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für die tote Materie.
Für das Lebendige aber gelten andere Gesetze.

(frei nach: Jürgen Neffe, “Einstein”, S. 11)





There are two kinds of pain.
The sort of pain that makes you strong,
or useless pain,
the sort of pain that’s only suffering.

I have no patience for useless things.

Moments like this require someone who will act.

Francis Underwood, House of Cards





Abstract/Summary
Chiral Perturbation Theory (ChPT) is a powerful framework that allows to access the

properties and dynamics of QCD in the low-energy regime where the naive perturbative
approach of full QCD is no longer possible. Finite volume (FV) effects for Chiral Pertur-
bation Theory are both of fundamental interest as well as high practical use: In Lattice
QCD, a numerical Monte Carlo approach to low-energy quantities, the FV is inevitable.
Thus, to obtain a powerful symbiosis between the two fields, it is necessary to have the FV
effects well under control both qualitatively and quantitatively.

This thesis starts by pushing the frontier of the FV effects for mesonic ChPT to two-loop
order or NNLO. The power of the results is then significantly extended by generalizing to
the partially quenched case, the latter being an approximation which is highly advantageous
to lattice computations and frequently used. The FV effects for Partially Quenched Chiral
Perturbation Theory (PQChPT), being the effective field theory framework for Partially
Quenched QCD (PQQCD), are computed for all possible different cases of potentially
degenerate or non-degenerate masses.

As a supplement, we use our expertise to perform partially quenched FV calculations
by applying it to Effective Field Theories (EFTs) for QCD-like theories. The resulting EFT
frameworks are similar to ChPT, but heavily rely on the global chiral symmtry group and
its breaking pattern in the underlying theory. Three different cases are studied in detail.

All corrections of interest throughout the thesis are calculated ab-initio. Analytical
results are given, implemented into numerical programs and studied numerically. The
analytical work heavily relies on the extensive use of computer algebra.



Popular Science Summary
This thesis contains research in the area of theoretical particle physics. The field deals

with describing the properties of the most fundamental constituents of matter and their
interactions. Matter in general is composed of atoms which in turn are composed of
electrons and nuclei. The nuclei are in turn composed of protons and neutrons. We know
of one more layer of substructure. The protons and neutrons are essentially made of up
and down quarks. The electron and up and down quarks have to our present knowledge no
substructure. There are four quarks more than the up and down and five so-called leptons
in addition to the electron. These form the matter part of the underlying theory called
the Standard Model. There are four known forces, gravitational, electromagnetic, weak
and strong. The latter three are included in the Standard Model while the former is well
described by General Relativity. The forces are mediated by carrier particles called gauge
bosons. The final constituent of the Standard Model is the Higgs boson which gives masses
to the weak force gauge bosons and the quarks and leptons.

In the Standard Model, the weak interaction is a very short range interaction due to
the mass of the gauge boson. The latter is understood via the Higgs mechanism. Paper I
and paper IV are in the area of alternative ways to realize the Higgs mechanism beyond
the simplest version that is part of the Standard Model.

Paper II and paper III are useful for precision determinations of a number of the pa-
rameters of the Standard Model. The particles involved in paper II and III are composed
of quarks, anti-quarks and gluons, the gauge bosons for the strong interaction. The under-
lying technique used in paper II and III is called effective field theory. It comes into play
when the underlying theory, like the theory of the strong force, is strongly interacting so
the usual techniques cannot be employed. The effective field theory applied here uses only
the symmetries of the fundamental theory to make as many predictions as possible. Paper
IV uses the same technique for studying models where the Higgs boson might itself be a
composite state.
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Introduction





1 Preamble

Symmetries and conservation laws have proven to be successful concepts in the description
of physical systems. Their usage as "tools" has become indispensable. In many cases,
it is possible to gain a qualitative, sometimes even quantitative, understanding of static
properties as well as the dynamics by exploiting the power of symmetry arguments. This
extremely far-reaching topic can barely be touched in a thesis introduction, but its funda-
mental role in the work that physicists do nowadays can hardly be overemphasized.

Fundamental theoretical physics - apart from being an art on its own - acquires its actual
value and success only via tests against experiment. The real cornerstones of the field that
have made history mostly have in common that non-trivial and definite predictions could
be made based on the theory, together with an explicit or implicit prescription of how
respective prognosis can be either verified or falsified experimentally. An example is the
prediction of a fermion of opposite electric charge and the same mass when compared to
the electron by Dirac - today referred to as the positron.

The application of symmetries and symmetry groups has been an essential ingredient
for a large part of significant progress. It was often based on symmetry concepts that
theorists could make quantitative and qualitative predictions, e. g. the existence of the
Ω− and its approximate mass in the baryon decuplet or the "November Revolution" of
1974 - predictions that lead to important discoveries and a better understanding of the
fundamental laws of nature. Similarly, the introduction of gauge symmetries lead to a
deeper understanding of particles and their interactions. Even broken and approximate
symmetries - no matter if broken explicity, spontaneously, anomalously - remain useful
concepts and physicists are eager to extract as much useful information as possible from
their symmetry considerations.

