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Sammanfattning

Denna avhandling handlar om teoretisk partikelfysik. Partikelfysik handlar
om elementarpartiklar och hur dessa växelverkar med varandra, dvs vilka
krafter som verkar mellan dem. Detta är hur materien ser ut på den mins-
ta skala vi har kunnat studera experimentellt. Den teori som beskriver de
starka, svaga och elektromagnetiska krafterna och de materiepartiklar som vi
känner till, kvarkar och leptoner, kallas för standardmodellen. Standardmo-
dellen består av tre så kallade gauge symmetrier för den elektrosvaga, som är
en gemensam beskrivning av den svaga och den elektromagnetiska, och den
starka kraften. Den elektrosvaga symmetrin måste vara bruten via en meka-
nism som kallas för spontant symmetribrott för att elementarpartiklarna ska
kunna få massor i överenstämmelse med vad som mäts upp experimentellt.

Standardmodellen som helhet är en stor framgång i vår förståelse av uni-
versums all minsta beståndsdelar. Icke desto mindre finns det forfarande en
del oklarheter i teorin och framförallt när det gäller hur den elektorsvaga sym-
metrin bryts. Den del av teorin, den så kallade Higgs sektorn, som står för hur
elementarpartiklar får massa är ännu inte experimentellt bekräftad. Det enk-
laste sättet att göra detta är med ett enda Higgsfält som har ett nollskilt värde
i vakuum, dvs i universums grundtillstånd, kallad vakuumförväntansvärde.
Denna avhandling bidrar på två olika sätt till att ersätta Higgs sektorn i stan-
dardmodellen.

Det första tre artiklarna handlar om så kallade QCD-lika teorier. De liknar
teorin för den starka kraften (QCD) på det sättet att de fundamentala partik-
larna, ofta kallad technikvarkar i detta sammanhang, inte är direkt synliga
utan bara kan finnas i bundna tillstånd. I stället för att som i standardmo-
dellen det är Higgsfältet som får ett förväntansvärde är det en kombination
av technikvarkfälten som får det. Denna allmänna typ av alternativa Higgs
sektorer kallas för technicolor och går under namnet dynamiskt elektrosvagt
symmetribrott. Eftersom dessa teorier också har en stark kraft kan man inte
direkt använda vanlig störningsräkning för att studera dem. I stället behöver
man använda ickesörningsmässiga metoder. De tre första artiklarna i avhand-
lingen handlar om studier av QCD-lika teorier med en metod som kallas effek-
tiv fältteori. Ett antal fysikaliska storheter har utvecklats till tredje ordningen.
Dessa formler gör det möjligt att extrapolera stora numeriska simuleringar
för QCD-lika teorier som man måste göra med massan för technikvarkarna
till det masslösa fall man behöver för dynamiskt elektrosvagt symmetribrott.

Det sista artikeln handlar om ett av de enklaste sätten att utvidga stan-
dardmodellen. Man antar att det finns två Higgsfält i stället för ett. Teorin
blir därigenom mer allmän, men man har redan nu begränsningar på denna
typ av modeller från experimentella mätningar. I denna avhandling studerar
vi en av dessa begränsningar. Man antar att modellen måste vara komplett
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också för mycket högre energiskalor än vi har experimentell tillgång till. De
begränsningar som detta antagande ger för kopplingarna av Higgsfälten till
kvarkar och leptoner, så kallade Yukawa kopplingar, är mycket starka och stu-
diet av dessa är innehållet för den sista artikeln.



To my family —
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Introduction

i.1 Introduction to the Thesis

This thesis can be divided into two parts: the introduction and the papers of
my Ph.D. research.

In the introduction part, I will give a brief review of particle physics. Sec-
tion i.2 contains a little bit of the history of physics and where we stand today.
In section i.3, I focus on some basic principles of particle physics, mainly about
the symmetries and related subjects. From section i.4, I start to introduce some
topics of the Standard Model that relate to my work during PhD studies. An
overview of the Standard Model is given in section i.4.1, and its parts, the
electroweak theory in section i.4.2 and Quantum Chromodynamics in section
i.4.3. Afterwards we introduce Effective Field Theory and Chiral Perturbation
Theory in section i.5.1. This section is strongly related to the methods used
in the first three papers of my research work. In section i.6, I explain a bit
about why we need theories beyond the Standard Model. Three examples
of such theories are described very shortly, they are: the general Two Higgs
Doublet Model (section i.6.1), Supersymmetry (section i.6.2) and Strong Dy-
namical electroweak symmetry breaking (section i.6.3). Section i.6.1 contains
the background of my fourth paper, and section i.6.3 contains the motivation
for our work about QCD like theories. In the last section of the introduction,
a brief summary of the four papers and my own contributions is given. In the
second part, the four papers are attached with a few additional references.

i



2 Introduction

i.2 From Classical to Quantum

”Nature and nature’s laws lay hid in night;
God said ”Let Newton be” and all was light.”

– Alexandre Pope

Back to three hundred years ago, the nature of the universe was dark and
mysterious for people. At that time, some people already knew that we are
living on earth, but nobody knew why we can stand on this ”sphere”. Such a
basic question was not answered until Newton discovered his laws of motion
and gravity.

In the following 200 years, scientists developed and refined Newton’s the-
ory, which is now called classical mechanics. Apart from classical mechanics,
the laws of electricity and magnetism have also been discovered by Maxwell
and other pioneers. In the late 19th century, most physicists believed the major
part of physics was done, the remainder was just a matter of calculations.

However, as we know, the famous ”Two Clouds on the Horizon” 1 brought
a storm of revolution, not only in physics, but also in many other science ar-
eas. In the early 20th century, the discovery of the theory of relativity and
quantum mechanics took us to understand the next level of structure of na-
ture. Furthermore, much of modern science and technology is also based on
those two theories.

In the early 20th century, physicists knew we cannot apply classical me-
chanics to the quantum world, which was probably the first time people real-
ized the limits of the validity of the physical law in the spatial scale.

Today, from the point view of physics, we may divide nature into different
”Worlds” according to the spatial scale. There is a famous ”snake” drawn
by Sheldon Glashow that shows how our worlds looks like from the smallest
scale to the whole universe, see fig. i.1.

The world we are familiar with is the ”Macro World” whose sizes are from
about 10−10m to about ∼ 1018m. Most phenomena in this world can be de-
scribed by classical mechanics and electromagnetism. In the cosmos scale
which is about 1018m ∼ 1028m, we could call it ‘’Cosmos World”. This world is
dominated by gravity that can be explained by the theory of general relativity
and cosmology.

When the scale become as small as the size of an atom which is about
10−10m, quantum effects become important. In this case we reach the ”Quan-
tum World” that can be understood by quantum mechanics. Many research
areas sit in this world, e.g., atomic physics, nanophysics,condensed matter
physics, and chemistry.

If we want to explore the even smaller world, which we can call ”Particle
World”, we often have to use particle colliders as the main experimental tool.

1The Michelson-Morley experiment and blackbody radiation.
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Figure i.1: Glashow’s snake showing characteristic structure scales of nature [1].

In this world, special relativity and quantum mechanics are still the basic the-
ory but they need to be upgraded to quantum field theory (QFT). Based on
quantum field theory, the ”Standard Model” of particle physics has been built
to describe the small and fast moving particles during the 1960’s and 1970’s.

One of the key features of QFT is ”renormalization”, from which we learn
that many fundamental parameters in the Standard Model, e.g. the coupling
constants, actually change with the energy scale. That implies the Standard
Model might fail at a certain high energy above the electroweak scale. But on
the other side, renormalization of QFT also predicts that the strength of the
interactions of the Standard Model will be comparable to each other and also
to gravity at a very high energy scale, which implies that we probably can find
a unified theory for gravitation, QCD and electroweak theory. This theory is
called grand unification theory (GUT), where the energy scale can be as high
as 1015 ∼ 1016 GeV.

Nowadays, particle physics has strong interactions with cosmology. Ac-
cording to the big bang theory of cosmology, the energy scale of the early
universe can be as high as the GUT scale or even higher, where all the funda-
mental interactions could be equally important. That’s why the snake is eating
its own tail in fig. i.1, where physics at the smallest scale meets the one at the
largest scale.

The grand unification theory may be still faraway from us, but physicists

i



4 Introduction

believe that physics beyond the standard model should be reachable at the
Large Hadron Collider (LHC) in Geneva. We will come back to this point in
section i.6.

In particle physics, people often choose natural units to simplify the math-
ematical formulas. In these units,

h̄ = c = 1

where h̄ and c are Plank constant and the speed of light. In this way length
and time become the inverse of mass

[L] = [T] = [M]−1

In this paper, all dimensional quantities are given in units of energy.
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i.3 Symmetry and Symmetry Breaking

Tao generate one.
After one come two,

after two come three,
after three come all things.

—Tao Te Ching

Over thousands of years, scientists were dreaming to find a unified theory
based on which the whole complicate world can be deduced from some sim-
ple principles. Physics are thought to be the correct way to achive this goal by
many people.

One of the most fundamental principles in physics is the ”principle of least
action” which came from classical mechanics. The Euler-Lagrange equations,
which basically contain all the information of the physical system, can be de-
rived from this principle. However this is not enough to do something prac-
tical. We need to know how the Lagrangian looks like, but there are endless
possibilities of how the Lagrangian can be constructed.

Fortunately, today we have a powerful tool: symmetry. In physics, the
symmetry is defined such that the system, Lagrangian, remains unchanged
when performing certain transformations. With various symmetries, which
could come from experimental observation or just as a hypothesis, the La-
grangian can be fixed within a few possibilities.

i.3.1 Principle of Least Action and Noether’s Theorem

Suppose we want to study a system with a field φ(x). If the Lagrangian density
only depends on φ and its derivative, then the action will be

S[φ] =
∫

L(φ(x), ∂µφ(x)) d4x (i.1)

The classical principle of least action tells us that the system takes the ex-
tremum of S when it evolves from t1 to t2, i.e.

δS = 0 .

From this condition, we can derive the Euler-Lagrange equation :

δL
δφ

− ∂µ
δL

δ(∂µφ)
= 0 . (i.2)

At the quantum level, the way of evolving from t1 to t2 is not unique but there
are many permitted ”paths” with different amplitudes.

i
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If we impose a symmetry on the system, which means that the action S is
unchanged when there is an infinitesimal change of the δφ.

S[φ + δφ] = S[φ] (i.3)

or equivalently

L(φ + δφ, ∂µφ + δ∂µφ) = L(φ, ∂µφ) (i.4)

There is Noether’s theorem which states: every differentiable symmetry of
the action of a physical system has a corresponding conservation law. One
example is Lorentz invariance that causes energy-momentum conservation in
space-time. In particle physics, in addition to space-time symmetries, there
are internal symmetries such as isospin and colour symmetry to describe the
particle properties.

We can easily derive the conserved current of a Lagrangian

Jµ =
δL

δ(∂µφ)
δφ , (i.5)

and the conserved quantity (charge)

Q ≡
∫

J0d3x . (i.6)

i.3.2 Symmetry: Global vs Local

Generally, we can classify the symmetries as global or local symmetry, the
latter often called gauge symmetry. One of the simplest examples of internal
symmetry in particle physics is U(1) symmetry. When this symmetry acts on
a fermion field, the transform can be expressed as:

ψ → ψ′ = eiαψ . (i.7)

If α is a constant in space-time, i.e., it does not depend on the space-time coor-
dinates x = (x, t), then we shall call it global symmetry. If α depends on x: α(x),
then it is local symmetry or gauge symmetry. According to Noether’s theo-
rem, the global symmetry implies a conservation law, but the consequence of
gauge symmetry is much more nontrivial.

The Lagrangian of a Dirac fermion is

L = ψ̄(iγµ∂µ − m)ψ , (i.8)

which is invariant under the global U(1) transformation. If we require that
the Lagrangian in eq. (i.8) is invariant under the U(1) gauge transformation,
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then, because of the derivative on ψ′, we have to add an extra piece into the
Lagrangian:

L = ψ̄(iγµ∂µ − m)ψ − eψ̄γµ Aµψ . (i.9)

Here Aµ is the photon field, and e is the coupling constant. The last term in eq.
(i.9) thus is the interaction term between the fermion and photon. Under the
U(1) gauge symmetry, those two fields transform as

ψ → ψ′ = e−iα(x)ψ , (i.10)

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µα(x) , (i.11)

so the Lagrangian (i.9) can be invariant. When we add the kinetic term of the
photon field into (i.9) , we get the Lagrangian of Quantum Electrodynamics
(QED)

L = ψ̄(iγµDµ − m)ψ − 1

4
FµνFµν (i.12)

Dµ = ∂µ − ieAµ , (i.13)

where Dµ is the covariant derivative, and Fµν is the photon field strength Fµν =

∂µ Aν − ∂ν Aµ.
From this example, we can see that the gauge symmetry is the source of inter-

actions. This is one of the most profound discoveries of modern physics. It is
also the foundation of the Standard Model of particle physics.

i.3.3 Symmetry Breaking: Explicit vs Spontaneous

A world with full symmetries is simple, since it is easy to study using mathe-
matical tools. However this is not the case in nature, whose symmetries often
break in some way to generate the complicated and beautiful real world.

There are two ways to break the symmetry. The most obvious way is ex-
plicit symmetry breaking. The symbol of Taiji from ancient Chinese philoso-
phy in fig. i.2, shows how the rotation and reflection symmetries of the circle
have been broken by painting two parts with different colours. In particle
physics, if there are terms in the Lagrangian that are not invariant under cer-
tain transformations, the symmetry is broken explicitly. The consequence of
explicit symmetry breaking is clear that the corresponding quantity is not con-
served any more.

Another way to break symmetry is spontaneous symmetry breaking
(SSB), which can generate highly nontrivial physics. One example is ferro-
magnetism. At high temperature, the atomic magnetic moments would point
anywhere so that there is rotational symmetry (spatially invariant) on a macro-
scopic scale, see fig. i.3. When the system cools down to a certain temperature,

i



8 Introduction

those atomic magnetic moment all point to one direction. The rotational sym-
metry is broken spontaneously. Another famous example is the cooper pair in
the theory of superconductivity.

In particle physics, spontaneous symmetry breaking is most simply de-
scribed by a scalar field potential. Suppose the Lagrangian of a complex scalar
field φ(x) is

L = ∂µφ∗∂µφ − V(φ) , (i.14)

V(φ) = −µ2φ∗φ +
1

2
λ(φ∗φ)2 . (i.15)

Obviously this Lagrangian has U(1) symmetry

φ → φ′ = e−iαφ .

From fig. i.4 we can see that the shape of the Mexican hat like potential V(φ)

contains two kinds of extrema:

φ0 =

{
0 (unstable)√

µ2

λ eiθ (stable)
(i.16)

The system always automatically goes down from the unstable extremum to

one of the infinite number of stable minima at φ0 =
√

µ2

λ eiθ . In this case, the
original symmetry U(1) is spontaneously broken. In this case the condition for
SSB is −µ2 < 0 and λ > 0.

Figure i.2: The symbol of Taiji in ancient Chinese philosophy showing the subtle sym-
metry and symmetry breaking.
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Figure i.3: The ferromagnetism is a perfect example of spontaneous symmetry break-
ing, the atomic magnetic moments automatically point to one direction when the tem-
perature cooling down.

We also notice that moving from one place to another in the minima does
not cost any energy, so that massless modes can be generated. There is a gen-
eral Nambu-Goldstone theorem which states: if a physical system’s symme-
try is spontaneously broken to a lower symmetry due to the ground state (vac-
uum), there is one massless particle for each generator of the symmetry that is
broken. These massless particles are called Nambu-Goldstone bosons (NGB).
For example, when a system with SU(N) symmetry, whose number of gener-
ators is N2 − 1, spontaneously breaks to SU(N − 1) symmetry, whose number
of generators is (N − 1)2 − 1, then the number of NGBs is 2N − 1.

Now let us connect spontaneous symmetry breaking to gauge symmetry.
Suppose a complex scalar φ interacts with the photon field Aµ. The Lagrangian
is

L = Dµφ∗Dµφ − µφ∗φ +
1

2
λ(φ∗φ)2 − 1

4
FµνFµν ,

Dµ = ∂µ − ieAµ . (i.17)

This Lagrangian is invariant under the U(1) gauge transformation

φ → φ′ = e−iα(x)φ , (i.18)

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µα(x) . (i.19)

The global U(1) symmetry is still valid since it is a special case of gauge sym-
metry. As we have seen before, the global U(1) symmetry is spontaneously
broken because of the nonzero vacuum expectation value (vev) φ0 = 〈0|φ|0〉. If
we write φ(x) with explicit real part and imaginary part, plus the vev

φ(x) = φ0 +
1√
2
[φ1(x) + iφ2(x)] , (i.20)

i
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Figure i.4: The graph of Mexican hat like potential with unstable minimum at φ0 = 0 .

the scalar potential becomes

V(φ) ∼ constant + µ2φ2
1 +O(φ3

i ) +O(φ4
i ) . (i.21)

We can see that only the real scalar field φ1 gets a mass with mφ1 =
√

2µ, while
φ2 is massless. φ2 is actually the Goldstone Boson. This is what we expected.
Now let’s put (i.20) into the covariant derivative term, it is

Dµφ∗Dµφ =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
e2µ2

λ
Aµ Aµ + ... . (i.22)

Surprisingly, we’ve got an unexpected mass term for the photon

m2
A =

2e2µ2

λ
, (i.23)

which means the breakdown of the U(1) gauge symmetry. It can be explained
that the massless Nambu-Goldstone φ2(x) Boson is ”eaten” by the photon, or
in other words, the NGB becomes the longitudinal mode of the photon to
make the photon massive. If we choose the unitary gauge for φ(x), which
we will explain later in section i.4.2, φ2(x) disappears completely from the
Lagrangian i.17.

Similarly, a massless fermion ψ(x) also can get a mass term from the vev of
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scalar field. The Yukawa coupling is

Lψφ = −gψ̄φψ

= −g

√
µ2

λ
ψ̄ψ + ...

The mass of fermion is mψ = g
√

µ2/λ. In this case the we don’t have to put the
mass of fermion as a free parameter in Lagrangian, but instead introduce the
Yukawa coupling as the source of fermion mass through spontaneous symme-
try breaking.

i
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i.4 Standard Model of Particle Physics

i.4.1 Overview

The standard model of particle physics contains two parts: the electroweak
theory (EW) whose gauge symmetry is SU(2)L × U(1)Y, and Quantum Chro-
modynamics (QCD) whose gauge symmetry is SU(3)colour. Fig. i.5 shows the

Figure i.5: The particles and interactions of Standard Model.

fundamental components of the Standard Model

• the fermions (spin 1
2 ): quarks and leptons;

• the gauge bosons (spin 1 ): W±, Z0 (EW) and gluons g (QCD);

• the Higgs boson (spin 0);

• and their interactions.

Though we can write the symmetry of the Standard Model as SU(3)c ×
SU(2)L × U(1)Y, the EW theory and QCD haven’t been unified. All the parti-
cles in fig. i.5 have been found by experiments except the Higgs boson, which
is one of the main reasons that people built the LHC.
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i.4.2 Electroweak Theory

As we have mentioned before, gauge symmetry is the main source of in-
teractions and is the foundation of modern particle physics. In early 1960s,
Glashow proposed the SU(2)L × U(1)Y gauge symmetry to unify QED and the
weak interaction. However gauge bosons should be massless like the photon
in gauge theory, while the range of the weak interaction is very short imply-
ing that the weak gauge bosons are very massive. This problem was solved
by Weinberg and Salam who incorporated the Higgs mechanism to give mass
to the weak gauge bosons by spontaneous symmetry breaking.

Higgs Mechanism

The example shown in section i.3.3 is called Abelian gauge theory, in which
the group members commute with each other. The symmetry of EW theory is
SU(2)L × U(1)Y, which is a non-Abelian gauge theory such that not all group
members commute. But the idea of spontaneous symmetry breaking is the
same.

We can write the scalar field, or Higgs field, as a complex doublet repre-
sentation of SU(2)L with two complex components in the doublet

Φ(x) =

(
φ+(x)

φ0(x)

)
,

The φ+ is the charged scalar and φ0 is the neutral scalar. The transformation
under SU(2)L × U(1)Y gauge symmetry is

Φ(x) → φ′(x) = e−iτaα(x)e−
i
2 β(x)Φ(x) , a = 1, 2, 3 .

Here the τa are Pauli matrices, which are the generators of the SU(2) symme-
try. There are two gauge fields Wa

µ and Bµ corresponding to the SU(2)L weak
isospin and U(1) hypercharge gauge group respectively. The Lagrangian as-
sociated with gauge boson and Higgs doublet is

LGH = (DµΦ)†(DµΦ)− V(Φ) ,

V(Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 , (i.24)

Dµ = ∂µ + i
g1

2
YwBµ + ig2

τa

2
Wa

µ .

The Higgs potential has nontrivial minima when the vacuum expect value of
Φ(x) is

Φ(x) =
1√
2

(
0

v

)
with v =

√
µ2

λ
.

i
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Similar to eq. (i.20) we can rewrite the Higgs doublet as

Φ(x) =
1√
2

(
φ3 + iφ4

φ1 + iφ2

)
+

1√
2

(
0

v

)
.

Inserting the above formula into LGH , we get the mass term for gauge bosons

LGmass =
1

2

v2

4

{
g2

2

[
(W1

µ)
2 + (W2

µ)
2
]
+
(
− g2W3

µ + g1Bµ

)2
}

Let us redefine the gauge boson to eliminate the mixing terms

W±
µ =

1√
2
(W1

µ ∓ iW2
µ) , (i.25)

Z0
µ = cos θwW3

µ − sin θwBµ , (i.26)

Aµ = sin θwW3
µ + cos θwBµ , (i.27)

where the Weinberg angle is defined as tan θw = g1/g2. Thus the masses of the
gauge bosons are

mW =
v

2
g2, mZ =

v

2

√
g2

1 + g2
2, mA = 0 (i.28)

Now we realize that Aµ is the photon, and the original gauge symmetry
SU(2)L × U(1)Y has been broken to U(1)em spontaneously.

Actually, before the symmetry breaking, we can use the global SU(2)×U(1)

symmetry to rotate the Φ(x) into the φ1 direction,

Φ(x) =
1√
2

(
0

h + v

)
, (i.29)

This is called unitary gauge. Under this gauge, φ1 becomes the real physical
Higgs boson h, while φ2, φ3 and φ4 become the massless Goldstone Bosons.
Those Goldstone bosons form the longitudinal modes of the W and Z bosons
to make them massive.

Fermion Mass and CKM matrix

The quarks and leptons also can get mass from the Higgs field vev. We first
define the left and right fermions according to their chirality

ψL =
1 − γ5

2
ψ , (i.30)

ψR =
1 + γ5

2
ψ . (i.31)
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They are orthogonal to each other. The SU(2)L doublets for quarks and leptons
are

Q′
L =

(
U′

D′

)

L

U′
L = (u′, c′, t′)L, D′

L = (d′, s′, b′)L (i.32)

`
′
L =

(
ν′
`

`′

)

L

(ν′
`
)L = (ν′e, ν′µ, ν′τ)L, `

′
L = (e′, µ′, τ′)L (i.33)

and the singlets are

U′
R = (u′, c′, t′)R, D′

R = (d′, s′, b′)R, `
′
R = (e′, µ′, τ′)R . (i.34)

Though the neutrino masses have been confirmed a decade ago, their masses
are very very small so that we can simply ignore the right handed neutrinos in
this thesis. According to the SU(2)L × U(1)Y symmetry, the Yukawa coupling
of the electroweak theory is

−LHF = fuQ̄′
LΦ̃U′

R + fdQ̄′
LΦD′

R + fe
¯̀ ′

LΦ`
′
R + h.c. , (i.35)

where Φ̃ = iτ2Φ∗. That is because we need the opposite hypercharge of Φ to
make the first term on the r.h.s. above invariant. Once we take the vev of the
Higgs field

Φ =
1√
2

(
0

v

)
. (i.36)

The fermions get mass from the Yukawa couplings

M′
f =

v√
2

f f , (i.37)

which are general 3 × 3 matrices in the gauge basis of eq. (i.32-i.34). For the
sake of experiment, which sees the propagating or mass eigenstates, we need
to transform the Lagrangian to the mass basis.

The kinetic term of the fermion fields

ψ̄Liγµ∂µψL + ψ̄Riγµ∂µψR (i.38)

has global U(3)L × U(3)R symmetry for up quarks and another global U(3)L ×
U(3)R symmetry for down quarks. This symmetry allows us to do unitary
transformations on the fermions

U′
L = VU

L UL , U′
R = VU

R UR ,

D′
L = VD

L DL , D′
R = VD

R DR , (i.39)

`
′
L = V`

L`L , `
′
R = V`

R`R .

i
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and to diagonalize the fermion matrices

MU = VU†
L M′UVU

R ,

MD = VD†
L M′DVU

R ,

MU = V`†
L M′`V`

R .

Apply this transformation to the other parts of the EW Lagrangian, we see that
they have no effect on the neutral currents coupling to gauge bosons (γ, Z),
because of the suppression by the GIM mechanism. But for the charged weak
currents of quarks, the story is different

J
µ
charge = 2Ū′

LγµD′
L = 2ŪLγµ(VU†

L VD
L )DL .

We define

VCKM = VU†
L VD

L =




Vud Vus Vub ,

Vcd Vcs Vcb ,

Vtd Vts Vtb .


 .

The 9 parameters of this general unitary matrix can be reduced to three mixing
angles and one phase by redefining the quark mass eigenstates. A standard
parametrization from the PDG [2] is

VCKM =




c12c13 s12c13 s12e−iδ

−s12c23 − c12s13eiδ c12s23 − s12s23s13eiδ s23c13

s12c23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 ,

where the complex phase eiδ is the reason for the CP violation in the Standard
Model.

i.4.3 Quantum Chromodynamics

QCD was built based on two experimental observations:

• quark confinement: there are no free quarks. The potential energy in-
creases when the distance between the quarks in a hadron gets larger, so
we need infinite energy to separate the quarks.

• asymptotic freedom: the interactions between quarks and gluons be-
come weaker when the energy scale increases.

Confinement is dominant at low-energy scales while asymptotic freedom be-
comes dominant when the energy increases. The latter allows us to do pertur-
bative calculations at high energy.
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The gauge symmetry of QCD is SU(3)colour. The quarks and antiquarks live
in the fundamental representation 3 and 3∗ respectively, and the gluons live in
the adjoint representation 8. The Lagrangian of QCD is written as

LQCD = ∑
f

q̄
j
f

(
iγµD

µ
jk − m f δjk

)
qk

f −
1

4
G

µν
a Ga

µν

Where q is the quark field, f = (u, d, s, c, b, t) is the flavour index, and (j, k)=(red,
green, blue) are colour indices. Gµν is the field strength of the gauge fields Ga

µ:

Ga
µν = ∂µGa

ν − ∂νGa
µ − g3 f abcGb

µGc
ν a, b, c = 1, 2, ..., 8 .

Here a is the index of different generators in the adjoint colour representation.
The covariant derivative is

Dµ = ∂µ + ig3
λa

2
Ga

µ ,

where λa is the 3 × 3 Gell-mann matrix, and g3 is the strong coupling.

i
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i.5 Chiral Perturbation Theory

As we mentioned before, quark confinement and asymptotic freedom some-
how are like two end points of the seesaw. When the energy of a system moves
down from a high scale to a low scale, QCD changes from the perturbative
region to the non-perturbative region. Though there is no clear boundary be-
tween the two regions, once the energy scale is below some low value, e.g. 500
MeV, perturbative QCD completely fails. Things become difficult in this case
because we are not very good at non-perturbative calculations.

The most promising non-perturbative method is lattice QCD which dis-
cretizes space-time and use Monte Carlo simulations to solve QCD numeri-
cally. This approach however is constrained by the power of computers, so
the development strongly relies on computer science.

Some other approaches like the quark model use the global symmetry of
QCD, and reduce the QCD colour interaction to classical or semi-classical
level. The quark model was successful in explaining the hadron spectrum
before QCD was established. However there are questions that remain un-
clear. For example, in the quark model the constituent quark mass is around
300 MeV . That cannot explain the mass of pions (∼135 MeV) and kaons (∼490
MeV) which are made by two quarks. The latter question was understood
in the framework of spontaneous breaking of chiral symmetry, which is the
third important feature of QCD besides confinement and asymptotic freedom.
More extensive introduction to the subject of this section can be found in [3–9].

i.5.1 Effective Field Theory

In physics we do a lot of approximations as long as there are good reasons.
When an intermediate state of a physical process is very heavy compared to
the energy scale p, we can expand the propagator in term of p2/M2

1/(p2 − M2) ' − 1

M2
− p2

M4
+ ... . (i.40)

In some cases, we are allowed to keep the first term only, with the condition
p2 � M2. This approximation makes the theory much simpler to calculate,
but one has to pay the price that some information is lost. However, as long as
the energy of physical processes stays very small, this approximation is good
enough in many cases.

One of the most well known examples is Fermi’s theory for beta decay

n → p + e− + ν̄e

µ− → e− + ν̄e + νµ . (i.41)
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Fermi’s interaction is

LF =
GF√

2
ψ̄aγµ(1 − γ5)ψbψ̄cγµ(1 − γ5)ψd , (i.42)

Where ψ is the fermion field, and a, b, c, d indicate the type of fermions in the
processes (i.41). After the EW theory was established, people realized that
Fermi’s theory actually had taken the approximation

−gµν + qµqν/M2
W

(p2 − M2
W)

' gµν

M2
W

(i.43)

in the beta decay because M2
W � p2. In this way we can also see that

GF√
2

=
g2

8M2
W

. (i.44)

Of course Fermi’s theory didn’t include the quark mixing matrix VCKM, but
that can be added easily. From this example we can learn the following things
[3–9]:

• If the masses of degrees of freedom in the full theory are M � Λ or
m � Λ, we can integrate the heavy degree of freedom with M � Λ out
to simplify the theory. So the dynamics at low energy decouples from the
dynamics at high energy.

• The non-local effects of heavy states are replaced by local (contact) non-
renormalizable interactions.

Apart from the above points, there are other general properties for an EFT:
• The perturbative expansion can be described by E/Λ instead of an ex-

pansion in fundamental coupling constants. The system’s energy E is
associated with the momentum or derivative and its equivalent.

• In order to do have well defined high order calculations, one has to fix
the power counting first which will be discussed in i.5.4.

• The low energy EFT should respect the original symmetries of the full
theory.

i.5.2 Global Chiral Symmetry

Since the mass of light quarks are small, we could temporally ignore their
mass terms and we can also neglect the effects of the heavy quarks c, b, t. Then
the QCD Lagrangian is

L0
QCD = q̄LiγµDµqL + q̄RiγµDµqR − 1

4
G

µν
a Ga

µν . (i.45)

i
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The light quarks can be put into the column vector

q =




u

d

s


 , (i.46)

The Lagrangian (i.45) is invariant under the chiral transformations

qL → q′L = e−iδe−i ∑
8
a=1 αa

LTa
qL (i.47)

qR → q′R = e−iγe−i ∑
8
a=1 αa

RTa
qR (i.48)

which means it has a global SU(3)L × U(1)L × SU(3)R × U(1)R symmetry.

We can reorganize the U(1)L × U(1)R symmetry into U(1)V × U(1)A =

e−i(δ+γ) × e−i(δ−γ) by splitting them with different parity. The global U(1)V

symmetry is connected to the conservation of baryon number. The global
U(1)A symmetry is broken at the quantum level, which is called the QCD
anomaly. In this thesis we will not talk about those two U(1) symmetries.

Let us focus on the chiral SU(3)L × SU(3)R symmetry. We can rewrite the
chiral transformation as

qL → q′L = gLqL gL ∈ SU(3)L ,

qR → q′R = gRqR gR ∈ SU(3)R . (i.49)

According to many experimental and theoretical observations, the quark-
antiquark operator has a nonzero value in the ground state or vacuum

〈0|q̄q|0〉 6= 0

This non-vanishing vev forces gL = gR in the chiral transformation in eq. (i.49),
so that the original SU(3)L × SU(3)R symmetry is spontaneously broken to
SU(3)V . According to the Nambu-Goldstone theorem, 8 massless Goldstone
bosons will be generated.

Now we add the mass term to L0
QCD

Lmass = q̄LMqR + q̄RMqL M =




mu 0

0 md 0

0 0 ms


 .

We can see that the quark mass terms also break the SU(3)L × SU(3)R symme-
try down to SU(3)V for mu = md = ms, but explicitly. In case of mu 6= md 6= ms,
SU(3)V is also broken explicitly. In this way, the 8 Goldstone bosons acquire
a mass from M, so we should call them pseudo-Goldstone bosons (PGB) in-
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stead. They are identified as the lowest lying (0−) mesons in the hadron spec-
trum. We combine them in the matrix field

φ(x) =
8

∑
a=1

Taφa(x) =




1√
2

π0 + 1√
6

η π+ K+

π− − 1√
2

π0 + 1√
6

η K0

K− K0 − 2√
6

η


 .

Throughout this paper we always use the convention

[Ta, Tb] = i f abcTc ,

Tr(TaTb) = δab .

Now we want to find an effective theory to describe the pseudo-Goldstone
bosons. The matrix

U = exp

(
i

√
2

F0
φ(x)

)

parameterizes the PGB manifold G/H=SU(3)L × SU(3)R/SU(3)V and trans-

forms as U → gRUg†
L. Another building block is the quark matrix M, which

also transforms as M → gRMg†
L under the SU(3)L × SU(3)R symmetry. So we

can write down the Lagrangian which is invariant under the chiral symmetry

L2 =
F2

0

4
Tr
(

∂µU∂µU† + χU† + χ†U
)

, (i.50)

χ = 2B0M

As we mentioned in section i.5.1, chiral perturbation theory (CHPT), as one
of typical EFT, is expanded in term of E/ΛCHPT. We can easily see that the
Lagrangian (i.50) is the lowest order in the expansion of energy, or momentum
p2. Here the low energy constant F0 is the decay constant of PGB, and B0 is
related to the quark condensate. In principle they can be calculated from the
QCD Lagrangian, but currently it’s only possible to do this using the method
of lattice QCD due to the complicated nonperturbative effects.

Using the Lagrangian (i.50), we can derive the mass of mesons in terms of
quark masses, e.g.,

m2
π = (mu + md)B0 . (i.51)

The Lagrangian (i.50) can be used to study many processes involve PGBs only,
e.g., pion-pion scattering.

i
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i.5.3 Making the Chiral Symmetry Local

As we have seen the CHPT Lagrangian describes the interactions between the
PGBs. Though the mesons are colourless, their interactions originate from the
colour interaction of quarks and gluons. Because quarks are confined inside
the meson, the residual colour interactions are very small. So we are able to
describe the meson interaction perturbatively under the frame work of chiral
symmetry breaking.

The quarks can also participate in the weak interactions, thus so do the
mesons. In order to write down their interaction with gauge bosons, we shall
make the global chiral symmetry local and introduce external sources. Let us
start from the QCD Lagrangian with general external fields [10, 11]

L = L0
QCD + q̄LγµlµqL + q̄RγµrµqR − q̄R(s + ip)qL − q̄L(s − ip)qR . (i.52)

The lµ, rµ, s, p refer to left, right, scalar and pseudo-scalar external sources re-
spectively. The above Lagrangian is invariant under SU(3)L × SU(3)R local
symmetry if the quarks and source fields transform as

qL → q′L = gLqL

qR → q′R = gRqR

rµ → r′µ = gRrµg†
R + igR∂µg†

R

lµ → l′µ = gLlµg†
L + igL∂µg†

L

s + ip → (s′ + ip′) = gR(s + ip)g†
L (i.53)

With respect to this symmetry, low energy CHPT can be written in terms of
Goldstone matrix U and source fields

L2(U, lµ, rµ, s, p) =
F2

0

4
Tr
(

DµUDµU† + χU† + χ†U
)

, (i.54)

χ = 2B0(s + ip)

Dµ = ∂µU − irµU + iUlµ

Once we take lµ = rµ = 0 and s + ip = M, we get CHPT for purely mesonic
processes.

One of the typical applications is the weak decay of PGB. The PGB decay
to leptons through W± boson exchange, e.g., π+ → µ+νµ. The QCD part of its
matrix element at the quark level is defined as

〈0|Aa
µ|φb〉 =

i√
2

δabFπ pµ ,

Aa
µ = q̄Taγµγ5q . (i.55)

The 〈0| on the left side means the QCD vacuum. This is a non-perturbative
process. It’s very hard to calculate the value of the pion decay constant Fπ from



i.5 Chiral Perturbation Theory 23

the QCD Lagrangian (also called a first principle QCD calculation), unless we
go for lattice QCD. However, in the case of effective field theory, we put the

source field la
µ = Wa

µ, and let it interact with the PGBs in L(2)
CHPT. So the matrix

element at meson level is

〈0|Jµ,a
L |φb〉 =

i√
2

δabFπ pµ , (i.56)

J
µ,a
L =

F0

2
∂µφa +O((φa)3) . (i.57)

i.5.4 Power Counting

In the EW theory and QCD, the perturbative expansion is very clear, it is in
powers of the coupling constants gi. However in EFT, things are not that sim-
ple when loops are involved. We explain here the standard power-counting
of EFT.

