

)

A(m2
π)

F2

+

(

1

4
+

5

4
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3

m2
η

m2
K
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)

A(m2
K)
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+

(
1

24
+
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A(m2
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(
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(
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(
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K

)

F2
F

(
mη

mK

)

,
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(
3

8
+

9

8
g2

)
A(m2

π)

F2
+

(

−5

4
+

3

4
g2 + 3

m2
η
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K

)
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+
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24
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)

, (IV.44)
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+
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2
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K
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+
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1

4
+ 2g2

)
A(m2
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+
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1

24
+

7
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+3g2 (m2
K − m2
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F2
F

(
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F
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+
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+
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+
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+
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, (IV.45)
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+
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17

18
g2

)
A(m2

η)

F2

+
10

3

(m2
η − m2

K)

F2
F

(
mη

mK

)

,
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(
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K
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)

A(m2
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+
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with

F
(

m1

m2

)

=







− 1
(4π)2

√
m2

2−m2
1

m1

[

π
2 − arctan

(

m1√
m2

2−m2
1

)]

m1 ≤ m2

1
(4π)2

√
m2

1−m2
2

m1
tanh−1

(√
m2

1−m2
2

m1

)

m1 ≥ m2

(IV.47)

Our results agree with the earlier published ones in [24, 25].

IV.5 B → D transition

IV.5.1 Definition of formfactors

In this section we present the formalism involved in the calculation of the
B → D formfactor. The matrix element for this decay is

〈
D(p′)

∣
∣b̄γµc

∣
∣ B(p)

〉
= (p + p′)µ f̃+(q2) + (p − p′)µ f̃−(q2) (IV.48)

where qµ is the momentum transfer qµ = p − p′.
To perform the calculation in HMChPT we need the hadronic current cor-

responding to the one of QCD:

b̄γµc → TrX(v, v′)H̄(v′)γµH(v) (IV.49)

IV
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where v, v′ are the fixed four-velocities of the B and D hadron respectively,
while X(v, v′) is the most general bispinor constructed starting from the in-
variants v and v′. As explained in [20], spin symmetry for heavy quarks con-
strains X to be a scalar function −ξ(v · v′), called the Isgur-Wise function [28].
The variable v · v′ is of special importance. It can be related to q2 through the
relation

w ≡ v · v′ =
m2

B + m2
D − q2

2mBmD
. (IV.50)

The allowed kinematic range is thus 0 ≤ w − 1 ≤ (mB−mD)2

2mBmD
. w is a measure

of what is the momentum transfer to the light degrees of freedom i.e. it gives
us an indication of the range of applicability of HMChPT. The light degrees of

freedom have momentum of order ΛQCDv(′), thus the momentum transfer to

the light system is q2
light ≈

(
ΛQCDv − ΛQCDv′

)2
= 2Λ2

QCD(1 − w). HMChPT

can be applied as far as q2
light ≪ m2

b,c which means on the scale w ≈ 1 (region

of zero recoil or near the endpoint) [29]. The matrix element in HMChPT is

〈
D(v′)

∣
∣b̄γµc

∣
∣ B(v)

〉

HMChPT
= (v + v′)µh+(w). (IV.51)

Evaluating explicitely the trace in (IV.49) it is easy to obtain h+(w) = ξ(w)
at leading order. It can be also shown that heavy flavour symmetry implies
ξ(1) = 1 [20, 28]. The result that one single formfactor is enough to describe
the matrix element of (IV.51) can also be achieved using the helicity formalism
for counting the number of independent amplitudes [20,30]. To compare with
the results of HMChPT it is convenient to reparametrize the matrix element of
QCD defined in (IV.48) as

〈
D(p′)

∣
∣b̄γµc

∣
∣ B(p)

〉

√
mBmD

= (v + v′)µh+(w) + (v − v′)µh−(w) . (IV.52)

where the formfactors h±(w) are linear combinations of f̃±(q2). Comparing
(IV.51) and (IV.52) it is straightforward to see that, at leading order in 1/mheavy,

h+(w) must be the same formfactor in the two formalisms and that h−(w) = 0.