The PhD thesis at hand consists of an introduction, followed by four scientific papers.
The introduction successively introduces to different aspects of Chiral Perturbation Theory
and related topics via several chapters. Essential features of Mesonic Chiral Perturbation
Theory are covered in Chapters 2 and 3. Chapter 4 establishes a power counting scheme.
I then go over to the actual calculation of quantum corrections using ChPT: Chapter 5
deals with one-loop or NLO, Chapter 6 with two-loop or NNLO computations. Chapter 7
contains some peculiarities when calculating mesonic decay constants. All of these chapters
are purely introductive. The remainder then deals with the actual research topics of this
thesis: Partial Quenching and Finite Volume Effects. The latter are introduced to in
Chapter 8, equipping the reader with all potentially necessary prerequisites for a study of
paper II. 1 Chapter 9 deals with two different approaches for obtaining partially quenched
quantum corrections. It is tightly connected to paper III and IV. Together with Chapter
8, it provides the foundations for a study of paper III. Chapter 10 finally covers Effective
Field Theories for QCD-like. This will set the stage for paper IV. In paper IV, the effective

1Paper II and parts of the introduction have also been published as a Licentiate thesis in December 2014,
in full accordance with the study regulations at Lund University. Still, the introduction has undergone
several modifications and extensions. The earlier publication does not change the fact that this PhD thesis
can be read as a self-contained document.
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field approach for QCD-like theories meets both finite volume corrections and the partially
quenched approximation. Thus, in a way, all Chapters 8 - 10 will contribute important
background information for its study. Three appendices provide further details and deeper
background information about selected topics.

2 From QCD to ChPT

Quantum chromodynamics (QCD) is nowadays considered to be the theory describing
the strong force. One of the problems that come with this non-abelian gauge theory is
the energy range where it provides reliable perturbative predictions. The smallness of the
coupling constant at high energies makes it possible to test and confirm the theory in highly
energetic scattering processes and, since the theory is renormalizable to all orders, better
and better perturbative predictions can be obtained, at least in principle. The growth of the
coupling constant towards lower energy scales finally leads to a breakdown of perturbation
theory and, in the low energy ranges (e. g. hadroformation), different methods have to
be employed. One way is given by a numerical evaluation in the path-integral formalism
(Lattice QCD, the only way for a non-perturbative ab initio treatment of QCD to date).
Alternatively, one can perform calculations in an effective field theory (EFT) framework.
Chiral Perturbation Theory (ChPT) [5, 6, 7] is an effective field theory for QCD, starting
from the symmetries of QCD. As the relevant dynamical degrees of freedom, pseudoscalar
mesons will replace the quarks2 and gluons of QCD (in meson ChPT). At every perturbative
order in the EFT, we will introduce new higher-dimensional operators (i.e. all which are
consistent with the symmetry) - operators that spoil the all-order renormalizability of the
theory - that embody the unknown effects from higher scales and bring them into the theory.
The coefficients of these new operators, called Low Energy Constants (LECs), renormalize
the theory and will have to be determined (usually by experiment) in order to evaluate
predictions numerically. As I will elaborate upon further below, the relation between
Lattice QCD and ChPT is highly symbiotic rather than purely competitive. For example,
Lattice QCD can help ChPT in the determination of the LECs whereas ChPT plays an
important role as a validity check for and to extrapolate lattice results, being able to correct
e. g. for unphysical lattice effects such as unphysical quark masses, finite volume effects
and lattice spacings. The calculations in this thesis have been performed to strengthen the
synergy between the two fields by systematically adressing some of these unphysical lattice
effects in the ChPT framework so that the possibilities given by a matching between lattice
and ChPT results will be improved in the future.

2The background-interested reader might find the side remark exciting that George Zweig, who postu-
lated the "quarks" of QCD independently, called them "aces", but Murray Gell-Mann and his "quarks"
were more influential and his term prevailed.
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3 Foundations of ChPT and Lowest Order

The Lagrangian of QCD with N out of six flavours massless

LQCD =
6∑

i=1
(u,d,s,c,b,t)

ψ̄i(iD/−mi)ψi −
1

4
Gμν,aGμν

a mi = 0 ∀i ≤ N (1)

is symmetric under a chiral SU(N)L × SU(N)R × U(1)L × U(1)R, or equivalently under
SU(N)L× SU(N)R ×U(1)V ×U(1)A. The U(1)V is the conservation of the baryon number,
thus leading to a classification of hadrons into baryons and mesons3, whereas the U(1)A is
anomalous. The cases of interest in meson ChPT are N = 2 and N = 3. Specifying to the
latter case, it is strongly believed4 that a spontaneous breakdown of the SU(3)L × SU(3)R
down to the diagonal subgroup SU(3)V occurs via a scalar quark condensate of type