The general structure of energy(mass) dimension of the Lorenz-invariant
matrix elements M can be written as

M ∼ MDm EDE H

(
ln

E

m

)
, (i.58)

where Dm is the overall energy dimension of the coupling constants, DE is the

dimension coming from derivatives, and H
(

ln E
m

)
is the function of dimen-

sionless quantities. Thus we have

DM = Dm + DE = 4 − NE , (i.59)

where NE is the number of external scalar fields. A general field theory analy-
sis gives the relation between the momentum expansion and the loop expan-

∫

d4p

p4 1

p2 p2

Figure i.6: The power counting in CHPT. The four momentum integral counts as p4,
the propagator counts as 1/p2 and the vertex counts could as p2 at LO, p4 at NLO, and
p6 at NNLO.
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(p2)2
×

(

1

p2

)

2

× p4 = p2

Figure i.7: An example of power counting in CHPT. The contribution of momentum
powers comes from two vertices, two pion propagators and a four momentum integal.

sion [12]

DE = 4 − NE − Dm (i.60)

= ∑
n
(dn − 2)Vn + 2NL + 2 ,

where dn is the dimension coming from derivatives, Vn is the number of ver-
tices arising from the subset of the total lagrangian which contain dn deriva-
tives, and NL is the number of loops.

This is Weinberg power counting which can give a systematic perturbative
expansion for an EFT. We illustrate the power counting for CHPT (i.50) in fig.
i.6. Fig. i.7 shows how to count the power of the expansion in momentum for
a typical loop diagram of meson-meson scattering.

i.5.5 Beyond the Leading Order

The development of high precision measurements in experiment requires
higher order theoretical calculations. On the another hand, the amplitudes
at leading order are real, and some physical processes such as ππ scattering
have nonzero imaginary parts because of unitarity. Therefore we need the
results from higher orders.

The Effective Field Theory is not renormalizable, which means we have to
introduce an infinite number of coupling constants to cancel the divergences
in loops. Fortunately, according to the power counting rule, the divergences
generated at one loop from the leading order CHPT Lagrangian can be ab-
sorbed by the coupling constants in the next-to leading order Lagrangian, and
this generalizes to higher order of loops. So we are allowed to calculate any
physical quantity order by order.

From (i.51) we can conclude

p2 ∼ m2
π ∼ M , (i.61)

so the quark mass matrices are equivalent to a momentum squared in the
momentum expansion.

Weinberg, Gasser and Leutwyler systematically developed CHPT beyond
the leading order [10–12]. The Lagrangian for SU(n f ) flavour symmetry at
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next-to-leading order (or p4) is written as

L4 = L0Tr
[

DµU(DνU)†DµU(DνU)†
]

+L1

{
Tr[DµU(DµU)†]

}2
+ L2Tr

[
DµU(DνU)†

]
Tr
[

DµU(DνU)†
]

+L3Tr
[

DµU(DµU)†DνU(DνU)†
]
+ L4Tr

[
DµU(DµU)†

]
Tr
(

χU† + Uχ†
)

+L5Tr
[

DµU(DµU)†(χU† + Uχ†)
]
+ L6

[
Tr
(

χU† + Uχ†
)]2

+L7

[
Tr
(

χU† − Uχ†
)]2

+ L8Tr
(

Uχ†Uχ† + χU†χU†
)

−iL9Tr
[

f R
µνDµU(DνU)† + f L

µν(DµU)†DνU
]
+ L10Tr

(
U f L

µνU† f
µν
R

)

+H1Tr
(

f R
µν f

µν
R + f L

µν f
µν
L

)
+ H2Tr

(
χχ†

)
, (i.62)

where L1, . . . , L10 and H1, H2 are coupling constants. The terms with H1 and H2

contain only external fields so they do not relate to physical processes includ-
ing PGBs. Those coupling constants are designed to absorb the divergences
from the loops of L2

Li = (cµ)d−4
[

Γi

16π2(d − 4)
+ Lr

i (µ)

]
,

Hi = (cµ)d−4
[

Γi

16π2(d − 4)
+ Hr

i (µ)

]
, (i.63)

where the space-time dimension is d = 4 − 2ε, and

ln c = −1

2
[ln 4π + Γ′(1) + 1] . (i.64)

According to the momentum expansion, those couplings constants should be
order of O(10−2).

The next-to-next-to leading order (NNLO) (p6) lagrangian for n f flavours of
quarks contains 112+3 terms [13,14]. The coupling constants at NNLO should
be order of O(10−3).
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i.6 Physics Beyond the Standard Model

And AC said: ”LET THERE BE LIGHT!”
And there was light.

— Asimov ’The Last Question’

The Standard Model is very successful in particle physics. But besides the
fact that the SM Higgs boson hasn’t been observed, there are some problems
from the theory itself as well:

• Triviality problem

We have seen that the condition for SSB is (−µ2 < 0, λ > 0) in (i.25).
However the analysis of the running coupling constant λ shows

λ(q2, Λ)
Λ → ∞

> 0

which is not only in contradiction with the original requirement of λ >

0(λ 6= 0), but also make the Higgs theory trivial(no self interaction). That
tells us the Standard Model will be valid up to a certain scale ΛSM only.

• Unnaturalness/Hierarchy/Fine Tuning problem.

The one-loop correction to the Higgs mass comes from three main inter-
mediate states: top quark, EW gauge bosons and Higgs boson itself, see

γW,Z, higgstop

higgs

tree

(200 GeV)
2

~2
hm

gaugetop

loops

Figure i.8: The one loop corrections to Higgs mass.
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fig. i.8. If we take the cut off scale at Λ = 10 TeV, their contribution to
Higgs mass is, see e.g. [15],

top loop − 3
8π2 λ2

t Λ2 ∼ −(2 TeV)2 ,

SU(2) gauge boson loops 9
64π2 g2Λ2 ∼ (700 GeV)2 , (i.65)

Higgs loop 1
16π2 λ2Λ2 ∼ (500 GeV)2.

The SM Higgs mass is constrained to be a few hundred GeV, which
means the tree and one loop contributions have to be fine tuned to obtain
the physical Higgs mass. The problem gets much more acute when Λ is
raised to the GUT or Plank scale, i.e., 1016 ∼ 1019 GeV. The underlying
reason is the quadratic divergence of the Higgs mass in (i.65).

• Too many parameters.

The Standard Model contains 22 free parameters even without including
the neutrino sector 2. With so many free parameters, the Standard Model
looks like an Effective Field Theory rather than a fundamental theory.

Apart from those problems, the EW theory and QCD is not a unified theory
even though we write the symmetry of the SM as SU(3)c × SU(2)L × U(1)Y.

There are many theories and models to explore the energy region at the
TeV scale, like two Higgs doublet model, supersymmetry, technicolour, little
Higgs, extra dimensions, etc.. In this chapter we will only give a very short
introduction to the Two Higgs Doublet Model, Supersymmetry and Strong
Dynamical electroweak symmetry breaking.

i.6.1 Two Higgs Doublet Model

In the Standard Model, there is only one Higgs doublet, that is why it is some-
times called the minimal Standard Model. Naturally, the minimal extension
of SM is to add one more Higgs doublet. In general, this Two Higgs Doublet
Model (2HDM) cannot solve the problems mentioned above, however many
beyond the SM theories contain two or more Higgs doublets, such as Super-
symmetry and Little Higgs Models. The problems of SM can be solved by
special symmetries or other mechanisms in those more fundamental theories.
The study of the general 2HDM can give some hints or constraints on beyond
the SM theories, see the most recent review [16].

One standard convention to write the two Higgs doublets with the Gold-

2They are 3 gauge couplings (g1, g2, g3), 12 fermion masses, 3 angle and one phase of the CKM
matrix, 2 couplings (µ, λ) of the Higgs sector, and one angle θQCD from the QCD vacuum.
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stone bosons is

Φ1 =
1√
2

( √
2
(
G+ cos β − H+ sin β

)

v cos β − h sin α + H cos α + i
(
G0 cos β − A sin β

)
)

, (i.66)

Φ2 =
1√
2

( √
2
(
G+ sin β + H+ cos β

)

v sin β + h cos α + H sin α + i
(

G0 sin β + A cos β
)
)

. (i.67)

Here G± and G0 are the Goldstone bosons to be eaten by the EW gauge bosons
during EW symmetry breaking. H± is the charged Higgs boson. The neutral
Higgs scalar can be divided into CP even scalars (h, H) and CP odd pseudo-
scalar A. α is the mixing angle between h and H. Both doublets can have
nonzero vevs

〈Φ1〉0 =
1√
2

(
0

v1

)
v1 = v cos β , (i.68)

〈Φ2〉0 =
1√
2

eiθ

(
0

v2

)
v2 = v sin β . (i.69)

θ is the relative phase of 〈Φ1〉0 and 〈Φ2〉0, which can be a new source of CP
violation if there are no any further constraints. Another choices is that only
one doublet has a nonzero vev, this is called the Higgs basis. In this basis
Φ1 plays the role of the SM Higgs doublet in EW symmetry breaking and Φ2

contains the charged Higgs H±.
In the Yukawa sector, the two Higgs doublets introduce tree level flavour-

changing-neutral-current (FCNC) couplings between quarks, which are ab-
sent in the SM. One of the possible solutions is to impose a Z2 symmetry on
the Lagrangian, and set one of the Φi and some of the right hand fermions
to be Z2 odd while the rest are Z2 even. In this way, the up or down type of
quarks only couple to one of the Φi, see the table IV.1 in paper IV. The four dif-
ferent ways to set the right hand fermions are called Type I, II, III(X) and IV(Y).
A more general possibility is Yukawa alignment [17], which assumes that the
Yukawa couplings with the two Φi are proportional to each other, so we can
diagonalize them simultaneously. Thus all the 2HDM Z2 types are just special
cases of Yukawa alignment. Furthermore, there is the Cheng-Sher ansatz that
allows tree level FCNC couplings but they are sufficiently small to avoid the
current experimental bounds [18]. The hierarchy of their couplings are taken
into account by the masses of the SM fermions. This is the most general option
so far in that both the 2HDM Z2 types and Yukawa alignment are special cases
of the Cheng-Sher ansatz.

Depending on the parameters in the theory, the mass of the 5 Higgs scalar
can vary from 100 GeV to several hundred GeV. The discovery of a charged
Higgs in experiment could be the sign of two or more Higgs doublets.
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i.6.2 Supersymmetry

Supersymmetry (SUSY) is one of the ”mainstream” beyond the SM theories,
an introduction is [19]. It assumes that every ”fundamental” particle has their
SUSY partner with different spin, i.e., the fermions have a spin zero SUSY
partner, the bosons have their spin one half SUSY partner, and all the other
particle properties should be the same. Those SUSY particles have not been
observed, which means that they are heavier than the EW scale, so the SUSY
must be broken in someway.

In order to cancel the anomaly and generate the mass of different fermions,
all the SUSY models have to have even number of Higgs doublets. The mini-
mal supersymmetric model (MSSM) contains two Higgs doublets, which hap-
pen to be the type II model of the general 2HDM. Thus SUSY is a major reason
to study 2HDM.

One of the great features of SUSY is the cancelation of loop divergences:
the contribution of SM particles in loop diagrams are canceled by its SUSY
partner, see fig. i.9. In this way the fine tuning problem of the SM can be
solved even if SUSY is broken softly. However SUSY introduces more free
parameters than SM, which is not very satisfying from a theoretical point of
view.

h h

t

+
h h

t̃

= 0

Figure i.9: The top-quark-mediated one loop divergence is canceled completely by its
SUSY partner ”stop” mediated loop, in the case when SUSY is not broken. In the case
of softly broken SUSY, the quadratic divergences can still be canceled.

Another interesting aspect is that SUSY can give much more hope for grand
unification theory which unifies the EW theory and QCD. In the Standard
Model, the three running gauge coupling constants do not meet together any-
where, but in the MSSM they have all about the same value at an energy of
1016 GeV, i.e., the GUT scale.

i.6.3 Strong Dynamical Electroweak Symmetry Breaking

In chapter 3 we have shown that the EW SU(2)L × U(1)Y symmetry is broken
by the nonzero Higgs vev. Actually this is not the whole truth. The quark-
antiquark condensates also break the EW symmetry and offer a contribution
to the mass of the EW gauge bosons. We know that QCD has the SU(2)L ×

i
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SU(2)R chiral symmetry for vanishing light quark masses mu and md. When
the energy scale is close to ΛQCD, the quark condensates appear to break this
symmetry spontaneously to the isospin symmetry

SU(2)L × SU(2)R → SU(2)V .

Thus three Goldstone bosons associated with axial currents will be generated.
When we include the EW theory without SSB, the gauge boson Wa

µ and Bµ

couple to axial currents and get mass, as illustrated in fig. i.10. After diago-

W a
µ/Bµ W b

ν/Bν

q

q̄

Figure i.10: EW symmetry broken dynamically by the q̄q condensates.

nalizing the gauge boson mass matrix, we get

m2
W =

1

2
g2F2

π , (i.70)

m2
Z =

1

2
(g2 + g′2)F2

π , (i.71)

mA = 0 . (i.72)

Where Fπ = 93 MeV 3 is the decay constant of the pion, so the gauge boson
mass is just mW ∼ 30 MeV, which is far smaller than the experimental result
mW = 80 GeV. So the quark condensates can break the SU(2)L × U(1)Y gauge
symmetry, but not enough.

This idea initiated the Technicolour Theories (TC), which assume there is
a new strong interaction other than QCD at the TeV scale, some reviews are
[20, 21]. The condensates of techni-quarks Q̄Q spontaneously break the EW
gauge symmetry, so there is no fundamental Higgs boson in the theory. In
this way, the fine tuning problem automatically disappears.

However the simplest Technicolour model, which is just the scaling up of
QCD, has been ruled out by the precision measurements from LEP using the
analysis of oblique parameters. There are many variation of the simplest TC
model, such as walking Technicolour.

3Some references, e.g. PDG [2], use another definition fπ =
√

2Fπ .
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Figure i.11: The decay constant Fm and the slope of mass squared M2
m/2m of NGB,

as a function of Techni-quark mass m. The dots come from the lattice simulation, the
curves come from NLO CHPT. Plots from [22].

One of the practical problems of TC theories is the same as for low energy
QCD: the interaction is very strong such that perturbative theory fails. There-
fore effective field theory and lattice gauge theory become the main tools to
make predictions.

We show the plots from one of the recent lattice gauge theory simulations
of TC theories [22] in fig. i.11. The red and blue dots come from the lattice sim-
ulation from first principle of TC theory. However once the techni-quark mass
gets close to the chiral limit m = 0, the need for computing power increases
greatly. Therefore in lattice simulation people use result from Chiral Pertur-
bation Theory to extrapolate the lattice data to the chiral limit. The main goal
of paper I-III is to provide extrapolation formulas for the general TC theories.

There are other types of beyond SM theory based on strong dynamics, like
Little Higgs Model, Twin Higgs Model, etc.. We do not discuss these theories
here.
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i.7 Introduction to the Papers

i.7.1 Paper I

In paper I we investigated three QCD-like theories and their effective field
theories at low energy. For strong dynamics with a vector-like gauge group,
they can be classified as three different cases: the quarks live in complex, real
or pseudo-real representation of the gauge group. In the case of n f degenerate
flavours, those cases correspond to symmetry breaking patterns of SU(n f )L ×
SU(n f )R → SU(n f )V , SU(2n f ) → SO(2n f ) or SU(2n f ) → Sp(2n f ) respectively.

The complex case is very much like QCD, whose low energy EFT for
pseudo-Goldstone bosons is Chiral Perturbation Theory for n f flavours. We
managed to write the EFT of the real and pseudo-real case very similar to
CHPT, so one can use the techniques from CHPT to calculate many physical
processes. We also obtained the coefficients of the NLO divergence structure
and found a mathematical formula to perform traces of matrices for the real
and pseudo-real case.

Based on the above work, we calculated the vacuum-expectation-value
〈q̄q〉, the mass and decay constant of meson up to next-to-next-to-leading-
order, i.e. two loop level in the effective field theory. These results can be
used for chiral extrapolation in lattice calculation in the study of Technicolour
Theory. This work might be also useful for research on finite baryon density.

i.7.2 Paper II

In paper II we studied the general meson-meson scattering in the EFT of QCD-
like theories. Based on group theory, we analyzed the general structure of the
scattering amplitude and possible intermediate channels for the three different
QCD-like theories as the generalization of ππ scattering. Furthermore, we
have derived the amplitude of various channels using the invariant functions:
B(s, t, u) and C(s, t, u).

The function B(s, t, u) and C(s, t, u) have been calculated up to NNLO using
the method of CHPT, and they are written in term of the physical meson mass
Mphys and decay constant Fphys. Using the expressions of B(s, t, u) and C(s, t, u),
we got the analytical results for the scattering lengths of the lowest partial
wave for each channel. We presented some numerical results with chosen n f

for the purpose of illustration. We also discussed some relations between the
different theories in the limit of large n f .

We calculated analytic expressions for a number two loop vertex integrals
with equal masses and tabulated them.
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i.7.3 Paper III

In paper III we continued our work on QCD-like theories. We calculated the
vector, axial-vector, scalar and pseudo-scalar two-point functions up to NNLO
in the low-energy EFT of three different QCD-like theories. In addition, the
pseudo-scalar decay constant GM for all cases, which is similar the decay con-
stant FM, has also been calculated up to NNLO. We have written our analytic
results of two point functions in term of physical meson mass MM, decay con-
stants FM and GM to reduce the lengthy expressions. Those expressions can
be used to study the processes of pseudo-Goldstone bosons interacting with
external sources, e.g., the gauge bosons.

Using the expression of the vector and axial-vector two point functions,
we obtained analytic results for the S parameter of oblique corrections for
the three different types of QCD-like theories. Their numerical estimates at
the TeV scale were presented with the different flavour numbers n f based on
scaled up QCD.

i.7.4 Paper IV

In paper IV we study evolution of Yukawa couplings in the general Two Higgs
Doublet Model. The general 2HDM can contain dangerous tree level flavour-
changing-neutral-currents if there are no further constraints in the theory. The
existing solutions for this problem can be classified as models with Z2 symme-
try, the Yukawa alignment model and the Cheng-Sher ansatz.

We wrote a computer program for the Renormalization-Group-Equation of
Yukawa couplings to check what happens at high energy for those different
schemes. With the most recent data, we investigated the place of Landau pole
for models with Z2 symmetry and Yukawa alignment. We also investigated
the energy scale at which the nondiagonal FCNC Yukawa couplings get too
large in these models. The constraints on the parameters λF in Cheng-Sher
ansatz have also been updated with the most recent experimental and the the-
oretical input.

i.7.5 List of Contributions

The ideas of the first three papers were given by my supervisor, and the idea
of the paper IV was given by Johan Rathsman.

• paper I: I did all the calculations separately. However, my calculations
were heavily based on my supervisor’s previous work, especially his old
FORM programs.

• paper II: I did all the calculations independently, including the analytic
derivations and the numerical estimates. I also wrote a small part of

i
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the paper. Most of the analytic results were transformed from FORM
expressions and organized by me.

• paper III: I did all the analytic and numerical calculations indepen-
dently. I also wrote the first draft of the paper, which was modified
and enriched by my supervisor. I drew all the Feynman diagrams in the
paper.

• paper IV: I derived the mathematical formula and they were double
checked by my supervisor later. I wrote the computer program indepen-
dently. Almost all the results were triple checked by the three authors.
The first draft was written by me, and it was changed and enriched by
Johan Rathsman and my supervisor. I also made some plots in the paper.
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I.1 Introduction

Chiral Perturbation Theory (ChPT) [1–3] as effective field theory (EFT) for
QCD is a very well established method within strong interaction phenomenol-
ogy. The same method can also be used for different symmetry pattern cases.
These can be of interest for theories beyond the standard model. Early pa-
pers in this context are the technicolor variations discussed in [4–6]. Recently
lattice calculations have started to explore some of these cases, some recent
references are [7–11]. While one is primarily interested in these theories in the
massless limit, lattice calculations are performed with finite masses and the
results thus need to extrapolated to zero mass. For these extrapolations EFT
is an excellent tool and it is heavily used in fitting results for the pseudoscalar
meson octet in the QCD case. For high precision fits it is needed there to go to
next-to-next-to-leading-order in the ChPT expansion.

When writing the EFT relevant for dynamical electroweak symmetry
breaking one needs to consider different patterns of spontaneous breaking of
the global symmetry than in QCD. The resulting set of Goldstone Bosons, or
pseudo-Goldstone bosons in the presence of mass terms, is thus also different.
The low-energy EFT is thus also different.

In this paper we only discuss cases where the underlying strong interaction
is vectorlike and all fermions have the same mass. Here three main patterns of
global symmetry show up. A thorough discussion of these cases at tree level
or lowest order (LO) is [12]. With a gauge group with NF fermions in a com-
plex representation we have a global symmetry group SU(NF)L × SU(NF)R and
we expect this to be spontaneously broken to the diagonal subgroup SU(NF)V .
This is the direct extension of the QCD case. For NF fermions in a real repre-
sentation the global symmetry group becomes SU(2NF) and is expected to be
spontaneously broken to SO(2NF). In the case of two colours and NF fermions
in the fundamental (pseudoreal) representation the global symmetry group is
again SU(2NF) but here is expected to be spontaneously broken to an Sp(2NF)

subgroup. Some earlier references are [13–15]. The complex case was treated
to next-to-leading-order (NLO) in [3] in general and for the quantities consid-
ered here in [16]. The pseudo-real case has been done to NLO in [17]. We
repeat here both calculations and also extend the third, real, case to NLO by
calculating the full infinity structure for all three cases at NLO and giving the
NLO Lagrangian.

In addition we also go to NNLO for three explicit quantities, the vacuum-
expectation-value, the meson mass and the meson decay constant in the equal
mass case. These formulas are our main result. We expect that the NNLO
Lagrangian for all cases will be a simple generalization of the one for the com-
plex case given in [18] but the calculation of the general divergence structure,
though in principle similar to the one in [19], we have not performed.
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In the remainder of this paper we refer to the complex representation case
as QCD, the real representation case as adjoint and the pseudo-real case as
two-colour or Nc = 2. We first discuss in Sect. I.2 the three different cases at the
underlying fermion (quark) level. Here we introduce explicit external fields
as done in [2, 3]. Sect. II.2 introduces the LO and NLO effective field theory
and we do this using the general formalism derived in [20, 21]. This allows to
see how similar the calculations for the three cases are. In Sect. I.4 we derive
the divergent part at NLO and in Sect. II.4.3 we calculate the NNLO result
for the meson mass, meson decay constant and vacuum expectation value. In
Sect. II.6 we summarize our results.

I.2 Quark level

This section shortly introduces the quark-level Lagrangian giving the gauge
groups and showing how the condensates can be written in the more general
cases. A more extensive version of this discussion can be found in [12] and the
earlier references [13, 15]. We remind the reader that we only consider cases
with an underlying simple vector gauge group and we assume confinement
and the formation of a condensate.

We use the notation qR and qL for the right- and left-handed fermions re-
spectively. Gauge indices we usually suppress and flavour indices will be
indicated when needed.

I.2.1 QCD

This is the usual case where the fermions are in a complex representation of
the gauge group. With flavour indices i the fermion part of the Lagrangian
enhanced by external fields is given by

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM
†
ijqRj . (I.1)

The covariant derivative is given by Dµq = ∂µq − iGµq.
When the external fields vanish there is a SU(NF)L × SU(NF)R symmetry in

the first two terms which is spontaneously broken to the diagonal subgroup
SU(NF)V . This symmetry can be made local by adding the external fields with
the transformations gL × gR ∈ SU(NF)L × SU(NF)R:

qL → gLqL, qR → gRqR, M → gRMg†
L ,

lµ → gLlµg†
L + igL∂µg†

L, rµ → gRrµg†
L + igR∂µg†

R . (I.2)

We have here written qL and qR as column vectors in flavour and the external
fields lµ, rµ and M = s − ip as matrices in flavour.

I



42 Technicolor and other QCD-like theories at NNLO

For later use, we define the big, 2NF, columnvector

q̂ =

(
qR

qL

)
(I.3)

and the big, 2NF × 2NF, matrices

V̂µ =

(
rµ 0

0 lµ

)
M̂ =

(
0 M

M† 0

)
, ĝ =

(
gR 0

0 gL

)
. (I.4)

In terms of these the symmetry transformation can be written as

q̂ → ĝq̂ , V̂µ → ĝV̂µ ĝ† + iĝ∂µ ĝ† , M̂ → ĝM̂ĝ† . (I.5)

Note that the symmetry group is not made larger since q̂ contains objects that
have different Lorentz properties.

The formation of a flavour neutral condensate 〈qq〉 = 〈qRqL〉 + h.c. breaks
the full symmetry spontaneously to the diagonal subgroup SU(NF)V

I.2.2 Adjoint

If the fermions are in the adjoint representations we can write down a similar
Lagrangian as above

L = trc
(
qLiiγ

µDµqLi

)
+ trc

(
qRiiγ

µDµqRi

)
+ trc

(
qLiγ

µlµijqLj

)
+ trc

(
qRiγ

µrµijqRj

)

−trc

(
qRiMijqLj

)
− trc

(
qLiM

†
ijqRj

)
. (I.6)

trc (A) means a trace over the gauge group indices and the fermions are a ma-
trix rather than a vector in the gauge group indices and Dµq = ∂µq − iGµq +

iqGµ. Here we have the same transformation for the conjugated fermions,
Dµq = ∂µ − iGµq + iqGµ with q = q†γ0 and the Hermitian conjugate also means
that the two gauge-indices are transposed. The symmetries discussed here ex-
ist in principle for any real representation for the fermions, not only the adjoint
one.

We define the matrix C = iγ2γ0 and we can define a new fermion field

q̃Ri ≡ CqT
Li . (I.7)

The transpose in (I.7) works on the Dirac (and later also flavour) indices but
not on the gauge indices. The field q̃Ri has the same transformation properties
under the gauge group as qR and is also a right-handed fermion.1 In terms of

1We have chosen right-handed rather than left-handed in order to end up with transformations
for fields that look most like those for the QCD case in [2, 3].
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the big matrices

q̂ =

(
qR

q̃R

)
, V̂µ =

(
rµ 0

0 −lT
µ

)
M̂ =

(
0 M

MT 0

)
. (I.8)

The Lagrangian (I.6) becomes

L = trc
(
q̂iγµDµ q̂

)
+ trc

(
q̂γµV̂µ q̂j

)
− 1

2
trc

(
q̂CM̂q̂

T
)
− 1

2
trc

(
q̂TCM̂†q̂

)
. (I.9)

The Lagrangian (I.9) has clearly a larger symmetry group, SU(2NF) as com-
pared to QCD case above when we extend the external fields to the full matri-
ces and have as symmetry transformations:

q̂ → ĝq̂ , V̂µ → ĝV̂µ ĝ† + iĝ∂µ ĝ† , M̂ → ĝM̂ĝT . (I.10)

The Vafa-Witten argument shows that also in this case the vector symme-
tries remain unbroken. We expect again a flavour neutral vacuum condensate
〈trc (q̄q)〉 which can be written as 〈trc

(
q̂TCJS q̂

)
〉+ h.c. with

JS =

(
0 I

I 0

)
(I.11)

and I the NF × NF unit matrix. This condensate breaks the the symmetry group
down to SO(2NF).

I.2.3 Nc = 2

The fundamental representation of SU(2) is pseudo-real. The Lagrangian en-
hanced with external fields reads

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM
†
ijqRj . (I.12)

The covariant derivative is given by Dµq = ∂µq − iGµq.
We can define a field q̃R as in the previous section via

q̃Rαi = εαβCqT
Lβi , (I.13)

with α, β gauge group indices, ε12 = −ε21 = 1, ε11 = ε22 = 0 and C = iγ2γ0 as
defined before. The field q̃R is a right handed-handed fermion that transforms
as the fundamental representation of SU(2).

In terms of the big matrices

q̂ =

(
qR

q̃R

)
, V̂µ =

(
rµ 0

0 −lT
µ

)
M̂ =

(
0 −M

MT 0

)
. (I.14)

I
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The Lagrangian (I.12) becomes

L = q̂iγµDµ q̂ + q̂γµV̂µ q̂Lj −
1

2
q̂αCεαβM̂q̂

T
β − 1

2
q̂αεαβCM̂†q̂β . (I.15)

This has again much larger symmetry group, SU(2NF) as compared to QCD
case above when we extend the external fields to the full matrices and have as
symmetry transformations:

q̂ → ĝq̂ , V̂µ → ĝV̂µ ĝ† + iĝ∂µ ĝ† , M̂ → ĝM̂ĝT . (I.16)

The Vafa-Witten argument shows that also in this case the vector symmetries
remain unbroken and we expect again a flavour neutral vacuum condensate
〈q̄q〉 which can be written as 〈q̂αεαβCJA q̂β〉+ h.c. with

JA =

(
0 −I

I 0

)
(I.17)

and I the NF × NF unit matrix. This condensate breaks the the symmetry group
down to Sp(2NF).

I.3 Effective field theory

In this section we will show how the three cases can be brought into an ex-
tremely similar form. That will allow to take over directly much of the tech-
nology developed for the QCD case to the other cases. We assume the reader
to be familiar with ChPT and EFT. Introductions can be found in [22–28]. We
will use the terminology LO, NLO and NNLO for the usual powercounting of
order p2, p4 and p6.

I.3.1 QCD

The Goldstone bosons from the spontaneous symmetry breakdown live in the
space of possible vacua. For QCD and generalizations this is in the form of a
nonzero vacuum condensate

〈qLjqRi〉 =
1

2
〈qq〉δij . (I.18)

This vacuum is left unchanged by the vector transformations with gL × gR ∈
SU(NF)L × SU(NF)R and gL = gR. The unbroken symmetry is SU(NF). The
broken symmetry part of the group are the axial transformations wit gR =

g†
L ≡ u, they rotate the vacuum into

〈qLjqRi〉rotated =
1

2
〈qq〉Uij (I.19)
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with U = gRg†
L = u2. The special unitary matrix U describes the space of

possible vacua and varies under the symmetry as

U → gRUg†
L . (I.20)

This matrix U can be used to construct the Lagrangians as was done in [3].
The covariant derivative on U is defined as

DµU = ∂µU − irµU + iUlµ . (I.21)

The lowest order Lagrangian is

L =
F2

4
〈DµUDµU† + χU† + Uχ†〉 , (I.22)

with χ = 2B0M and 〈A〉 = trF (A) This has the full global symmetry as can be
checked using the transformations (I.2) and (I.20). In terms of the pion fields
πa the matrix u can be parametrized as

u = exp

(
i√
2 F

πaTa

)
. (I.23)

The Ta are the generators of SU(NF) and normalized as trF

(
TaTb

)
= δab.

Let us now do the same analysis using the general formalism (CCWZ)
[20,21]. We only look at the properties in the neighbourhood of the unit matrix
here. For the perturbative treatment we do here that is sufficient. The global
symmetry group G has generators Ta which are split up in a set of conserved
generators Qa and broken generators Xa. The Qa generate the unbroken sym-
metry group H while the generators Xa generate in a sense the manifold of
possible vacua, the quotient G/H . We must now find a way to parametrize
the manifold G/H and define covariant derivatives in general. The manifold
G/H and the group H we parametrize with

û = exp (iφaXa) ∈ G/H , ĥ = exp (iεaTa) ∈ H (I.24)

The symmetry transformation we define using the property that any group
element ĝ′ can be written in the form

ĝ′ = û′ ĥ , (I.25)

where both û′ and ĥ are unique and of the form (I.24). The symmetry transfor-
mation on û by a group element ĝ ∈ G is defined as

û → ĝûĥ† (I.26)

I
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where ĥ is the ĥ of (II.12) needed to bring ĝ′ = ĝû in the standard form (II.12).
Note that ĥ is a nonlinear function of both û and ĝ. It is sometimes called the
compensator.

The covariant derivatives are defined by using the fact that any variation
ĝδĝ† is an element of the Lie algebra and can be written as a linear combination
of the generators. The same is true for ĝ

(
∂µ − iV̂µ

)
ĝ† if we include external

fields V̂µ transforming as V̂µ → ĝV̂µ ĝ† + iĝ∂µ ĝ†. We define [20, 21]

û†
(
∂µ − iV̂µ

)
û ≡ Γ̂µ − i

2
ûµ , Γ̂µ = Γa

µQa , ûµ = ua
µXa . (I.27)

I.e. Γ̂µ is in the conserved part and ûµ in the broken part of the Lie algebra.
The transformation under the group G can be derived from (II.12) and is

Γ̂µ → ĥΓ̂µ ĥ† + ĥ∂µ ĥ† , ûµ → ĥûµ ĥ† . (I.28)

ûµ can be used to construct Lagrangians and covariant derivatives on objects
ψ transforming as ψ → ĥψ are defined as

∇̂µψ = ∂µψ + Γ̂µψ . (I.29)

It can be checked that ∇̂µψ → ĥ∇̂µψ. The external fields appear as (axial) vector
fields V̂µ and (pseudo) scalar fields M̂. The external fields V̂µ show up in ûµ,
covariant derivatives ∇̂µ and field strengths V̂µν ≡ ∂µV̂ν − ∂νV̂µ − i

[
V̂µ, V̂ν

]
. The

latter can be made to transform simpler by defining the objects

f̂µν ≡ û†V̂µνû → ĥ f̂µν ĥ† . (I.30)

M̂ → ĝM̂ĝ† can similarly be made into

χ̂ ≡ û†M̂û → ĥχ̂ĥ† . (I.31)

If there exists extra discrete symmetries like parity (P) that leave the unbroken
part of the group invariant objects O like f̂µν can be split into pieces that are
independent via O± ≡ O ± P(O).

In the effective field theory for QCD in terms of NF × NF matrices the no-
tation usually used has the objects with the associated symmetry transforma-
tions:

u = exp

(
i√
2 F

πaTa

)
→ gRuh† = hug†

L ,

Γµ =
1

2

(
u†(∂µ − irµ)u + u(∂µ − lµ)u

†
)
→ hΓµh† + ih∂µh† ,

uµ = i
(

u†(∂µ − irµ)u − u(∂µ − lµ)u
†
)
→ huµh† ,

∇µO = ∂µO + ΓµO − OΓµ → h∇µOh† for O → hOh† ,

χ± = u†χu† ± uχ†u → hχ±h† ,

f±µν = ulµνu† ± u†rµνu . → h f±µνh† (I.32)
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lµν and rµν are the field strengths from lµ and rµ. Ta are the SU(NF) generators.
These can be related to the general objects defined in the CCWZ way via

û =

(
u 0

0 u†

)
, ûµ =

(
uµ 0

0 −uµ

)
, Γ̂µ =

(
Γµ 0

0 Γµ

)
· · · . (I.33)

χ± and f̂±µν are constructed from χ̂ and f̂µν using parity. These objects have
been used to construct the NLO Lagrangian and the NNLO Lagrangian [18].
One of the nontrivial relations used there was

∇µuν −∇νuµ = − f−µν . (I.34)

In this notation the lowest order Lagrangian is

L2 =
F2

4
〈uµuµ + χ+〉 . (I.35)

The NLO Lagrangian derived by [2] reads (here in the version for arbitrary
NF)

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉

+L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈 f+µνuµuν〉+ 1

4
L10〈 f 2

+ − f 2
−〉+ H1〈lµνlµν + rµνrµν〉+ H2〈χχ†〉 .(I.36)

I.3.2 Adjoint

The vacuum in this case can be characterized by the condensate

〈q̂T
i Cq̂j〉 =

1

2
〈qLqR〉JSij . (I.37)

Under the symmetry group g ∈ SU(2NF) this moves around as

JS → gJSgT . (I.38)

The unbroken part of the group is given by the generators Qa and the broken
part by the generators Xa which satisfy

JSQa = −QaT JS , JSXa = XaT JS . (I.39)

Just as in the QCD case we can now construct a rotated vacuum in general by
using the broken part of the symmetry group on the vacuum. This leads to a
matrix2

U = uJSuT → gUgT with u = exp

(
i√
2 F

πaXa

)
. (I.40)

2In Sect. I.3.1 we added a hat to many quantities to distinguish the NF × NF and 2NF × 2NF

matrices. This is not needed here and we only keep the hat explicitly on M.

I
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The matrix u transforms as in the general CCWZ case as

u → guh† . (I.41)

The earlier work used the matrix U to describe the Lagrangian [12]. Here we
will use the CCWZ scheme to obtain a notation that is formally identical to
the QCD case. We add full 2NF × 2NF matrices of external fields Vµ and M̂. We
need to obtain the Γµ and uµ parts of u†

(
∂µ − iVµ

)
u. Here several observations

are useful. Eqs. (III.10) have as a consequence that matrices like u satisfy

uJS = JSuT , JSu = uT JS . (I.42)

A general matrix F can be split two parts, one behaving as the broken part, the
other as the unbroken part of the group generators. I.e.

F = F + F̃ ,

FJS = −JSF
T

, F̃ JS = F̃T JS ,

F =
1

2

(
F − JSFT JS

)
,

F̃ =
1

2

(
F + JSFT JS

)
. (I.43)

This means that we obtain

uµ = i
(

u†(∂µ − iVµ)u − u(∂µ + iJSVT
µ JS)u

†
)

,

Γµ =
1

2

(
u†(∂µ − iVµ)u + u(∂µ + iJSVT

µ JS)u
†
)

. (I.44)

Here we used the properties (I.42). With these quantities we can construct
covariant derivatives and Lagrangians. The formal similarity to the QCD case
is obviously there if we also use for the vector external fields

lµ = −JSVT
µ JS , rµ = Vµ . (I.45)

The analogy goes even further since vµ = rµ + lµ corresponds to the currents
from conserved generators and aµ = rµ − lµ to the currents from the sponta-
neously broken generators. The equivalent quantities to the field strengths
are

f±µν = JSuVµνu† JS ± uVµνu† (I.46)

with Vµν = ∂µVν − ∂νVµ − i
(
VµVν − VνVµ

)
and for the mass matrix

χ± = u†χu†T JS ± JSuTχ†u

= u†χJSu† ± uJSχ†u , (I.47)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form
as (III.7) and (I.36) but now with uµ, χ± and f±µν as defined in (III.12), (I.46)
and (I.47).
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I.3.3 Two colours

The vacuum in this case can be characterized by the condensate 〈q̂T
αiCεαβ q̂βj〉 =

1
2 〈qLqR〉JAij . Under the symmetry group g ∈ SU(2NF) this moves around as
JA → gJAgT .The unbroken part of the group is given by the generators Qa and
the broken part by the generators Xa which satisfy JAQa = −QaT JA , JAXa =

XaT JA . Just as in the QCD and the adjoint case we construct a rotated vac-
uum by using the broken part of the symmetry group on the vacuum. This

leads to a matrix3 U = uJAuT → gUgT with u = exp
(

i√
2 F

πaXa
)

.The matrix u

transforms as u → guh† .Ref. [12] used the matrix U to describe the Lagrangian.
Here we use the CCWZ scheme. We add full 2NF × 2NF matrices of external
fields Vµ and M̂ and then need to obtain the Γµ and uµ parts of u†

(
∂µ − iVµ

)
u.