To perform the calculation in the relativistic framework we need the JL
µ

current responsible for the B → D transition, analogous to the one in (IV.25).
Therefore we write down all the possible independent and chiral-invariant
operators that respect also heavy quark symmetries. They must contain in-
teractions of the kind BD or B∗D∗. The first one is needed for the tree-level
diagram (1) in Fig. IV.4, while the second for the one-loop (2) in Fig. IV.4. Thus
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the current is

JL
µ = X1

(

−tD†∇µB + t∇µD†B
)

+ X2

(

tD∗ †
α ∇µB∗ α − t∇µD∗ †

α B∗ µ
)

+X3

(

−t∇αD∗ †
α B∗

µ + tD∗ †
µ ∇αB∗

α + t∇αD∗ †
µ B∗

α − tD∗ †
α ∇αB∗

µ

)

(IV.53)

where X1, X2, X3 are effective couplings and the spurion t is now a singlet

under the chiral SU(n)L × SU(n)R symmetry since bγµc is a singlet. Heavy
quark symmetry implies furthermore that X1 = X2 = X3. From (IV.53) it is
easy to construct the vector current JV

µ causing the decay.
Before concluding this section we stress once more that the zero recoil

region is the only one where HMChPT is in principle applicable, as shown
by [29]. This does not mean that it is not possible to extend the effective the-
ory outside that range to calculate the infrared singularities. Indeed exactly
the same arguments applied to B → π semileptonic decays go through for
the B → D case as well, thus HPChPT can be used. As a matter of fact there
have been already confirmations of how well the effective theory can do when
w − 1 ≫ 0 (see for example Fig 2.5 in [20]). The use of HPChPT justify those
results.

IV.5.2 Chiral logarithms

We now present the results for the B(s) → D(s) semileptonic decay. The results
in two-flavour HMChPT at zero recoil (w = 1) can be found in [29]. The three-
flavour extension has been calculated in [31] and [32]. The result at one loop
and leading order in 1/mB and 1/mD is

h+(w) = ξ(w)

[

1 +
g2

F2

(
3

2
A(m2

π) + A(m2
K) +

1

6
A(m2

η)

)

(r(w) − 1)

]

,

(IV.54)
and for the Bs → Ds transition it is

h+(w) = ξ(w)

[

1 +
g2

F2

(

2A(m2
K) +

2

3
A(m2

η)

)

(r(w) − 1)

]

, (IV.55)

where

r(w) =
1√

w2 − 1
log (w +

√

w2 − 1), (IV.56)

and r(1) = 1 so that the chiral logarithms cancel at zero recoil. While in [29]
it has been clearly stated that the calculation is valid only at the zero re-
coil point, the authors of [31] and [32] present the result for the Isgur-Wise
function in the whole energy range, but no explicit arguments why it should

IV
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(1) (2)

Figure IV.4: The diagrams contributing to the B → D transition up to one-loop. Nota-
tion is the same as in Fig. IV.1. The double lines at the left of the insertion of the current
are always B mesons, while the ones in the right are D mesons.

be valid are given there. The arguments of HPChPT given before imply
that the formula given there are indeed valid in the whole energy regime

0 ≤ w − 1 ≤ (mB−mD)2

2mBmD
≈ 1.6. Note that here the correction is not a simple

chiral logarithm as in the previous cases but there is a strong dependence on
w and the result connects smoothly to the endpoint region.

We checked that our relativistic formulation gives the same result as [32].
The result up to one-loop reads

h+(w) =
X1√

2

[

1 +
g2

F2

(
3

2
A(m2

π) + A(m2
K) +

1

6
A(m2

η)

)

×
(

1 − 2mBmDC̃(m2
D, m2

B, q2)
)]

,

h−(w) = 0, (IV.57)

where C̃(m2
D, m2

B, q2) comes from the three-point function

C(m2, m2
B, m2

D, m2
B, q2, m2

D) which is needed to evaluate the loop diagram

in Fig. IV.4. In (IV.73) in the appendix we define the function C̃(m2
D, m2

B, q2)

and show that C̃(m2
D, m2

B, q2) = r(w)/(2mBmD). We also agree with the
Bs → Ds result of [32].

Comparing (IV.57) with (IV.54) it is straightforward to see that the two for-
malisms give the same results as foreseen. Notice that now we do not need
to distinguish the two limits w − 1 ≈ 0 and w − 1 ≫ 0: the function r(w)
describes the whole energy range.

Note that the reults here assume that there are no other nearby states, see
e.g. the discussion in [33].

IV.6 Conclusions

In the paper we have extended HPChPT to several processes. First we calcu-
lated the three-flavour results for the charged pion and kaon electromagnetic
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formfactor and the two-flavour result for the pion vector and scalar formfac-
tor. The latter have then been used to check the underlying arguments of
HPChPT in a two-loop setting.

Using the three-flavour spontaneous symmetry breaking pattern we could
explicitely evaluate the dependence on the light meson masses for the B → π
formfactors in addition to our earlier two-flavour results [11]. We could also
extend the theory to other transitions as the B → K and B → η transitions
and the corresponding Bs transitions. The corrections are of the expected size
of about 30%. An unexplained feature of our results is that the two pos-
sible formfactors have always the same chiral logarithm and we ruled out
two possible explanations. A comparison with the experimental data for the
D → π, K transition formfactors has also performed. It shows that the correc-
tions obtained go in the right direction and are sizable. We have reproduced
the known results at the endpoints and added these for the transitions to η.