0 �= 〈q̄q〉 , (2)

thus producing an octet of pseudoscalar Goldstone bosons that can be identified with the
eight lowest-mass mesons in the hadron spectrum. The matrix φ which is Hermitian and
traceless parametrizes the broken part of the group by using the exponential representation
as 5

U(x) = exp

(

i

√
2φ(x)

F0

)

(3)

where φ itself transforms under SU(3)V as an octet and contains the physical particles
(without isospin breaking) as

φ(x) =

⎛

⎜
⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞

⎟
⎠ . (4)

By adding terms breaking the chiral symmetry of equation (1) explicitly, we can make
the symmetry an approximate one, thus giving the mesons masses. The lowest order
chiral SU(3) Lagrangian, i. e. the most general chiral Lagrangian consistent with parity,
time-reversal, Lorentz symmetry of QCD, is given by

L2 =
F 2
0

4
Tr[DμU(DμU)†] +

F 2
0

4
Tr(χU † + Uχ†). (5)

3To be precise, note that U(1)V is also a symmetry in the massive case and SU(N)V also in the case
of degenerate masses, whereas the conservation of the axial-vector currents necessarily relies on the chiral
limit.

4One argument is the absense of degenerate "parity partners" in the hadron spectrum. It should be
noted that a scalar quark condensate provides a sufficient, but not a necessary condition for the spontaneous
breakdown.

5Obviously, U itself is in SU(N), i.e. either SU(3) or SU(2) in the cases of interest.
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where we have added the lowest-order symmetry-breaking terms. These are, again, the
most general terms that break the chiral symmetry while still respecting the other (exact)
symmetries of QCD mentioned above. Note that U transforms under the whole original
symmetry group with elements denoted by (L,R) as6

U �→ RUL† (6)

The symmetry-breaking mass matrix

χ = 2B0

⎛

⎝

m̂ 0 0
0 m̂ 0
0 0 ms

⎞

⎠ (7)

introduces the quark masses in the isospin limit7, and B0 is a LEC that parametrizes
the amount of chiral symmetry breaking and in this function also dictates the vacuum
expectation value 〈q̄q〉 = −F 2

0B0 to lowest order. Note that the Lagrangian (5) has the
correct normalization of the kinetic term for the bosons and additionally contains terms
suppressed by higher powers of the pion decay constant F0. The Lagrangian in equation
(5) is constructed so that it would be chirally invariant if also χ would transform in the
same way as U. The lowest order masses for the pseudoscalar Pseudo-Goldstone bosons
can be obtained by expansion of the exponential and are (in the isospin limit) given by

M2
π,2 = 2B0m̂,

M2
K,2 = B0(m̂+ms), (8)

M2
η,2 =

2

3
B0 (m̂+ 2ms) .

They trivially fulfil the Gell-Mann Okubo relation

4M2
K = 3M2

η +M2
π . (9)

The ChPT perturbative series is now a systematic expansion in momenta and masses,
rather than one in a small dimensionless coupling.

4 Higher Orders: Power Counting in ChPT

At higher orders in ChPT, new contributions originate from two different sources: On the
one hand, diagrams containing loops are going to contribute, thus making it necessary to

6U transforms linearly under chiral transformations. Still, the map defined in equation (6) is called a
non-linear realization of the group since it does not operate on a vector space.

7Usually, χ = 2B0(s + ip) in the external field formulation of ChPT, so the case of a constant mass
matrix is contained in the more general description. In the general definition, it indeed behaves like U
under chiral transformations. Here, even the extension of the formalism to local chiral transformations is
possible (note the covariant derivatives in equation (5)).
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expand the exponential in equation (3) to higher order in φ. At the same time, we can
write down more new operators consistent with the exact symmetries of QCD - both ones
which are consistent with chiral symmetry and others which break it explicitly. We thus
have an expansion of our general Lagrangian

L = L2 + L4 + L6 + ... (10)

where the higher-order operators may contain more derivatives and/or higher powers of χ
(cf. equation (7)). The new unknown constants multiplying the new operators that we
have introduced in this scheme will have to be fixed primarily by experiment. The most
general Lagrangian for a chiral SU(3) at order p4, for example, can be written as (using
the original choice of Gasser and Leutwyler)

L4 = L1

{
Tr[DμU(DμU)†]

}2
+ L2Tr

[
DμU(DνU)†

]
Tr
[
DμU(DνU)†

]

+L3Tr
[
DμU(DμU)†DνU(DνU)†

]
+ L4Tr

[
DμU(DμU)†

]
Tr
(
χU † + Uχ†)

+L5Tr
[
DμU(DμU)†(χU † + Uχ†)

]
+ L6

[
Tr
(
χU † + Uχ†)]2

+L7

[
Tr
(
χU † − Uχ†)]2 + L8Tr

(
Uχ†Uχ† + χU †χU †)

−iL9Tr
[
fR
μνD

μU(DνU)† + fL
μν(D

μU)†DνU
]
+ L10Tr

(
UfL

μνU
†fμν

R

)

+H1Tr
(
fR
μνf

μν
R + fL

μνf
μν
L

)
+H2Tr

(
χχ†) (11)

where we have introduced LECs called Li (apart from the so-called contact terms Hi
8).