Matrices like u satisfy uJA = JAuT and JAu = uT JA.
A general matrix F can be split two parts, one behaving as the broken part,

the other as the unbroken part of the group generators. I.e.

F = F + F̃ , FJA = −JAF
T

, F̃ JT
A = F̃T JA ,

F =
1

2

(
F − JAFT JT

A

)
, F̃ =

1

2

(
F + JAFT JT

A

)
. (I.48)

Using this, we obtain

uµ = i
(

u†(∂µ − iVµ)u − u(∂µ + iJAVT
µ JT

A)u
†
)

,

Γµ =
1

2

(
u†(∂µ − iVµ)u + u(∂µ + iJAVT

µ JT
A)u

†
)

. (I.49)

Covariant derivatives and Lagrangians are constructed as above. The formal
similarity to the QCD case is once more obviously if we use for the vector
external fields

lµ = −JAVT
µ JT

A , rµ = Vµ . (I.50)

Again vµ = rµ + lµ corresponds to the currents from conserved generators and
aµ = rµ − lµ to the currents from the spontaneously broken generators. The
equivalent quantities to the field strengths are

f±µν = JAuVµνu† JT
A ± uVµνu† (I.51)

with Vµν = ∂µVν − ∂νVµ − i
(
VµVν − VνVµ

)
and for the mass matrix

χ± = u†χu†T JT
A ± JAuTχ†u = u†χJT

Au† ± uJAχ†u , (I.52)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form
as (III.7) and (I.36) but with uµ, χ± and f±µν as defined in this subsection.

3 The formulas in this subsection are almost identical with those in the previous subsection but
J2
A = −1 while J2

S = 1. We have put in those by introducing JT
A rather than JA in a few places.

I



50 Technicolor and other QCD-like theories at NNLO

I.4 The divergence structure at NLO

When going beyond tree level renormalization becomes necessary. A thor-
ough discussion of renormalization in ChPT at NNLO can be found in [?, 19].
We use here the same conventions and subtraction procedure. This means that
the NLO LECs are replaced by

Li = (cµ)d−4 [ΓiΛ + Lr
i (µ)] , (I.53)

with Λ = 1/(16π2(d − 4)) and ln c = −[ln 4π + Γ′(1) + 1]/2. The constants Γi

were calculated for the QCD case in [3]. The same method can be generalized
to the case here. The calculation is extremely similar for all three cases. The
method is the same as the one in [3]. We split u in a classical and a quantum
part

u = uceiξ with ξ = ∑
a

ξaXa . (I.54)

The second variation w.r.t. ξ of the LO Lagrangian can be rewritten in the form

L =
F2

2

(
dµξadµξa − ξaσ̃abξb

)
, (I.55)

with dµξa = ∂µξa + Γ̃ab
µ ξb. The divergence at one-loop level is given by [3]

− 1

16π2(d − 4)

(
1

12
Γ̃ab

µνΓ̃baµν +
1

2
σ̃abσ̃ba

)
. (I.56)

Notice that the indices here run over the broken generators and Γ̃ab
µν = ∂µΓ̃ab

ν −
∂νΓ̃ab

µ + Γ̃ac
µ Γ̃cb

ν − Γ̃ac
ν Γ̃cb

µ .
The expansion for all three cases is identical and leads to

Γ̃ab
µ = −trF

(
[Xa, Xb]Γµ

)
,

σ̃ab = −1

8
trF

(
{Xa, Xb}

(
χ+ + uµuµ

))
+

1

2
trF

(
XauµXbuµ

)
. (I.57)

The difficulty in evaluating (I.56) is now rewriting the sums over broken gen-
erators into traces over the original matrices uµ, . . .. In the QCD case, the Xa are
SU(NF) generators and one can use the formulas with the trF (A) going from
1, . . . , NF.

QCD :

trF (Xa AXaB) = trF (A) trF (B)− 1

NF
trF (AB) ,

trF (Xa A) trF (XaB) = trF (AB)− 1

NF
trF (A) trF (B) . (I.58)
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There exist similar formulas for the adjoint case now with trF (A) going from
1, . . . , 2NF.

Adjoint :

trF (Xa AXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(
AJSBT JS

)
− 1

2NF
trF (AB) ,

trF (Xa A) trF (XaB) =
1

2
trF (AB) +

1

2
trF

(
AJSBT JS

)
− 1

2NF
trF (A) trF (B) .(I.59)

The equivalent formula for the two-colour case is [17], again with trF (A) going
from 1, . . . , 2NF.

2 − colour :

trF (Xa AXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(
AJABT JA

)
− 1

2NF
trF (AB) ,

trF (Xa A) trF (XaB) =
1

2
trF (AB)− 1

2
trF

(
AJABT JA

)
− 1

2NF
trF (A) trF (B) .(I.60)

In all three cases these lead to

Γ̃ab
µν = −trF

(
[Xa, Xb]Γµν

)
. (I.61)

Repetitive use of these identities allows to rewrite (I.56) in the form of (I.36).
These divergences are then absorbed into the redefinition of the NLO LECs
(III.17). The needed constants Γi for the three cases are given in Tab. III.1. We
agree with [3] for the QCD case, have a small discrepancy with [17] for the
two-colour case, our coefficients for Γ0 are Γ3 are different. The adjoint case is
obtained here for the first time.

I.5 The calculation: mass, decay constant and con-

densate

In this section we calculate the corrections to the vacuum expectation value,
the meson mass and the decay constant. The calculations in the work on
three-flavour ChPT were done using FORM [29] and in the loops an explicit
sum over all possible particles was always implemented. For this work we
have rewritten the flavour routines used in that work to use a general sum
over the flavour indices and since we always calculate in the case where
M = diag(m̂, . . . , m̂) we then use the trace formulas of the previous section
to perform the sum.

We have checked that our calculations reproduce all the known results and
for the QCD case that all infinities cancel when the NNLO divergence of [19]

I
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i QCD Adjoint 2-colour
0 NF/48 (NF + 4)/48 (NF − 4)/48

1 1/16 1/32 1/32

2 1/8 1/16 1/16

3 NF/24 (NF − 2)/24 (NF + 2)/24

4 1/8 1/16 1/16

5 NF/8 NF/8 NF/8

6 (N2
F + 2)/(16N2

F) (N2
F + 1)/(32N2

F) (N2
F + 1)/(32N2

F)

7 0 0 0
8 (N2

F − 4)/(16NF) (N2
F + NF − 2)/(16NF) (N2

F − NF − 2)/(16NF)

9 NF/12 (NF + 1)/2 (NF − 1)/2

10 −NF/12 −(NF + 1)/2 −(NF − 1)/2

1’ −NF/24 −(NF + 1)/4 −(NF + 1)/4

2’ (N2
F − 4)/(8NF) (N2

F + NF − 2)/(8NF) (N2
F − NF − 2)/(8NF)

Table I.1: The coefficients Γi for the three cases that are needed to absorb the diver-
gences at NLO. The last two lines correspond to the terms with H1 and H2.

(a)

⊗

(b)

�

(c) (d)

⊗

(e) (f)

×

(g) (h)

Figure I.1: The diagrams up to order p6 for 〈qq〉. The lines are meson propagators and
the vertices are: ◦ a p2 insertion of qq, ⊗ a p4 insertion of qq, � a p6 insertion of qq, • a
p2 vertex and × a p4 vertex.

is used. For the adjoint and two-color case we observe that the nonlocal diver-
gence cancels as it should.

The diagrams for the vacuum expectation value are shown in Fig. I.1. The
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lowest order is the same for all three cases

〈qq〉LO ≡ ∑
i=1,NF

〈qRiqLi + qLiqRi〉LO = −NFB0F2 . (I.62)

We use M2 as notation for the lowest order meson mass

M2 = 2B0m̂ (I.63)

and in addition the function

A(M2) = − M2

16π2
log

M2

µ2
. (I.64)

The integrals needed at the two-loop level are evaluated with the methods
of [30] and they can all be expressed in terms of A(M2).

We express the final result as

〈qq〉 = 〈qq〉LO + 〈qq〉NLO + 〈qq〉NNLO . (I.65)

The individual parts can be written in terms of logarithms and analytic con-
tributions as

〈qq〉NLO = 〈qq〉LO

(
aV

A(M2)

F2
+ bV

M2

F2

)
,

〈qq〉NNLO = 〈qq〉LO

(
cV

A(M2)2

F4
+

M2 A(M2)

F4

(
dV +

eV

16π2

)

+
M4

F4

(
fV +

gV

16π2

))
. (I.66)

The coefficients for the three cases are given in Tab. I.2. Note that we use
the same notation for the LECs in the three cases but they are different LECs
and in addition different for different values of NF. The infinite parts can be
absorbed in the NNLO Lagrangian coefficients by writing

ri = (cµ)2(d−4)
(

rr
i − Γ

(2)
i Λ2 −

(
1

16π2
Γ
(1)
i + Γ

(L)
i

)
Λ

)
. (I.67)

The subtractions needed for the QCD case have been derived in general before
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QCD
aV NF − 1

NF

bV 16NF Lr
6 + 8Lr

8 + 4Hr
2

cV
3
2

(
−1 + 1

N2
F

)

dV −24
(

N2
F − 1

) (
Lr

4 − 2Lr
6 +

1
NF

(Lr
5 − 2Lr

8)
)

eV 1 − 1
N2

F

fV 48
(
Kr

25 + NFKr
26 + N2

FKr
27

)

gV 8
(

N2
F − 1

) (
Lr

4 − 2Lr
6 +

1
NF

(Lr
5 − 2Lr

8)
)

Adjoint
aV NF + 1

2 − 1
2NF

bV 32NF Lr
6 + 8Lr

8 + 4Hr
2

cV
3
8

(
−1 + 1

N2
F

− 2
NF

+ 2NF

)

dV −12
(
2N2

F + NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)
)

eV
1
4

(
1 − 1

N2
F
+ 2

NF
− 2NF

)

fV rr
VA

gV 4
(
2N2

F + NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)
)

2-colour
aV NF − 1

2 − 1
2NF

bV 32NF Lr
6 + 8Lr

8 + 4Hr
2

cV
3
8

(
−1 + 1

N2
F
+ 2

NF
− 2NF

)

dV −12
(
2N2

F − NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)
)

eV
1
4

(
1 − 1

N2
F

− 2
NF

+ 2NF

)

fV rr
VT

gV 4
(
2N2

F − NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)
)

Table I.2: The coefficients aV , . . . , gV appearing in the expansion of the vacuum expec-
tation value.

in [19]. The adjoint and two-colour case can be made finite by the following:

Γ
(2)
VA =

3

2

(
1 − 1

N2
F

+ 2
1

NF
− 2NF

)
,

Γ
(L)
VA = 24

(
2N2

F + NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)

)
,

Γ
(1)
VA = 0 ,
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Γ
(2)
VT =

3

2

(
1 − 1

N2
F

− 2
1

NF
+ 2NF

)
,

Γ
(L)
VT = 24

(
2N2

F − NF − 1
) (

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)

)
,

Γ
(1)
VT = 0 . (I.68)

This result agrees at NLO with [16] for the QCD case and [17] 4 for the 2-colour
case. It also agrees for NF = 3 at NNLO with [31, 32]. The remaining results
are new.

We perform the expansion of the physical meson mass to the same order.
The physical mass can be written as

M2
phys = M2

LO + M2
NLO + M2

NNLO . (I.69)

The lowest order was already given in (I.63) and is the same for all three cases.
The two higher order can be expanded in logarithms and analytical contribu-
tions via

M2
NLO = M2

(
aM

A(M2)

F2
+ bM

M2

F2

)
,

M2
NNLO = M2

(
cM

A(M2)2

F4
+

M2 A(M2)

F4

(
dM +

eM

16π2

)

+
M4

F4

(
fM +

gM

16π2
+

hM

(16π2)2

))
. (I.70)

The mass can be calculated by finding the zeros of the inverse propagator, see
e.g. the discussion [33]. The relevant one-particle irreducible diagrams are
shown in Fig. I.2. The coefficients for the three cases are given in Tab. I.3. The
subtractions needed for the QCD case have been derived in general before
in [19]. The adjoint and two-colour case can be made finite by the following:

Γ
(2)
MA =

1

2

(
1 − 9

N2
F

+
12

NF
− 7NF − 3N2

F

)
,

Γ
(L)
MA = −8

[(
3 − 3

NF
+ 2N

)
Lr

0 + 2
(
−1 + 2NF + 4N2

F

)
Lr

1 +
(

4 + NF + 2N2
F

)
Lr

2

+

(
3 − 3

NF
+ 5NF

)
Lr

3 +
2

NF
(2 − 2NF − 3N2

F)(2NF Lr
4 + Lr

5)

+4
(
−1 + 3NF + 4N2

F

)
Lr

6 +

(
10 − 10

NF
+ 12NF

)
Lr

8)

]
,

4Those authors used a different normalization for F. Ours corresponds to Fπ ≈ 93 MeV for the
QCD case and Nc = 3.
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Figure I.2: The diagrams up to order p6 for the meson self energy. The lines are meson
propagators and the vertices are: • a p2 vertex, × a p4 vertex and a crossed box a p6

vertex. The diagrams for the decay constant are the same with one external meson leg
replaced by an axial current.

Γ
(1)
MA = −1

4

(
−5

3
+

5

N2
F

− 5

NF
+

67

12
NF +

47

12
N2

F

)
,

Γ
(2)
MT =

1

2

(
1 − 9

N2
F

− 12

NF
+ 7NF − 3N2

F

)
,

Γ
(L)
MT = −8

[(
−3 − 3

NF
+ 2NF

)
Lr

0 + 2
(
−1 − 2NF + 4N2

F

)
Lr

1 +
(

4 − NF + 2N2
F

)
Lr

2

+

(
−3 − 3

NF
+ 5NF

)
Lr

3 +
2

NF
(2 + 2NF − 3N2

F)(2NF Lr
4 + Lr

5)

+4
(
−1 − 3NF + 4N2

F

)
Lr

6 +

(
−10 − 10

NF
+ 12NF

)
Lr

8)

]
,

Γ
(1)
MT = −1

4

(
−5

3
+

5

N2
F

+
5

NF
− 67

12
NF +

47

12
N2

F

)
. (I.71)

This result agrees at NLO with [16] for the QCD case and [17] for the 2-colour
case. It also agrees with the masses for two and three flavours in the QCD case
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as calculated in [33–38]. The remaining results are new.
We perform the expansion of the physical decay constant to the same order.

The decay constant can be written as

Fphys = FLO + FNLO + FNNLO . (I.72)

The lowest order is FLO = F and is the same for all three cases. The two higher
order can be expanded in logarithms and analytical contributions via

FNLO = F

(
aF

A(M2)

F2
+ bF

M2

F2

)
,

FNNLO = F

(
cF

A(M2)2

F4
+

M2 A(M2)

F4

(
dF +

eF

16π2

)

+
M4

F4

(
fF +

gF

16π2
+

hF

(16π2)2

))
. (I.73)

The decay constant can be calculated by computing the one-meson matrix ele-
ment of the axial current. The diagrams for the wave-function renormalization
are the same as those for the mass in Fig. I.2 and those for the bare matrix-
element are again those of Fig. I.2 but with one external meson leg replaced
by the axial current. The coefficients for the three cases are given in Tab. I.4.
The subtractions needed for the QCD case have been derived in general before
in [19]. The adjoint and two-colour case can be made finite by the following:

Γ
(2)
FA = 1 − 3

4
NF +

1

4
N2

F ,

Γ
(L)
FA = −4

[(
−3 +

3

NF
− 2NF

)
Lr

0 + 2
(

1 − 2NF − 4N2
F

)
Lr

1 +
(
−4 − NF − 2N2

F

)
Lr

2

+

(
−3 +

3

NF
− 5NF

)
Lr

3 +
1

NF
(NF − 1)(2NF Lr

4 + Lr
5) + 8N2

F Lr
6 + 4NF Lr

8

]
,

Γ
(1)
FA = −1

8

(
1

3
− 1

N2
F

+
1

NF
− 53

12
NF − 49

12
N2

F

)
,

Γ
(2)
FT = 1 +

3

4
NF +

1

4
N2

F ,

Γ
(L)
FT = −4

[(
3 +

3

NF
− 2NF

)
Lr

0 + 2
(

1 + 2NF − 4N2
F

)
Lr

1 +
(
−4 + NF − 2N2

F

)
Lr

2

+

(
3 +

3

NF
− 5NF

)
Lr

3 −
1

NF
(1 + NF)(2NF Lr

4 + Lr
5) + 8N2

F Lr
6 + 4NF Lr

8

]
,

Γ
(1)
FT = −1

8

(
1

3
− 1

N2
F

− 1

NF
+

53

12
NF − 49

12
N2

F

)
. (I.74)
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This result agrees at NLO with [16] for the QCD case and [17] for the 2-colour
case. It also agrees with the decay constant for two and three flavours in the
QCD case as calculated in [33, 34, 36, 38]. The remaining results are new.

The coefficient of the leading logarithm, A(M2)2 is always determined but
note that the coefficient of the subleading logarithm for the vacuum expecta-
tion value depends on LECs that can be determined from the masses.

The expansions (I.66), (I.70) and (I.73) have been written in terms of the
lowest order mass and decay constant. It is possible to reorder the series in
various ways. In particular one can rewrite the series in terms of the physi-
cal masses and decay constants instead. The logarithms come from physical
particles propagating so the form in terms of physical masses might be prefer-
able. There are some indications that in the case of two-flavour QCD this leads
to a better convergence, see e.g. [39]. The physical mass and decay constant
expansion is referred to there as the ξ expansion. We thus rewrite (I.66), (I.70)
and (I.73) as

Ophys = OLO + ONLO + ONNLO , (I.75)

with

ONLO = OLO

(
αO

A(M2
phys)

F2
phys

+ βO

M2
phys

F2
phys

)
,

ONNLO = OLO

(
γO

A(M2
phys)

2

F4
phys

+
M2

phys A(M2
phys)

F4
phys

(
δO +

εO

16π2

)

+
M4

phys

F4
phys

(
ζO +

ηO

16π2
+

θO

(16π2)2

))
. (I.76)

We do this for O = V, M, F for the vacuum-expectation-value, mass and decay
constant. The coefficients in the two expansions are related by

αO = aO , βO = bO , γO = cO + (2aF − aM)aO ,

δO = dO + (2bF − bM)aO + (2aF − aM)bO , εO = eO + aMaO ,

ζO = fO + (2bF − bM)bO , ηO = gO + bMaO , θO = hO . (I.77)

These can be easily evaluated using the results in Tabs. I.2 to I.4.

I.6 Conclusions

In this work we have calculated the vacuum expectation value, the meson
mass and the meson decay constant in effective field theory to NNLO for the
three cases with a simple underlying vector gauge groups and NF equal mass
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fermions in the same representation. We discussed the complex case (QCD),
real representation (Adjoint) and pseudo-real representation (2-colour).

The three flavour cases have been calculated earlier at NNLO for the
QCD case for the mass, decay constant [31, 38] and condensate [31]. For
two flavour QCD the NNLO expressions exists for the mass and decay con-
stants [18, 19, 30, 34, 35]. For the NF flavour case the mass, decay constant and
the condensate can be found in [16] to NLO. The NNLO expressions here are
new. Note that the equal mass case considered here leads to considerably
simpler expressions than those of [33, 38]. We have a slightly different NLO
divergence structure for the two-colour case then [12] but agree with their ex-
plicit NLO expressions for the mass, decay constant and vacuum expectation
value. Again the NNLO expressions here are new. The adjoint case we have
extended to NLO in general and to NNLO for the mass, decay constant and
vacuum expectation value. Notice that for all three cases the coefficient of the
leading logarithm at NNLO is fully determined but that the coefficient of the
subleading logarithm at NNLO for the vacuum expectation value depends on
LECs that can be determined from the mass at NLO.

The main motivation behind this work is that these expressions should
be useful for extrapolations to zero mass in lattice calculations for dynamical
electroweak symmetry breaking.
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QCD
aM − 1

NF

bM 8NF

(
2Lr

6 − Lr
4

)
+ 8

(
2Lr

8 − Lr
5

)

cM − 1
2 + 9

2N2
F

+ 3
8 N2

F

dM 8Lr
0(− 3

NF
+ NF) + 8Lr

1(−1 + 2N2
F) + 4Lr

2(4 + N2
F) + Lr

3(− 24
NF
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+Lr
4(40 − 16N2

F) + Lr
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40
NF

− 16NF) + Lr
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F) + Lr
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NF
+ 32NF)
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3 + 4

N2
F
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16 N2

F

fM −32Kr
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+NF
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−32Kr
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NF

(Lr
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0 + Lr
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2

−8[Lr
4 − 2Lr

6 +
1

NF
(Lr

5 − 2Lr
8)]

hM − 1
4 + 3

4
1

N2
F

+ 169
384 N2

F

Adjoint
aM

1
2 − 1

2NF

bM 16NF(2Lr
6 − Lr

4) + 8(2Lr
8 − Lr

5)

cM
3
8

(
1 + 3

N2
F

− 4
NF

+ NF + N2
F

)

dM Lr
0(12 − 12 1

NF
+ 8NF) + 8Lr

1(−1 + 2NF + 4N2
F)

+4Lr
2(4 + NF + 2N2

F) + Lr
3(12 − 12

NF
+ 20NF)

+Lr
4(40 − 40NF − 32N2

F) + Lr
5(−20 + 20

NF
− 16NF)

+16Lr
6(−1 + 3NF + 2N2

F) + Lr
8(40 − 40

NF
+ 32NF)

eM − 2
3 + 1

N2
F

− 3
4

1
NF

+ 77
48 NF + 19

16 N2
F

fM rr
MA + 64(2NF Lr

4 + Lr
5)(2NF Lr

4 + Lr
5 − 4NF Lr

6 − 2Lr
8)

gM 2Lr
0(1 − 1

NF
+ 2NF) + 4Lr

1 + 2NF Lr
2(1 + 2NF) + 2Lr

3(1 − 1
NF

+ NF)

−8(1 − NF)(Lr
4 − 2Lr

6) + 4(1 − 1
NF

)(Lr
5 − 2Lr

8)

hM − 1
16 + 3

16
1

N2
F

− 3
16

1
NF

+ 193
384 NF + 169

384 N2
F

2-colour
aM − 1

2 − 1
2NF

bM 16NF(2Lr
6 − Lr

4) + 8(2Lr
8 − Lr

5)

cM
3
8

(
1 + 3

N2
F

+ 4
NF

− NF + N2
F

)

dM Lr
0(−12 − 12 1

NF
+ 8NF) + 8Lr

1(−1 − 2NF + 4N2
F)

+4Lr
2(4 − NF + 2N2

F) + Lr
3(−12 − 12

NF
+ 20NF)

+Lr
4(40 + 40NF − 32N2

F) + Lr
5(20 + 20

NF
− 16NF)

+16Lr
6(−1 − 3NF + 2N2

F) + Lr
8(−40 − 40

NF
+ 32NF)

eM − 2
3 + 1

N2
F

+ 3
4

1
NF

− 77
48 NF + 19

16 N2
F

fM rr
MT + 64(2NF Lr

4 + Lr
5)(2NF Lr

4 + Lr
5 − 4NF Lr

6 − 2Lr
8)

gM −2Lr
0(1 +

1
NF

− 2NF) + 4Lr
1 − 2NF Lr

2(1 − 2NF)− 2Lr
3(1 +

1
NF

− NF)

−8(1 + NF)(Lr
4 − 2Lr

6)− 4(1 + 1
NF

)(Lr
5 − 2Lr

8)

hM − 1
16 + 3

16
1

N2
F

+ 3
16

1
NF

− 193
384 NF + 169

384 N2
F

Table I.3: The coefficients aM, . . . , gM appearing in the expansion of the mass.
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QCD
aF

1
2 NF

bF 4NF Lr
4 + 4Lr

5

cF − 1
2 − 3

16 N2
F

dF
4

NF
(3Lr

0 + 3Lr
3 − Lr

5) + 4Lr
1 − 8Lr

2 − 4Lr
4 + NF(−4Lr

0 − 10Lr
3 − 2Lr

5 + 8Lr
8)

+2N2
F(−4Lr

1 − Lr
2 − Lr

4 + 4Lr
6)

eF
2
3 − 1

2N2
F

− 59
96 N2

F

fF −8
(

NF Lr
4 + Lr

5

)2
+ 8(Kr

19 + Kr
23) + 8NF(K

r
20 + Kr

21) + 8N2
FKr

22

gF
2

NF
(Lr

0 + Lr
3)− 2Lr

1 + NF(−2Lr
0 − Lr

3 + 4Lr
5 − 8Lr

8) + N2
F(−Lr

2 + 4Lr
4 − 8Lr

6)

hF − 7
24 + 7

8N2
F

+ 1
768 N2

F

Adjoint
aF

1
2 NF

bF 8NF Lr
4 + 4Lr

5

cF − 1
4 + 3

16 NF − 3
16 N2

F

dF Lr
0(−6 + 6

NF
− 4NF) + 4Lr

1(1 − 2NF − 4N2
F)− 2Lr

2(4 + NF + 2N2
F)

+Lr
3(−6 + 6

NF
− 10NF)− 4Lr

4(1 − NF + N2
F) + 2Lr

5(1 − 1
NF

− NF)

+8NF(2NF Lr
6 + Lr

8)

eF
7
24 − 1

8N2
F

+ 1
8NF

− 29
32 NF − 59

96 N2
F

fF rr
FA − 8(2NF Lr

4 + Lr
5)

2

gF Lr
0(−1 + 1

NF
− 2NF)− 2Lr

1 + Lr
2(−NF − 2N2

F) + Lr
3(−1 + 1

NF
− NF)

8N2
F(Lr

4 − 2Lr
6) + 4NF(Lr

5 − 2Lr
8)

hF − 7
96 + 7

32
1

N2
F

− 7
32

1
NF

+ 19
256 NF + 1

768 N2
F

2-colour
aF

1
2 NF

bF 8NF Lr
4 + 4Lr

5

cF − 1
4 − 3

16 NF − 3
16 N2

F

dF Lr
0(6 +

6
NF

− 4NF) + 4Lr
1(1 + 2NF − 4N2

F)− 2Lr
2(4 − NF + 2N2

F)

+Lr
3(6 +

6
NF

− 10NF)− 4Lr
4(1 + NF + N2

F)− 2Lr
5(1 +

1
NF

+ NF)

+8NF(2NF Lr
6 + Lr

8)

eF
7
24 − 1

8N2
F
− 1

8NF
+ 29

32 NF − 59
96 N2

F

fF rr
FT − 8(2NF Lr

4 + Lr
5)

2

gF Lr
0(1 +

1
NF

− 2NF)− 2Lr
1 + Lr

2(NF − 2N2
F) + Lr

3(1 +
1

NF
− NF)

8N2
F(Lr

4 − 2Lr
6) + 4NF(Lr

5 − 2Lr
8)

hF − 7
96 + 7

32
1

N2
F
+ 7

32
1

NF
− 19

256 NF + 1
768 N2

F

Table I.4: The coefficients aF, . . . , gF appearing in the expansion of the decay constant.
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We discuss meson-meson scattering at next-to-next-to-leading order in the chi-
ral expansion for QCD-like theories with general n degenerate flavours for the
cases with a complex, real and pseudo-real representation. I.e. with global
symmetry and breaking pattern SU(n)L × SU(n)R → SU(n)V , SU(2n) → SO(2n)

and SU(2n) → Sp(2n). We obtain fully analytical expressions for all these cases.
We discuss the general structure of the amplitude and the structure of the pos-
sible intermediate channels for all three cases. We derive the expressions for
the lowest partial wave scattering length in each channel and present some
representative numerical results. We also show various relations between the
different cases in the limit of large n.
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II.1 Introduction

In an earlier paper [1] we started the phenomenology of QCD-like theories
at next-to-next-to-leading (NNLO) order in the light mass expansion in their
respective low-energy effective theories. The motivation for this work is that
these theories are interesting as variations on QCD and could play some role
as models for a nonperturbative Higgs sector. Early work in this context are
the technicolor variations of [2–4]. Recent reviews of more modern devel-
opments are [5, 6]. Lattice calculations have started to explore these type of
theories as well, some references are [7–13]. The main interest in these theo-
ries is in the massless limit but lattice simulations are necessarily performed at
a finite fermion mass. In [1] we worked out a number of simple observables,
the mass, decay constant and vacuum-expectation-value to NNLO in these
theories. Here we work out the amplitude for meson-meson scattering to the
same order. In lattice calculations the amplitude for meson-meson scattering
is not directly accessible but the scattering lengths can be derived from the de-
pendence on the volume of the lattice [14]. We therefore also provide explicit
expressions for the scattering lengths.

The EFT relevant for dynamical electroweak symmetry breaking can have
different patterns of spontaneous breaking of the global symmetry than QCD.
The resulting Goldstone Bosons, or pseudo-Goldstone bosons in the presence
of mass terms, are thus in different manifolds and the low-energy EFT is also
different.

In this paper we only discuss the same cases as in [1] where the underlying
strong interaction is vectorlike and all fermions have the same mass. Three
main patterns of global symmetry show up. A thorough discussion tree level
or lowest order (LO) is [15]. With n fermions1 in a complex representation the
global symmetry group is SU(n)L × SU(n)R and it is expected to be sponta-
neously broken to the diagonal subgroup SU(n)V . This is the direct extension
of the QCD case. For n fermions in a real representation the global symmetry
group is SU(2n) and it is expected to be spontaneously broken to SO(2n). In the
case of two colours and n fermions in the fundamental (pseudo-real) represen-
tation the global symmetry group is again SU(2n) but here it is expected to be
spontaneously broken to an Sp(2n) subgroup. Earlier references are [16–18].
Some earlier work for the complex case and the pseudo-real case at NLO can
be found in [19–21].

In the remainder of this paper we refer to the complex representation case
as complex or QCD, the real representation case as adjoint or real and the
pseudo-real representation case as two-colour or pseudo-real. In [1] we ex-
tended the construction of the general Lagrangian to NLO2 including the di-

1We use n rather than NF for the number of flavours since it makes the formulas shorter.
2References to some related work can be found in [6].
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vergence structure. The NNLO for the QCD case is in [22] and the divergence
structure in [23]. The Lagrangian constructed in [22] is with the changes dis-
cussed in [1] and in Sect. II.2 also a complete Lagrangian for the other two
cases but we have not shown it to be minimal nor calculated the divergence
structure.

We do not repeat the discussion of the three different cases at the underly-
ing fermion (quark) level. This can be found in [15] and [1], Sect. 2. In Sect. II.2
we quote the structure of the effective field theories for the three cases but
we again refer to [1] for more details. Sect. II.3 discusses in detail the gen-
eral structure of the amplitude. The amplitude can be expressed in terms of
two functions B(s, t, u) and C(s, t, u) which are generalizations of the amplitude
A(s, t, u) in ππ-scattering [24]. We work out the possible intermediate states
using the relevant group theory and using a projection operator formalism
obtain the amplitudes in the different channels. The results for the ampli-
tude are discussed in Sect. II.4 and for the scattering lengths in Sect. II.5. Here
we present some representative numerical results for the scattering lengths
as well as some large n relations between the different cases. The length-
ier formulas at two-loop order are given in an appendix. This work needed
a few more integrals at intermediate stages than [25, 26], these are given in
App. III.1. In Sect. II.6 we summarize our results.

II.2 Effective Field Theory

II.2.1 Generators

The notation for the three cases can be brought in a very similar form. More
details can be found in [1]. The Goldstone boson live on a manifold G/H

where G is the full global symmetry group and H is the part that remains
unbroken after spontaneous symmetry-breaking. We label the unbroken gen-
erators as Ta and the broken ones as Xa.

The space SU(n)× SU(n)/SU(n) is isomorphic to SU(n) so we use the Xa as
the generators of SU(n) for the QCD case. They are traceless, hermitian n × n

matrices.

The adjoint or real case has the generators in SU(2n)/SO(2n) where the bro-
ken generators satisfy

JSXa = (Xa)T JS , with JS =

(
0 I

I 0

)
. (II.1)

I is the n × n unit matrix and the superscript T indicates the transpose. The Xa

are traceless, hermitian 2n × 2n matrices in this case. Multiplying (II.1) with JS

II
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from left and right leads immediately to

Xa JS = JS (Xa)T . (II.2)

The two-colour or pseudo-real case has the generators in SU(2n)/Sp(2n)

where the broken generators satisfy

JAXa = (Xa)T JA , with JA =

(
0 −I

I 0

)
. (II.3)

The Xa are traceless, hermitian 2n × 2n matrices also in this case. Multiplying
(II.3) with JA similar to above gives

Xa JA = JA (Xa)T . (II.4)

The unbroken generators satisfy

SO(2n) : Ta JS + JSTaT = 0 ,

Sp(2n) : Ta JS + JSTaT = 0 . (II.5)

This allows in both cases to derive using J = JS or J = JA respectively:

h† J = JhT with h = exp ihaT2 . (II.6)

We always use generators normalized to one:

〈TaTb〉 = 〈XaXb〉 = δab. (II.7)

〈A〉 = trF(A), is the trace over the flavour indices. This is over n for the QCD
case and 2n for the real and pseudo-real case.

During the course of the calculation, we often have to sum over the Gold-
stone Bosons. These sums can be easily performed using

complex :

trF (Xa AXaB) = trF (A) trF (B)− 1

n
trF (AB) ,

trF (Xa A) trF (XaB) = trF (AB)− 1

n
trF (A) trF (B) .

Real :

trF (Xa AXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(
AJSBT JS

)
− 1

2n
trF (AB) ,

trF (Xa A) trF (XaB) =
1

2
trF (AB) +

1

2
trF

(
AJSBT JS

)
− 1

2n
trF (A) trF (B) .

Pseudoreal :

trF (Xa AXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(
AJABT JA

)
− 1

2n
trF (AB) ,

trF (Xa A) trF (XaB) =
1

2
trF (AB)− 1

2
trF

(
AJABT JA

)

− 1

2n
trF (A) trF (B) . (II.8)
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There is a relation that the broken generators satisfy for the real and
pseudo-real case.

trF

(
XaXb . . . XkXl

)
= trF

(
Xl Xk . . . XbXa

)
. (II.9)

The proof for the real case is

trF

(
XaXb . . . XkXl

)
= trF

(
XaXb . . . XkXl J2

S

)

= trF

(
XaXb . . . Xk JSXlT JS

)

= trF

(
XaXb . . . JSXkTXlT JS

)

= trF

(
JSXaTXbT . . . XkT XlT JS

)

= trF

(
XaTXbT . . . XkT XlT

)

= trF

((
Xl Xk . . . XbXa

)T
)

= trF

(
Xl Xk . . . XbXa

)
(II.10)

The pseudo-real case is proven by replacing J2
S by −J2

A and following the same
steps. (II.9) is also the reason why the Lagrangian in [22] is not minimal for
the real and pseudo-real case.

In the group theory references there is a conjecture mentioned that to get
from SO(2n) to Sp(2n) it is sufficient to take n → −n. This feature is indeed
visible in most of our formulas.

II.2.2 Lagrangians

As described in more detail in [1] we can write the Lagrangians in the
three cases in a very similar way. The Goldstone Boson manifold G/H is
parametrized by

u = exp

(
i√
2F

φ

)
, φ = φaXa . (II.11)

These transform under the symmetry transformation in the QCD case for
gL × gR ∈ SU(n)L × SU(n)R as

u → gRuh(gL, gR, φ)† = h(gL, gR, φ)ug†
L . (II.12)

h is the socalled compensator field and is defined by (II.12) and is also an SU(n)

matrix. This can be derived from the standard general formulation [27, 28] as
done in [1]. For a transformation in the conserved part of the group we have
that gL = gR = gV and h = gV .

II



70 Meson-meson Scattering in QCD-like Theories

The notation for the other two cases is directly that of [27,28]. A symmetry
transformation g ∈ G = SU(2n) transforms u as

u → g u h(g, φ)† , with h = exp (ihaTa) . (II.13)

I.e. h is in the unbroken part H of the group. In case the transformation g is in
the conserved part of the group, g ∈ H, we have that h = g.

We can now define the quantities

uµ = i
(

u†∂µu − u∂µu†
)

,

Γµ =
1

2

(
u†∂µu − u∂µu†

)
. (II.14)

Under the group transformation in all cases we have uµ → huµh† and Γµ can
be used to define a covariant derivative.

∇µuν ≡ ∂µuν + Γµuν − uνΓµ → h∇µuνh† . (II.15)

In [1] we also showed how the external fields can be included in a similar way
as for the QCD case in [19, 29]. In particular the quark masses can be put in a
quantity χ± that transforms as χ± → hχ±h†.

The lowest order Lagrangian takes on the standard form

LLO =
F2

4
trF

(
uµuµ + χ+

)
(II.16)

for all three cases and the same is true for the NLO Lagrangian.

LNLO = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉
+L3〈uµuµuνuν〉+ L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2

+L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉 . (II.17)

We have kept only the terms contributing to meson-meson scattering in (II.17).
The NNLO Lagrangian is known for the complex or QCD case [22] as well

as its divergence structure [23]. The same Lagrangian with the changes men-
tioned above is complete for the other two cases but probably not minimal.
We have nonetheless chosen to leave the contributions from those terms in
the results quoted here.