Finally, we justified and reproduced already known results for the form-
factors of the B → D transition at one loop.

Further investigations in this framework are desiderable, since they could
significantly improve the chiral extrapolations of the lattice data. In partic-
ular it could be very useful to develop the same approach also for Partially
Quenched ChPT. As stated above we expect that a formalism with an explicit
power counting can be formulated along the lines of SCET.

Acknowledgments

This work is supported in part by the European Community-Research Infras-
tructure Integrating Activity “Study of Strongly Interacting Matter” (Hadron-
Physics2, Grant Agreement n. 227431) and the Swedish Research Council
grants 621-2008-4074 and 621-2008-4252. This work heavily used FORM [34].

IV.A Expansion of the needed loop integrals

We collect here the one-loop functions and their expansions, used to evaluate
the diagrams in Fig. IV.2 and in Fig. IV.4 in the framework of the relativistic
theory of Sect. IV.2.3. Much of what is written here is also present in the ap-
pendix of [11]. We need the one-, two- and three-point functions defined as
(d = 4 − 2ǫ)

A(m2
1) =

1

i

∫
ddk

(2π)d

1

k2 − m2
1

, (IV.58)

B(m2
1, m2

2, p2) =
1

i

∫
ddk

(2π)d

1

(k2 − m2
1)((p − k)2 − m2

2)
, (IV.59)

IV
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C(m2
1, m2

2, m2
3, p2

1, p2
2, q2) =

1

i

∫
ddk

(2π)d

1

(k2 − m2
1)((k − p1)2 − m2

2)((k − p1 − p2)2 − m2
3)

,

(IV.60)

with q2 = (p1 + p2)
2. Two- and three-point functions with extra powers of

momenta in the numerator contribute too. They are defined similarly and the
explicit definitions can be found in [35]. All these functions can be rewrit-
ten in terms of (IV.58), (IV.59) and (IV.60) [36]. The finite parts of A(m2

1) and

B(m2
1, m2

2, q2) are using the standard ChPT subtractions [2, 3, 37]

A(m2
1) = − m2

1

16π2
log

(

m2
1

µ2

)

, (IV.61)

B(m2
1, m2

2, q2) =
1

16π2

[

−1 −
∫ 1

0
dx log

(
m1x + m2(1 − x) − x(1 − x)q2

µ2

)]

.

(IV.62)

As far as regards the B transitions to a light pseudoscalar meson, the
three-point function C(m2

1, m2
2, m2

3, p2
1, p2

2, q2) always depends on the masses as

(m2
1, M2, M2, M2, m2

2, q2) where m1 is the mass of the light meson in the loop,
m2 is the mass of the light external meson and M = mB. It can be rewritten
using Feynman parameters x, y

C(m2
1, M2, M2, M2, m2

2, q2) = − 1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

[

m2
1(1 − x − y)

+m2
2(−y + y2) + M2(x + y)2 + (q2 − M2 − m2

2)(−y + y(x + y))
]−1

.

(IV.63)

In order to find the appropriate chiral logarithms we expanded (IV.62) and
(IV.63) for small ratios m2/M2 . We quote only the terms of the expansions
containing non-analyticities in the light masses mi. First those only valid for
q2 ≪ q2

max, i.e. away from the endpoint:

B(m2, M2, q2) = − 1

M2 − q2
A(m2), (IV.64)

C(m2
1, M2, M2, M2, m2

2, q2) =
1

(M2 − q2)

1

16π

m1

M
− 1

(M2 − q2)2
A(m2

1) .

(IV.65)
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The next ones are those relevant at the endpoint or for wavefunction renor-
malization

B̄(m2, M2, M2) = − 1

16π

m

M
+

1

16π

m2

M2
+

1

2M2
A(m2), (IV.66)

B̄(m2, M2, m2) = 0, (IV.67)

B̄(m2
1, M2, (M − m2)

2) =
1

M

[

2m2F
(

m1

m2

)

− m2

m2
1

A(m2
1)

]

+
1

M2

[

3m2
2F

(
m1

m2

)

+ A(m2
1)

(

1

2
− 3

2

m2
2

m2
1

)]

.

(IV.68)

The function F (m1/m2) was defined in (IV.47). The expansion in (IV.68) holds
in both the cases m2 ≶ m1 and also for m1 = m2 where it correctly reduces to
the expansion reported in the appendix of [11].