The fμν are field-strength tensors related to the vector fields in the external field formalism
of ChPT. In the SU(2) case, the Lagrangian instead reads

L4 =
l1
4

{
Tr[DμU(DμU)†]

}2
+

l2
4

Tr[DμU(DνU)†]Tr[DμU(DνU)†]

+
l3
16

[
Tr(χU † + Uχ†)

]2
+

l4
4

Tr[DμU(Dμχ)† +Dμχ(D
μU)†]

+l5

[

Tr(fR
μνUfμν

L U †)− 1

2
Tr(fL

μνf
μν
L + fR

μνf
μν
R )

]

+i
l6
2

Tr[fR
μνD

μU(DνU)† + fL
μν(D

μU)†DνU ]

− l7
16

[
Tr(χU † − Uχ†)

]2

+
h1 + h3

4
Tr(χχ†) +

h1 − h3

16

{[
Tr(χU † + Uχ†)

]2

+
[
Tr(χU † − Uχ†)

]2 − 2Tr(χU †χU † + Uχ†Uχ†)
}

−2h2Tr(fL
μνf

μν
L + fR

μνf
μν
R ) (12)

8The contact term coefficients cannot be measured directly in physical quantities involving mesons and
are thus irrelevant for the calculations in this thesis.
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with constants denoted by li (hi). At order p6, also called next-to-next-to-leading order
(NNLO), new constants Ci respective ci are introduced into the SU(3) respective SU(2)
theory.

The ChPT expansion in masses and momenta necessitates a well-defined ordering cri-
terion for the different contributions to an observable of interest. To close this section, I
would like to shortly introduce to the so-called Weinberg power counting scheme [5] and
how it works in practice. We follow closely the discussion in [8]. As can be best seen
from the expressions for the lowest order meson masses (equation (8)), a quark mass will
contribute as a meson mass squared, thus corresponding to a momentum squared or two
derivatives in the Lagrangian. Generally speaking, a single vertex out of a Lagrangian L2n

will contribute with 2n in this power counting scheme. We introduce the chiral dimension
D of a diagrammatic contribution as

D = 4NL − 2NI +
∞∑

n=1

2nN2n, (13)

where NL denotes the number of loops, NI the number of internal lines and N2n denotes
the number of vertices that originate from the Lagrangian L2n (since besides the powers
coming from the vertices, a Lorentz invariant integration measure provides four powers of
momentum whereas a propagator provides two inverse powers).9 Using the identity

NL = NI − (NV − 1) NV =
∑

n

N2n (14)

one can also eliminate either NL or NI . In the latter case, we find

D = 2 +
∞∑

n=1

2(n− 1)N2n + 2NL, (15)

We can also see from this formula that the maximal number of loops contributing to a
fixed chiral dimension is given by

NL =
D − 2

2
. (16)

The practical estimation of the chiral dimension of a diagram can still best be done ac-
cording to formula (13). Some examples are given in figure 1.

5 Quantum Corrections for Masses: A Simple p
4 Exam-

ple

In this section, we rederive for instructive reasons the NLO corrections to the meson masses
in chiral SU(3). We conventionally denote the sum of irreducible self-energy diagrams by

9Note that the authors of [8] missed a factor of 4 in front of NL.
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Figure 1: Illustration of the Weinberg power counting scheme according to equation (13).
Upper row: (1) vertex of order p2, (2) propagator, (3) p4 contribution resulting from a loop
integration. Lower row: Different one-loop contributions to ππ scattering. All vertices are
of lowest order.

−iΣ(p2). The physical mass M can then be obtained from it by solving for the position of
the propagator pole

M2 −M2
0 − Σ(M2) = 0 (17)

with M0 denoting the mass to lowest order. At order p4, this step is trivial, once Σ4(p
2) is

known, since
M2 = M2

0 + Σ(M2) = M2
0 + Σ(M2

0 ) +O(p6). (18)

All self-energies at this order will have the form

Σφ
4(p

2) = Aφ +Bφp
2, (19)

so the masses can be obtained via

M2 = M2
0 + Aφ +BφM

2
0 +O(p6). (20)

To calculate Σ4(p
2), we need - as a first step - the expansion of the general Lagrangian

(11) in terms of physical fields. Specifically, we need (cf. also discussion in section 4)

• the Lagrangian L2 with two meson fields, giving the lowest order masses, (equations(8))

• the Lagrangian L2 with four meson fields, for the loop contribution

• the Lagrangian L4 with two meson fields, for the contact contribution

Due to space restrictions, we only show the expansions (of the latter two) in terms of
the matrix φ (and its derivative) with M denoting the mass matrix in equation (7).