II.2.3 Renormalization

We use the standard renormalization procedure in ChPT [19, 29] with the ex-
tension to NNLO described in great detail in [23,26]. The divergences at NLO
are canceled by the subtractions as calculated in [1]. At NNLO the divergences
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for the QCD case are canceled by the subtractions calculated in [23]. The other
two cases satisfy all the expected constraints. Nonlocal divergences fully can-
cel, the ε parts of the loop integrals as defined in App. III.1 always cancel and
the double divergences satisfy the Weinberg relations [23].

As usual in ChPT we apply the MS scheme of dimensional regularization,
in which the bare LECs Li are defined as

Li = (cµ)d−4 [ΓiΛ + Lr
i (µ)] (II.18)

Where the dimension d = 4 − 2ε, and

Λ =
1

16π2(d − 4)
, (II.19)

ln c = −1

2
[ln 4π + Γ′(1) + 1] . (II.20)

The coefficients Γi can be found in [1,29] for the complex and in [1] for the real
and pseudo-realSp(2n) case.

The NNLO terms can be made finite with the subtractions

Ki = (cµ)2(d−4)
[

Kr
i − Γ

(2)
i Λ2 −

(
1

16π2
Γ
(1)
i + Γ

(L)
i

)
Λ

]
. (II.21)

The coefficients Γ
(2)
i , Γ

(1)
i and Γ

(L)
i for the complex case have been derived in

[23]. For the real and pseudo-real case, the results do not exist. We have
checked that all remaining divergences are local and can thus be subtracted.

II.3 General results for the amplitudes

II.3.1 ππ case

The ππ scattering amplitude, which correspond to the QCD case with n = 2

is well known. Due to crossing and the possible SU(2) (isospin) invariants the
amplitude can be written as [24, 30]

Mππ(s, t, u) = δabδcd A(s, t, u) + δacδbd A(t, u, s) + δadδbc A(u, s, t) . (II.22)

The function A(s, t, u) is symmetric under the interchange of t and u.
The possible states of two pions are isospin 0, 1 or 2. The amplitude for the

three channels are given by [30]

T0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s),

T1(s, t, u) = A(t, s, u)− A(u, s, t),

T2(s, t, u) = A(t, s, u) + A(u, s, t). (II.23)

II
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Where I is isospin, and PI is the projection operator on isospin I They satisfy
the relation

Mππ(s, t, u) = ∑
I=0,2

T I(s, t, u)PI . (II.24)

and

T I(s, t, u)PI (no sum) = PI Mππ(s, t, u) . (II.25)

In the remainder of this section we will generalize these results. (II.22) is
generalized in terms of two functions in Sect. II.3.2. The possible intermedi-
ate states and the corresponding amplitudes are derived for the three cases
separately in the last three subsections of this section.

II.3.2 General amplitude

The amplitude for meson-meson scattering is given by

〈φc(pc)φ
d(pd)|φa(pa)φ

b(pd)〉 = M(s, t, u) . (II.26)

The Mandelstam variables s, t, u are defined by

s = (pa + pb)
2/M2

phys , t = (pa − pc)
2/M2

phys , u = (pa − pd)
2/M2

phys .

(II.27)
These satisfy

s + t + u = 4 . (II.28)

We have chosen here to use the dimensionless versions in order to simplify
later formulas.

The flavour structure of the amplitude for meson-meson scattering can be
described by constructing all possible invariants from the four corresponding
generator matrices Xe, e = a, b, c, d. Taking into account that trF (Xe) = 0 there
are 9 invariants possible

trF

(
XaXbXcXd

)
, trF

(
XaXcXdXb

)
, trF

(
XaXdXbXc

)
,

trF

(
XaXdXcXb

)
, trF

(
XaXbXdXc

)
, trF

(
XaXcXbXd

)
, (II.29)

trF

(
XaXb

)
trF

(
XcXd

)
, trF (XaXc) trF

(
XbXd

)
, trF

(
XaXd

)
trF

(
XbXc

)
.

Under charge conjugation Xa −→ XaT . This means that the amplitudes multi-
plying the first row in (II.29) must be the same as those multiplying the second
row.3 As a result the full amplitude can be written in terms of two invariant

3Alternatively use (II.9) for the real and pseudo-real case.
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amplitudes B(s, t, u) and C(s, t, u).

M(s, t, u) =
[
trF

(
XaXbXcXd

)
+ trF

(
XaXdXcXb

)]
B(s, t, u)

+
[
trF

(
XaXcXdXb

)
+ trF

(
XaXbXdXc

)]
B(t, u, s)

+
[
trF

(
XaXdXbXc

)
+ trF

(
XaXcXbXd

)]
B(u, s, t)

+δabδcdC(s, t, u) + δacδbdC(t, u, s) + δadδbcC(u, s, t) . (II.30)

The flavour structure also implies that

B(s, t, u) = B(u, t, s) C(s, t, u) = C(s, u, t) . (II.31)

For n = 3 there is the Cayley-Hamilton relation

∑
6 permutations

trF

(
XaXbXcXd

)
= ∑

3 permutations

trF

(
XaXb

)
trF

(
XcXd

)
, (II.32)

which allows for an ambiguity in the split of B and C. For n = 2 we can perform
all the traces with four matrices Xa in terms of Kronecker deltas.

The relation between the general amplitudes and the ππ scattering case
(II.22) is

A(s, t, u) = C(s, t, u) + B(s, t, u) + B(t, u, s)− B(u, s, t) . (II.33)

Note that the property (II.31) insures that A(s, t, u) is symmetric under the in-
terchange of t and u as it should be. The form (II.22) holds also for any set of
pions. I.e., taking any SU(2) subgroup of the unbroken group and any three of
the pseudo Goldstone bosons that form a triplet under such a group, one can
rewrite the general amplitude (II.30) into (II.22) using (II.33).

II.3.3 QCD case: channels and amplitudes

The Goldstone boson transform under the conserved part of the group, SU(n),
as

φ → hφh† . (II.34)

This means that they are in the adjoint representation of SU(n). For the n = 2, 3

case we have an isospin triplet under SU(2) and an octet under SU(3). The
intermediate states for these are well known:

SU(2) : 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 (or I = 0, 1, 2) ,

SU(3) : 8 ⊗ 8 = 1 ⊕ 8S ⊕ 8A ⊕ 10 ⊕ 10 ⊕ 27 . (II.35)

The group theory for SU(n) can be done in many ways. One is via Young
diagrams and the second using tensor methods. We will do both. The SU(n)
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case derived here was in fact known [31] and our results are in agreement
with his. Young diagrams for SU(n) are explained in [32] page 370. The Young
diagrams for SU(n) give

...

⊗

...

= · ⊕

...

⊕

...

⊕

...

⊕

...
...

⊕

...

⊕

...
...

(II.36)

Note that the
... stand for n− 5 boxes. In terms of free indices the right hand side

of (II.36) is no indices (singlet), twice one upper and one lower index (adjoint).
The remaining four have all two lower and two upper indices, where the up-
per indices are produced from the columns with length n − 1 and n − 2 boxes
using the Levi-Civita tensor εi1 ...in . For these we use the notation RY

X where
X = S, A indicate whether the lower indices are symmetric or antisymmetric
and Y = S, A the same for the upper indices. The decomposition (II.36) can
thus be written as

Adj. ⊗ Adj. = RI ⊕ RS ⊕ RA ⊕+R A
S ⊕ R S

A ⊕ R A
A ⊕ R S

S (II.37)

The order of the irreducible representation on the right-hand side is the same
in (II.36) and (II.37).

If we have a particular two-meson state φa(p1)φ
b(p2) we have to write it

in terms of states that belong to the irreducible multiplets to obtain the am-
plitudes for the different channels. We use a simplified notation below with
A = Xa, B = Xb, C = Xc and D = Xd for many of the terms. All traces connecting
a lower with an upper index must vanish.

• RI : singlet representation. All indices should be contracted, so this must

be proportional to A
j
i B

i
j = trF (AB). Summing over the n2 − 1 states that

are present tells us that the correct normalized state is

RI =
1√

n2 − 1
∑
a,b

trF

(
XaXb

)
φaφb . (II.38)

A projection operator Pabcd
I that projects on the singlet component is

Pabcd
I =

1

n2 − 1
trF (AB) trF (CD) . (II.39)

It can be checked that this is a projection operator

Pabcd
I P

cde f
I = P

abe f
I , (II.40)

using (II.8) and ∑a,b δab = n2 − 1.
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• RS: adjoint symmetric representation. This needs in the end an upper
and a lower index and must be traceless. We choose here to split up
the two possible contractions of the indices of A and B in way that is
symmetric under the interchange of A and B.

(RS)
i
j =

√
n

2(n2 − 4)

[
Am

j Bi
m + Bm

j Ai
m − 2

n
δi

jtrF (AB)

]
. (II.41)

The last term is needed to make RS traceless. The normalization can
be worked out by checking the normalization of a particular state or by
checking that the projection operator4

PS = RS(A, B)i
j RS(C, D)

j
i (II.42)

has the correct normalization, its square is equal to itself. This leads
finally to the projection operator

PS =
n

2(n2 − 4)

[
trF ((AB + CD)(CD + DC))− 4

n
trF (AB) trF (CD)

]
. (II.43)

Suppressing the indices we get similar to (II.40) P2
S = PS and PSPI =

PI PS = 0.

• RA: adjoint anti-symmetric representation

(RA)
i
j =

1√
2n

(
Am

j Bi
m − Bm

j Ai
m

)
. (II.44)

RA(A, B) is traceless and antisymmetric in A and B. The projection oper-
ator corresponding to this is

PA =
−1

2n
trF ((AB − BA)(CD − DC)) . (II.45)

• RA
S : symmetric for lower indices and antisymmetric for upper. A state

here corresponds to

(
RA

S

)ij

kl
=

1

2

[
Ai

kB
j
l +

1

n
δi

k

(
A

j
mBm

l − Am
l B

j
m

)]

−(i ↔ j) + (k ↔ l)− (i ↔ j, k ↔ l) . (II.46)

The projection operator on this type of states is

PSA =
(

RA
S (A, B)

)ij

kl

(
RA

S (C, D)
)kl

ij

=
1

4n

[
trF ((AB − BA)(CD − DC)) + n

(
trF (ACBD) (II.47)

−trF (ADBC)
)
+ n

(
trF (AC) trF (BD)− trF (AD) trF (CD)

)]
.

4We suppress the superscript abcd from now on.
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• RS
A: antisymmetric for lower indices and symmetric for upper. A state

here corresponds to
(

RS
A

)ij

kl
=

1

2

[
Ai

kB
j
l −

1

n
δi

k

(
A

j
mBm

l − Am
l B

j
m

)]

+(i ↔ j)− (k ↔ l)− (i ↔ j, k ↔ l) . (II.48)

The projection operator on this type of states is

PAS =
1

4n

[
trF ((AB − BA)(CD − DC))− n

(
trF (ACBD) (II.49)

−trF (ADBC)
)
+ n

(
trF (AC) trF (BD)− trF (AD) trF (CD)

)]
.

• RS
S: symmetric for both upper index and lower index. The states are

(RS
S)

ij
kl =

1

2

[
Ai

kB
j
l −

1

n + 2
δi

k

(
Am

l B
j
m + Bm

l A
j
m

)

+
1

(n + 1)(n + 2)
δi

kδ
j
l trF (AB)

]

+(i ↔ j) + (k ↔ l) + (i ↔ j, k ↔ l) (II.50)

and the projection operator is

PSS =
−1

4(n + 2)
trF ((AB + BA)(CD + DC)) +

1

4

(
trF (ACBD)

+trF (ADBC)
)
+

1

4

(
trF (AC) trF (BD) + trF (AD) trF (CD)

)

+
1

2(n + 1)(n + 2)
trF (AB) trF (CD) . (II.51)

• RA
A: antisymmetric for both upper index and lower index. The states are

(RA
A)

ij
kl =

1

2

[
Ai

kB
j
l +

1

n − 2
δi

k

(
Am

l B
j
m + Bm

l A
j
m

)

− 1

(n − 1)(n − 2)
δi

kδ
j
l trF (AB)

]

−(i ↔ j)− (k ↔ l) + (i ↔ j, k ↔ l) (II.52)

and the projection operator is

PAA =
−1

4(n − 2)
trF ((AB + BA)(CD + DC))− 1

4

(
trF (ACBD)

+trF (ADBC)
)
+

1

4

(
trF (AC) trF (BD) + trF (AD) trF (CD)

)

+
1

2(n − 1)(n − 2)
trF (AB) trF (CD) . (II.53)
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The projection operators agree with those of [31] and using (II.9) can be shown
to satisfy PrPr′ = Prδrr′ for r the various representations. One last check is that

∑
r

Pr = trF (AC) trF (BD) . (II.54)

The right-hand side is the unit operator when acting on the product of two
states in the adjoint representation. It can also be seen that RI , RS, RA

A and RS
S

are symmetric under interchanging A and B while RA, RS
A and RA

S are antisym-
metric.

The amplitude in the different intermediate states can now be extracted
from the general amplitude in two equivalent ways. We can pick a state Rr in
a representation r and get it via

Tr = 〈Rr|M(s, t, u)|Rr〉 , (II.55)

or apply the projection operators on the full amplitude with

PrTr = Pr M(s, t, u) . (II.56)

Both methods give as expected the same result but the second one is much
easier to apply. For the first method it is best to choose a state where the terms
with δ functions are not present. E.g. for the four index representations take a
state Rr with i = 1, j = 2, k = 3, l = 4. For evaluating (II.56) one can use (II.8).

TI = 2

(
n − 1

n

)
[B(s, t, u) + B(t, u, s)]− 2

n
B(u, s, t)

+(n2 − 1)C(s, t, u) + C(t, u, s) + C(u, s, t) ,

TS =

(
n − 4

n

)
[B(s, t, u) + B(t, u, s)]− 4

n
B(u, s, t)

+C(t, u, s) + C(u, s, t) ,

TA = n[−B(s, t, u) + B(t, u, s)] + C(t, u, s)− C(u, s, t) ,

TSA = C(t, u, s)− C(u, s, t) ,

TAS = C(t, u, s)− C(u, s, t) ,

TSS = 2B(u, s, t) + C(t, u, s) + C(u, s, t) ,

TAA = −2B(u, s, t) + C(t, u, s) + C(u, s, t) . (II.57)

They satisfy the relation similar to (II.24),

M(s, t, u) = ∑
r

Tr(s, t, u)Pr . (II.58)

One also notices that TSA = TAS in general from (II.57).
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II.3.4 Real case: channels and amplitudes

In this subsection we work out the possible two meson intermediate states for
the case of SU(2n)/SO(2n). One problem is that the mesons transform under
SO(2n) as φ → hφh†. The matrices h ∈ SO(2n) in the embedding introduced
here do not simply satisfy hhT = 1 either. In our case the SO(2n) is instead
defined as hJShT = JS. The easiest way to obtain objects that appear in the
usual way is to note that using (II.6)

φJS → hφh† JS = hφJShT (II.59)

and that an invariant trace on these object needs an extra factor of JS. E.g.

(φa JS)JS(φ
b JS) → h(φa JS)h

T JSh(φb JS)h
T = h(φa JS)JS(φ

b JS)h
T . (II.60)

Keeping that in mind we can use the standard way of dealing with SO(2n).
Note that (φJS)

T = JSφT = φJS so the Goldstone bosons live in the symmetric
representation of SO(2n).

The method of Young tableaux has been generalized to SO(2n) [33, 34].
Putting together two symmetric representations gives

⊗ = · ⊕ ⊕ ⊕ ⊕ ⊕ (II.61)

We can write this in the form

Sym. ⊗Sym. = RI ⊕ RA ⊕ RS ⊕ RFS ⊕ RMA ⊕ RMS . (II.62)

The states are given in Tab. II.1. They are made traceless but remember that
indices of φa JS and φb JS are always contracted with JS.

As an example the singlet representation RI is proportional to

(φa JS)ij JSik JSjl(φ
b JS)kl = trF

(
φaφb

)
.

The two-index antisymmetric representation RA is, now using A, B for φa, φb,

(AJS)ik(BJS)jl JSkl − (AJS)jk(BJS)il JSkl = (ABJ − BAJ)ij (II.63)

where we heavily used J2
S = 1 and the fact that AJS and BJS are symmetric

matrices. One can also easily check that the trace (ABJS − BAJS)ij JSij vanishes.
Then RA and RS are antisymmetric respectively symmetric both under i ↔ j

and A ↔ B. The remaining ones are the four-index representations. RFS is fully
symmetric in all indices and under A ↔ B. The two remaining representations
have a mixed symmetry in the indices but are antisymmetric respectively sym-
metric under A ↔ B.
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RI
1√

(2n−1)(n+1)
trF (AB)

RA (ABJ − BAJ)ij

RS (ABJ + BAJ)ij − 1
n Jij〈AB〉

RFS (AJ)ij (BJ)kl − 1
n+2

[
Jij(ABJ + BAJ)kl

]
+ 1

2(n+2)(n+1)
Jij Jkl〈AB〉

+(ijkl ↔ ikjl) + (ijkl ↔ il jk) + (ijkl ↔ klij)

+(ijkl ↔ jlik) + (ijkl ↔ jkil)

RMA (AJ)ij (BJ)kl − (AJ)kl (BJ)ij − 1
2n+2

[
Jik(ABJ − BAJ)jl

+Jjk(ABJ − BAJ)il + Jil(ABJ − BAJ)jk + Jjl(ABJ − BAJ)ik

]

RMS (AJ)ij (BJ)kl + (AJ)kl (BJ)ij − (AJ)ik (BJ)jl − (AJ)jl (BJ)ik

+ 1
2(n−1)

[
Jij(ABJ + BAJ)kl + Jkl(ABJ + BAJ)ij

−Jik(ABJ + BAJ)jl − Jjl(ABJ + BAJ)ik

]

− 1
(n−1)(2n−1)

(
Jij Jkl − Jik Jjl

)
〈AB〉

Table II.1: The intermediate states for the real or adjoint case, SU(2n)/SO(2n). The
notations A, B stands for φa and φb and J is JS everywhere.

The corresponding projection operators are given in Tab. II.2. These can
be obtained by contracting the indices with JS of the states once with A, B and
once with C, D.

We can now use Tabs. II.1 and II.2 to project out the amplitudes in the var-
ious channels using (II.55) or (II.56). The results are

TI =
1

n
(2n − 1)(n + 1)[B(s, t, u) + B(t, u, s)] +

1

n
(n − 1)B(u, s, t)

+(2n − 1)(n + 1)C(s, t, u) + C(t, u, s) + C(u, s, t) ,

TA = −(1 + n)[B(s, t, u)− B(t, u, s)] + C(t, u, s)− C(u, s, t) ,

TS =
1

n
(n − 1)(n + 2)[B(s, t, u) + B(t, u, s)] +

1

n
(n − 2)B(u, s, t)

+C(t, u, s) + C(u, s, t) ,

TFS = 2B(u, s, t) + C(t, u, s) + C(u, s, t) ,

TMA = C(t, u, s)− C(u, s, t) ,

TMS = −B(u, s, t) + C(t, u, s) + C(u, s, t) . (II.64)
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PI
1

(2n−1)(n+1)
〈AB〉〈CD〉

PA − 1
2(n+1)

〈(AB − BA)(CD − DC)〉

PS
n

2(n−1)(n+2)

(
〈(AB + BA)(CD + DC)〉 − 2

n 〈AB〉〈CD〉
)

PFS
1
6

[
2

(n+1)(n+2)
〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈BC〉

+2〈ACBD + ADBC〉 − 2
n+2 〈(AB + BA)(CD + DC)〉

]

PMA
1

2(n+1)
〈(AB − BA)(CD − DC)〉+ 1

2 (〈AC〉〈BD〉 − 〈AD〉〈BC〉)

PMS
1
6

[
2

(n−1)(2n−1)
〈AB〉〈CD〉+ 2

(
〈AC〉〈BD〉+ 〈AD〉〈BC〉

)

−2〈ADBC + ACBD〉 − 1
n−1 〈(AB + BA)(CD + DC)〉

]

Table II.2: The projection operator for the different intermediate states for the real or
adjoint case, SU(2n)/SO(2n).

II.3.5 Pseudo-real case: channels and amplitudes

In this subsection we work out the possible two meson intermediate states for
the case of SU(2n)/Sp(2n). One problem is that the mesons transform under
Sp(2n) as in φ → hφh†. The easiest way to obtain objects that appear in the
usual way is to note that using (II.6)

φJA → hφh† JA = hφJAhT (II.65)

and that an invariant trace on these object needs an extra factor of JA. Keeping
that in mind we can use the standard way of dealing with Sp(2n). Note that
(φJA)

T = JT
AφT = −JAφT = φJS so the Goldstone bosons live in the antisymmet-

ric representation of Sp(2n).
The method of Young tableaux also is developed for Sp(2n) [33,34]. Putting

together two antisymmetric representations gives

⊗ = · ⊕ ⊕ ⊕ ⊕ ⊕ (II.66)

We can write this in the form

Asym. ⊗Asym. = RI ⊕ RA ⊕ RS ⊕ RFA ⊕ RMA ⊕ RMS . (II.67)
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RI
1√

(2n+1)(n−1)
〈AB〉

RA (ABJ + BAJ)ij − 1
n Jij〈AB〉

RS (ABJ − BAJ)ij

RFA (AJ)ij (BJ)kl +
1

n−2 Jij(ABJ + BAJ)kl − 1
2(n−1)(n−2)

Jij Jkl〈AB〉
−(ijkl ↔ ikjl) + (ijkl ↔ il jk) + (ijkl ↔ klij)

+(ijkl ↔ jlik) + (ijkl ↔ jkil)

RMA (AJ)ij (BJ)0kl − (AJ)kl (BJ)0ij − 1
2n−2

[
Jik(ABJ − BAJ)jl

+Jjl(ABJ − BAJ)ik − Jil(ABJ − BAJ)jk − Jjk(ABJ − BAJ)il

]

RMS

{
(AJ)ij (BJ)kl + (AJ)ik (BJ)jl − 1

2(n+1)

[
Jij(ABJ + BAJ)kl

−Jik(ABJ + BAJ)jl

]
+ (ij ↔ kl)

}

+ 1
2(n+1)(2n−1)

(
Jij Jkl − Jik Jjl

)
〈AB〉

Table II.3: The intermediate states for the pseudo-real or two-colour case,
SU(2n)/Sp(2n). J means JA.

The states are given in Tab. II.1. They are made traceless but remember that
indices of φa JA and φb JA are always contracted with JA.

The representations are the singlet representation, symmetric under A ↔ B,
RA which is antisymmetric under the interchange i ↔ j but symmetric under
A ↔ B and RS which is symmetric under the interchange i ↔ j but antisym-
metric under A ↔ B Let us show the latter on RA The two-index antisymmetric
representation RA is, now using A, B for φa, φb,

(AJA)ik(BJA)jl JAkl − (AJA)jk(BJA)il JAkl

= −(AJA)ik JAkl(BJA)l j JAkl − (BJA)il JAlk(AJA)ki

= (ABJ + BAJ)ij , (II.68)

where we used J2
A = −1 and the fact that AJA, BJA and JA are antisymmetric

matrices.
The remaining ones are the four-index representations. RFA is fully anti-

symmetric in all indices and symmetric under A ↔ B. The two remaining
representations have a mixed symmetry in the indices but are antisymmetric
respectively symmetric under A ↔ B. The states are give in Tab. II.3.

The projection operators can be constructed by contracting all indices with
JA of the states once with A, B and once with C, D. The results are given in
Tab. II.4.

II
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PI
1

(2n+1)(n−1)
〈AB〉〈CD〉

PA
n

2(n+1)(n−2)

(
〈(AB + BA)(CD + DC)〉 − 2

n 〈AB〉〈CD〉
)

PS − 1
2(n−1)

〈(AB − BA)(CD − DC)〉

PFA
1
6

[
2

(n−1)(n−2)
〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈BC〉

−2〈ACBD + ADBC〉 − 2
n−2 〈(AB + BA)(CD + DC)〉

]

PMA
1

2(n−1)
〈(AB − BA)(CD − DC)〉+ 1

2 (〈AC〉〈BD〉 − 〈AD〉〈BC〉)

PMS
1
3

[
1

(n+1)(2n+1)
〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈BC〉

+〈ACBD + ADBC〉 − 1
2(n+1)

〈(AB + BA)(CD + DC)〉
]

Table II.4: The projection operator for the different channels for the pseudo-real or
two-colour case, SU(2n)/Sp(2n).

We can now use again (II.55) or (II.56) to obtain the amplitudes in the dif-
ferent channels. The results are very similar to the real case and read

TI =
1

n
(2n + 1)(n − 1)[B(s, t, u) + B(t, u, s)]− 1

n
(n + 1)B(u, s, t)

+(2n + 1)(n − 1)C(s, t, u) + C(t, u, s) + C(u, s, t) ,

TA =
1

n
(n + 1)(n − 2)[B(s, t, u) + B(t, u, s)]− 1

n
(n + 2)B(u, s, t)

+C(t, u, s) + C(u, s, t) ,

TS = (1 − n)[B(s, t, u)− B(t, u, s)] + C(t, u, s)− C(u, s, t) ,

TFA = −2B(u, s, t) + C(t, u, s) + C(u, s, t) ,

TMA = C(t, u, s)− C(u, s, t) .

TMS = B(u, s, t) + C(t, u, s) + C(u, s, t) , (II.69)

II.4 Results for the amplitude M(s, t, u)

We have rewritten the amplitudes here in terms of the physical decay constant
Fphys and mass M2

phys. The relation of these to the lowest order results can be
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(1) (2) (3) (4)

Figure II.1: The leading order and next-to leading order for meson-meson scattering
φφ → φφ. The filled circle is a vertex from L2, and the filled square is a vertex from L4.

found in [1]. We also use the abbreviations

x2 =
M2

phys

F2
phys

, L =
1

16π2
ln

M2
phys

µ2
, π16 =

1

16π2
. (II.70)

In addition we have often used (II.28) to simplify the expressions.

II.4.1 Lowest order

The lowest order result comes from the simple tree-level diagram (1) of
Fig. II.1.

BLO(s, t, u) = x2

(
−1

2
t + 1

)
, CLO(s, t, u) = 0 , (II.71)

for all cases. This reproduces using the relation (II.33) Weinberg’s result [24]
for ππ scattering

ALO = x2 (s − 1) . (II.72)

II.4.2 Next-to-leading order

The next-to-leading order contains the 3 diagrams (2-4) in Fig. II.1 in addi-
tion to wave-function-renormalization. The divergences from loop diagram
(3) and (4) can be canceled by the bare low energy constants (LECs) of L4 in
the diagram (2).

The functions B(s, t, u) and C(s, t, u) can be calculated from the one-loop
graphs shown in Fig. II.1(2-4) and wave-function renormalization. It also con-
tains terms from rewriting the lowest-order result in the physical mass and
decay constant.

The functions B(s, t, u) and C(s, t, u) can be rewritten in the form

B(s, t, u) = x2
2 [BP(s, t, u) + BS(s, t − u) + BS(u, t − s) + BT(t)] ,

C(s, t, u) = x2
2 [CP(s, t, u) + CS(s) + CT(t) + CT(u)] . (II.73)

II
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BP(s, t, u) and CP(s, t, u) are the polynomial part, the remaining pieces are often
called the unitarity correction. This can be proven using an extension of the
methods of [35].

Using (II.28) we rewrite the polynomial part in its simplest form satisfying
the symmetry constraints (II.31):

BP(s, t, u) = α1 + α2t + α3t2 + α4(s − u)2 ,

CP(s, t, u) = β1 + β2s + β3s2 + β4(t − u)2 . (II.74)

The polynomial part for the three cases is give in Tab. II.5.
The unitarity correction is given in Tab.II.6. We noticed that the C functions

for the SO(2n) and Sp(2n) case are the same.

II.4.3 Next-to-next-to-leading order

There are 13 diagrams at next-to-next-to-leading order shown in Fig. II.2. We
have checked that the nonlocal divergence cancels for all three cases and that
for the complex or QCD case the result is fully finite with the subtractions
calculated in [23].

The diagrams (15) and (16) are often called the sunset and vertex or fish di-
agram respectively. These require the most difficult integrals. At intermediate
stages we needed more integrals than those calculated for [25, 26]. They were
calculated with the methods of [36] and are given in App. III.1.

B(s, t, u) = x3
2 [BP(s, t, u) + BS(s, t − u) + BS(u, t − s) + BT(t)] ,

C(s, t, u) = x3
2 [CP(s, t, u) + CS(s) + CT(t) + CT(u)] . (II.75)

The polynomial parts we rewrite using (II.28) in their simplest form satis-
fying the symmetry constraints (II.31):

BP(s, t, u) = γ1 + γ2t + γ3t2 + γ4(s − u)2 + γ5t3 + γ6t(s − u)2 ,

CP(s, t, u) = δ1 + δ2s + δ3s2 + δ4(t − u)2 + δ5s3 + δ6s(t − u)2 . (II.76)

The coefficients in these polynomials as well as the functions in (II.75) are
given in App. II.1. The FORM expressions can be downloaded from [37]. We
stress once more that the result is fully analytical and expressed in terms of L

and J.

II.5 Scattering lengths

The threshold parameters of general meson meson scattering are defined simi-
lar to those of ππ scattering. First we calculate the amplitudes for the different
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QCD: SU(n)× SU(n)/SU(n)

BP(s, t, u) α1
2
n L + 2

n π16 + 16Lr
8 + 16Lr

0 − 2
3 nL − 5

9 nπ16

α2 −4Lr
5 − 16Lr

0 +
5

12 nL + 11
36 nπ16

α3 Lr
3 + 4Lr

0 − 1
16 nL − 1

24 nπ16

α4 Lr
3 − 1

48 nL − 1
36 nπ16

CP(s, t, u) β1 32(Lr
1 − Lr

4 + Lr
6)− 2

n2 (L + π16)

β2 16Lr
4 − 32 Lr

1

β3 − 3
8 L + 2Lr

2 + 8Lr
1 − 3

8 π16

β4 2Lr
2 − 1

8 L − 1
8 π16

Adjoint: SU(2n)/SO(2n)

BP(s, t, u) α1 16(Lr
0 + Lr

8)−
(

7
6 + 2n

3 − 1
n

)
L −

(
19
18 + 5n

9 − 1
n

)
π16

α2 −16Lr
0 − 4Lr

5 +
(

5n
12 + 2

3

)
L +

(
5
9 + 11n

36

)
π16

α3 4Lr
0 + Lr

3 −
(

1
8 + n

16

)
L −

(
5
48 + n

24

)
π16

α4 Lr
3 +

(
1

24 − n
48

)
L +

(
5

144 − n
36

)
π16

CP(s, t, u) β1 32(Lr
1 − Lr

4 + Lr
6)− 1

2n2 (L + π16)

β2 16
(

Lr
4 − 2Lr

1

)

β3 8Lr
1 + 2Lr

2 − 3
16 π16 − 3

16 L

β4 2Lr
2 − 1

16 L − 1
16 π16

Two-colour: SU(2N)/Sp(2N)

BP(s, t, u) α1 16(Lr
0 + Lr

8) +
(

7
6 + 1

n − 2n
3

)
L +

(
19
18 − 5n

9 + 1
n

)
π16

α2 −16Lr
0 − 4Lr

5 +
(

5n
12 − 2

3

)
L +

(
5
9 − 11n

36

)
π16

α3 4Lr
0 + Lr

3 +
(

1
8 − n

16

)
L +

(
5
48 − n

24

)
π16

α4 Lr
3 −

(
1

24 + n
48

)
L −

(
5

144 + n
36

)
π16

CP(s, t, u) β1 32(Lr
1 − Lr

4 + Lr
6)− 1

2n2 (L + π16)

β2 16(Lr
4 − 2Lr

1)

β3 8Lr
1 + 2Lr

2 − 3
16 π16 − 3

16 L

β4 2Lr
2 − 1

16 L − 1
16 π16

Table II.5: The next-to-leading results for all three cases for the polynomial part. The
coefficients are defined in (II.74).

channels using (II.57), (II.64) and (II.69) for each of the possible intermediate
states of representation or channels I.

The scattering amplitude for each channel I can be projected out using the

II
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QCD: SU(n)× SU(n)/SU(n)

BS(s, t − u) J̄(s)
[
− 1

n + n
16 s2 + n

12

(
1 − s

4

)
(t − u)

]

BT(t) 0

CS(s) J̄(s)
(

2
n2 +

1
4 s2
)

CT(t)
1
4 J̄(t) (t − 2)2

Adjoint: SU(2n)/SO(2n)

BS(s, t − u) J̄(s)
[
− 1

2n + s
4 + 1

16 (n − 1) s2 + 1
12 (n + 1)

(
1 − s

4

)
(t − u)

]

BT(t)
1
8 J̄(t)(t − 2)2

CS(s) J̄(s)
(

1
2n2 +

1
8 s2
)

CT(t)
1
8 J̄(t)(t − 2)2

Two-colour: SU(2N)/Sp(2N)

BS(s, t − u) J̄(s)
[
− 1

2n − 1
4 s + 1

16 (n + 1)s2 + 1
12 (n − 1)

(
1 − s

4

)
(t − u)

]

BT(t) − 1
8 J̄(t)(t − 2)2

CS(s) J̄(s)
(

1
2n2 +

1
8 s2
)

CT(t)
1
8 J̄(t)(t − 2)2

Table II.6: The next-to-leading results for all three cases for the unitarity correction.

partial wave expansion

T I
`
(s) =

1

64π

∫ 1

−1
d(cosθ)P`(cosθ)TI(s, t, u) . (II.77)

Near the threshold s = 4, we can expand the amplitude above the threshold
using s = 4(1 + q2/M2

π) in the small three-momentum q.

Re T I
`
(s) = q2`[aI

`
+ q2bI

`
+ O(q4)] , (II.78)

where aI
`

is the scattering length, and bI
`

is the slope.
In App. II.3, we give the expressions of the lowest partial wave scattering

length for each channel in all three cases. As mentioned in Sect. II.3, some
channels are symmetric under A ↔ B, hence the lowest order partial wave is
` = 0. The other channels are antisymmetric under A ↔ B, so that the lowest
order partial wave is ` = 1. A and B are the incoming mesons here using the
notation of Sect. II.3.

For the purpose of illustration, we plot the scattering length for the singlet
and the fully-symmetric (fully-antisymmetric) channels as a function of the
physical meson mass M2

phys. Since currently we do not have knowledge for
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(5) (6) (7)

(8) (9) (10)

(11) (12) (13) (14)

(15) (16)

Figure II.2: The next-to-next-to leading order diagrams for ππ → ππ. The filled circle
a vertex from L2, The filled square is a vertex from L4, and the open square is a vertex
from L6.

the values of the low energy constants for these, we take the values of the Lr
i

of fit 10 of [38] for the complex or QCD case and half that for the other two as
suggested by the large n relations discussed below. The values of the NNLO
LECs we simply put to zero. We also choose the subtraction scale µ = 0.77 GeV
and the physical decay constant Fphys = 0.0924 GeV.

The singlet case for the complex case is shown in Fig. II.3. We have divided
the scattering length by n to make the lowest order similar for all cases. Plot-
ted are n = 2, . . . , 5. One can see that for a given M2

phys the convergence gets

progressively worse for larger n. For n = 2 this corresponds to a0
0.

II
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Figure II.3: Scattering length aI
0/n for the complex or QCD case, SU(n) ×

SU(n)/SU(n).

The fully symmetric case case for the complex case is shown in Fig. II.4.
Plotted are n = 2, . . . , 5. One can see that for a given M2

phys the convergence

gets progressively worse for larger n. For n = 2 this corresponds to a2
0. The

lowest order is independent of n. The NLO order is only mildly dependent on
n while the NNLO part grows fast with n.

II.5.1 Large n behaviour

Looking at the lowest order expressions in App. II.3 we notice immediately
that the large n behaviour for the scattering lengths fall in three classes.

The scattering length is of order n for the singlet and symmetric and asym-
metric representation and what is more they are clearly related for the three
cases:

aI
0|complex = aI

0|real = aI
0|pseudoreal =LO

x2

π

n

8
, (II.79)

aS
0 |complex = aS

0 |real = aA
0 |pseudoreal =LO

x2

π

n

16
, (II.80)

aA
1 |complex = aA

1 |real = aS
1 |pseudoreal =LO

x2

π

n

48
, (II.81)

The symbol =LO means equality at lowest order. Do the relations (II.79-II.81)
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Figure II.4: Scattering length aSS
0 for the complex or QCD case, SU(n)× SU(n)/SU(n).
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Figure II.5: Scattering length of aI
0/n for the real or adjoint case, SU(2n)/SO(2n).

remain valid at higher orders? If we choose F2
phys ∝ n and M2

phys independent

of n, we find that it is indeed the case for (II.80,II.81). For (II.79) it is true,
provided we set the NLO LECs Lr

i of the real and pseudoreal case to half those
of the complex case and the NNLO coefficients Ki to 1/4 the complex case. The
contributions are nonzero at the three orders for all of them. The subleading
orders in 1/n are different.

A second class is those which are order 1 in the coefficient of x2/π at lowest

II



90 Meson-meson Scattering in QCD-like Theories

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

aF
S

0

M2
phys [GeV2]

n = 2

LO

NLO

NNLO

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

aF
S

0

M2
phys [GeV2]

n = 4

LO

NLO

NNLO

Figure II.6: Scattering length of aFS
0 for the real or adjoint case, SU(2n)/SO(2n).
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Figure II.7: Scattering length of aI
0/n for the pseudoreal or two-colour case,

SU(2n)/Sp(2n).

order. For these we find

aSS
0 |complex = aFS

0 |real = 2aMS
0 |pseudoreal =LO

x2

π

−1

16
, (II.82)
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Figure II.8: Scattering length 2aMS
0 for the pseudoreal or two-colour case,

SU(2n)/Sp(2n). The factor of 2 included is because of the large n relation (II.82).
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aAA
0 |complex = 2aMS

0 |real = aFA
0 |pseudoreal =LO

x2

π

1

16
. (II.83)

We do indeed find that the relations are also satisfied at NLO and NNLO. In
fact none of the scattering lengths in (II.82) has a leading n NLO correction to
the lowest order result. This can be clearly seen in Fig. II.4 where the NLO
result is very similar in all plots.