The expansions of the three-point functions at q2
max are a bit more in-

volved. The reason is that the reduction formulas present a singularity at
q2

max = (M − m2)
2 for m2

2 = 0. Furthermore we need to distinguish different
cases depending on the m1 and m2 appearing in the arguments of the three-
loop functions. We use again the same technique used in [11]. We expand each
of the functions directly from the Feynman parameter integral, without first
rewriting them in terms of (IV.58), (IV.59) and (IV.60). To do this one rewrites
the integral in (IV.63) using z = x + y as

C(m2
1, M2, M2, M2, m2

2, (M − m2)
2) = − 1

16π2

∫ 1

0
dz

∫ z

0
dy×

1
[
M2z2 + m2

1 + 2m2My +
(
−m2

1z + m2
2(−y + y2) − 2m2Myz

)] .

(IV.69)

The part in the denominator in brackets is always suppressed by at least m/M
compared to the first three terms for all values of z and y and we can thus
expand in it. The remaining integrals can be done with elementary means.
The expansions obtained are many and long, therefore we quote only those
needed and restricted to those terms where a infrared singularity appears. We
do not quote terms like 1/(4π)2m/M3, also non-analytic for small m, because
they always cancel in the final results (IV.42)-(IV.46). The expansions read

C(m2
1, M2, M2, M2, m2

2, (M − m2)
2) =

1

M2

[

−1

2

1

m2
1

A(m2
1) + F

(
m1

m2

)]

IV
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+
1

M3

[

F
(
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]
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2
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(
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) (

m2
2 +

3

8
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, (IV.70)
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+
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+
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(
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(
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F
(

m1

m2

)

m2
2

+A(m2
1)

(

1

4
− 1

2

m2
2

m2
1

)]

,

C24(m2
1, M2, M2, M2, m2

2, (M − m2)
2) =

1

M2

[

−F
(

m1

m2

)
1

3
(m2

2 − m2
1)

+A(m1)

(

−1

4
+

1

6

m2
2

m2
1

)]

. (IV.71)

Setting the masses m1 = m2 all the expansions in (IV.71) coincide correctly
with the ones reported in the appendix of [11]. The function F (m1/m2) is
the one defined in (IV.47). Notice that it takes different forms depending if
m1 ≶ m2. Furthermore for m1 = m2 F (m1/m2) = 0. The other three-point
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functions do not give any leading contribution.
We focus now on the semileptonic decay B → D. The three-point function

entering in the loop diagram of Fig. IV.4 is C(m2, M2
1, M2

2, M2
1, q2, M2

2), where
m is the mass of the light meson in the loop, M1 = mB and M2 = mD. To
expand it, similarly to what has been done above, we first rewrite it in terms
of the Feynman parameters x, y

C(m2, M2
1, M2

2, M2
1, q2, M2

2) = − 1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

[

m2(1 − x − y) + x2M2
1 + y2M2

2 + xy(M2
1 + M2

2 − q2)
]−1

.

(IV.72)

The m2(x + y) term in (IV.72) is suppressed by at least one power of m so
we can neglect it. Setting x = X/M1, y = Y/M2 and w = (M2

1 + M2
2 −

q2)/(2M1M2) the integral becomes

C(m2, M2
1, M2

2, M2
1, q2, M2

2) = − 1

16π2

1

M1M2

∫ M1

0
dX

∫ M2− M2
M1

X

0
dY

[

m2 + X2 + Y2 + 2wXY
]−1

.

Then we can perform another change of variable and set polar coordinates
X = R cos φ, Y = R sin φ:

C(m2, M2
1, M2

2, M2
1, q2, M2

2) = − 1

16π2

1

M1M2

∫ π/2

0
dφ

∫ Rmax

0
dRR

[

m2 + R2 + 2wR2 sin (2φ)
]−1

,

where the upper boundary is Rmax = M2/(sin φ + M2/M1 cos φ). We are
interested in isolating the infrared singularities. Those only arise from the
lower bound of the integral. Therefore, performing the integral in dR, we
keep only the term coming from the small R region. However we checked
explicitely that the large R region does not produce any soft singularity at the
desired order. The result for the integral in R reads

C(m2, M2
1, M2

2, M2
1, q2, M2

2) =
1

16π2

1

2M1M2

∫ π/2

0
dφ log

(
m2

µ2

)

[1 + 2w sin (2φ)]−1 + · · · ,

where the ellipsis are the terms coming from the upper bound and µ is a pa-
rameter with the dimension of a mass. The integral in dφ can be done anality-
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cally and after tedious calculations we arrive to the final result

C(m2, M2
1, M2

2, M2
1, q2, M2

2) =
1

16π2

1

2M1M2

1√
w2 − 1

log
(

w +
√

w2 − 1
)

× log

(
m2

µ

)

+ . . .

=
1

16π2
C̃(M2

2, M2
1, q2) log

(
m2

µ2

)

+ . . . .(IV.73)
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