L4φ
2 =

1

24F 2
0

{
Tr([φ, ∂μφ]φ∂

μφ) + B0Tr(Mφ4)
}
. (21)
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Figure 2: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p4). The
circles in a) and c) are of O(p2), the filled box in b) is of O(p4).

L2φ
4 =

1

F 2
0

{

L4 8 B0Tr(∂μφ∂
μφ)Tr(M)

+L5 8 B0Tr(∂μφ∂
μφM)

+L6 (−32) B2
0Tr(M)Tr(Mφ2)

+L7 (−32) B2
0 [Tr(Mφ)]2

+L8 (−16) B2
0(Tr(φMφM) + Tr(φ2M2))

}

(22)

The expansion in terms of the eight pseudoscalars is similarly trivial. As a next step,
we need to calculate how these operators contribute to the self-energy, thereby taking into
account the different possibilities and combinatorics properly.10 Figure 2 shows the three
different types of diagrams that contribute to the two-point function to the desired order.

For the loop diagram, only two integrals are non-vanishing at this level, i. e.

A(m2) =
1

i

∫
ddq

(2π)d
1

q2 −m2
(23)

B(m2) =
1

i

∫
ddq

(2π)d
q2

q2 −m2
= m2A(m2) (24)

which leaves only one integral to be solved:

A(m2) =
m2

16π2

{

λ0 − ln(m2) +O(ǫ)

}

(25)

10Using a computer-algebra system, this step can equally well be achieved by ”brute-forcing“ and sum-
ming over all possible combinatorical cases - even if they lead to the same contraction - and then multiplying
by the proper symmetry factor of the diagram.
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We choose a renormalization scheme which is a ChPT-specific variant of MSbar

λ0 =
1

ǭ
=

1

ǫ
+ ln(4π) + 1− γE (26)

The renormalization scale μ2 will cancel out of all physical results since the LECs cancel
by construction the μ2 dependence of the loop part.

As example, I show the loops contributions to the pion and the kaon self-energy.

φ4 term derivative term sum of both

Pion loop B0m̂
6F 2

0
10 = 1

6F 2
0
(5m2

π)
1

6F 2
0
(−4m2

π − 4p2) 1
6F 2

0
(m2

π − 4p2)

Kaon loop B0(3m̂+ms)

6F 2
0

2 = 1
6F 2

0
(2m2

K + 2m2
π)

1
6F 2

0
(−2m2

K − 2p2) 1
6F 2

0
(2m2

π − 2p2)

Eta loop B0m̂
6F 2

0
2 = 1

6F 2
0
(m2

π) - 1
6F 2

0
(m2

π)

Table 1: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p
2) for

the pion, split up according to which operator of L4φ
2 contributes and which virtual particle

occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms. Observe also the cancellation of
the kaon mass dependence: In an unbroken SU(2), the pion has to remain massless.

φ4 term derivative term sum of both

Pion loop B0(3m̂+ms)

6F 2
0

3
2
= 1

6F 2
0
(3
2
m2

K + 3
2
m2

π)
1

6F 2
0
(−3

2
m2

π − 3
2
p2) 1

6F 2
0
(3
2
m2

K − 3
2
p2)

Kaon loop B0(m̂+ms)

6F 2
0

6 = 1
6F 2

0
(6m2

K)
1

6F 2
0
(−3m2

K − 3p2) 1
6F 2

0
(3m2

K − 3p2)

Eta loop B0(m̂+3ms)

6F 2
0

1
2
= 1

6F 2
0
(3
2
m2

η − 1
2
m2

K)
1

6F 2
0
(−3

2
m2

η − 3
2
p2) 1

6F 2
0
(−1

2
m2

K − 3
2
p2)

Table 2: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p
2) for

the kaon, split up according to which operator of L4φ
2 contributes and which virtual particle

occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms.