The third class is the amplitudes that vanish at lowest order

aSA
1 |complex = aAS

1 |complex = 2aMA
1 |real = 2aMA

1 |pseudoreal =LO 0 . (II.84)

These are always suppressed by two powers of n compared to the first set of
scattering lengths also at NLO and NNLO. The relations (II.84) are satisfied
at NLO with same identifications of the LECs as above and almost at NNLO.
The only terms that do not satisfy the relation are proportional to Lr

4Lr
6.

By comparing the plots shown one sees that the large n relations do predict
the general behaviour but for n = 2 and n = 4 are not that accurate.

II.6 Conclusions

In this work we have presented the calculation of general meson-meson scat-
tering for n flavours in a complex, real or pseudoreal representation of a
strongly interaction gauge group. These are also referred to as QCD, Ad-
joint QCD and Two-color QCD and have as symmetry breaking patterns
SU(n)× SU(n)/SU(n), SU(2n)/SO(2n) and SU(2n)/Sp(2n)

We first reviewed the effective field theories of these three different cases.
Those theories can be written in a very similar form as discussed earlier [1].
We have extended the methods used for ππ scattering in ChPT [26] to all the
present cases. At intermediate stages some more integrals showed up, we
have calculated them and they are tabulated in an appendix.

The amplitude can in general be written in terms of two invariant ampli-
tudes which we called B(s, t, u) and C(s, t, u). These amplitudes can be written
in terms of simpler functions and we have given their fully analytical expres-
sions to NNLO.

Since the long term use of our work is the study of scattering on the lattice
for these alternative theories we have discussed the group theory involved
and all the possible intermediate channels. We have derived the amplitudes
in all these channel as a function of the invariant B and C functions.

The expressions for the different channels we have not shown explicitly
but we included expressions for scattering length of the lowest partial wave
in all channels. We presented a few representative numerical results for the
scattering lengths and discussed a series of relations between the different
theories in the limit of a large number of flavours n.

II
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II.A Next-to-next-to leading order result
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II.A.2 Real or adjoint
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16
− nt

72
+

t

4n
+

11t

72
− n

12
− 1

2n
− 1

12

}

+ J̄(t)

{
Lt3

18
− 2Lr

0t3 − 2Lr
3t3

3
+

5

144
Lnt3 − 17

288
nπ16t3 − 19π16t3

288
− 7Lt2

18
+ 12Lr

0t2

+
8Lr

3t2

3
+ 2Lr

5t2 − 11

36
Lnt2 +

1

18
nπ16t2 +

π16t2

12
+

37Lt

36
− 24Lr

0t − 16Lr
3t

3

−4Lr
5t − 8Lr

8t +
31Lnt

36
+

29nπ16t

72
+

π16t

n
+

13π16t

72
− Lt

2n
− 17L

18
+ 16Lr

0

+
16Lr

3

3
+ 16Lr

8 −
7Ln

9
− 5nπ16

9
− 2π16

n
− π16

6
+

L

n

}
(II.92)

II.A.3 Pseudo-real or two-colour

BS(s, t − u) = k4(s)

{
n2

12
+

n

12
− 1

6
+

1

2n
+

1

2n2

}
(t − u) (II.93)

+k3(s)

{
s2n2

48
− sn2

18
− 1

48
s(t − u)n2 +

(t − u)n2

36
+

sn

24
+

s(t − u)n

24

II
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− (t − u)n

72
+

n

9
− s2

48
+

s

18
− s(t − u)

48
− 7(t − u)

72
− 1

36
− s

12n
+

(t − u)

12n

− 1

2n
− s

12n2
+

(t − u)

12n2
− 2

3n2

}

+k2(s)

{
n2s3

64
+

ns3

64
+

3s3

64
− 3ns2

32
− 1

576
n2(t − u)s2 +

1

288
n(t − u)s2

− (t − u)s2

576
− 9s2

32
+

1

72
n2(t − u)s − n(t − u)s

36
+

(t − u)s

72
+

3s

16
− n2(t − u)

36

+
n(t − u)

18
− (t − u)

36
+

1

2n
+

1

2n2

}

+k1(s)

{
n2s3

576
− ns3

96
+

11s3

576
− 17n2s2

288
+

11ns2

288
+

1

576
n2(t − u)s2

+
1

144
n(t − u)s2 − 5(t − u)s2

576
− 3s2

32
+

n2s

12
− ns

144
− 1

96
n2(t − u)s

−n(t − u)s

32
+

(t − u)s

48
+

s

8n
+

s

8n2
+

31s

144
− n

6
− n2(t − u)

48

+
n(t − u)

24
+

5(t − u)

48
+

3

4n
+

1

n2
+

1

24

}

+ J̄(s)

{
− 5

144
Ln2s3 − 19Ls3

144
− Lr

0s3 +
4Lr

1s3

3
+

8Lr
2s3

3
− Lr

3s3

3
− 1

96
Lns3

+
2

3
Lr

0ns3 +
4

3
Lr

3ns3 +
17

576
n2π16s3 +

1

288
nπ16s3 +

29π16s3

192
+

7

144
Ln2s2

+
31Ls2

36
+

8Lr
0s2

3
− 8Lr

1s2

3
− 28Lr

2s2

3
− 2Lr

3s2 − 4Lr
4s2 + Lr

5s2 +
13

144
Lns2

−4

3
Lr

0ns2 − 14

3
Lr

3ns2 + Lr
5ns2 − 35

144
n2π16s2 − 19

288
nπ16s2 − 55π16s2

72

+
1

48
L(t − u)s2 +

1

3
Lr

0(t − u)s2 +
2

3
Lr

1(t − u)s2 − 1

3
Lr

2(t − u)s2 − 1

6
Lr

3(t − u)s2

− 1

48
Ln(t − u)s2 − 1

3
Lr

0n(t − u)s2 +
1

6
Lr

3n(t − u)s2 − 1

432
n2π16(t − u)s2

+
47nπ16(t − u)s2

1728
− 43π16(t − u)s2

1728
− 20Lr

0s2

3n
− 20Lr

3s2

3n
− 5

36
Ln2s − 97Ls

72

−4Lr
0s

3
+

16Lr
1s

3
+

32Lr
2s

3
+ 8Lr

3s − 2Lr
5s + 16Lr

6s − 4Lr
8s +

17Lns

72
+

8Lr
0ns

3

+
16Lr

3ns

3
− 4Lr

5ns + 8Lr
8ns +

5

12
n2π16s − nπ16s

24
+

π16s

2n
+

π16s

2n2
+

13π16s

16

+
1

48
Ln2(t − u)s − L(t − u)s

24
− 4Lr

0(t − u)s

3
− 8Lr

1(t − u)s

3
+

4Lr
2(t − u)s

3
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+
2Lr

3(t − u)s

3
− 4Lr

4(t − u)s

3
+

Lr
5(t − u)s

3
+

1

16
Ln(t − u)s +

4

3
Lr

0n(t − u)s

−2

3
Lr

3n(t − u)s − 1

3
Lr

5n(t − u)s +
17

216
n2π16(t − u)s − 253

864
nπ16(t − u)s

+
155π16(t − u)s

864
− Ls

4n
+

64Lr
0s

3n
+

64Lr
3s

3n
− Ls

4n2
+

19L

18
− 16Lr

0

3
− 32Lr

3

3
+ 8Lr

5

−16Lr
8 +

5Ln

18
− 5nπ16

6
+

4π16

n
+

5π16

n2
+

2π16

9
− 1

12
Ln2(t − u)− L(t − u)

6

+
16Lr

4(t − u)

3
− 4Lr

5(t − u)

3
+

Ln(t − u)

12
+

4Lr
5n(t − u)

3
− 11

48
n2π16(t − u)

+
59nπ16(t − u)

144
− π16(t − u)

8n
− π16(t − u)

8n2
+

3π16(t − u)

8
− 5L

2n
− 80Lr

0

3n
− 80Lr

3

3n

+
16Lr

5

n
− 48Lr

8

n
− 3L

n2

}

BT(t) = k3(t)

{
− nt2

24
+

t2

24
+

nt

9
+

t

6n
+

t

6n2
+

t

18
− n

18
− 1

3n
− 1

3n2
− 5

18

}

+k2(t)

{
− 3t3

32
+

9t2

16
− 9t

8
+

3

4

}

+k1(t)

{
5nt3

288
− 11t3

288
− nt2

16
+

3t2

16
+

nt

72
− t

4n
− t

4n2
− 31t

72
+

n

12

+
1

2n
+

1

2n2
+

5

12

}

+ J̄(t)

{
19Lt3

72
+ 2Lr

0t3 − 8Lr
1t3

3
− 16Lr

2t3

3
+

2Lr
3t3

3
− 5

144
Lnt3 +

17

288
nπ16t3

−29π16t3

96
− 31Lt2

18
− 12Lr

0t2 +
32Lr

1t2

3
+

88Lr
2t2

3
− 8Lr

3t2

3
+ 8Lr

4t2 − 2Lr
5t2

+
11

36
Lnt2 − 1

18
nπ16t2 +

55π16t2

36
+

151Lt

36
+ 24Lr

0t − 64Lr
1t

3
− 176Lr

2t

3
+

16Lr
3t

3

−16Lr
4t + 4Lr

5t − 32Lr
6t + 8Lr

8t − 31Lnt

36
− 29nπ16t

72
− π16t

n
− π16t

n2
− 27π16t

8

+
Lt

2n
+

Lt

2n2
− 65L

18
− 16Lr

0 +
64Lr

1

3
+

128Lr
2

3
− 16Lr

3

3
+ 64Lr

6 − 16Lr
8 +

7Ln

9

+
5nπ16

9
+

2π16

n
+

2π16

n2
+

55π16

18
− L

n
− L

n2

}
(II.94)

CS(s) = k3(s)

{
ns2

24
− s2

24
− 5ns

18
+

s

6n
+

7s

36
+

1

3n2
+

2

3n3
+

1

6

}

II
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+k2(s)

{
3ns3

32
+

s3

32
− 3s2

16
− 1

2n2
− 3

4n3

}

+k1(s)

{
13ns3

288
− s3

288
− 23ns2

144
+

s2

72
+

5ns

12
− s

2n
− s

4
− 1

2n2
− 1

n3
− 1

4

}

+ J̄(s)

{
− Ls3

18
+

4Lr
0s3

3
+

8Lr
3s3

3
− 5

18
Lns3 + 8Lr

1ns3 +
8

3
Lr

2ns3 +
85

288
nπ16s3

+
19π16s3

288
+

35Ls2

72
− 8Lr

0s2

3
− 8Lr

1s2 − 8Lr
2s2

3
− 28Lr

3s2

3
+ 2Lr

5s2 +
19

72
Lns2

−32Lr
1ns2 − 16

3
Lr

2ns2 + 16Lr
4ns2 − 7

12
nπ16s2 − 3π16s2

16
− 8Lr

1s2

n
− 8Lr

2s2

3n

+
20Lr

0s2

3n2
+

20Lr
3s2

3n2
+

Ls

9
+

16Lr
0s

3
+ 32Lr

1s +
16Lr

2s

3
+

32Lr
3s

3
− 16Lr

4s − 8Lr
5s

+16Lr
8s − 11Lns

18
+ 32Lr

1ns +
32Lr

2ns

3
− 32Lr

4ns + 32Lr
6ns +

35nπ16s

18

−7π16s

4n
− 89π16s

72
+

Ls

n
+

32Lr
1s

n
+

16Lr
2s

3n
− 16Lr

4s

n
− 64Lr

0s

3n2
− 64Lr

3s

3n2
+

L

3
− 32Lr

1

−32Lr
2

3
+ 32Lr

4 − 32Lr
6 −

3π16

n2
− 11π16

2n3
− 10π16

9
− L

n
− 32Lr

1

n
− 32Lr

2

3n

+
32Lr

4

n
− 32Lr

6

n
+

2L

n2
+

80Lr
0

3n2
+

80Lr
3

3n2
− 16Lr

5

n2
+

48Lr
8

n2
+

7L

2n3

}
(II.95)

CT(t) = k3(t)

{
nt2

24
− t2

24
− nt

9
− t

6n
+

t

9
+

n

18
+

1

3n
− 1

18

}
(II.96)

+k2(t)

{
t3

32
− 3t2

16
+

3t

8
− 1

4

}

+k1(t)

{
− 5nt3

288
− t3

288
+

nt2

16
+

t2

16
− nt

72
+

t

4n
− 11t

72
− n

12
− 1

2n
+

1

12

}

+ J̄(t)

{
− Lt3

18
− 2Lr

0t3 − 2Lr
3t3

3
+

5

144
Lnt3 − 17

288
nπ16t3 +

19π16t3

288
+

7Lt2

18

+12Lr
0t2 +

8Lr
3t2

3
+ 2Lr

5t2 − 11

36
Lnt2 +

1

18
nπ16t2 − π16t2

12
− 37Lt

36
− 24Lr

0t

−16Lr
3t

3
− 4Lr

5t − 8Lr
8t +

31Lnt

36
+

29nπ16t

72
+

π16t

n
− 13π16t

72
− Lt

2n

+
17L

18
+ 16Lr

0 +
16Lr

3

3
+ 16Lr

8 −
7Ln

9
− 5nπ16

9
− 2π16

n
+

π16

6
+

L

n

}
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II.B Polynomial parts

Divergent parts can be put here.

II.B.1 Complex or QCD

The coefficients of polynomials part for BP at NNLO.

γ1 = 32Kr
13 + 32Kr

14n − 96Kr
17 − 96Kr

18n + 96Kr
25 + 32Kr

26n + 64Kr
3 − 64Kr

37

+96Kr
39 + 32Kr

40n +
29L2n2

36
+

19L2

n2
+

L2

3
− 80LLr

0n

3
+

64LLr
0

3n
− 64LLr

1

−224LLr
2

3
− 8LLr

3n +
64LLr

3

3n
+

64LLr
4

3
+

40LLr
5n

3
− 96LLr

5

n
− 160LLr

6

−32LLr
7 − 64LLr

8n +
224LLr

8

n
+ 256Lr

4Lr
8n + 256Lr

5Lr
8 − 512Lr

6Lr
8n − 512(Lr

8)
2

+π2
16

(
n2π2

27
+

1645n2

1728
− 35

2n2
+

4π2

9
− 181

54

)

+π16

(
229Ln2

216
+

4L

n2
− 26L

9
− 80Lr

0n

9
+

256Lr
0

9n
− 32Lr

1

3
− 368Lr

2

9

−8Lr
3n

3
+

256Lr
3

9n
+

256Lr
4

9
+

64Lr
5n

9
− 64Lr

5

n
− 128Lr

6 − 32Lr
8n +

192Lr
8

n

)

γ2 = −32Kr
13 − 32Kr

14n + 64Kr
17 + 64Kr

18n − 16Kr
19 − 8Kr

20n − 16Kr
23 − 32Kr

28

−96Kr
3 − 16Kr

33 + 32Kr
37 −

17

36
L2n2 − 3L2

2n2
− 13L2

3
+ 24LLr

0n +
16LLr

0

n

+
176LLr

1

3
+

248LLr
2

3
+

4LLr
3n

3
+

16LLr
3

n
+

32LLr
4

3
+

20LLr
5n

3
+ 48LLr

6

+8LLr
8n − 32Lr

4Lr
5n − 32(Lr

5)
2 + 64Lr

5Lr
6n + 64Lr

5Lr
8

+π16

(
− 445Ln2

432
− 37L

36
+ 8Lr

0n − 16Lr
0

n
+

80Lr
1

9
+

512Lr
2

9
+

16Lr
3n

9

−16Lr
3

n
+

32Lr
4

9
+

8Lr
5n

9
+ 48Lr

6 + 8Lr
8n

)

+π2
16

(
− 5

72
n2π2 − 3865n2

10368
+

3

n2
− 13π2

36
− 25

432

)

γ3 = 2Kr
11 + 8Kr

13 + 8Kr
14n − 16Kr

17 − 12Kr
18n + 16Kr

28 + 48Kr
3 − 4Kr

31 + 8Kr
5

+2Kr
7 + 2Kr

8n +
29L2n2

288
+

27L2

16
− 8LLr

0n +
20LLr

0

3n
− 56LLr

1

3
− 40LLr

2

−8LLr
3n

3
+

20LLr
3

3n
− 8LLr

4 − LLr
5n

II



102 Meson-meson Scattering in QCD-like Theories

+π16

(
49Ln2

216
+

29L

16
− 7Lr

0n

3
+

56Lr
0

9n
− 62Lr

1

9
− 31Lr

2 −
25Lr

3n

18

+
56Lr

3

9n
− 20Lr

4

3
− 2Lr

5n

3

)

+π2
16

(
n2π2

72
+

445n2
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+

3π2

16
− 23

192

)

γ4 = 2Kr
11 + 4Kr

18n + 4Kr
31 + 8Kr

5 + 2Kr
7 + 2Kr

8n +
11L2n2

288
− 7L2

48
− 4LLr

0n

3

+
20LLr

0

3n
− 4LLr

2

3
− 2LLr

3n +
20LLr

3

3n
+

8LLr
4

3
− LLr

5n

3

+π16

(
29Ln2

216
+

17L

144
− 13Lr

0n

9
+

56Lr
0

9n
− 10Lr

1

3
− 31Lr

2

9
− 11Lr

3n

6

+
56Lr

3

9n
+

20Lr
4

9
− 4Lr

5n

9

)

+π2
16

(
− 1

108
n2π2 +

421n2

3456
− π2

144
− 115

1728

)

γ5 = Kr
1 − 8Kr

3 − 4Kr
5 −

5L2n2

1152
− 15L2

64
+

5LLr
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+

5LLr
1

2
+

25LLr
2

4
+

5LLr
3n

24

+π16

(
−19Ln2

2304
− 13L

32
+

2Lr
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9
+
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1

3
+
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2

6
+
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)
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− π2

32
+
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5 −
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+

7LLr
0n

12
+
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1
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+
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2
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+
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(
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+
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+
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+
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+

17Lr
3n
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)

+π2
16

(
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)

The coefficients of polynomials part for CP at NNLO.

δ1 = 64Kr
10n − 128Kr

18 + 128Kr
2 − 64Kr

20 − 128Kr
21 − 128Kr

22n + 128Kr
26 + 192Kr

27n

−128Kr
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40 + 64Kr
9 −

14L2
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+
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1
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+
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− 192LLr

3

n2
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+
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5 + 1024Lr
4Lr
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+
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+
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+
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+
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29 + 16Kr
32 + 16Kr

9 −
13L2n

36

−80LLr
0

3n2
+

20LLr
0

3
+ 32LLr

1n +
16LLr

1

n
+

20LLr
2n

3
+

16LLr
2

3n
− 80LLr

3

3n2
+

88LLr
3

3

−16LLr
4n − 6LLr

5

+π16

(
11Ln

12
− 224Lr

0

9n2
+

8Lr
0

9
+ 32Lr

1n +
16Lr

1

n
+

8Lr
2n

9
+

40Lr
2

9n

−224Lr
3

9n2
+

166Lr
3

9
− 16Lr

4n − 6Lr
5

)

+π2
16

(
625n

1296
− 25nπ2

432

)

δ4 = 4Kr
15 + 4Kr

16n + 8Kr
29 +

5L2n

24
− 4LLr

0 − 4LLr
2n − 2LLr

5

+π16

(
Ln

8
+ 2Lr

3 − 2Lr
5

)
+ π2

16

(
nπ2

144
+

7n

32

)

δ5 = −16Kr
2 + 2Kr

4 + 2Kr
6 +

55L2n

192
− 11LLr

0

3
− 8LLr

1n − 8LLr
2n

3
− 17LLr

3

3

+π16

(
101Ln

192
− 29Lr

0

9
− 8Lr

1n − 20Lr
2n

9
− 97Lr

3

18

)
+ π2

16

(
19nπ2

576
− 115n

6912

)

δ6 = 6Kr
4 − 2Kr

6 +
5L2n

192
− 3LLr

0 − LLr
3

II
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+π16

(
Ln

64
− 3Lr

0 −
5Lr

3

6

)
+ π2

16

(
5nπ2

576
− 437n

6912

)

II.B.2 Real or adjoint

The coefficients of polynomials part for BP at NNLO.

γ1 = 32Kr
13 + 64Kr

14n − 96Kr
17 − 192Kr

18n + 96Kr
25 + 64Kr

26n + 64Kr
3 − 64Kr

37

+96Kr
39 + 64Kr

40n +
29L2n2

36
+

19L2

4n2
+

83L2n

36
− 17L2

4n
+

19L2

12
− 80LLr

0n

3

+
32LLr

0

3n
− 80LLr

0

3
− 64LLr

1 −
224LLr

2

3
− 8LLr

3n +
32LLr

3

3n
− 56LLr

3

3
+

64LLr
4

3

+
40LLr

5n

3
− 48LLr

5

n
+

64LLr
5

3
− 160LLr

6 − 32LLr
7 − 64LLr

8n +
112LLr

8

n
− 80LLr

8

+512Lr
4Lr

8n + 256Lr
5Lr

8 − 1024Lr
6Lr

8n − 512(Lr
8)

2

+π16

(
229Ln2

216
+

L

n2
+

623Ln

216
− L

n
+

155L

108
− 80Lr

0n

9
+

128Lr
0

9n
− 224Lr

0

9

−32Lr
1

3
− 368Lr

2

9
− 8Lr

3n

3
+

128Lr
3

9n
− 56Lr

3

9
+

256Lr
4

9
+

64Lr
5n

9
− 32Lr

5

n

+
136Lr

5

9
− 128Lr

6 − 32Lr
8n +

96Lr
8

n
− 64Lr

8

)

+π2
16

(
n2π2

27
+

1645n2

1728
− 35

8n2
+

10763n

5184
+

27

8n
+

13π2

54
− 2149

1296

)

γ2 = −32Kr
13 − 64Kr

14n + 64Kr
17 + 128Kr

18n − 16Kr
19 − 16Kr

20n − 16Kr
23 − 32Kr

28

−96Kr
3 − 16Kr

33 + 32Kr
37 −

17

36
L2n2 − 3L2

8n2
− 85L2n

72
+

3L2

8n
− 43L2

16
+ 24LLr

0n

+
8LLr

0

n
+

80LLr
0

3
+

176LLr
1

3
+

248LLr
2

3
+

4LLr
3n

3
+

8LLr
3

n
+

32LLr
3

3
+

32LLr
4

3

+
20LLr

5n

3
+

14LLr
5

3
+ 48LLr

6 + 8LLr
8n + 12LLr

8 − 64Lr
4Lr

5n − 32(Lr
5)

2

+128Lr
5Lr

6n + 64Lr
5Lr

8

+π16

(
− 445Ln2

432
− 317Ln

108
− 743L

216
+ 8Lr

0n − 8Lr
0

n
+

272Lr
0

9
+

80Lr
1

9
+

512Lr
2

9

+
16Lr

3n

9
− 8Lr

3

n
+

38Lr
3

9
+

32Lr
4

9
+

8Lr
5n

9
+

26Lr
5

9
+ 48Lr

6 + 8Lr
8n + 12Lr

8

)

+π2
16

(
− 5

72
n2π2 − 3865n2

10368
+

3

4n2
− 35nπ2

216
− 1837n

3456
− 3

4n
− 91π2

432
− 853

1296

)

γ3 = 2Kr
11 + 8Kr

13 + 16Kr
14n − 16Kr

17 − 24Kr
18n + 16Kr

28 + 48Kr
3 − 4Kr

31 + 8Kr
5
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+2Kr
7 + 4Kr

8n +
29L2n2

288
+

23L2n

72
+

101L2

96
− 8LLr

0n +
10LLr

0

3n
− 16LLr

0

−56LLr
1

3
− 40LLr

2 −
8LLr

3n

3
+

10LLr
3

3n
− 6LLr

3 − 8LLr
4 − LLr

5n − 2LLr
5

+π16

(
49Ln2

216
+

503Ln

864
+

2867L

1728
− 7Lr

0n

3
+

28Lr
0

9n
− 43Lr

0

3
− 62Lr

1

9
− 31Lr

2

−25Lr
3n

18
+

28Lr
3

9n
− 3Lr

3 −
20Lr

4

3
− 2Lr

5n

3
− 5Lr

5

3

)

+π2
16

(
n2π2

72
+

445n2

5184
+

67nπ2

864
− 59n

288
+

185π2

1728
+

2705

20736

)

γ4 = 2Kr
11 + 8Kr

18n + 4Kr
31 + 8Kr

5 + 2Kr
7 + 4Kr

8n +
11L2n2

288
− L2n

72
− 7L2

96
− 4LLr

0n

3

+
10LLr

0

3n
− 4LLr

0

3
− 4LLr

2

3
− 2LLr

3n +
10LLr

3

3n
− 4LLr

3

3
+

8LLr
4

3
− LLr

5n

3
+

2LLr
5

3

+π16

(
29Ln2

216
− 23Ln

864
− 137L

1728
− 13Lr

0n

9
+

28Lr
0

9n
− 13Lr

0

9
− 10Lr

1

3
− 31Lr

2

9

−11Lr
3n

6
+

28Lr
3

9n
− 19Lr

3

9
+

20Lr
4

9
− 4Lr

5n

9
+

5Lr
5

9

)

+π2
16

(
− 1

108
n2π2 +

421n2

3456
− nπ2

288
− 289n

10368
− 11π2

1728
− 1091

20736

)

γ5 = Kr
1 − 8Kr

3 − 4Kr
5 −

5L2n2

1152
− 55L2n

2304
− 5L2

32
+

5LLr
0n

12
+

5LLr
0

2
+

5LLr
1

2

+
25LLr

2

4
+

5LLr
3n

24
+

5LLr
3

8

+π16

(
−19Ln2

2304
− 13Ln

768
− 307L

1152
+

2Lr
0n

9
+

7Lr
0

3
+

7Lr
1

3
+

35Lr
2

6
+

5Lr
3n

18
+

7Lr
3

12

)

+π2
16

(
n2π2

3456
− 1015n2

165888
− 29nπ2

3456
+

10313n

165888
− 19π2

1152
+

71

13824

)

γ6 = 3Kr
1 − 4Kr

5 −
5

384
L2n2 +

L2n

768
− 5L2

96
+

7LLr
0n

12
+

5LLr
0

6
+

5LLr
1

6

+
25LLr

2

12
+

23LLr
3n

24
+

5LLr
3

24

+π16

(
−203Ln2

6912
+

65Ln

6912
− 307L

3456
+

4Lr
0n

9
+

7Lr
0

9
+

7Lr
1

9
+

35Lr
2

18
+

17Lr
3n

18
+

7Lr
3

36

)

+π2
16

(
−n2π2

3456
− 1933n2

165888
− 11nπ2

3456
+

5299n

165888
− 19π2

3456
+

71

41472

)

The coefficients of polynomials part for CP at NNLO.

δ1 = 128Kr
10n − 128Kr

18 + 128Kr
2 − 64Kr

20 − 128Kr
21 − 256Kr

22n + 128Kr
26 + 384Kr

27n

II



106 Meson-meson Scattering in QCD-like Theories

−128Kr
35 + 128Kr

40 + 64Kr
9 −

7L2

4n3
+

L2

n2
+

L2

2n
+

L2

2
− 48LLr

0

n2
− 64LLr

1n +
64LLr

1

n

−64LLr
1 +

16LLr
2

n
− 16LLr

2 −
48LLr

3

n2
+ 64LLr

4n − 48LLr
4

n
+ 48LLr

4 +
24LLr

5

n2

+8LLr
5 − 64LLr

6n +
32LLr

6

n
− 32LLr

6 +
32LLr

7

n
− 48LLr

8

n2
− 16LLr

8 − 512(Lr
4)

2n

−256Lr
4Lr

5 + 2048Lr
4Lr

6n + 512Lr
4Lr

8 + 512Lr
5Lr

6 − 2048(Lr
6)

2n − 1024Lr
6Lr

8

+π16

(
− 3L

2n3
+

L

n2
+

L

n
− L − 16Lr

0

n2
+

32Lr
1

n
− 32Lr

1 −
16Lr

3

n2
− 32Lr

4

n
+ 32Lr

4

+
16Lr

5

n2
+

32Lr
6

n
− 32Lr

6 −
48Lr

8

n2

)

+π2
16

(
5

4n3
− 1

2n2
+

3

4n
− 1

6

)

δ2 = −128Kr
10n + 128Kr

18 − 192Kr
2 + 32Kr

20 + 64Kr
21 + 128Kr

22n − 32Kr
32 + 64Kr

35

−32Kr
38 − 64Kr

9 +
37L2n

72
− 3L2

4n
− 7L2

36
+

104LLr
0

3n2
− 8LLr

0 −
48LLr

1

n
+ 48LLr

1

−16LLr
2n − 32LLr

2

3n
+

32LLr
2

3
+

104LLr
3

3n2
− 64LLr

3

3
+ 16LLr

4n +
16LLr

4

n
− 16LLr

4

+12LLr
5 − 32LLr

6n − 24LLr
8 + 256(Lr

4)
2n + 128Lr

4Lr
5 − 512Lr

4Lr
6n − 256Lr

4Lr
8

+π16

(
− 31Ln

24
− L

4n
− 5L

18
+

152Lr
0

9n2
− 32Lr

1n − 32Lr
1

n
+ 32Lr

1 −
8Lr

2

9n
+

8Lr
2

9

+
152Lr

3

9n2
− 88Lr

3

9
+ 32Lr

4n +
16Lr

4

n
− 16Lr

4 + 12Lr
5 − 32Lr

6n − 24Lr
8

)

+π2
16

(
−nπ2

27
− π2

12n
− 373n

2592
+

25

16n
− 5π2

216
− 565

648

)

δ3 = 32Kr
10n + 4Kr

15 + 8Kr
16n − 32Kr

18 + 96Kr
2 − 8Kr

29 + 16Kr
32 + 16Kr

9 −
13L2n

72

+
49L2

144
− 20LLr

0

3n2
+

10LLr
0

3
+ 32LLr

1n +
8LLr

1

n
− 8LLr

1 +
20LLr

2n

3
+

8LLr
2

3n

−8LLr
2

3
− 20LLr

3

3n2
+

44LLr
3

3
− 16LLr

4n − 3LLr
5

+π16

(
11Ln

24
+

115L

144
− 56Lr

0

9n2
+

4Lr
0

9
+ 32Lr

1n +
8Lr

1

n
− 8Lr

1 +
8Lr

2n

9
+

20Lr
2

9n

−20Lr
2

9
− 56Lr

3

9n2
+

83Lr
3

9
− 16Lr

4n − 3Lr
5

)

+π2
16

(
−25nπ2

864
+

625n

2592
+

17π2

864
+

1451

5184

)



II.B Polynomial parts 107

δ4 = 4Kr
15 + 8Kr

16n + 8Kr
29 +

5L2n

48
+

L2

24
− 2LLr

0 − 4LLr
2n − LLr

5

+π16

(
Ln

16
+

7L

48
+ Lr

3 − Lr
5

)

+π2
16

(
nπ2

288
+

7n

64
+

π2

288
+

11

192

)

δ5 = −16Kr
2 + 2Kr

4 + 2Kr
6 +

55L2n

384
− L2

48
− 11LLr

0

6
− 8LLr

1n − 8LLr
2n

3
− 17LLr

3

6

+π16

(
101Ln

384
− 13L

384
− 29Lr

0

18
− 8Lr

1n − 20Lr
2n

9
− 97Lr

3

36

)

+π2
16

(
19nπ2

1152
− 115n

13824
+

π2

1152
− 349

13824

)

δ6 = 6Kr
4 − 2Kr

6 +
5L2n

384
+

L2

48
− 3LLr

0

2
− LLr

3

2

+π16

(
Ln

128
+

13L

384
− 3Lr

0

2
− 5Lr

3

12

)

+π2
16

(
5nπ2

1152
− 437n

13824
− π2

1152
+

349

13824

)

II.B.3 Pseudo-real or two-colour

The coefficients of polynomials part for BP at NNLO.

γ1 = 32Kr
13 + 64Kr

14n − 96Kr
17 − 192Kr

18n + 96Kr
25 + 64Kr

26n + 64Kr
3 − 64Kr

37

+96Kr
39 + 64Kr

40n +
29L2n2

36
− 83L2n

36
+

19L2

4n2
+

17L2

4n
+

19L2

12
− 80LLr

0n

3

+
32LLr

0

3n
+

80LLr
0

3
− 64LLr

1 −
224LLr

2

3
− 8LLr

3n +
32LLr

3

3n
+

56LLr
3

3
+

64LLr
4

3

+
40LLr

5n

3
− 48LLr

5

n
− 64LLr

5

3
− 160LLr

6 − 32LLr
7 − 64LLr

8n +
112LLr

8

n

+80LLr
8 + 512Lr

4Lr
8n + 256Lr

5Lr
8 − 1024Lr

6Lr
8n − 512(Lr

8)
2

+π16

(
229Ln2

216
− 623Ln

216
+

L

n2
+

L

n
+

155L

108
− 80Lr

0n

9
+

128Lr
0

9n
+

224Lr
0

9

−32Lr
1

3
− 368Lr

2

9
− 8Lr

3n

3
+

128Lr
3

9n
+

56Lr
3

9
+

256Lr
4

9
+

64Lr
5n

9

−32Lr
5

n
− 136Lr

5

9
− 128Lr

6 − 32Lr
8n +

96Lr
8

n
+ 64Lr

8

)

+π2
16

(
n2π2

27
+

1645n2

1728
− 10763n

5184
− 35

8n2
− 27

8n
+

13π2

54
− 2149

1296

)

γ2 = −32Kr
13 − 64Kr

14n + 64Kr
17 + 128Kr

18n − 16Kr
19 − 16Kr

20n − 16Kr
23 − 32Kr

28

II
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−96Kr
3 − 16Kr

33 + 32Kr
37 −

17

36
L2n2 +

85L2n

72
− 3L2

8n2
− 3L2

8n
− 43L2

16
+ 24LLr

0n

+
8LLr

0

n
− 80LLr

0

3
+

176LLr
1

3
+

248LLr
2

3
+

4LLr
3n

3
+

8LLr
3

n
− 32LLr

3

3
+

32LLr
4

3

+
20LLr

5n

3
− 14LLr

5

3
+ 48LLr

6 + 8LLr
8n − 12LLr

8 − 64Lr
4Lr

5n

−32(Lr
5)

2 + 128Lr
5Lr

6n + 64Lr
5Lr

8

+π16

(
− 445Ln2

432
+

317Ln

108
− 743L

216
+ 8Lr

0n − 8Lr
0

n
− 272Lr

0

9
+

80Lr
1

9

+
512Lr

2

9
+

16Lr
3n

9
− 8Lr

3

n
− 38Lr

3

9
+

32Lr
4

9
+

8Lr
5n

9
− 26Lr

5

9
+ 48Lr

6 + 8Lr
8n − 12Lr

8

)

+π2
16

(
− 5

72
n2π2 − 3865n2

10368
+

35nπ2

216
+

1837n

3456
+

3

4n2
+

3

4n
− 91π2

432
− 853

1296

)

γ3 = 2Kr
11 + 8Kr

13 + 16Kr
14n − 16Kr

17 − 24Kr
18n + 16Kr

28 + 48Kr
3 − 4Kr

31 + 8Kr
5

+2Kr
7 + 4Kr

8n +
29L2n2

288
− 23L2n

72
+

101L2

96
− 8LLr

0n +
10LLr

0

3n
+ 16LLr

0

−56LLr
1

3
− 40LLr

2 −
8LLr

3n

3
+

10LLr
3

3n
+ 6LLr

3 − 8LLr
4 − LLr

5n + 2LLr
5

+π16

(
49Ln2

216
− 503Ln

864
+

2867L

1728
− 7Lr

0n

3
+

28Lr
0

9n
+

43Lr
0

3
− 62Lr

1

9
− 31Lr

2

−25Lr
3n

18
+

28Lr
3

9n
+ 3Lr

3 −
20Lr

4

3
− 2Lr

5n

3
+

5Lr
5

3

)

+π2
16

(
n2π2

72
+

445n2

5184
− 67nπ2

864
+

59n

288
+

185π2

1728
+

2705

20736

)

γ4 = 2Kr
11 + 8Kr

18n + 4Kr
31 + 8Kr

5 + 2Kr
7 + 4Kr

8n +
11L2n2

288
+

L2n

72
− 7L2

96
− 4LLr

0n

3

+
10LLr

0

3n
+

4LLr
0

3
− 4LLr

2

3
− 2LLr

3n +
10LLr

3

3n
+

4LLr
3

3
+

8LLr
4

3
− LLr

5n

3
− 2LLr

5

3

+π16

(
29Ln2

216
+

23Ln

864
− 137L

1728
− 13Lr

0n

9
+

28Lr
0

9n
+

13Lr
0

9
− 10Lr

1

3
− 31Lr

2

9

−11Lr
3n

6
+

28Lr
3

9n
+

19Lr
3

9
+

20Lr
4

9
− 4Lr

5n

9
− 5Lr

5

9

)

+π2
16

(
− 1

108
n2π2 +

421n2

3456
+

nπ2

288
+

289n

10368
− 11π2

1728
− 1091

20736

)

γ5 = Kr
1 − 8Kr

3 − 4Kr
5 −

5L2n2

1152
+

55L2n

2304
− 5L2

32
+

5LLr
0n

12
− 5LLr

0

2

+
5LLr

1

2
+

25LLr
2

4
+

5LLr
3n

24
− 5LLr

3

8
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+π16

(
−19Ln2

2304
+

13Ln

768
− 307L

1152
+

2Lr
0n

9
− 7Lr

0

3
+

7Lr
1

3
+

35Lr
2

6
+

5Lr
3n

18
− 7Lr

3

12
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II.C Scattering lengths
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II.C.3 Pseudo-real or two-colour case

πaI
0 = +x2

(
− 1

32
− 1

32n
+

n

8

)

+x2
2

(
− 1

n
α4 −

1

2n
α3 −

1

8n
α2 −

3

32n
α1 − α4 −

1

2
α3 −

1

8
α2 −

3

32
α1

+β4 −
1

2
β3 −

1

8
β2 +

1

32
β1 + 2 n α4 +

n

8
α1 −

n

2
β3 −

n

8
β2 −

n

32
β1

+n2 β3 +
n2

4
β2 +

n2

16
β1

)

+π16 x2
2

(
− 7

32
+

1

32n2
+

1

16n
− n

4
+

n2

2

)

+x3
2

(
− 2

n
γ5 −

1

n
γ4 −

1

2n
γ3 −

1

8n
γ2 −

3

32n
γ1 − 2 δ5 + δ4 −

1

2
δ3 −

1

8
δ2

+
1

32
δ1 − 2 γ5 − γ4 −

1

2
γ3 −

1

8
γ2 −

3

32
γ1 − 2 n δ5 −

n

2
δ3 −

n

8
δ2

− n

32
δ1 + 2 n γ4 +

n

8
γ1 + 4 n2 δ5 + n2 δ3 +

n2

4
δ2 +

n2

16
δ1

)

+π16 x3
2

(
7

32n3
L +

15

32n2
L +

3

n2
Lr

8 −
1

n2
Lr

5 +
3

n2
Lr

3 +
3

n2
Lr

0 −
29

32n
L

II



118 Meson-meson Scattering in QCD-like Theories

+
6

n
Lr

8 −
2

n
Lr

6 −
2

n
Lr

5 +
6

n
Lr

4 +
6

n
Lr

3 −
2

n
Lr

2 −
2

n
Lr

1 +
6

n
Lr

0

−55

32
L − 13 Lr

8 + 3 Lr
5 + 8 Lr

4 − 13 Lr
3 − 13 Lr

0 +
21n

16
L − 16 n Lr

8

+6 n Lr
6 + 4 n Lr

5 − 26 n Lr
4 − 16 n Lr

3 + 6 n Lr
2 + 6 n Lr

1 − 16 n Lr
0

+
19n2

8
L + 16 n2 Lr

8 − 12 n2 Lr
6 − 12 n2 Lr

4 + 16 n2 Lr
3 − 12 n2 Lr

2

−12 n2 Lr
1 + 16 n2 Lr

0 −
5n3

2
L + 16 n3 Lr

6 + 16 n3 Lr
4 + 16 n3 Lr

2

+16 n3 Lr
1

)

+π2
16 x3

2

(
85

48
− 3

8n3
− 3

4n2
+

5

4n
− 3n

8
− 29n2

48
+

n3

12

)

+π2 π2
16 x3

2

(
− 89

288
+

1

16n3
+

1

8n2
− 5

24n
+

n

16
+

49n2

288
− 5n3

72

)
, (II.110)

πaA
0 = +x2

(
− 1

32
− 1

16n
+

n

16

)

+x2
2

(
− 2

n
α4 −

1

n
α3 −

1

4n
α2 −

3

16n
α1 − α4 −

1

2
α3 −

1

8
α2 −

3

32
α1

+β4 +
1

16
β1 + n α4 +

n

16
α1

)

+π16 x2
2

(
− 7

32
+

1

8n2
+

1

8n
− n

8
+

n2

8

)

+x3
2

(
− 4

n
γ5 −

2

n
γ4 −

1

n
γ3 −

1

4n
γ2 −

3

16n
γ1 + δ4 +

1

16
δ1 − 2 γ5 − γ4

−1

2
γ3 −

1

8
γ2 −

3

32
γ1 + n γ4 +

n

16
γ1

)

+π16 x3
2

(
7

8n3
L +

19

16n2
L +

12

n2
Lr

8 −
4

n2
Lr

5 +
12

n2
Lr

3 +
12

n2
Lr

0 −
13

16n
L

+
12

n
Lr

8 −
8

n
Lr

6 −
4

n
Lr

5 +
8

n
Lr

4 +
12

n
Lr

3 −
8

n
Lr

2 −
8

n
Lr

1 +
12

n
Lr

0

−41

32
L − 13 Lr

8 − 4 Lr
6 + 3 Lr

5 + 4 Lr
4 − 13 Lr

3 − 4 Lr
2 − 4 Lr

1 − 13 Lr
0

+
3n

8
L − 8 n Lr

8 + 8 n Lr
6 + 2 n Lr

5 − 8 n Lr
4 − 8 n Lr

3 + 8 n Lr
2



II.C Scattering lengths 119

+8 n Lr
1 − 8 n Lr

0 +
n2

2
L + 4 n2 Lr

8 + 4 n2 Lr
3 + 4 n2 Lr

0 −
n3

4
L

)

+π2
16 x3

2

(
37

48
− 5

4n3
− 13

8n2
+

3

8n
+

31n

48
+

3n2

16
− 7n3

24

)

+π2 π2
16 x3

2

(
− 41

288
+

5

24n3
+

13

48n2
− 1

16n
− 29n

288
− n2

96
+

5n3

144

)
, (II.111)

πaS
1 = +x2

(
− 1

48
+

n

48

)

+x2
2

(
1

3
α4 +

1

24
α2 +

1

3
β4 +

1

24
β2 −

n

3
α4 −

n

24
α2

)

+π16 x2
2

(
− 11

864
+

1

288n2
+

1

288n
+

7n

864
− n2

432

)

+x3
2

(
2

3
δ6 +

1

3
δ4 +

1

24
δ2 +

2

3
γ6 +

1

3
γ4 +

1

24
γ2 −

2n

3
γ6 −

n

3
γ4

− n

24
γ2

)

+π16 x3
2

(
7

288n3
L +

1

36n2
L +

1

3n2
Lr

8 −
1

9n2
Lr

5 +
5

27n2
Lr

3 +
5

27n2
Lr

0

− 5

288n
L +

1

3n
Lr

8 −
2

9n
Lr

6 −
1

9n
Lr

5 +
2

9n
Lr

4 +
5

27n
Lr

3 −
2

27n
Lr

2

− 2

9n
Lr

1 +
5

27n
Lr

0 −
67

1296
L − 4

9
Lr

8 +
2

9
Lr

6 +
1

54
Lr

5 +
10

27
Lr

4

− 5

27
Lr

3 +
2

9
Lr

2 −
2

27
Lr

1 −
10

27
Lr

0 +
125n

2592
L − 4n

9
Lr

6 +
7n

54
Lr

5

−4n

27
Lr

4 −
n

27
Lr

3 −
8n

27
Lr

2 −
4n

27
Lr

1 +
2n

27
Lr

0 −
7n2

864
L − n2

27
Lr

5

+
n3

432
L

)

+π2
16 x3

2

(
13

96
+

1

96n3
− 7

288n2
− 281n

1728
+

151n2

2592
− 25n3

5184

)

+π2 π2
16 x3

2

(
− 173

10368
+

1

432n3
+

5

864n2
− 1

576n
+

169n

10368
− n2

432

− n3

1296

)
, (II.112)

II



120 Meson-meson Scattering in QCD-like Theories

πaFA
0 = +

1

16
x2

+x2
2

(
− α3 −

1

4
α2 −

1

16
α1 + β4 +

1

16
β1 +

1

8
π16

)

+x3
2

(
δ4 +

1

16
δ1 − 4 γ5 − γ3 −

1

4
γ2 −

1

16
γ1

)

+π16 x3
2

(
− 1

8n2
L − 1

4n
L − 3

8
L − 4 Lr

8 + 8 Lr
6 + 4 Lr

5 − 8 Lr
4 − 4 Lr

3

+8 Lr
2 + 8 Lr

1 − 4 Lr
0

)

+π2
16 x3

2

[
17

24
+

1

4n2
+

1

2n
− n

24
+ π2

(
7n

144
− 13

144
− 1

24n2
− 1

12n

)]
, (II.113)

πaMA
1 = +x2

2

[
1

3
β4 +

1

24
β2 + π16

(
− 1

288
+

1

288n2

)]

+x3
2

(
2

3
δ6 +

1

3
δ4 +

1

24
δ2

)

+π16 x3
2

(
7

288n3
L +

1

72n2
L +

1

3n2
Lr

8 −
1

9n2
Lr

5 +
5

27n2
Lr

3 +
5

27n2
Lr

0

− 1

72n
L − 2

9n
Lr

6 +
2

9n
Lr

4 −
2

27n
Lr

2 −
2

9n
Lr

1 −
11

2592
L − 1

9
Lr

8

−2

9
Lr

6 +
2

9
Lr

4 −
1

27
Lr

3 −
2

27
Lr

2 −
2

9
Lr

1 −
1

9
Lr

0 +
7n

1296
L

)

+π2
16 x3

2

(
− 17

2592
+

1

96n3
+

1

144n2
+

n

648

)

+π2 π2
16 x3

2

(
1

1296
+

1

432n3
+

1

864n2
− 1

864n
− n

5184

)
, (II.114)

πaMS
0 = − 1

32
x2

+x2
2

(
1

2
α3 +

1

8
α2 +

1

32
α1 + β4 +

1

16
β1 +

1

32
π16

)

+x3
2

(
+ δ4 +

1

16
δ1 + 2 γ5 +

1

2
γ3 +

1

8
γ2 +

1

32
γ1

)

+π16 x3
2

(
+

1

16n2
L − 1

16n
L +

3

32
L − Lr

8 − 4 Lr
6 + Lr

5 + 4 Lr
4 − Lr

3



II.D Loop integrals 121

−4 Lr
2 − 4 Lr

1 − Lr
0

)

+π2
16 x3

2

[
1

8n
− 1

96
− 1

8n2
− 11n

96
+ π2

(
5

576
+

1

48n2
− 1

48n
+

7n

576

)]
.(II.115)

II.D Loop integrals

II.D.1 One-loop integrals

We use dimensional regularization here throughout in d dimensions with d =

4 − 2ε. We need integrals with one, two and three propagators in principle.
These one propagator integral is
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1
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∫
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The two propagator integrals we encountered are
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All the cases with three propagator integrals that show up can be absorbed
into the two-propagator ones by moving to the real masses rather than the
lowest order masses. This provides a consistency check on the calculations.

The explicit expressions are well known
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C = ln(4π) + 1 − γ and λ0 = 1/ε + C. The function J̄(m2
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2, p2) develops an
imaginary part for p2 ≥ (m1 + m2)

2. Using ∆ = m2
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The two-propagator integrals can all be reduced to B and A via
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The basic method used here is the one from Passarino and Veltman [40].

II.D.2 Sunset integrals

Sunset integrals have been treated in many places already, in general and for
various special cases. We use here a method that is a hybrid of various other
approaches. We only cite the literature actually used. We define
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(II.122)

By redefining momenta the others can be simply related to the above three:
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with
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The first two follow from interchanging q and r and the third from the fact that
it is proportional to gµν or pµ pν, which are both symmetric in µ and ν. The last
one is deribed using

(
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and redefining momenta and masses on the r.h.s.. In addition we have the
relation
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which allows to express H22 in a simple way in terms of H21. There is also a
relation between H1 and H

H1(m
2
1, m2

2, m2
3; p2) + H1(m

2
2, m2

1, m2
3; p2) + H1(m

2
3, m2

1, m2
2; p2) =

H(m2
1, m2

2, m2
3; p2) , (II.127)

which allows to write H1(m
2, m2, m2; p2) = 1/3 H(m2, m2, m2; p2) in the case of

equal masses. The function H is fully symmetric in m2
1, m2

2 and m2
3, while H1,

H21 and H22 are symmetric under the interchange of m2
2 and m2

3.
We only need the sunset integrals at p2 = m2

1 = m2
2 = m2

3 and their deriva-
tives w.r.t. p2. These have been calculated using the methods of [36]. With
Hid = ∂

∂p2 Hi we obtain
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(
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4
− 3Lπ16
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(II.128)

H21 = λ1m2

(
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72
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3
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)
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(
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(II.129)
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H22 = λ1m4

(
157π2
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288
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12
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)
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24
λ2m4π2

16

+m4

(
−157

144
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144
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(II.130)

Hd =
Lπ16

2
− λ1π2

16

4
+

7π2
16

8
(II.131)

H21d =
Lπ16

12
− λ1π2

16

24
+

43π2
16

288
(II.132)

H22d =
5

48
Lm2π16 −

5

96
λ1m2π2

16 +
179π2

16

1152
m2 (II.133)

H1 and H1d follow immmediately using (III.86).

II.D.3 Vertex integrals

The vertex diagram (16) in Fig. II.2 is the most difficult two-loop diagram in
φφ scattering, and it can also appear in other process. The two loop integral
for the equal mass case can be written as

〈〈X〉〉 =
µ4ε

i2

∫ ∫
drds

X

(r2 − m2) · [(r − q)2 − m2] · (s2 − m2) · [(s + r − p)2 − m2]

(II.134)

The Lorentz decompositions of the vertex integrals are [41]

〈〈1〉〉 = V ,

〈〈rµ〉〉 = pµV11 + qµV12 ,

〈〈sµ〉〉 = pµV13 + qµV14 ,

〈〈rµrν〉〉 = gµνV21 + pµ pνV22 + qµqνV23 + (pµqν + qµ pν)V24 ,

〈〈rµsν〉〉 = gµνV25 + pµ pνV26 + qµqνV27 + qµ pνV28 + pµqνV29 ,

〈〈sµsν〉〉 = gµνV210 + pµ pνV211 + qµqνV212 + (qµ pν + pµqν)V213 ,

〈〈rµrνrα〉〉 = (gµν pα + gµα pν + gνα pµ)V31 + (gµνqα + gµαqν + gναqµ)V32

+pµ pν pαV33 + qµqνqαV34

+(pµ pνqα + pµqν pα + qµ pν pα)V35 + (qµqν pα + qµ pνqα + pµqνqα)V36 ,

〈〈rµrνsα〉〉 = gµν pαV37 + gµνqαV38 + (gµα pν + gνα pµ)V39 + (gµαqν + gναqµ)V310

+pµ pν pαV311 + qµqνqαV312 + pµ pνqαV313 + qµqν pαV314

+(pµqν + qµ pν)pαV315 + (pµqν + qµ pν)qαV316 ,

〈〈rµsνsα〉〉 = pµgναV317 + qµgναV318 + (gµν pα + gµα pν)V319 + (gµνqα + gµαqν)V320

+pµ pν pαV321 + qµqνqαV322 + pµqνqαV323 + qµ pν pαV324

+pµ(pνqα + qν pα)V325 + qµ(pνqα + qν pα)V326 . (II.135)
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The 〈〈sµsνsα〉〉 does not show up in φφ scattering. Most of those Vi functions
have been calculated analytically in [26] except the 〈〈sµsν〉〉 and 〈〈rµsνsα〉〉. We
have calculated the rest of them in this work, which are V210 − V213 and V317 −
V326. Again, the methods of [36] were used here, somewhat extended to the
cases at hand. We have compared our results with the numerical evaluation
for general masses described in [41]. The quantity Bε is the next term in the
expansion of B in (III.80) but these terms always cancel in the final result.
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144
− 23Lm2π16

72
+

Lπ16s

108
+ π2

16

(
m2π2

108
− m2

1728
− π2s

432
− 173s

10368

)

V318 = λ1

[
1

6
π16

(
sB̄21 − sB̄31 + m2B̄ − 1

2
Lm2

)
+ π2

16

(
m2

32
+

19s

1728

)]

+λ2π2
16

(
m2

8
+

s

144

)
+ Bεπ16

(
7m2

36
+

s

72

)

+ J̄

(
−7Lm2

36
− Ls

72
+

199m2π16

864
+

23π16s

864

)
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+k1

(
7m2

144
+

s

192

)
+

s

576
k2 +

5m2

24
k4 + k5

(
s

8
− 5m2

8

)
+ k6

(
s

8
− m2

2

)

+
11L2m2

72
+

L2s

144
+

11Lm2π16

144
+

Lπ16s

864
+ π2

16

(
m2π2

216
− 125m2

1152
+

π2s

1728
+

85s

20736

)

V319 = λ1

{
1

6
π16

[
−sB̄21 + B̄

(
1

2
s − m2

)
+ Lm2

]
+ π2

16

(
25s

864
− 35

144
m2

)}

+λ2π2
16

(
s

72
− m2

6

)
+ Bεπ16

(
s

36
− m2

9

)

+ J̄

(
Lm2

9
− Ls

36
− 2m2π16

27
+

29π16s

432

)
+

1

18
m2k1 +

1

72
sk2 −

1

3
m2k4 − m2k5

−5L2m2

18
+

L2s

72
+

19Lm2π16

72
− 5Lπ16s

432
+ π2

16

(
π2s

216
+

169s

10368
− m2π2

54
− 397m2

1728

)

V320 = λ1

[
1

6
π16

(
−sB̄21 + sB̄31 +

1

2
m2B̄ − 1

2
Lm2

)
+ π2

16

(
35m2

288
− 25s

1728

)]

+λ2π2
16

(
m2

12
− s

144

)
+ Bεπ16

(
m2

18
− s

72

)

+ J̄

(
Ls

72
− Lm2

18
+

m2π16

27
− 29π16s

864

)
− m2

36
k1 −

s

144
k2 +

m2

6
k4 +

m2

2
k5

+
5L2m2

36
− L2s

144
− 19Lm2π16

144
+

5Lπ16s

864
+ π2

16

(
m2π2

108
+

397m2

3456
− π2s

432
− 169s

20736

)

V321 = λ1
π2

16

24
+

1

12
π16 J̄ − 6k5 − 4k6 −

Lπ16

12
− 43π2

16

288

V322 = λ1

(
1

3
π16B̄31 +

π2
16

288

)
+ λ2

π2
16

24
+ Bεπ16

(
1

12
− m2

6s

)

+ J̄

(
Lm2

6s
− L

12
+

m2π16

36s
+

7π16

48

)
+

k1

48
+

k2

48
+

k5

2
+

k6

2
− 3k7

2
+

k8

4

+
L2m2

12s
+

L2

24
+

Lm2π16

6s
+

Lπ16

48
+ π2

16

(
m2π2

72s
+

m2

12s
+

49

3456

)

V323 = λ1
π2

16

72
+

1

36
π16 J̄ − 3k5

2
− k6 + k7 −

Lπ16

36
− 43π2

16

864

V324 = λ1

(
1

6
π16B̄ +

π2
16

144

)
+ λ2

π2
16

12
+

1

6
π16Bε

+ J̄

(
13π16

72
− L

6

)
+

k1

12
+ 2k5 + 2k6 +

L2

12
+

11Lπ16

72
+

161π2
16

1728

V325 = −λ1
π2

16

48
− 1

24
π16 J̄ + 3k5 + 2k6 +

Lπ16

24
+

43π2
16

576

V326 = −λ1

(
1

3
π16B̄21 +

π2
16

216

)
− λ2

π2
16
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+ Bεπ16

(
m2

9s
− 1

9

)
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+ J̄

(
L

9
− Lm2

9s
− m2π16

54s
− 17π16

108

)
− k1

24
− k2

72
− k5 − k6 + k7 −

k8

6

− L2m2

18s
− L2

18
− Lm2π16

9s
− π2

16

(
m2π2

108s
+

m2

18s
+

35

864

)

Where the J̄ and ki function are defined as

σ =

√
1 − 4

s
,

h =
1

σ
ln

σ − 1

σ + 1

J̄ = π16(σ
2h + 2)

k1 = π2
16σ2h2

k2 = π2
16(σ

4h2 − 4)

k3 =
1

(16π2)2

[
σ2

s
h3 + π2 1

s
h − π2

2

]

k4 =
1

sσ2

[
1

2
k1 +

1

3
k3 + π16 J̄ +

π2
16

12
(π2 − 6)s

]
.

k5 =
1

sσ2

[
k4 −

1

12
k1 −

π16

12
J̄ + π2

16

(
5

6
− π2

9

)]
+

π2
16

12

(
5

2
− 1

3
pi2
)

k6 =
1

sσ2

[
5k5 +

1

12
k1 +

π16

18
J̄ +

π2
16

6

(
π2 − 49

6

)]
+

1

24
π2

16

(
π2 − 49

6

)

k7 =
1

s

(
k5 +

1

2
k4 +

1

24
k1 +

5

24
π16 J̄

)
+

1

72
π2

16

k8 =
1

s

(
k4 +

7

12
k1 +

25

36
π16 J̄

)
+ π2

16

(
47

216
+

1

36
π2

)

k9 =
1

s

(
k3 −

5

2
k1

)
− π2

16

(
2 +

π2

12

)

The J̄ and ki vanish at s = 0 and are well behaved for s → ∞. They have
discontinuities in the derivative at threshold but there no poles there. The
functions ki are constructed using the arguments and methods of [42].

All the ki above show up at intermediate stages of the calulations but in
the final result k5(s), . . . , k9(s) always appear multiplied by powers of s and can
thus be removed.

Finally, to get the scattering lengths we need to expand these functions
around t, u = 0 and s = 4. The expansion using s = 4(1 + q2) around s = 4 reads
up to order q4.

J̄(s) = π16

(
2 − 2q2 +

4

3
q4

)
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k1(s) = π2
16

(
−π2 + 4q2 − 4

3
q4

)

k2(s) = π2
16

(
−4 − π2q2 + (4 + π2)q4

)

k3(s) = π2
16

(
1

2
π2 −

(
2 +

2

3
π2

)
q2 +

(
2 +

8

15
π2

)
q4

)

k4(s) = π2
16

(
−2

3
+

1

36
π2 +

(
1

3
+

2

45
π2

)
q2 −

(
1

3
+

4

105
π2

)
q4

)
.(II.136)

The expansion around t = 0 up to order t2 are

J̄(t) = π16

(
1

6
t +

1

60
t2

)
,

k1(t) = π2
16

(
−t − 1

12
t2

)

k2(t) = π2
16

(
−2

3
t − 7

180
t2

)

k3(t) = π2
16

((
−1

2
+

1

12
π2

)
t +

(
−1

8
+

1

60
π2

)
t2

)

k4(t) = π2
16

((
1

4
− 1

36
π2

)
t +

(
19

240
− 1

120
π2

)
t2

)
. (II.137)
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We calculated the vector, axial-vector, scalar and pseudo-scalar two-point
functions up to two-loop level in the low-energy effective field theory for
three different QCD-like theories. In addition we also calculated the pseudo-
scalar decay constant GM. The QCD-like theories we used are those with
fermions in a complex, real or pseudo-real representation with in general
n flavours. These case correspond to global symmetry breaking pattern of
SU(n)L × SU(n)R → SU(n)V , SU(2n) → SO(2n) or SU(2n) → Sp(2n). We also
estimated the S parameter for those different theories.
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III.1 Introduction

The different global symmetry breaking patterns of QCD-like theories with a
vector-like gauge group have been summarized in [1–3] around 30 years ago.
The global symmetry and its spontaneous breaking depend on whether the
fermions live in a complex, real and pseudo-real representation of the gauge
group. For n identical fermions this corresponds to the symmetry breaking
pattern SU(n)L × SU(n)R → SU(n)V , SU(2n) → SO(2n) and SU(2n) → Sp(2n)

respectively. These theories can be used to characterize some of technicolor
models with vector-like gauge bosons. QCD-like theories are also important
in the theory of finite baryon density. Here the real and pseudo-real case al-
low to investigate the mechanism of diquark condensate and finite density
without the sign problem. A main nonperturbative tool in studying strongly
interacting theories is lattice gauge theory. Numerical calculations are per-
formed at finite fermion mass and need in general to be extrapolated to the
zero mass limit. In the case of QCD Chiral Perturbation Theory (ChPT) is
used to help with this extrapolation. Our work has the intention of provid-
ing similar formulas for the QCD-like theories using the effective field theory
(EFT) appropriate for the alternative global symmetry patterns.

These EFT have been used at lowest order (LO) [4] with earlier work to
be found in [5–7] and some studies at next-to-leading order (NLO) have also
appeared [8–10]. The former two are the usual QCD case with n flavours. In
our earlier papers [11, 12] we have systematically studied the effective field
theory of these three different QCD-like theories to next-to-next-to-leading or-
der (NNLO). We managed to write the EFT of these cases in an extremely
similar form. We calculated the quark-antiquark condensates, the mass and
decay constant of the pseudo-Goldstone bosons [11], and meson-meson scat-
tering [12]. In this paper we extend the analysis to two-point correlation func-
tions. We obtain expressions for the vector, axial-vector, scalar and pseudo-
scalar two-point functions as well as the pion pseudo-scalar coupling GM to
NNLO1 or order p6.

In our earlier work [11,12], we called the three different cases QCD or com-
plex, adjoint or real and two-colour or pseudo-real. In this paper we use only
the latter, more general, terminology.

One motivation for this set of work was the study of strongly interact-
ing Higgs sectors, reviews are [13, 14]. For any model beyond the Standard
Model, passing the test of oblique corrections, or precision LEP observables,
is crucial [15, 16]. Over the years, the impact of the oblique corrections in
those models have been studied quite intensively but in strongly interacting
cases mainly an analogy with QCD has been invoked. Lattice gauge theory

1We use LO, NLO and NNLO as synomyms for order p2, order p4 and order p6 calculations
even if the order p2 vanishes.



III.2 Effective Field Theory 139

methods allow to study strongly interacting models from first principles. The
contributions from these theories to the S-parameter can be calculated using
the two-point functions studied here and our formulas are useful to perform
the extrapolation to the massless case. This was in fact the major motivation
for the present work but we included the other two-point functions for com-
pleteness.

The paper is organized as follows. In Section III.2 we give a brief intro-
duction to EFT for the three different cases. Section III.3 is the main part of
the paper. We define the fermion currents and the two-point functions in Sec-
tion III.3.1. In Sections III.3.2 to III.3.5, we present the calculation of vector,
axial-vector, scalar, pseudo-scalar two-point functions. In Section III.4, we dis-
cuss the oblique corrections and the S-parameter. Section III.5 summarizes our
main results and we present the definition.

III.2 Effective Field Theory

In this section we briefly review the EFT of QCD-like theories, the details can
be found in the earlier paper [11]. The basic methods are those of Chiral Per-
turbation Theory [17, 18]. The counting of orders is in all cases the same as in
ChPT, we count momenta as order p and the fermion mass m as order p2.

III.2.1 Complex representation: QCD and CHPT

The case of n fermions in a complex representation is essentially like QCD.
The Lagrangian with external left and right vector, scalar and pseudos-calar
external sources, lµ, rµ, s and p, is

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM
†
ijqRj i, j = 1, 2, ..., n . (III.1)

The covariant derivative is given by Dµq = ∂µq − iGµq, and the mass matrix
M = s − ip. The sums shown are over the flavour index. The sums over gauge
group indices are implicit.

The Lagrangian (III.1) has a symmetry SU(n)L × SU(n)R which is made lo-
cal by the external sources [8,18]. The quark-anti-quark condensate 〈q̄q〉 breaks
SU(n)L × SU(n)R spontaneously to the diagonal subgroup SU(n)V . According
to the Nambu-Goldstone theorem, n2 − 1 Goldstone Bosons will thus be gen-
erated. We add a small fermion mass m explicitly by setting s = m + s. This
mass term explicitly breaks the symmetry SU(n)L × SU(n)R down to SU(n)V as
well and gives the Goldstone bosons a small mass.

III
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The Goldstone boson manifold SU(n)L × SU(n)R/SU(n)V can be
parametrized by

u = exp

(
i√
2 F

πaTa

)
a = 1, 2, ..., n2 − 1 . (III.2)

The Ta are the generators of SU(n) normalized to 〈TaTb〉 = δab. The notation
〈A〉 stands for the trace over flavour indices. u transforms under gL × gR ∈
SU(n)L × SU(n)R as u → gRuh† = hug†

L where h is the “compensator” and is
a function of u, gL and gR. The methods are those of [19, 20], but we use the
notation of [21, 22]. We can construct quantities which transform under the
unbroken group H as : O → hOh†

uµ = i[u†(∂µ − irµ)u − u(∂µ − lµ)u
†] ,

∇µO = ∂µO + ΓµO − OΓµ ,

χ± = u†χu† ± uχ†u ,

f±µν = ulµνu† ± u†rµνu . (III.3)

The field strengths lµν and rµν are

lµν = ∂µlν − ∂νlµ − i[lµ, lν] ,

rµν = ∂µrν − ∂νrµ − i[rµ, rν] . (III.4)

The covariant derivative ∇µ contains

Γµ =
1

2
[u†(∂µ − irµ)u + u(∂µ − lµ)u

†] . (III.5)

χ contains the matrix M, which is the combination of scalar and pseudo-scalar
sources

χ = 2B0M = 2B0(s − ip). (III.6)

Using the quantities in (III.3), we can find the leading order, p2, Lagrangian
which is invariant under Lorentz and chiral symmetry:

L2 =
F2

4
〈uµuµ + χ+〉 . (III.7)

The subscript “2” stands for the order of p2. The p4 and p6 Lagrangian will be
explained in Section III.2.3.

III.2.2 Real and Pseudo-Real representation

The case of n fermions in a real or pseudo-real representation of the gauge
group we can treat in a similar way as the complex case. In the real case,
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the global symmetry breaking pattern is SU(2n) → SO(2n), and the number of
generated Goldstone bosons is 2n2 + n − 1. In the pseudo-real case, the sym-
metry breaking is SU(2n) → Sp(2n), and the number of generated Goldstone
is 2n2 − n − 1. In both cases anti-fermions are in the same representation of the
gauge group and can be put together in a 2n vector q̂, see [11] for more details.

The condensate can now be a diquark condensate as well as a quark-
antiquark condensate. Our choice of vacuum corresponds to a quark-anti-
quark condensate. In terms of the 2n fermion vector q̂ they can be written
as

Real : 〈q̂TCJS q̂〉+ h.c. JS =

(
0 I

I 0

)
, (III.8)

Pseudo − Real : 〈q̂αεαβCJA q̂β〉+ h.c. JA =

(
0 −I

I 0

)
. (III.9)

Here C is the charge conjugation operator. JS and JA are symmetric and anti-
symmetric 2n × 2n matrices, I is the n × n unit matrix. Since JS and JA often
appear in the same way in the expressions, we use J for both cases unless a
distinction is needed.

The generators, Ta, of the global symmetry group SU(2n) can be separated
into belonging to the broken, Xa, or unbroken part, Qa. They satisfy the fol-
lowing relations with J:

JQa = −QaT J , JXa = XaT J , (III.10)

The Goldstone boson manifold can be parametrized with

U = uJuT → gUgT , with u = exp

(
i√
2 F

πaXa

)
. (III.11)

where J = JS and a runs from 1 to 2n2 + n − 1 for the real case and J = JA and a

runs from 1 to 2n2 − n − 1 for the pseudo-real case.
In our earlier paper [11], we constructed quantities similar to those in (III.3–

III.5)

uµ = i[u†(∂µ − iVµ)u − u(∂µ + iJVT
µ J)u†] ,

Γµ =
1

2
[u†(∂µ − iVµ)u + u(∂µ + iJVT

µ J)u†] .

f±µν = JuVµνu† J ± uVµνu† ,

χ± = u†χJu† ± uJχ†u . (III.12)

The 2n × 2n matrix Vµ includes the left and right-handed external sources

Vµ =

(
rµ 0

0 −lT
µ

)
(III.13)

III
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and Vµν is the field strength

Vµν = ∂µVν − ∂νVµ − i
(
VµVν − VνVµ

)
. (III.14)

χ include the matrix M̂ via χ = 2B0M̂ [11]. Those quantities behave similarly
as those (III.3) if we take

− JVT
µ J → lµ , Vµ → rµ . (III.15)

With this correspondence, the Lagrangian of the real and pseudo-real case has
the same form as the complex one. However one has to remember there are
differences in the generators, external sources, coupling constants,. . . . Any-
way, now we can use the techniques of ChPT to perform the calculations.

III.2.3 High Order Lagrangians and Renormalization

Using Lorentz and chiral invariance, we can write down the p4 EFT lagrangian
[18] for all three cases using the quantities listed in (III.3) and (III.12):

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉

+L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈 f+µνuµuν〉+ 1

4
L10〈 f 2

+ − f 2
−〉+ H1〈lµνlµν + rµνrµν〉+ H2〈χχ†〉 .

(III.16)

To do the renormalization, we use the ChPT MS scheme with dimensional
regularization [8, 18, 22]. The bare coupling constants Li are defined as

Li = (cµ)d−4 [ΓiΛ + Lr
i (µ)] , (III.17)

where the dimension d = 4 − 2ε, and

Λ =
1

16π2(d − 4)
, (III.18)

ln c = −1

2
[ln 4π + Γ′(1) + 1] . (III.19)

The coefficients Γi for the complex case have been obtained in [8], for the real
and pseudo-real case we have calculated them earlier in [11]. However, there
are mistakes in the coefficients of L9, L10 and H1 in the Table 1 of [11]. These
mistakes had no effects on our previous calculations. We therefore list all the
coefficients here again in Table III.1.

The p6 Lagrangian for the complex case and general n has been obtained
in [21], it contains 112+3 terms. The divergence structure of the bare coupling
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i complex real pseudo-real
0 n/48 (n + 4)/48 (n − 4)/48

1 1/16 1/32 1/32

2 1/8 1/16 1/16

3 n/24 (n − 2)/24 (n + 2)/24

4 1/8 1/16 1/16

5 n/8 n/8 n/8

6 (n2 + 2)/(16n2) (n2 + 1)/(32n2) (n2 + 1)/(32n2)

7 0 0 0
8 (n2 − 4)/(16n) (n2 + n − 2)/(16n) (n2 − n − 2)/(16n)

9 n/12 (n + 1)/12 (n − 1)/12

10 −n/12 −(n + 1)/12 −(n − 1)/12

1’ −n/24 −(n + 1)/24 −(n − 1)/24

2’ (n2 − 4)/(8n) (n2 + n − 2)/(8n) (n2 − n − 2)/(8n)

Table III.1: The coefficients Γi for the three cases that are needed to absorb the diver-
gences at NLO. The last two lines correspond to the terms with H1 and H2. This is the
same as Table 1 in [11] but with the error for L9, L10 and H1 corrected.

constants Ki in the p6 can be written as2

Ki = (cµ)2(d−4)
[

Kr
i − Γ

(2)
i Λ2 −

(
1

16π2
Γ
(1)
i + Γ

(L)
i

)
Λ

]
. (III.20)

The coefficients Γ
(2)
i , Γ

(1)
i and Γ

(L)
i for the complex case have been obtained

in [22].
For the real and pseudo-real case, the p6 Lagrangian has the same form

as in the complex case but some terms might be redundant. The divergence
structure as given in (III.20) still holds but the coefficients are not known. One
check on our results that remains is that all the non-local divergences cancel.

III.3 Two-Point Functions

III.3.1 Definition

The effective action of the fermion level theory with external sources is

exp{iZ(lµ, rµ, s, p)} =
∫

DqDq̄DGµ exp

{
i
∫

d4xLQCD(q, q̄, Gµ, lµ, rµ, s, p)

}
(III.21)

2The Ki have been made dimensionless by including a factor of 1/F2 explicitly in the order p6

Lagrangian.

III



144 Two-Point Functions and S-Parameter in QCD-like Theories

At low energies, i.e. below 1 GeV in QCD, the effective action can be obtained
also from the low-energy effective theory

exp{iZ(lµ, rµ, s, p)} =
∫

DU exp

{
i
∫

d4xLe f f (U, lµ, rµ, s, p)

}
. (III.22)

With this effective action, the n-point Green functions can be easily derived by
taking the functional derivative w.r.t. the external sources of Z(J)

G(n)(x1, . . . , xn) =
δn

inδj(x1) . . . δj(xn)
Z[J]

∣∣∣∣
J=0

. (III.23)

Here j stands for any of the external sources lµ, rµ, s, p and J for the whole set
of them.

The vector current vµ and axial-vector current aµ are included via

lµ = vµ − aµ , rµ = vµ + aµ . (III.24)

In this paper we will calculate the two-point functions of vector, axial-
vector, scalar and pseudo-scalar currents. The fermion currents in the complex
case are defined as

Va
µ (x) = qiT

a
ijγµqj , (III.25)

Aa
µ(x) = qiT

a
ijγµγ5qj , (III.26)

Sa(x) = −qiT
a
ijqj , (III.27)

Pa(x) = iqiT
a
ijγ5qj . (III.28)

Ta is an SU(n) generator3 or in addition for the singlet scalar and pseudo-
scalar current the unit matrix which we label by T0. These currents also exist
the for real and pseudo-real case. In this case also currents with two fermions
or two anti-fermions exist. These can be combined with those above. The
generators can then become SU(2n) generators. All conserved generators are
like the vector or scalar case while the broken generators are like the axial-
vecor or pseudo-scalar case. All those cases are related to the ones with the
currents of (III.25)-(III.28) via transformations under the unbroken part of the
symmetry group.