The operators of L2φ
4 contribute similarly. The renormalization of the LECs cancels the

loop infinities by construction, thus producing finite quantum corrections to the masses.
It was checked that the results agree with [7, 8] who obtained

M2
π,4 = M2

π,2

{

1 +
M2

π,2

32π2F 2
0

ln

(
M2

π,2

μ2

)

−
M2

η,2

96π2F 2
0

ln

(
M2

η,2

μ2

)
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+
16

F 2
0

[(2m+ms)B0(2L
r
6 − Lr

4) +mB0(2L
r
8 − Lr

5)]

}

, (27)

M2
K,4 = M2

K,2

{

1 +
M2

η,2

48π2F 2
0

ln

(
M2

η,2

μ2

)

+
16

F 2
0

[

(2m+ms)B0(2L
r
6 − Lr

4) +
1

2
(m+ms)B0(2L

r
8 − Lr

5)

]}

,

(28)

M2
η,4 = M2

η,2

[

1 +
M2

K,2

16π2F 2
0

ln

(
M2

K,2

μ2

)

−
M2

η,2

24π2F 2
0

ln

(
M2

η,2

μ2

)

+
16

F 2
0

(2m+ms)B0(2L
r
6 − Lr

4) + 8
M2

η,2

F 2
0

(2Lr
8 − Lr

5)

]

+M2
π,2

[
M2

η,2

96π2F 2
0

ln

(
M2

η,2

μ2

)

−
M2

π,2

32π2F 2
0

ln

(
M2

π,2

μ2

)

+
M2

K,2

48π2F 2
0

ln

(
M2

K,2

μ2

)]

+
128

9

B2
0(m−ms)

2

F 2
0

(3Lr
7 + Lr

8). (29)

The LECs renormalize as

Li ≡ (μc)−2ǫ

( −1

32π2ǫ
Γi + Lr

i (μ)

)

= (μ)−2ǫ

( −1

32π2
Γiλ0 + Lr

i (μ) +O(ǫ)

)

(30)

with coefficients Γi, and ln c = −1/2(ln(4π) − γ + 1) specifying the finite part in our
renormalization conventions. The Lr

i thus acquire the already mentioned scale dependence

Lr
i (μ2) = Lr

i (μ1) +
Γi

16π2
ln

(
μ1

μ2

)

. (31)

The li in the SU(2) case renormalize in a similar manner, and authors usually quote the
μ-independent l̄i which are defined as

l̄i =
32π2

γi
lri (μ)− ln

M2
π

μ2
. (32)

For the numerical evaluation of the mass corrections ∆m4, one can promote the lowest
order masses in the p4 terms on the right hand side of equation (27) to physical masses.
Since the induced difference is of higher order, the formal accuracy is maintained. It should
be noted that the elimination of the lowest order parameters in favour of the physical ones
is not unique due to the Gell-Mann Okubo degeneracy. This plays a particular importance
if the complete mass expansion is done to higher order since a part of the higher order
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p6). Cir-
cular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6).

terms will evidently acquire an explicit dependence on the specific choice for the elimination
procedure in the lower orders. The inverse pion decay constant can be promoted to its
physical value due to a similar argument.

6 Anatomy of the p
6 Calculation

The NNLO corrections to the pseudoscalar self-energy are, according to the power counting
scheme established in section 4, given by diagram contributions with up to two loops [9].
All relevant diagrams can be seen in figure 3. These are all tadpole11 integrals except for
the sunset diagram in figure 3h).

For the evaluation of the two-loop integrals, mainly two complications arise compared
to the NLO case. By considering figure 3, note that a new one-loop integral with a squared
propagator arises. Two of the three two-loop diagrams, i. e. diagrams f) and g), yield
simple products of one-loop integrals. This is very convenient, but note that expansions
as in equation (25) are no longer sufficient, and the terms linear in ǫ play a crucial role in
order to calculate the NNLO mass correction up to O(1) in the ǫ expansion.12 The other

11The term “tadpole” was introduced by Sidney Coleman. The background-interested reader might find
it amusing that the editor of the respective publication did not appreciate the terminology at first, but
caved in, once Sidney proposed “lollypop” and “spermion” as alternatives.

12In the infinite volume case of the mass correction, only A(m2) has to be known up to O(ǫ), known
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major complication is given by the sunset diagram, figure 3h). Apart from its property
of irreducibility to products of one-loop integrals, its momentum flow leads to an explicit
dependence on p2.13 For the time being, the evaluation of the three integrals14

H(m2
1,m

2
2,m

2
3; p

2) = 〈〈1〉〉 ,
Hμ(m

2
1,m

2
2,m

2
3; p

2) = 〈〈qμ〉〉 = pμH1(m
2
1,m

2
2,m

2
3; p

2) ,

Hμν(m
2
1,m

2
2,m

2
3; p

2) = 〈〈qμqν〉〉
= pμpνH21(m

2
1,m

2
2,m

2
3; p

2) + gμνH22(m
2
1,m

2
2,m

2
3; p

2) ,

(33)

will be sufficient, where we have used the notation of [11]

〈〈X〉〉 = 1

i2

∫
ddq

(2π)d
ddr

(2π)d
X

(q2 −m2
1) (r

2 −m2
2) ((q + r − p)2 −m2

3)
. (34)

With the exception of the simple one-loop calculation in section 5, all computations
have been carried out with the help of FORM [12]. This includes the generation of all
contributions to a diagram of given topology as well as all successive manipulations in
order to simplify the expressions.

We apply Passarino-Veltman type identities to reduce the occuring integrals to a mini-
mal set. For the one-loop integrals, only the two scalar integrals (with one and two powers
of the propagator) serve as a basis set, i. e. in addition to A(m2) (see equation (23)) we
need the two-propagator integral with zero momentum flow

B0(m
2) =

1

i

∫
ddq

(2π)d
1

(q2 −m2)2
. (35)

For the sunsets, we can apply different kinds of symmetry identities to make further
cancellations work out. Whereas H is symmetric in all three mass arguments, only the
second and third argument can be interchanged in the other two integrals. The relation
between H1 and H

H1(m
2
1,m

2
2,m

2
3; p

2) +H1(m
2
2,m

2
1,m

2
3; p

2) +H1(m
2
3,m

2
1,m

2
2; p

2) = H(m2
1,m

2
2,m

2
3; p

2) (36)

can be applied and trivially implies also

H1(m
2,m2,m2; p2) = 1/3 H(m2,m2,m2; p2). (37)

from e. g. [10].
13Note also that whenever derivatives with respect to p2 play a role, the explicit dependence of integrals

on the external momentum will evidently lead to derivatives of these, thus making it necessary to evaluate
several more integrals explicitly, cf. section 7.

14We count three integrals since e. g. H22 can be reduced to the three remaining ones and products of
one-loop integrals. Similarly, the sunset integrals with both loop momenta standing in the numerator -
which are omitted in equation (33) - can be reduced to the aforementioned. A more complete view over
the Passarino-Veltman type reduction procedure used thoughout this thesis and the resulting identities
interrelating the intergrals can be found in section 8.
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The evaluation of the NNLO mass correction requires, apart from the NNLO corrections
to the self-energy, again a self-consistent solution to the pole equation (cf. equation (17)).
In addition to the new diagrammatic contributions, new NNLO terms also arise from the
NLO self-energy since the latter is now supposed to be evaluated at the NLO mass and
inverse decay constant in order to maintain formal p6 accuracy.15 In this way, also the
specific choice of meson masses in the NLO terms of the self-energy enters explicitly at
O(p6): Mass expressions that were degenerate at O(p4) due to the lowest order relations
will generate different terms in the higher orders.16 In a rather sketchy way, we thus
generally evaluate

M2 −M2
0 −Σ4(M

2
0 )

︸ ︷︷ ︸

O(p4)

−Σ4(M
2
4 ) + Σ4(M

2
0 )

︸ ︷︷ ︸

O(p6)

−Σ6(M
2
0 )

︸ ︷︷ ︸

O(p6)

= O(p8). (38)

Equation (38) has to be understood in the way that Σ4(M
2
4 ) will be obtained by in-

sertion of the analytical expression for the NLO mass expansion. After cancellations, the
difference to Σ4(M

2
0 ) will then be of O(p6). We only implicitly require a consistent choice

for the elimination in terms of the pseudoscalar masses in Σ4 in order to have a consistent
perturbative series up to O(p6).

The very instructive equation (38) oversimplifies the actual procedure. If we want to
evaluate the mass correction by using physical meson masses as input, additional terms in
the higher orders will of course be generated. One generally finds for the mass correction
fulfilling all necessary features

{

− Σ4(M
2
0 → M2

phys; p
2 → M2

phys)
}

O(p4)

−Σ4(M
2
0 ; p

2 = M2
4 = M2

0 +∆m2
4)

}

O(p6) (39)+Σ4(M
2
0 → M2

phys = M2
0 +∆m2

4; p
2 → M2

phys = M2
0 +∆m2

4)

−Σ6(M
2
0 ; p

2 = M2
0 )

}∣
∣
∣
∣
∣
M2

0→M2
phys

}

O(p6)

Here the first argument represents the lowest order parameters m̂ and ms that naturally
emerge in the calculation, together with a choice of their elimination in favour of the lowest
order meson masses, whereas the second argument represents the genuine p2 dependence.

By following this recipe, apart from the “infinite renormalization” that makes the O(p6)
finite, an additional “finite renormalization” occurs that depends on the (different kinds
of) specific choices at O(p4). Obviously, the new p6 terms coming from the self-energy

15It is worth to note that neither the new diagrammatic pieces nor the “renormalization” terms from the
NLO self-energy are finite in four dimensions when taken alone, but only their sum.

16Both effects, on the one hand the effect of the evaluation of the self-energy at NLO corrected masses
and inverse decay constant and on the other hand the choice regarding degenerate expressions, are evidently
entangled and can - in a practical calculation - be taken into account in one go.
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itself can - if overall p6 accuracy is sought - easily be expressed in terms of (any convenient
choice of) physical masses. These are again all formally equivalent.