3We have defined here the current with fermion-anti-fermion operators, hence the SU(n)
for n fermions. For the real and pseudo-real case, the unbroken symmetry relates them also to
difermion ot dianti-fermmion operators.
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The definitions of the two-point functions are

ΠVaµν(q) ≡ i
∫

d4x eiq·x 〈0|T(Va
µ (x)Va

ν (0))
†|0〉 ,

ΠAaµν(q) ≡ i
∫

d4x eiq·x 〈0|T(Aa
µ(x)Aa

ν(0))
†|0〉 ,

ΠSMaµ(q) ≡ i
∫

d4x eiq·x 〈0|T(Va
µ (x)Sa(0))†|0〉 ,

ΠPMaµ(q) ≡ i
∫

d4x eiq·x 〈0|T(Aa
µ(x)Pa(0))†|0〉 ,

ΠSa(q) ≡ i
∫

d4x eiq·x 〈0|T(Sa(x)Sa(0))†|0〉 ,

ΠPa(q) ≡ i
∫

d4x eiq·x 〈0|T(Pa(x)Pa(0))†|0〉 . (III.29)

Using Lorentz invariance the two-point functions with vectors and axial-
vectors can be decomposed in scalar functions

ΠVaµν = (qµqν − q2gµν)Π
(1)
Va (q

2) + qµqνΠ
(0)
Va (q

2) . (III.30)

where Π
(1)
Va (q

2) is the transverse part and Π
(0)
Va (q

2) is the longitudinal part or
alternatively the spin one and spin 0 part. The same definition holds for the
axial-vector two-point functions. The mixed functions can be decomposed as

ΠSMaµ = qµΠSMa ,

ΠPMaµ = iqµΠPMa . (III.31)

Using the divergence of fermion currents and equal time commutation rela-
tions, we find that some two-point functions are related to each other by Ward
identities. In the equal mass case considered here, they are

Π
(0)
Va = ΠSMa = 0 ,

q2Π
(0)
Aa = 2mΠPMa ,

q4Π
(0)
Aa = 4m2ΠPa + 4m〈q̄q〉 . (III.32)

The vacuum expectation value is the single quark-anti-quark one. We will use
the last relation to double check our results of axial-vector and pseudo-scalar
two-point functions.

The mixed two-point functions, ΠSMa and ΠPMa we do not discuss further
since they are fully given by the Ward identities.

III.3.2 The Vector Two-Point Function

The vector two-point function is defined in (III.29). The longitudinal part van-
ishes for all three cases because of the Ward identities.

III
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(1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10) (11)

(12) (13) (14) (15)

Figure III.1: The diagrams for the vector two-point function. A filled circle is a vertex
from L2, a filled square a vertex from L4, and an open square a vertex from L6. The
top line is order p4. The remaining ones are order p6.

The Feynman diagrams for the vector two-point function are listed in
Fig. III.1. There is no diagram at lowest order. The diagrams at NLO are
(1–3) in Fig. III.1. The NNLO diagrams are (4–15). The 3-flavour QCD case is
known to NNLO [23, 24].

We have rewritten the results in terms of the physical mass and decay con-
stant. For these we use the notation MM and FM rather than the Mphys and Fphys

used in [11,12]. Their expression in terms of the lowest order quantities F and
M2 = 2B0m can be found in [11]. We also use the quantities

L =
1

16π2
log

M2
M

µ2
and π16 =

1

16π2
. (III.33)

The loop integral B22 is defined in Appendix III.1.1.
The results up to NNLO for three different cases are listed below, where
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the first line in each case is the NLO contributions, the rest are NNLO contri-
butions.

Complex

Π
(1)
VV = − n

q2

[
4B22(M2

M, M2
M, q2) + 2LM2

M

]
− 4Lr

10 − 8Hr
1

+
1

F2
M

{(
4M2

M

q2
Ln2 − 16Lr

9n

)
B22(M2

M, M2
M, q2) +

4n2

q2
[B22(M2

M, M2
M, q2)]2

+
M4

M

q2
L2n2 − 8q2Kr

115 + 8M2
M(LLr

10n − 4Kr
81 − 4Kr

82n)

}
, (III.34)

Real

Π
(1)
VV = − 1

q2
(n + 1)

[
4B22(M2

M, M2
M, q2) + 2M2

M L
]
− 4Lr

10 − 8Hr
1

+
1

F2
M

{[
4M2

M

q2
L(n + 1)2 − 16(n + 1)Lr

9

]
B22(M2

M, M2
M, q2)

+
4

q2
(n + 1)2[B22(M2

M, M2
M, q2)]2 +

M4
M

q2
L2(n + 1)2

−8q2Kr
115 + 8M2

M[LLr
10(n + 1)− 4Kr

81 − 8Kr
82n]

}
, (III.35)

Pseudo − Real

Π
(1)
VV = − 1

q2
(n − 1)

[
4B22(M2

M, M2
M, q2) + 2M2

M L
]
− 4Lr

10 − 8Hr
1

+
1

F2
M

{[
4M2

M

q2
L(n − 1)2 − 16Lr

9(n − 1)

]
B22(M2

M, M2
M, q2)

+
4

q2
(n − 1)2[B22(M2

M, M2
M, q2)]2 +

M4
M

q2
L2(n − 1)2

−8q2Kr
115 + 8M2

M[LLr
10(n − 1)− 4Kr

81 − 8Kr
82n] . (III.36)

The complex result with n = 3 agrees with [23] when the masses there are set
equal.

III.3.3 The Axial-Vector Two-Point Function

The axial-vector two-point function is defined in (III.29). Similar to the vector
two-point function, it also can be decomposed in a transverse and longitudinal
part.

Π
µν
AA = (qµqν − q2gµν)Π

(1)
AA(q

2) + qµqνΠ
(0)
AA(q

2) . (III.37)

III
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(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10)

Figure III.2: The axial-vector two-point function at LO and NLO. The filled circle is a
vertex from L2, The filled square is a vertex from L4, and the open square is a vertex
from L6.

.

The diagrams contributing at LO are shown in (1–2) in Fig. III.2. The LO
results are the same for all three cases. The result is

Π
µν
AA(q

2) = 2F

(
gµν − qµqν 1

q2 − M2

)
. (III.38)

F and M are the LO decay constant and mass respectively. Note that in the
massless limit this has only a transverse part as follows from the Ward identi-
ties.

The diagrams at NLO are (3–10) in Fig. III.2 and the NNLO diagrams are
(11–48) in Fig. III.3.

Many of the diagrams are one-particle-reducible and at first sight have
double and triple poles at q2 = M2. From general properties of field theory
these should be resummable in into a single pole at the physical mass, q2 = M2

M

and a nonsingular part that only has cuts. The residue at the pole is the de-
cay constant squared. We must thus find contributions that allow for the last
term in (III.38) the lowest order F2, M2 to be replaced by F2

M, M2
M. It turns out

to be advantageous to also do this in the first term. Most of the corrections are
already included in this way.
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(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)

(31) (32) (33) (34) (35)

(36) (37) (38) (39) (40)

(41) (42) (43) (44) (45)

(46) (47) (48)

Figure III.3: The axial-vector two-point function at NNLO. The filled circle is a vertex
from L2, the filled square is a vertex from L4, and the open square is a vertex from L6

At NLO the remaining part is only from the tree level diagram (3) in
Fig. III.2 and is

Π
(1)
AA = 4Lr

10 − 8Hr
1 , Π

(0)
AA = 0 . (III.39)

III
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So we can express our result up to NNLO as

Π
µν
AA(q

2) = 2F2
M

(
gµν − qµqν 1

q2 − M2
M

)
+ (qµqν − q2gµν)(4Lr

10 − 8Hr
1)

+
1

F2
M

[
(qµqν − q2gµν)Π̂

(1)
AA(q

2) + qµqνΠ̂
(0)
AA(q

2)

]
. (III.40)

The Π̂
(0)
AA(q

2) and Π̂
(1)
AA(q

2) are the remainders at NNLO and have no singular-
ity at q2 = M2

M.
The transverse part can be obtained from the part containing gµν as an over-

all factor. So the transverse part cannot come from the one-particle reducible
diagrams and only gets contributions from diagrams (11–16) at NNLO. The
sunset integrals HF and HF

21 appearing in the results are defined in Ap-
pendix III.1.2.

The longitudinal part gets at NNLO contributions from all diagrams
shown in Fig III.3. In order to rewrite the results into the single pole we need
to expand the integrals around the mass. This introduces derivatives of the
sunsetintegrals. These always show up in the combinations HM and HM

21 de-
fined in Appendix III.1.2.

Complex

Π̂
(1)
AA(q

2) =
n2

2

[
M2

M

q2
HF(M2

M, M2
M, M2

M, q2)− HF
21(M2

M, M2
M, M2

M, q2)

]

+M2
M

[
L2n2

6
− 8nLLr

10 − 32 (Kr
102 + Kr

103n + Kr
17 + Kr

18n)

]

−q2(16Kr
109 + 8Kr

115)−
M4

M

q2

(
8Kr

113 +
3

2
n2L2

)

+π16L

[
M4

M

q2

(
13n2

8
+

2

n2
− 2

3

)
+

M2
M

6
n2

]

+π2
16

[
M4

M

q2

(
7

2n2
− 1

8
n2π2 − 17n2

64
− 7

6

)

+M2
Mn2

(
π2

36
+

1

72

)
+

n2

96
q2

]
, (III.41)

Π̂
(0)
AA(q

2) =

[
M4

M

(
4

3
− 4

n2

)
− M6

M

2q2
n2

]
HM(M2

M, M2
M, M2

M, q2)

−3M4
M

2
n2HM

21 (M2
M, M2

M, M2
M, q2) +

8M4
M

q2
Kr

113
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+
M4

M

q2

[
π16L

(
2

3
− n2

8
− 2

n2

)
+ π2

16

(
7

6
− 15n2

64
− 7

2n2

)]
, (III.42)

Real

Π̂
(1)
AA(q

2) =
n

2
(n + 1)

[
M2

M

q2
HF(M2

M, M2
M, M2

M, q2)− HF
21(M2

M, M2
M, M2

M, q2)

]

+M2
M

[
L2

6
n(n + 1)− 8nLLr

10 − 32(Kr
102 + 2nKr

103 + Kr
17 + 2nKr

18)

]

−q2(16Kr
109 + 8Kr

115)−
M4

M

q2

[
8Kr

113 +
3

2
n(n + 1)L2

]

+π16L

[
M4

M

q2

(
13n2

8
+

1

2n2
+

43n

24
− 1

2n
− 1

6

)
+

M2
M

6
n(n + 1)

]

+π2
16

[
M4

M

q2

(
−1

8
n2π2 − nπ2

8
− 17n2

64
+

7

8n2
+

5n

192
− 7

8n
− 7

24

)

+M2
Mn(n + 1)

(
π2

36
+

1

72

)
+

n

96
(n + 1)q2

]
, (III.43)

Π̂
(0)
AA(q

2) =

[
− M6

M

q2

n

2
(n + 1) + M4

M(n − 1)

(
1

n2
− 1

3

)]
HM(M2

M, M2
M, M2

M, q2)

−3

2
M4

Mn(n + 1)HM
21 (M2

M, M2
M, M2

M, q2) +
8M4

M

q2
Kr

113

+π16
M4

M

q2
L

(
−n2

8
− 1

2n2
− 7n

24
+

1

2n
+

1

6

)

+π2
16

M4
M

q2

(
−15n2

64
− 7

8n2
− 101n

192
+

7

8n
+

7

24

)
, (III.44)

Pseudo − Real

Π̂
(1)
AA(q

2) =
n

2
(n − 1)

[
M2

M

q2
HF(M2

M, M2
M, M2

M, q2)− HF
21(M2

M, M2
M, M2

M, q2)

]

−32M2
M(Kr

102 + 2nKr
103 + Kr

17 + 2nKr
18)− 8q2(2Kr

109 + Kr
115)

−8M4
M

q2
Kr

113 −
M4

M

q2

3n

2
(n − 1)L2 +

M2
M

6
n(n − 1)L2 − 8M2

MnLLr
10

+π16
LM4

M

q2

(
13n2

8
+

1

2n2
− 43n

24
+

1

2n
− 1

6

)
+ π16LM2

M

(
n2

6
− n

6

)

+π2
16

[
M4

M

q2

(
−1

8
n2π2 − 17n2

64
+

7

8n2
+

nπ2

8
− 5n

192
+

7

8n
− 7

24

)

+M2
Mn(n − 1)

(
π2

36
+

1

72

)
+ q2 n

96
(n − 1)
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The axial two-point function is known in 3-flavour ChPT [23, 25]. We have
checked that our result agrees with the one in [23] in the limit of equal masses.

III.3.4 The Scalar Two-Point Functions

The scalar two-point function is defined in (III.29), which contains the unbro-
ken generator case (Ta = Qa) and the singlet case (a = 0).

The Feynman diagrams for both cases are the same as those for the vector
two-point function shown in Figure III.1 except that diagrams (2) and (5–7) are
absent. Diagrams (1) and (3) are at NLO, and the diagrams (4) and (8–11) are
at NNLO.

Qa case

The scalar two-point functions are similar to the vector two-point functions,
the LO results are zero for all the three cases since the vertex at LO is absent.
We have rewritten again everything in terms of the physical mass and decay
constant, M2

M and FM. The results for the three cases are given below. The
first line is the NLO contribution and the remainder is the NNLO contribution.
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47) + M2

M

(
192Kr

25 + 64Kr
26n

)

+M2
M L

[(
64

n
− 32n

)
Lr

8 − 64Lr
7 +

(
n2 − 4

) 16

n
Lr

5

]

+B(m2, q2)
(

n2 − 4
) [8q2

n
Lr

5 + M2
M

(
2

n2
L − 16Lr

4 −
32

n
Lr

5 − 32Lr
6 +

64

n
Lr

8

)]



III.3 Two-Point Functions 153

+B(m2, q2)2
(

n2 − 4
)( q2

4
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, (III.47)

Real
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Pseudo − Real
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The definition of the one-loop function B(m2, q2) can be found in Ap-
pendix III.1.1.

Singlet case

We have also calculated the singlet case. This is the quark-antiquark combi-
nation that shows up in the mass term.
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We write the expression up to NNLO as:
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Pseudo − Real
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+B(m2, q2)
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We also written the result in term of physical M2
M and FM. Notice that all loop

diagrams are proportional to the number of Goldstone bosons in each case,
i.e. n2 − 1, 2n2 + n − 1, 2n2 − n − 1 for the complex, real and pseudo-real case
respectively.

III.3.5 The Pseudo-Scalar Two-Point Functions

The pseudo-scalar two-point function is defined in (III.29). Just as in the
case of the axial-vector two-point function there are one-particle-reducible di-
agrams. The diagrams are the same as those for the axial-vector two-point
function with the axial-vector current replaced by a pseudo-scalar current.
These are shown in Figure III.2 and III.3. There is also no vertex with two
pseudo-scalar currents at LO so the equivalent of diagrams (1) and (7) in Fig-
ure III.2 and (13–15) in Figure III.3 vanish immediately. Just as in the scalar
case, one should distinguish here between two cases: The adjoint case for the
complex representation case which generalizes to the broken generators for
the real and pseudo-real case, and the singlet operator with Ta in (III.28) the
unit operator.

In Section III.3.3 we could simplify the final expressions very much by writ-
ing the final expression with the single pole at the meson mass in terms of the
decay constant. The same happens here if we instead rewrite the result in
terms of the meson pseudo-scalar decay constant GM. So we first need to ob-
tain that quantity to NNLO.

The meson pseudo-scalar decay constant GM

The decay constant of the pseudoscalar density to the mesons, GM is defined4

similarly to FM:

〈0|q̄iγ5Taq|πb〉 = 1√
2

δabGM (III.53)

The calculation of GM is very similar to FM, the diagrams are exactly those
shown in Figure 2 in [11] with one of the legs replaced by the pseudo-scalar

4The
√

2 is included in the definition to have the same normalization as [18].
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current. There is here also a contribution from wave-function renormalization.
In [11] we reported all the quantities M2

M, FM and 〈q̄q〉 as an expansion in the
bare or lowest order quantities F and M2 = 2B0m. We therefore do the same
here. We therefore use the quantity

L0 =
1

16π2
log

M2

F2
(III.54)

instead of L as in the other sections of this paper.
This quantity has been calculated to NLO in two-flavour ChPT in [18] and

was called Gπ there. We have checked that our NLO result agrees with theirs.
At leading order, all the three case have same expression:

GM = G0 = 2B0F . (III.55)

We express the full results up to NNLO in terms of the LO meson mass M2

and decay constant F as

GM = 2B0F

(
1 +

M2

F2
aG +

M4

F4
bG

)
(III.56)

At NLO and NNLO, the coefficients aG and bG are
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Pseudo − Real
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Xa case

The pseudo-scale two point functions are similar to the axial-vector ones in
the diagrams as described above. The LO result is the same for all the three
cases:

Πa
PP = −1

2

G2
0

q2 − M2
. (III.60)

The superscript “a” indicates the case with Ta in (III.28) an SU(n) generator.
For the real and pseudo-real case this is related by the conserved part of the
symmetry group also to a number of diquark currents.

Subtracting the pole contribution in terms of the physical mass and decay
constants, M2

M, FM and GM, absorbs the major part of the higher order correc-
tions. The final results are thus much simpler when written in this way. The
remaining part at NLO is

Πa
PP = B2

0(8Hr
2 − 16Lr

8) . (III.61)

Thus we can define the full NNLO results as
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where the Π̂PP is the remainder at NNLO. Its expression for the three different
cases is:
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Pseudo − Real
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The loop integrals HM and HM
21 are defined in Appendix III.1.2.
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Singlet case

In the singlet case with a = 0, there is no contribution with poles. Only the
one-particle-irreducible diagrams contribute. As a consequence, there is no
order p2 contribution and at order p4 there is only a tree level contribution
from the equivalent of diagram (3) in Figure III.2. At order p6 or NNLO only
the one-particle-irreducible diagrams contribute and since there is no order
p2 vertex with two pseudo-scalar currents only diagram (11–12) and (16) in
Figure III.3 contribute.

Since there is no single pole contribution, there is also no need here to ex-
pand in the integrals around the meson mass. The integral HF is defined in
Appendix III.1.2.

The singlet pseudo-scalar two-point function we write as

Π0
PP = B2

0Π
0
PP +

B2
0

F2
M

Π̂0
PP . (III.66)

The results for the three cases are
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PP = − 2

3n

(
2n2 + n − 1

) (
n2 + n − 2

)
HF(M2

M, M2
M, M2

M, q2)

+q2
(

16Kr
113n − 128Kr

46n2
)
− 128M2

M

(
nKr

39 + 2n2Kr
40 + 2n2Kr

41 + 4n3Kr
42

)

+L2 M2
M

1

n

(
2n2 + n − 1

) (
n2 + n − 2

)
+ 64M2

M L(2n2 + n − 1)(2nLr
7 + Lr

8)

+M2
Mπ2

16
1

n

(
2n2 + n − 1

) (
n2 + n − 2

)(π2

6
+ 1

)
, (III.68)

Pseudo − Real :

Π
0
PP = 16nHr

2 − 128n2Lr
7 − 32nLr

8 ,

Π̂0
PP = − 2

3n

(
2n2 − n − 1

) (
n2 − n − 2

)
HF(M2

M, M2
M, M2

M, q2)
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Figure III.4: The one-loop oblique correction to LEP process e+ + e− → q + q̄.

+q2
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7 + Lr

8)

+M2
Mπ2
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(
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) (
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)(π2

6
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. (III.69)

Notice that just as for the scalar singlet two-point function, all loop contribu-
tions are proportional to the number of Goldstone bosons.

III.3.6 Large n

As one can see from all the explicit formulas, many of the expressions become
equal for the different cases in the large n limit .

III.4 The Oblique Corrections and S-parameter

The physical process at the CERN LEP collider is e+ + e− → q + q̄. There
are three types of one loop correction to this process: vacuum polarization
corrections, vertex corrections, and box corrections. The vacuum polariza-
tion contribution is independent of the external fermions and it dominates the
contributions from physics beyond SM. For the light fermions, the other two
corrections are suppressed by factor of m2

f /m2
Z. That’s why the vacuum po-

larization corrections are called “oblique corrections,”, and the vertex and box
corrections are called “nonoblique corrections.”

The oblique polarization only affect the gauge bosons propagators and
their mixing. The vacuum polarization amplitude can be defined as

gµνΠXY + (qµqν terms) = i
∫

d4x eiq·x 〈0|T(J
µ
X(x)Jν

Y(0))|0〉 . (III.70)

The influence of new physics to the oblique corrections can be summarized
to three parameters: S, T and U. One can find their definition in Ref. [15].
These parameters are chosen to be zero at a reference point in the SM. In the

III
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past 20 years, they have been studied intensively in many models beyond the
Standard Model physics.

For a beyond the Standard Model with strong dynamics at the TeV scale,
there will in general be many resonances and other nonperturbative effects. At
low momenta one can use the EFT as described above for these cases. In this
paper, we will estimate the S parameter contribution from pseudo-Goldstone
Boson sector within the EFT. The parameter T and U vanish because of the
exact flavor symmetry, i.e. we work in the equal mass case.

The S parameter can be written as5 [15]

S = −2π
[
Π′

VV(0)− Π′
AA(0)

]
= 2π

d

dq2

(
q2Π

(1)
VV − q2Π

(1)
AA

)
q2=0

. (III.71)

Π′
VV(0) and Π′

AA(0) are the derivatives of the vector and axial-vector two-point
functions at q2 = 0. One should keep in mind that S is defined to be zero at
a particular place in the standard model, as discussed at the end of section V
in [15]. Our formulas are the equivalent of (5.12) in that reference.

The result can be written as

S = S +
πM2

M

F2
M

Ŝ , (III.72)

with

Complex :

S = −16πLr
10 −

2nπ

3
(L + π16) ,

Ŝ = 64 (Kr
102 − Kr

81 + Kr
17 + nKr

103 − n f Kr
82 + nKr

18) +
n2

3
L2

+16n (Lr
9 + 2Lr

10) L − π16
11n2

9
L + π2

16n2

(
85

108
− 5

27
ψ̃

)
(III.73)

Real :

S = −16πLr
10 −

2(n + 1)π

3
(L + π16) ,

Ŝ = 64 (Kr
102 − Kr

81 + Kr
17 + 2nKr

103 − 2n f Kr
82 + 2nKr

18) +
n(n + 1)

3
L2

+16 [(n + 1)Lr
9 + (2n + 1)Lr

10] L − π16
11n(n + 1)

9
L

+π2
16n(n + 1)

(
85

108
− 5

27
ψ̃

)
, (III.74)

Pseudo − real :

S = −16πLr
10 −

2(n − 1)π

3
(L + π16) ,

5Our two point functions are normalized differently from those in [15].
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Figure III.5: The S-parameter for the values of Lr
9 and Lr

10 given in the text for the
complex case. (a) n = 2 (b) n = 4.

Ŝ = 64 (Kr
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82 + 2nKr

18) +
n(n − 1)

3
L2

+16 [(n − 1)Lr
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+π2
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(
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27
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)
. (III.75)

The quantity ψ̃ is

ψ̃ = 6
√

3Cl2

(
2π

3

)
= 7.0317217160684 . (III.76)

The real purpose of (III.73)-(III.75) is to be able to study the S-parameter
in more general theories than just scaling up from QCD. However to pro-
vide some feeling about numerical results we choose parameters as if they are
scaled up from QCD/ChPT. We change Fπ = 0.0922 MeV to FM = 243 GeV
and the subtraction scale from 0.77 GeV to 2 TeV. We set the Kr

i = 0 and keep
Lr

9 = 0.00593 and Lr
10 = −0.00406 at their values from ChPT [26, 27].

In Figures III.5, III.6 and III.7 we have shown the results for our three cases
complex, real and pseudo-real for n = 2 and n = 4. Shown are the full p4 and
p6 contributions as well as the p4 part proportional to Lr

10 only. The latter is
what is the usual contribution to S corrected for the pieces that go into the
reference point at p4. We cannot do the same for the full result since that
depends on how one treats the extra pseudo-Goldstone bosons that occur in
the other models.

III
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Figure III.6: The S-parameter for the values of Lr
9 and Lr

10 given in the text for the real
case. (a) n = 2 (b) n = 4.
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Figure III.7: The S-parameter for the values of Lr
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10 given in the text for the
pseudo-real case. (a) n = 2 (b) n = 4.

III.5 Conclusion

In this paper, we have calculated the two-point correlation functions of vector,
axial-vector, scalar and pseudo-scalar currents for QCD-like theories.

In the beginning of the paper, we gave a very brief overview of the QCD-
like theories and their EFT treatment as developed earlier.

We then gave the analytic results of those two-point functions up to NNLO.
The results are significantly shortened by using the physical meson mass M2

M
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and decay constants FM and GM when rewriting the pole contributions.
The main use of these formulas is expected to be in extrapolations to zero

fermion mass of technicolour related lattice calculations. We have therefore
also included precisely the combination needed for the S-parameter.
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III.A Loop integrals

We use dimensional regularization and MS scheme to evaluate the loop inte-
grals, d = 4 − 2ε.

III.A.1 One-loop integrals

The loop integral with one propagator is

A(m2) =
1

i

∫
ddq

(2π)d

1

q2 − m2

=
m2

16π2

{
λ0 − ln(m2) + ε

[
C2

2
+

1

2
+

π2

12
+

1

2
ln2(m2)− C ln(m2)

]}

+O(ε2) . (III.77)

Here

C = ln(4π) + 1 − γ λ0 =
1

ε
+ C

The extra +1 in C is the ChPT version of MS.
The loop integrals with two propagators are

B(m2
1, m2

2, p2) =
1

i

∫
ddq

(2π)d

1

(q2 − m2
1)((q − p)2 − m2

2)
,

Bµ(m2
1, m2

2, p) =
1

i

∫
ddq

(2π)d

qµ

(q2 − m2
1)((q − p)2 − m2

2)
(III.78)

= pµB1(m
2
1, m2

2, p2) ,

Bµν(m2
1, m2

2, p) =
1

i

∫
ddq

(2π)d

qµqν

(q2 − m2
1)((q − p)2 − m2

2)

= pµ pνB21(m
2
1, m2

2, p2) + gµνB22(m
2
1, m2

2, p2) .
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The two last integrals can be reduced to simpler integrals A and B via

B1(m
2, m2, p2) =

1

2
B(m2

1, m2
2, p2) ,

B22(m
2, m2, p2) =

1

2(d − 1)

[
A(m2) +

(
2m2 − 1

2
p2

)
B(m2, m2, p2)

]
,

B21(m
2, m2, p2) =

1

p2

[
A(m2) + m2B(m2, m2, p2)− dB22(m

2, m2, p2)
]

.(III.79)

We quote here only the equal mass case results relevant for this paper. The
explicit expression for B is

B(m2, m2, p2) =
1

16π2
λ0 + B(m2, p2) +O(ε) ,

B(m2, p2) =
1

16π2

(
−1 − m2 log

m2

µ2

)
+ J̄(m2, p2) ,

J̄(m2, p2) = − 1

16π2

∫ 1

0
dx ln

(
m2 − x(1 − x)p2

m2

)
, (III.80)

The function J̄(m2, p2) is

J̄(m2, p2) =





2 + σ ln
(

σ−1
σ+1

)
, p2 < 0,

2 − 2
√

4
x − 1 · arccot

(√
4
x − 1

)
, 0 ≤ p2 < 4m2,

2 + σ ln
(

1−σ
1+σ

)
+ iπσ, p2 > 4m2,

σ(x) =

√
1 − 4

x
, x =

m2

p2
/∈ [0, 4]. (III.81)

Taking derivatives w.r.t. p2 at p2 = 0 is most easily done in the form with the
Feynman parameter integration explicit.

III.A.2 Sunset integrals

The sunset integrals are done with the methods of [23, 29]. They are defined
as

〈〈X〉〉 = 1

i2

∫
ddq

(2π)d

ddr

(2π)d

X(
q2 − m2

1

) (
r2 − m2

2

) [
(q + r − p)2 − m2

3

] , (III.82)

The various sunset integrals with Lorenz indices are

H(m2
1, m2

2, m2
3; p2) = 〈〈1〉〉 ,

Hµ(m2
1, m2

2, m2
3; p2) = 〈〈qµ〉〉 = pµ H1(m

2
1, m2

2, m2
3; p2) , (III.83)

Hµν(m2
1, m2

2, m2
3; p2) = 〈〈qµqν〉〉

= pµ pν H21(m
2
1, m2

2, m2
3; p2) + gµν H22(m

2
1, m2

2, m2
3; p2) .
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and

〈〈rµ〉〉 = pµ H1(m
2
2, m2

1, m2
3; p2) ,

〈〈rµrν〉〉 = pµ pν H21(m
2
2, m2

1, m2
3; p2) + gµν H22(m

2
2, m2

1, m2
3; p2) ,

〈〈qµrν〉〉 = 〈〈rµqν〉〉 ,

〈〈qµrν〉〉 = pµ pν H23(m
2
1, m2

2, m2
3; p2) + gµν H24(m

2
1, m2

2, m2
3; p2) , (III.84)

The function H is fully symmetric in m2
1, m2

2 and m2
3, while H1, H21 and H22

are symmetric under the interchange of m2
2 and m2

3. The relation between the
above 3 functions

p2H21(m
2
1, m2

2, m2
3; p2) + dH22(m

2
1, m2

2, m2
3; p2) =

m2
1H(m2

1, m2
2, m2

3; p2) + A(m2
2)A(m2

3) , (III.85)

allows to express H22 in terms of H21.
Similar to the integral B and B1, there is also a relation between H and H1

which in the equal mass case becomes

H1(m
2, m2, m2; p2) =

1

3
H(m2, m2, m2; p2) . (III.86)

The other functions, H23 and H23, can be written in term of H, H1 and H21

by using relations derived from redefining the momenta and masses in its
definition [23].

The full sunset integral expressions and the definition for finite part HF
i =

{HF , HF
1 , HF

21} can be found in the appendix of [23]. In our case we take m1 =

m2 = m3 = m.
In order to eliminate the extra poles in the expressions, sometimes we need

to expand the HF
i (m

2, m2, m2; q2) around the pseudoscalar mass m2, and we de-
fine

HM
i (m2, m2, m2; q2) =

1

(q2 − m2)2

[
HF

i (m
2, m2, m2; q2)− HF

i (m
2, m2, m2; m2)

−(q2 − m2)HF′
i (m2, m2, m2; m2)

]
, (III.87)

where

HF′
i (m2, m2, m2; m2) =

∂HF
i (m

2, m2, m2; q2)

∂q2

∣∣∣∣∣
q2=m2

. (III.88)
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We study how general two Higgs doublet models can be constrained by
considering their properties under renormalization group evolution of the
Yukawa couplings. We take into account both the appearance of a Landau
pole as well as off-diagonal Yukawa couplings leading to flavour changing
neutral currents in violation with experimental constraints at the electroweak
scale. We find that the latter condition can be used to limit the amount of Z2

symmetry breaking allowed in a given model.
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IV.1 Introduction

The Standard Model (SM) has been compared to experiments with great suc-
cess in the past decades and finding the Higgs boson is the only missing piece.
However, there are still a few internal problems. The prime example is the so
called hierarchy problem: why is the electroweak (EW) scale much smaller
than the Plank scale? Thus, the SM cannot be seen as a fundamental theory of
particle physics, but only as an effective description which will break down at
higher energies, at least at the Planck scale where gravity becomes of the same
magnitude as the gauge forces. The mission of the Large Hadron Collider at
CERN is therefore not only to look for the SM Higgs boson but also for physics
Beyond the Standard Model (BSM).

The general two Higgs Doublet Model (2HDM) was one of the earliest BSM
models, proposed by T.D. Lee [1] already in 1973 as a model with spontaneous
CP-violation. The 2HDM itself cannot give any solution to the problems of the
SM, such as the hierarchy problem. On the contrary, it introduces more prob-
lems such as tree level flavour-changing-neutral-currents (FCNC) which are
absent in the SM. However, a 2HDM is part of many other BSM models, espe-
cially supersymmetric ones, which require an even number of Higgs doublets.
Therefore it is useful and interesting to study the 2HDM itself, since it can be
thought of as an effective description of more general models at the TeV scale.
One such example is the Minimal SuperSymmetric Model (MSSM) in the case
of heavy superpartners such that the Higgs bosons only decays to SM parti-
cles.

The problem of tree level FCNC can be evaded by introducing an appro-
priate Z2 symmetry that ensures that each fermion type only couples to one
of the Higgs doublets, which is sufficient in order to avoid tree-level FCNC
as shown by Glashow and Weinberg [2]. This is precisely what happens in
the MSSM whose Higgs sector at tree-level is a so called type II 2HDM, mean-
ing that one of the Higgs doublets couples only to down-type fermions and
the other only to up-type ones. By enforcing a Z2-symmetry one also ensures
the absence of tree-level FCNC under renormalization group evolution of the
model to other energy scales.

Recently another way of avoiding the tree-level FCNC, by having the
Yukawa couplings to the two Higgs doublets proportional to each other, has
been proposed [3]. This works fine at a given energy scale but if one evolves
the model to another scale then the tree-level FCNC are reintroduced because
the Yukawa couplings in this model do not respect any Z2 symmetry as shown
by Ferreira et al [4]. There has also been some discussion of the experimental
constraints on this model under renormalization group evolution [5–7] and
we will revisit these constraints more carefully below.

More generally, the FCNC at a given energy scale are avoided as long as
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the Yukawa couplings are diagonal in the appropriate basis. The constraints
on these more general models from low-energy flavour observables have also
been studied [8], but not their properties under renormalization group evolu-
tion. Apart from these schemes, which are set up in order to avoid tree-level
FCNC to a larger or lesser extent, one can also envision a top-down approach
where one assumes a certain texture for the mass matrices and from this de-
rives the Yukawa coupling matrices. In the present context the prime example
is the Cheng-Sher ansatz [9] which gives a natural suppression of tree-level
FCNC from the hierarchy of quark masses. Some generic properties of these
models under renormalization group evolution have been studied [10] but not
taking experimental constraints into account.

In this paper we will study the properties of all these types of models tak-
ing into account also experimental constraints on FCNC when evolving them
according to the Renormalization Group Equations (RGE) for the Yukawa cou-
plings. In this way we can see how stable the various assumptions are un-
der RGE evolution, which in turn gives a measure of have plausible the as-
sumptions are. A large sensitivity indicates that the assumptions behind the
model are not stable meaning that they are either fine-tuned or incomplete
such that there for example will be additional particles appearing when going
to a higher energy. From this respect we will study both the appearance of
a Landau pole as well as off-diagonal Yukawa couplings leading to FCNC at
high energies, which are larger than what is experimentally allowed at the EW
scale.

The layout of the paper is as follows. We first give a brief introduction to
the general 2HDM in section IV.2 including the Yukawa sector with emphasis
on the FCNC problem as well as some possible solutions and the RGEs for
the Yukawa couplings. Section IV.3 gives the latest constraints on the non-
diagonal Yukawa couplings from neutral meson mixing as well as the SM
input values we use. Then in section IV.4 we present our numerical analy-
sis of the running Yukawa couplings. We investigate the limits both from the
absence of a Landau pole as well as from requiring the off-diagonal Yukawa
couplings at higher energy scales to be in accordance with the experimental
limits at the EW scale. Finally, in section IV.5 we present our conclusions.

IV.2 The general 2HDM

IV.2.1 The Scalar Sector

The two Higgs doublet model was introduced in [1] and for a more general
overview of its properties and the constraints that can be put on it, we refer
to the recent review [11]. Much of the phenomenology of the 2HDM is also
closely related to the SM and MSSM for which we refer to the reviews by

IV
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Djouadi [12, 13].
The most general renormalizable scalar potential with two Higgs doublets,

Φ1 and Φ2, can be written as

VΦ = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c)

+
1

2
λ1(Φ1Φ1)

2 +
1

2
λ2(Φ2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

{
1

2
λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
(Φ†

1Φ2) + h.c

}
. (IV.1)

The coupling constants m2
11, m2

22 and λ1,2,3,4 are real, while m12 and λ5,6,7 can
be complex if there are not any further restrictions. In the following we will
however set them to be real such that there is no explicit CP-violation.

The vacuum expectation values (VEVs) of Φi are in general

〈Φ1〉0 =
1√
2

eiθ1

(
0

v1

)
,

〈Φ2〉0 =
1√
2

eiθ2

(
0

v2

)
, (IV.2)

and tan β is defined as the ratio of the vi, tan β = v2/v1.
The Higgs doublets can be rotated to a basis in which only one of the dou-

blets has a vacuum expectation value using the angle β. This is called the
Higgs basis and is related to the general basis as

H1 = cos β Φ1 + sin β e−iθΦ2 ,

H2 = − sin β Φ1 + cos β e−iθΦ2 , (IV.3)

with θ = θ2 − θ1. Hence the VEVs for the doublets in the Higgs basis, with
v2 = v2

1 + v2
2, are

〈H1〉0 =
1√
2

eiθ1

(
0

v

)
,

〈H2〉0 =

(
0

0

)
. (IV.4)

We have defined both Φi to have weak hypercharge +1. Doublets with
weak hypercharge −1 can be constructed out of the complex conjugate fields
via

Φ̃i = iσ2Φ∗
i . (IV.5)

Φ1 and Φ2 consist of 8 real fields in total. Three of them correspond to
the Goldstone bosons to be eaten by the weak gauge bosons W± and Z0 upon
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spontaneous breaking of the gauge group SU(2)L ×U(1)Y. One of the standard
conventions to write the doublets without the Goldstone bosons is (setting for
clarity θ1 = 0)

Φ1(x) =

(
−sβ H+

1√
2
(cβv − sαh + cα H − isβ A)

)

Φ2(x) =

(
cβ H+

1√
2
(sβv + cαh + sα H + icβ A)

)
. (IV.6)

Here H± is the charged Higgs boson and the angle α (sα = sin α, cα = cos α) is
introduced to diagonalize the CP eigenstates in the neutral sector, which can
be divided into two CP even scalars: (H, h), and a CP odd pseudo-scalar: A.

IV.2.2 The Yukawa Sector

The weak eigenstates of the SM fermions (with massless neutrinos for simplic-
ity) are denoted as

QL =

(
UL

DL

)
LL =

(
νL

EL

)
,

UR, DR, ER . (IV.7)

The most general Yukawa interaction can then be written as

−LY = QLΦ̃1ηU
1 UR + QLΦ1ηD

1 DR + LLΦ1ηL
1 ER

+QLΦ̃2ηU
2 UR + QLΦ2ηD

2 DR + LLΦ2ηL
2 ER + h.c. . (IV.8)

We leave the generation index implicit here, all entities are matrices or vectors
in the three-dimensional generation space. The ηF

i are the 3 × 3 matrices of
Yukawa couplings for F = U, D, L.

In order to show more explicitly the physical content in the Yukawa cou-
plings, we rotate the Yukawa coupling matrices to the Higgs basis by inverting
Eq. (IV.3) and inserting into Eq. (IV.8).

−LY = QL H̃1κU
0 UR + QL H1κD

0 DR + LL H1κL
0 ER

+QL H̃2ρU
0 UR + QL H2ρD

0 DR + LL H2ρL
0 ER + h.c. . (IV.9)

The relations between the two sets of Yukawa matrices are

κU
0 = cos β ηU

1 + sin β(e−iθηU
2 ) ,

κD
0 = cos β ηD

1 + sin β(e+iθηD
2 ) ,

κL
0 = cos β ηL

1 + sin β(e+iθηL
2 ) ; (IV.10)

IV
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and

ρU
0 = − sin β ηU

1 + cos β(e−iθηU
2 ) ,

ρD
0 = − sin β ηD

1 + cos β(e+iθηD
2 ) ,

ρL
0 = − sin β ηL

1 + cos β(e+iθηL
2 ) . (IV.11)

The couplings to H1 produce the masses of the fermions. We can go over to
the fermion mass basis by bi-diagonalizing the matrices κF with the unitary
matrices VF

L , VF
R :

κF = VF
L κF

0 VF†
R =

√
2

v
MF

ii (IV.12)

ρF = VF
L ρF

0 VF†
R (IV.13)

The κF are diagonal, real and positive and are fully determined from the
fermion masses MF

ii with MU
11 = mu etc. ρF is still a general complex matrix

whose non-diagonal matrix elements could cause tree level flavour-changing-
neutral-currents. The reason is that we cannot in general diagonalize two dif-
ferent matrices simultaneously. The flavour changing charged currents are
described by the matrix

VCKM = VU
L VD†

L . (IV.14)

We now can derive the Yukawa interactions in the Higgs and fermion mass
basis. Using the definitions of Eqs. (IV.3), (IV.6), and (IV.10-IV.13), the Yukawa
interactions (IV.9) become (see e.g. [14])

−LY =
1√
2

D̄
[
κDsβ−α + (ρDPR + ρD†

PL)cβ−α

]
Dh

+
1√
2

D̄
[
κDcβ−α − (ρDPR + ρD†

PL)sβ−α

]
DH +

i√
2

D̄(ρDPR − ρD†
PL)DA

+
1√
2

Ū
[
κUsβ−α + (ρU PR + ρU†

PL)cβ−α

]
Uh

+
1√
2

Ū
[
κUcβ−α − (ρU PR + ρU†

PL)sβ−α

]
UH − i√

2
Ū(ρU PR − ρU†

PL)UA

+
1√
2

L̄
[
κLsβ−α + (ρLPR + ρL†

PL)cβ−α

]
Lh

+
1√
2

L̄
[
κLcβ−α − (ρLPR + ρL†

PL)sβ−α

]
LH +

i√
2

L̄(ρLPR − ρL†
PL)LA

+
[
Ū
(
VCKMρDPR − ρU†

VCKMPL

)
DH+ + ν̄ρLPRLH+ + h.c.

]
, (IV.15)

where PR/L = (1 ± γ5)/2. One can clearly see, that if the Yukawa coupling ma-
trices ρF are not diagonal, there are flavour-changing-neutral-currents (FCNC)
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Type UR DR LR ρU ρD ρL

I + + + κU cot β κD cot β κL cot β

II + − − κU cot β −κD tan β −κL tan β

III/Y + − + κU cot β −κD tan β κL cot β

IV/X + + − κU cot β κD cot β −κL tan β

Table IV.1: The different types of 2HDM with Z2 symmetry. The nomenclature follows
[8]. The Z2 charges for Higgs doublets are odd or −1 for Φ1 and even or +1 for Φ2. The
right-handed fermions have been given different Z2 charges assignment as shown. The
Yukawa matrices ρF are proportional to the κF and thus also diagonal with the relation
shown in the last three columns.

at tree level, which are absent in the Standard Model and are severely con-
strained by experiments. Therefore, either these terms are completely forbid-
den by certain symmetries or mechanisms, or they are sufficiently small to
avoid the current experimental bounds. An early discussion is the paper by
Glashow and Weinberg [2].

There are different known solutions to the FCNC problem. In this paper
we study three different cases:

• Z2 symmetry

If there is only one Higgs doublet coupling to each type of fermions,
the situation becomes the same as in the standard model. The FCNC
couplings vanish completely, known as naturally vanishing FCNC [2].
An elegant way to achieve this is to impose a Z2 symmetry on the La-
grangian and set one of the Higgs doublets and some of the right handed
fermions to be Z2 odd. The different cases depending on which fermions
couple to the same doublets are listed in Table IV.1. We also note that the
Higgs sector of the MSSM is of type II at tree-level.

• Yukawa Alignment

A more general way to diagonalize the Yukawa matrices simultaneously
is the Yukawa Alignment model [3]. They proposed that the Yukawa
coupling matrices ηF

1 and ηF
2 are proportional to each other. So the ro-

tated Yukawa coupling matrices κF and ρF are also proportional to each
other and can thus be diagonalized simultaneously. However, other
than the models with Z2 symmetry, this alignment may be spoiled at
higher energy scales. Some of the non-diagonal couplings leading to
FCNC may become sizable at higher scales. Studying limits on the pro-
portionality constants from this source is one of the purposes of the
present paper.

• Cheng-Sher Ansatz

A third possibility is to keep the off-diagonal FCNC elements in the ρF

IV
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naturally small. The best known ansatz of this type was proposed by
Cheng and Sher [9]

ρF
ij = λF

ij

√
2mimj

v
. (IV.16)

The mi are the different fermion masses. Since the diagonal elements of
the κF have a hierarchy in size corresponding to the fermion mass hierar-
chy it is natural to introduce this also for the ρF. The λF are expected to be
of O(1) and should be small enough to suppress FCNC to the observed
level. We discuss these limits below. One should be aware that there are
different parameterizations of the Cheng-Sher ansatz, some papers do
not have the factor of

√
2 in (IV.16), e.g. [15].

IV.2.3 RGE for Yukawa Couplings in 2HDM

The variation of couplings and masses with the subtraction scale µ is given
by the renormalization group equations (RGE). The running of Yukawa cou-
plings in the 2HDM can be found in many places, e.g. [4,10,11]. We have also
rederived them using the methods of [10].

Using the notation D ≡ 16π2d/d(ln µ) the RGEs for the Yukawa couplings
in the general basis are:

DηU
k = −AUηU

k +
2

∑
`=1

Tr
[

Nc

(
ηU

k ηU†
`

+ ηD
`

ηD†
k

)
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`

]
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`
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1

2

2

∑
`=1

[
ηU
`

ηU†
`

+ ηD
`

ηD†
`

]
ηU

k + ηU
k

2

∑
`=1

ηU†
`

ηU
`
− 2

2

∑
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[
ηD
`

ηD†
k ηU

`

]
,

DηD
k = −ADηD

k +
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∑
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[

Nc
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ηD

k ηD†
`

+ ηU
`

ηU†
k
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k ηL†
`

]
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`

+
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∑
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[
ηU
`
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`
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`
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]
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∑
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ηD†
`
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∑
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∑
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[
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`
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`
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`
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+
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∑
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1

2
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`
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k ηL†
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`

]
. (IV.17)
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where AF are given by the gauge couplings as follows

AU = 3
(N2

c − 1)

Nc
g2

3 +
9

4
g2

2 +
17

12
g2

1 ,

AD = AU − g2
1 ,

AL =
15

4
g2

1 +
9

4
g2

2 . (IV.18)

with g1 = e/ cos θW , g2 = e/ sin θW , and g3 = gs, sin θW being the weak mixing
angle. In turn the RGEs for the gauge couplings up to one loop level are

D(g1) =

(
1

3
+

10

9
nq

)
g3

1 ,

D(g2) = −
(

7 − 2

3
nq

)
g3

2 ,

D(g3) = −1

3

(
11Nc − 2nq

)
g3

3 . (IV.19)

nq is the number of active quarks above energy threshold. In this paper we
will always use nq = 6 since we start the evolution at mZ.

Finally the RGEs for the fields and thus for the vacuum expectation values
eθi vi are:

D(eiθk vk) = −
2

∑
`=1

Tr
[

Nc

(
ηU

k ηU†
`

+ ηD
`

ηD†
k

)
+ ηL

`
ηL†

k

]
eiθ`v`

+

(
3

4
g2

1 +
9

4
g2

2

)
eiθk vk . (IV.20)

Note that the running of the Yukawa couplings as given in (IV.17) is inde-
pendent of the couplings in the Higgs potential (IV.1). They only appear at the
two-loop level.

Using the definitions (IV.3), (IV.10) and (IV.11), the RGEs can be rewrit-
ten in the Higgs basis. The vacuum expectation value v, the phase difference
between the two vacuum expectation values θ and the angle β relating the
general basis and the Higgs basis satisfy the following RGEs:

D
(

v2
)

= −2Tr
[

Nc

(
κU

0 κU†
0 + κD

0 κD†
0

)
+ κL

0 κL†
0

]
v2 +

[
3

2
g2

1 +
9

2
g2

2

]
v2 ,

D(tan β) = − 1

2 cos2 β
Tr

[
Nc

(
ρU

0 κU†
0 + κU

0 ρU†
0 + κD

0 ρD†
0 + ρD

0 κD†
0

)

+κL
0 ρL†

0 + ρL
0 κL†

0

]
,
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D(θ) =
1

i sin(2β)
Tr

[
Nc

(
κU

0 ρU†
0 − ρU

0 κU†
0

)
− Nc

(
κD
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0

)

−
(

κL
0 ρL†
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0 κL†

0

) ]
. (IV.21)

Finally the Yukawa couplings in the Higgs basis, in other words the matrices
κF

0 and ρF
0 satisfy:

D
(

κU
0
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[
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, (IV.22)
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, (IV.23)
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+
1

2
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Before ending this section we note that the tan β dependent terms in the
evolution equations for the Yukawa couplings disappear in the real case. In
the CP-violating case ρ is no longer basis-independent and therefore there is a
residual dependence on tan β in this case. For a thorough discussion of basis
independent quantities in the CP-violating case we refer to [16].

IV.3 Constraints and SM input

IV.3.1 Low-energy constraints on λF
ij

In the recent review of 2HDM [11], the authors have given a comprehensive
overview on the latest constraints on the λF

ij. The most stringent ones are in

the quark sector, coming from the neutral meson mixing, and we will therefore
limit ourselves to these constraints in the following.

The master formula for F0 − F̄0 mixing mediated by tree level Higgs scalars
in the vacuum insertion approximation can be found in [17]:

∆MF =
(ρF

ij)
2

MF

[
SF

(
c2

β−α

m2
h

+
s2

β−α

m2
H

)
+

PF

m2
A

]
(IV.28)

SF =
1

6
BF f 2

F M2
F

[
1 +

M2
F

(mi + mj)2

]

PF =
1

6
BF f 2

F M2
F

[
1 +

11M2
F

(mi + mj)2

]

Here MF and ∆MF are the mass and mass difference of the neutral mesons
respectively, and fF is the corresponding pseudo-scalar decay constant. The
parameter BF is defined as the ratio of the actual matrix element compared to
its value in the vacuum insertion approximation [17]. The numerical values of
the parameters we use are listed in Table IV.2.

To calculate the limits on λF
ij, we require that the sum of the SM and 2HDM

theoretical predictions for ∆MF does not exceed the experimental value by
more than 2 standard deviations:

∆MSM
F + ∆M2HDM

F ≤ ∆M
expt
F + 2σ (IV.29)

where σ =
√

σ2
expt + σ2

SM is a combination of the experimental and theoretical

uncertainties. For the K0 − K̄0 and D0 − D̄0 mixing, the non-perturbative in-
teractions make the SM calculation very difficult. Here we therefore simply
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Meson MF(GeV) BF fF (GeV)
K0 (ds̄) 0.4976 [18] 0.75 ± 0.026 [19] 0.1558 ± 0.0017 [19]
D0 (ūc) 1.8648 [18] 0.82 ± 0.01 [20] 0.165 [20]
B0

d (db̄) 5.2795 [18] 1.26 ± 0.11 [19] 0.1928 ± 0.0099 [19]
B0

s (sb̄) 5.3663 [18] 1.33 ± 0.06 [19] 0.2388 ± 0.0095 [19]

Table IV.2: Parameters of the neutral mesons K0, D0,B0
d and B0

s .

assume that the 2HDM contribution is not larger than the experimental value
by more than 2 standard deviations. This corresponds to setting the SM con-
tribution to zero in Eq. (IV.29) as was done in [15]. The experimental and SM
values we thus use are listed below.

1. K0 − K̄0:

∆M
expt

K0 = (3.483 ± 0.006)× 10−15 GeV [18]

∆MSM
K0 = 0

2. D0 − D̄0

∆M
expt
D0 = 1.57+0.39

−0.415 × 10−14 GeV [18]

∆MSM
D0 = 0

3. B0
d − B̄0

d

∆M
expt
Bd

= (3.344 ± 0.0197 ± 0.0197)× 10−13 GeV [18]

∆MSM
Bd

= 3.653+0.48
−0.30 × 10−13 GeV [21]

4. B0
s − B̄0

s

∆M
expt
Bs

= (116.668 ± 0.270 ± 0.171)× 10−13 GeV [22]

∆MSM
Bs

= 110.6+17.1
−9.9 × 10−13 GeV [21]

The 2HDM contribution is then calculated using Eq. (IV.28). We note that
the quark masses appearing in Eq. (IV.28) are the low energy ones defined
more or less at the scale of the respective meson masses. For internal consis-
tency we use the following values from ref. [23] (in GeV):

mu(2 GeV) = 2.2 × 10−3 , mc(mc) = 1.25 ;

md(2 GeV) = 5.0 × 10−3 , ms(2 GeV) = 0.095 , mb(mb) = 4.2 .
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However, the impact of the actual quark masses used is very small since the
masses appearing in (ρF

ij)
2 and the dominant pseudo-scalar matrix element

M2
F/(mi + mj)

2 essentially cancel, and we get similar results using the masses
defined at mZ instead.

From Eq. (IV.28) we can see that the main uncertainty of this estimate is due
to the unknown masses of the CP-even and CP-odd Higgs bosons. It is also
clear that the contribution to the mixing from the CP-odd exchange is much
larger due to the extra factor 11 in PF for the dominant pseudo-scalar matrix
element. We will consider three different representative cases. We also remind
the reader that in some cases there is an extra factor of

√
2 in the definition of

λF
ij. With all this in mind we get the following constraints on λF

ij:

• mh = mH = mA = 120 GeV

λuc . 0.13 ,

λds . 0.08, λdb . 0.03, λsb . 0.05 .

• mh = mH = mA = 400 GeV

λuc . 0.44 ,

λds . 0.27 , λdb . 0.12 , λsb . 0.18 .

• mh = mH = 120 GeV mA = 400 GeV

λuc . 0.30 ,

λds . 0.20 , λdb . 0.08 , λsb . 0.12 .

The first and second cases are examples of typical low and intermediate
masses for the Higgs bosons, whereas the last case illustrates that the main re-
striction comes from the exchange of the CP-odd Higgs. All in all we conclude
from these different cases that a representative value for these constraints is
given by λF

i 6=j . 0.1 and this is the generic value we will use when analyzing

the effects of Z2 breaking in the running of the Yukawa couplings in the next
section.

IV.3.2 General input

For the RGE evolution towards high scales we need a set of input parameters
at the low scale µ = mZ = 91.186 GeV. The experimental input we have are the
masses and the measured parameters of the CKM-mixing matrix as well as the
gauge couplings. We have neglected constraints coming from the neutrino
sector. The quark and charged lepton masses at the scale mZ we take from
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Ref. [23], their values are (in GeV)

mu = 1.29 × 10−3 , mc = 0.619 , mt = 171.7 ;

md = 2.93 × 10−3 , ms = 0.055 , mb = 2.89 ;

me = 0.487 × 10−3 , mµ = 0.103 , mτ = 1.746 .

For the 3 × 3 CKM matrix we use the PDG [18] phase convention

VCKM =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 , (IV.30)

where sij = sin θij and cij = cos θij. We will also use this convention for the
phases at the high scale. The values for the angles and the phase follow from
[18]

s21 = λ , s23 = Aλ2 ,

s13eiδ =
Aλ3 (ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2

[
1 − A2λ4 (ρ̄ + iη̄)

] . (IV.31)

with

λ = 0.2253 , A = 0.808 , ρ̄ = 0.132 , η̄ = 0.341 . (IV.32)

There is of course still a large freedom in how one chooses the remaining
freedom at the weak scale mZ. We chose to put the CKM-mixing always in the
down quark sector and have thus at the EW scale

VU
L = VU

R = I

VD
L = V†

CKM VD
R = I

VL
L = VL

R = I .

The last two are a consequence of our neglecting neutrino masses and mixings.
The Yukawa couplings at the EW scale are thus:

(κU
0 )ij = κU

ij =

√
2mi

v
, (ρU

0 )ij = ρU
ij (i, j = u, c, t)

(κD
0 )ij = VCKM κD

ij = VCKM

√
2mi

v
, (ρD

0 )ij = VCKM ρD
ij (i, j = d, s, b)

(κL
0 )ij = κL

ij =

√
2mi

v
, (ρL

0 )ij = ρL
ij (i, j = e, µ, τ)

At any energy higher than the EW scale, the Yukawa couplings κ0 and ρ0 in
general become non-diagonal and complex. Thus they need to be transformed
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to the mass eigenstates by the bi-diagonalization defined in Eq. (IV.13) in or-
der to give κ and ρ. The latter can then be used together with the diagonal ele-
ments of the former to calculate λF

i 6=j. When performing the bi-diagonalization

we always keep to the PDG conventions for how to write the CKM matrix.
For the electroweak VEV we use v2 = 1/(

√
2GF) with GF = 1.16637 · 10−5

GeV−2 from PDG [18] and for the phase difference between the two VEVs we
start from θ = 0 such that there is no spontaneous CP-violation. For the gauge
couplings we use the PDG [18] values: α = 1/127.91, αs = 0.118 and for the
weak mixing angle we use the on-shell value sin2 θW = 0.2233.

IV.4 RGE analysis

We have implemented the RGE equations in the Higgs basis given above in
three different computer codes. The matrix operations have been performed
with either the C++ template library Eigen [24] or the GNU Scientific Library
(GSL) [25] and the in total 114 ordinary differential equations are handled by
the ODE-solver in GSL using the explicit Runge-Kutta-Fehlberg (4,5) method.
The programs have been tested against each other and also by comparing with
the results from [10].

In this section we will start by briefly exploring the behavior of Z2-
symmetric models and then study a number of Z2-breaking models in more
detail.

IV.4.1 Z2-symmetric models

From table IV.1 and the definitions of κF and ρF, we get the diagonal elements
of λF

ii in terms of tan β for the four different 2HDM types as shown in table
IV.3. Since in this case the Yukawa couplings are given by tan β it is a real
physical parameter. In addition the evolution of the Yukawa couplings will
only depend on the initial value of tan β.

Since the Z2-symmetry is enforced the Yukawa couplings stay diagonal and
the only thing that can happen during the evolution is that one or more of the
Yukawas will blow up due to the presence of a Landau pole. This signals the
breakdown of the perturbative description and calls for a new theory at the
corresponding energy scale. The position of the Landau pole will depend on
the initial value of tan β and which of the four types we are considering.

In Fig. IV.1 we show the position of the Landau pole as a function of the
input tan β. For the lower limits, the results are almost the same for all types,
and the lines are more or less on top of each other. This is natural since in this
regime the evolution is essentially driven by λtt, which is the same in all types.
For the upper limits, on the other hand, there are some differences. First of all
there is no upper limit on tan β in the type I model, which means there is no
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Type λU
ii λD

ii λL
ii

I 1/ tan β 1/ tan β 1/ tan β

II 1/ tan β − tan β − tan β

III/Y 1/ tan β − tan β 1/ tan β

IV/X 1/ tan β 1/ tan β − tan β

Table IV.3: The diagonal λF
ii in 2HDM models with Z2 symmetry.
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Figure IV.1: The starting value of tan β as a function of the position of the correspond-
ing Landau pole (ΛLandau−pole) in the different 2HDM types. There are lower limits on
tan β for all four types (left), but only type II, type III/X and type IV/Y have an upper
limit of tan β (right).

Landau pole below 1016 GeV if the input tan β > 1.1. For the other types, the
upper limits are shown in the right panel of Fig. IV.1. The differences can be
understood from whether the evolution is driven by λbb (type III), λττ (type
IV) or both (type II).

IV.4.2 Z2-breaking models

Before starting to analyze the Z2-breaking models we note that, as shown
by [4], the Z2-symmetry of the RGE’s is still preserved if all the λF’s for the dif-
ferent types are rescaled with a factor x for the cot β ones and 1/x for the tan β

ones. In addition, when tan β is no longer related to the Yukawa couplings it
does not have any physical meaning, since it only reflects the basis choice for
the general 2HDM. In the following we will only be considering cases with ρ

real at the starting scale. This means that the only source of CP-violation is
from the CKM-matrix. Thus the CP-violating effects will be small and there-
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fore the dependence on tan β very limited. We have verified this numerically
for a number of cases and in the following we set tan β = 1.

In this subsection, we will also explore the non-diagonal elements of FCNC
Yukawa couplings. We know that in the Z2 symmetric case, the tree level
FCNC couplings will remain equal to zero (up to the numerical precision) up
to arbitrarily high energy scales since they are protected by the symmetry.
However once we break the Z2 symmetry in some way, this protection is not
effective anymore and the off-diagonal elements λF

i 6=j may start to grow.

The actual values of the non-diagonal FCNC Yukawa couplings ρF
i 6=j at dif-

ferent energy scales will depend on how much we break the Z2 symmetry. We
can thus use the size of the λF

i 6=j as a measure of how severe different types of

Z2 symmetry breaking are. Of course we do not know how large the λF
i 6=j can

be at higher scales. Still it is reasonable to assume that the values should not
be widely different from the ones at the EW scale. Thus we will use a generic
value of λF

i 6=j ≤ 0.1 as a limit on how much Z2 symmetry breaking should be

allowed and see at which energy scale this limit is reached.

The argument behind this is essentially that we can use the RGE evolu-
tion to analyze the stability of the assumptions underlying different 2HDMs
under variations of the scale where the model is defined. A large sensitiv-
ity indicates that the assumptions behind the model are not stable meaning
that they are either fine-tuned or incomplete such that there for example will
be additional particles appearing when going to a higher energy. From this
respect we will thus study both the appearance of a Landau pole as well as
off-diagonal Yukawa couplings leading to FCNC larger than experimentally
allowed at the EW scale. We also note that as will become clear below there
is a small dependence on at which scale we apply the above argument. Re-
quiring stability up to 103 GeV gives very similar constraints on the amount of
Z2-breaking that is allowed as when using 1015 GeV.

There are many possibilities to break the Z2 symmetry and in the following
we will consider three ways: aligned, diagonal and non-diagonal λF

ij as de-

fined below. In most cases we will concentrate on the effects of breaking the
symmetry starting from a type I or type II model. The reasons for this is on
the one hand that these models are the most well studied cases in the litera-
ture and on the other hand that it is in the quark sector that we have the most
stringent constraints on the FCNC Yukawa couplings. Thus the breaking of
the Z2 symmetry in the lepton sector will typically have small effects.

In order to be able to separate the effects of breaking the Z2 symmetry in
different ways we will limits ourselves to breaking the symmetry in one spe-
cific way at a time.

We start by noting that in the Z2 symmetric models at least two of the λF

are always equal whereas the third one is the same as the other two in type
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I and the negative inverse of them in the other types. When going to the
aligned models we will therefore keep two of the sectors in fulfillment with
the Z2-symmetry and only break the symmetry through the relation to the
third sector. In other words either setting λD

ii = λL
ii, λU

ii = λL
ii, or λU

ii = λD
ii and

letting λF
ii of the third sector vary independently of the other two.

Another way of breaking the Z2-symmetry is by keeping the λF
ij diagonal

but letting the individual diagonal elements be non-equal as has been studied
by Mahmoudi and Stål [8]. We will analyze the effects of this type of breaking
in the up and down sectors separately again starting from the Z2-symmetric
cases with either λD

ii = λL
ii = λtt or λD

ii = λL
ii = −1/λtt. In other words using the

type I or II Z2-symmetries as starting point.
The third way of breaking the Z2-symmetry that we will consider is by

setting the non-diagonal elements of λF
ij nonzero already at the starting scale.

Again we will consider setting the up-sector and down-sector non-diagonal
elements non-zero separately and apply the type I or type II symmetries for
the diagonal elements.

Aligned models

We start by analyzing the three different versions of Aligned models with λU ,
λD, and λL pairwise equal. Based on the similarities with the Z2-symmetric
models we call them I/II, III, and IV respectively and their free parameters
are as follows

• Aligned I/II: λU
ii , λD

ii = λL
ii

• Aligned III: λD
ii , λU

ii = λL
ii

• Aligned IV: λL
ii, λU

ii = λD
ii

First we consider the effects of requiring that there is no Landau pole en-
countered when evolving to higher scales. We therefore plot in Fig. IV.2 the
scale at which the Landau pole is reached as a function of the starting val-
ues for pairs of λU , λD, and λL. This means that for a given energy scale the
points inside the corresponding contour is allowed by this requirement. As
can be seen from the figure, the position of the Landau poles is very similar to
the situation for the Z2-symmetric cases and there is only a small correlation
between the values of the aligned Yukawas where the Landau pole is reached.

Applying also the condition that the off-diagonal elements of should re-
spect the limits given by the meson mixing constraints also at higher scales
has a potentially large impact on the allowed regions. This is the case for the
aligned models of type I/II and III, where λL is set equal to λD and λU re-
spectively, as can be seen in Fig. IV.3. In fact, within the parameter region
displayed in the figure (note the difference in scale compared to Fig. IV.2)
there is no difference between the two cases and therefore we only show one
of them. However, as may also have been expected, there are no additional
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Figure IV.2: The energy scale at which the Landau pole is encountered as a function
of pairwise combinations of the starting values for λU

ii , λD
ii , and λL

ii as indicated in the
figure for the three different versions of aligned models explained in the text. The areas
inside a given contour are allowed by the requirement of not having a Landau pole.
The different contours are as follows starting from the center: 1015, 1010, 105, 103, and
300 GeV.

constraints in the case when λD and λU are set equal since the off-diagonal
lepton Yukawas are always small as a consequence of the small lepton masses
and the limited cross-talk between the quarks and leptons. In other words
breaking the Z2 symmetry between the quarks and leptons has no effect in
this respect.
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Figure IV.3: Same as Fig. IV.2 but also applying the constraints from the non-diagonal
λF

i 6=j. The plot shows the results for λL
ii = λD

ii , but the same results are also obtained for

λL
ii = λU

ii .

For reference we have also included lines corresponding to the Z2 symmet-
ric relations in Fig. IV.3. Along these lines it is the Landau pole that gives the
limit but in the other regions the limit comes from the off-diagonal elements.
We also note that the plot is symmetric under inversion through the origin
(x, y) → (−x,−y), which follows since the evolution equations for ρF

0 are all
even under ρF

0 → −ρF
0 as long as the imaginary parts of κF

0 and ρF
0 are small.

It is also interesting to compare the results for non-equal λD and λU with
the constraints on λbb and λtt obtained from b → sγ in [8]. Applying the con-
ditions of stability when evolving to higher scales and that the non-diagonal
Yukawas should stay small essentially removes the regions |λtt| & 1 including
the fine-tuned regions where λbb and λtt are both large (& 2) and have the same
sign.

As special cases we also show in Fig. IV.4 the results for λU
ii = 0.02, 0.5 and

either λD
ii = λL

ii = ξλU
ii (type I) or λD

ii = λL
ii = −ξ/λU

ii (type II). From these plots
it is clear that for λU

ii = 0.5, the off-diagonal elements puts strong constraints
on the Z2-symmetry breaking parameter ξ = λD

ii /λU
ii ( ξ = −λD

ii λU
ii ) with typ-

ical values being ξ . 3 − 10 (2 − 5) for type I (II). For λU
ii = 0.02 on the other

hand the constraints are very mild in a type I set-up with ξ . 100 − 1000 al-
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Figure IV.4: The constraints on the starting values of ξ = λD
ii /λU

ii (left) and ξ = −λD
ii λU

ii
(right) as a function of the renormalization scale where the off-diagonal elements
reaches 0.1 in the Aligned models of type I and type II respectively for the representa-
tive values λU

ii = 0.02 and 0.5.

lowed, whereas in a type II setup only ξ values very close to 1 or ξ . 0.05 − 0.1

are allowed. The two possibilities corresponds to two distinct regions in the
λD

ii , λU
ii plane. The first one where λD

ii ≈ −1/λU
ii and the second one where λD

ii
is small (. 2 − 5). For comparison we recall that the Landau pole constrains
λD

ii . 70 − 200 more or less irrespectively of λU
ii . So the constraints on ξ are

more or less trivial in this case.

Diagonal models

Next we consider in more detail models with Z2-breaking in either the up or
the down sector. To make the discussion more clear we only consider models
where λtt and λbb are related in a Z2 symmetric way and since we have seen
that the effects of the lepton sector is small we always set λL

ii = λbb. (If λtt and
λbb are not related in a Z2 symmetric way then we are more or less back in the
aligned models since these two are the dominant Yukawas). In other words
we only partially break the alignment.

Thus we start with considering Z2-breaking in the up-sector with λD = λtt

(type I) or λD = −1/λtt (type II). For simplicity we also set λuu = λcc.
First of all, as we show in Fig. IV.5, the Landau pole gives the restriction

λcc . 400 − 500 both for type I and II, again more or less independently of
the value of λtt. We also want to emphasize that even though it is not really
discernable from the figure, there is also a lower limit on λtt & 0.01 from the
Landau pole for λbb for type II.
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Figure IV.5: The energy scale where the Landau pole is reached (upper panels) together
with the scale where one of the non-diagonal λF

i 6=j = 0.1 (lower panels) as a function of

the input values λcc and λtt. In the left (right) panels λD = λL = λtt(−1/λtt).

The figure also shows that the impact of constraining the off-diagonal el-
ements to be less than 0.1 is limited for the type I set-up. In fact for λtt = 0

there is not additional constraint from the off-diagonal elements. In the type
II set-up the constraints are more severe but even so quite mild.

To get a better picture of the range of the amount of Z2-breaking allowed
we also give in Fig. IV.6 the constraints on the ratio λcc/λtt in type I and II set
ups for our standard values λtt = 0.02 and 0.5. From the plots it is clear that
this ratio can be as large as ∼ 1000 without generating off-diagonal λF ≥ 0.1 all

IV



194 Constraining General 2HDM by the Evolution of Yukawa Couplings

 1

 10

 100

 1000

 10000

 100000

×102
×104

×106
×108

×1010
×1012

×1014
×1016

λcc/λtt

µ [GeV]

Diagonal: type I

λtt = 0.5
λtt = 0.02

 1

 10

 100

 1000

 10000

 100000

×102
×104

×106
×108

×1010
×1012

×1014
×1016

λcc/λtt

µ [GeV]

Diagonal: type II

λtt = 0.5
λtt = 0.02
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malization scale where the off-diagonal elements reaches 0.1 in the diagonal models of
type I (left) and type II (right) for the representative values λtt = 0.02 and 0.5.

the way up to the GUT scale.
Next we consider Z2-breaking in the down-sector with λbb = λU

ii (type I) or
λbb = −1/λU

ii (type II). Similarly to the up-sector we set λdd = λss for simplic-
ity. Also in this case the constraints from the Landau pole are similar for the
two set-ups with λss . 400 − 700 in both cases with a small correlation with
the value of λU

ii and λbb for a set up of type I and type II respectively as can be
seen from Fig. IV.7 (upper panels). However, contrary to the up-sector the fig-
ure (lower panels) also shows that the effects from requiring the off-diagonal
Yukawas to be small are quite severe. In the type II case one can even see a
mild preference for solutions with λss ≈ λbb.

To get a more quantitative picture of the constraints we show in Fig. IV.8
the ratio ξ = λss/λbb for type I and type II using the values λU

ii = 0.02 and 0.5.
In the type II set-up the constraints are especially restrictive with ξ . 4 − 10

for λU
ii = 0.02. In the type I set-up the constraints are less severe but even so

stronger than the corresponding ones from the up-sector.

Non-diagonal models

Finally we consider the case of breaking the Z2-symmetry from having non-
zero non-diagonal elements in the up- or down sectors. As starting point we
again use the Z2 symmetric models of type I or II for the diagonal elements
and then set either λU

i 6=j = 0.1 or λD
i 6=j = 0.1 at the EW scale in order to break the

Z2 symmetry.
Quite unexpectedly the additional constraints from requiring the off-
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Figure IV.7: The energy scale where the Landau pole is reached (upper panels) together
with the scale where one of the non-diagonal λF

i 6=j = 0.1 (lower panels) as a function of

λss and λbb. In the left (right) panels λU = λbb(−1/λbb) and in all cases λL = λbb.

diagonal elements to stay small are limited. The corresponding plots for the
case of only considering the Landau pole are essentially straight vertical lines.
Thus we do not show the effects of applying the two constraints separately. In
fact it is only in case II with λD

ii = λL
ii = −1/λU

ii and λU
i 6=j = 0.1 that the require-

ment of having λU
i 6=j(µ) ≤ 0.1 gives any discernable effect and then only for

small λU
ii . 0.2. On the other hand, in this case the constraints are very strong

as also illustrated in Fig. IV.10. It is interesting to note that it is actually the
off-diagonal elements in the down-sector that become large whereas the ones

IV



196 Constraining General 2HDM by the Evolution of Yukawa Couplings

 1

 10

 100

 1000

 10000

 100000

×102
×104

×106
×108

×1010
×1012

×1014
×1016

λss/λbb

µ [GeV]

Diagonal: type I

λtt = 0.5
λtt = 0.02

 1

 10

 100

 1000

 10000

 100000

×102
×104

×106
×108

×1010
×1012

×1014
×1016

λss/λbb

µ [GeV]

Diagonal: type II

λtt = 0.5
λtt = 0.02

Figure IV.8: The constraints on the input values ξ = λss/λbb as a function of the renor-
malization scale where the off-diagonal elements reaches 0.1 in the diagonal models of
type I (left) and type II (right) for the representative values λtt = 0.02 and 0.5.

in the up-sector remain in accord with the limit λU
i 6=j(µ) ≤ 0.1. This means that

even though there are presently no direct experimental constraints on λct and
λut they are in this case highly constrained from the link to the down-sector
through the RGE evolution. This is then the case in the MSSM, the prime ex-
ample of a type II 2HDM, for large tan β. To see more clearly what happens we
show also in Fig. IV.10 the RGE evolution of the relevant off-diagonal elements
for the input values λU

ii = 0.02 and λU
i 6=j = 0.001, λD

i 6=j = 0.

IV.5 Conclusion

We have seen that the RGE evolution is a useful tool to analyze the stability of
the assumptions underlying different versions of the 2HDM under variations
of the scale where the model is defined. A large sensitivity indicates that the
assumptions behind the model are not stable meaning that they are either fine-
tuned or incomplete such that there for example will be additional particles
appearing when going to a higher energy. From this respect we have studied
both the appearance of a Landau pole as well as off-diagonal Yukawa cou-
plings leading to FCNC larger than experimentally allowed at the EW scale.

Based on our studies we have seen that the constraints from avoiding a
Landau-pole are in general the same irrespective of the Z2-symmetry. They
appear as soon as the magnitude of one of the Yukawa couplings becomes of
order 1.

The constraints from the off-diagonal elements on the other hand depend
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Figure IV.9: The constraints from the Landau pole and the off-diagonal elements as
a function of λU

ii and the off-diagonal elements λU
i 6=j (up) or λD

i 6=j (down) at the input

scale for the type I (left) and type II (right) relations for the diagonal elements.

on the details of how the Z2-symmetry is broken:

• breaking the Z2 relation between λD and λU as in the Aligned models is
highly constrained with λD/λU . 10 or −λDλU . 10 unless λD and λU

are both . 2,

• breaking it instead in the up-sector by having λcc and λtt non-equal gives
a small difference compared to the constraints coming from the Landau
pole with ratios λcc/λtt > 1000 allowed,
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type II relation between the diagonal elements, λD
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evolution of the non-diagonal elements λct(µ), λsb(µ), and λdb(µ) in the same case for
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• in the down sector the constraints can be much stronger, but also more
dependent on the relation between λbb and λtt, ranging from λss/λbb . 10

for λbb = 50 and λtt = −0.02 to λss/λbb . 10000 for λbb = λtt = 0.02,

• in the non-diagonal case the constraints are weak when starting from
λD,U

i 6=j = 0.1 except in the case λbb = −50 and λtt = 0.02 where we find

λU
i 6=j . 0.001. In all cases it is the λD

i 6=j

From this we can conclude that starting from a type I Z2 symmetry there
is quite a lot of room for breaking the symmetry as long as one does not en-
counter a Landau pole except that λD/λU . 10 has to be respected. In the
type II case however, the room for breaking the symmetry is much smaller for
large λbb. This is natural since in the latter case κtt and ρbb are both large. It
is also interesting to note that this corresponds to the situation in the MSSM
with large tan β. Finally we conclude that there is little hope to see effects of
non-diagonal Yukawa couplings in the top system in a type II model such as
MSSM if tan β is large.
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