Via diagrams i) from figure 3, the new LECs Ci enter the calculation. They renormalize
via

Ci ≡ (μc)−4ǫ
(γ2i
ǫ2

+
γ1i
ǫ

+ Cr
i (μ)

)

= μ−4ǫ (γ2iλ2 + γ1iλ1 + Cr
i (μ) +O(ǫ)) . (40)

Just to give one explicit example, I show the NLO and NNLO kaon mass correction in
infinite volume coming out of our calculation as a byproduct. All our results in infinite
volume for the masses and decay constants have been checked against the known results
[10].

F 4
π∆m
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K = +A(m2
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We have used the notation A(m2) to denote the O(1) term in the ǫ expansion of the
integral A(m2).

7 Corrections to the Decay Constants

The (physical) pion decay constant is defined by the coupling of the axial-vector current
to the pion,

〈0|Aμ(0)|π−(p)〉 = i
√
2pμFπ ; Aμ = ūγμγ5d . (43)

Amongst other things, it dictates the rate of leptonic charged pion decays as

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπm

2
ℓ

(

1− m2
ℓ

m2
π

)2

(44)
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Its physical value in this convention is Fπ = 92.2 MeV.17 We also encounter its inverse
powers in the chiral expansions, e. g. of the pseudoscalar masses.18

The remaining two decay constants can be defined in a way similar to equation (43),
but for definiteness we will keep the example of the pion in the remainder of this section.

One way to calculate the chiral expansion of Fπ is via the axial-vector pseudoscalar
two-point function. The diagrams up to order p6 can be seen in figure 4. Their structural
similarity to the mass diagrams (cf. figure 3) facilitates their calculation. In addition to
these, the wavefunction renormalization of the external pion state has to be taken into
account. In its most general way, this can be seen from the LSZ theorem. Originally used
for scattering amplitudes, the argument holds for any kind of physical quantity. There are
different equivalent formulations (e. g. that differ if they use truncated Green’s functions
or not), so we only consider the easiest for our purpose. According to

out〈φ1...φi|φi...φn〉in = 〈φ1...φn〉 = Z−n
2Gtrunc(φ1, ..., φn) , (45)

an S-matrix element (or any other amplitude) can be calculated given the correspond-
ing truncated Green’s function and the wavefunction renormalization factors

√
Z of the

external fields. Each field thereby contributes with its own 1/
√
Z.

The underlying reason is that the propagator pole of the bare two-point function ac-
quires under resummation a residue Z−1 with Z = 1+ dΣ

dp2
|p2=M2

phys
. This residue is absorbed

into a rescaling of the respective field φ → φ′ =
√
Zφ.19 The effect of the rescaling then

enters explicitly for all n-point functions (with n �= 2). In the case of our two-point func-
tion which involves one external pion field, one power of the wavefunction renormalization
has to be divided out.20 Schematically, since

〈φφ〉 ≃ i

Z(p2 −Mphys)2
+ non-pole terms

〈φ′φ′〉 ≃ i

(p2 −Mphys)2
+ non-pole terms, (46)

we find for the amplitudes that involve only one scalar field

〈φaμ〉 ≃ i

Z(p2 −Mphys)2
iΠ+ non-pole terms

〈φ′aμ〉 ≃ i√
Z(p2 −M2

phys)
iΠ+ non-pole terms (47)

17There are several conventions that differ by different powers of
√
2.

18It formally enters as the lowest order parameter and will then be substituted for the physical one in
our calculations, cf. section 6.

19Note that Z as defined here is sometimes denoted by Z−1, in particular in the traditional renormal-
ization literature, i. e. φbare =

√
Zφr with φr being the renormalized field. The bare propagator residue

is correspondingly Z.
20In an n-point function, these would be n powers of

√
Z to be divided out. Each external leg gets a

resummation factor 1/Z (when expressed in terms of the truncated Green’s function) that is only partially
cancelled by the wavefunction renormalization

√
Z.
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with iΠ being the diagrammatic contribution. The fields φ′ are then normalized to single
particle states and the physical amplitudes resulting from the calculation are finite.

As formal input for an expression for Fπ to O(p6), apart from the axial-vector pseu-
doscalar two-point function, we need again the pseudoscalar two-point function Σ(p2), all
to the same order.21

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4: Diagrammatic contributions to the pseudoscalar decay constants, up to O(p6).
Circular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6). The
wiggly lines denote the external source field that is coupled to the desired current. Note
the necessity for the wavefunction renormalization of the external pseudoscalar to obtain
the physical decay constants, as discussed in the text.

8 Finite Volume Effects

It is inevitably the nature of any lattice calculation that it is performed in a finite volume.
In order to perform a proper matching between a Lattice QCD calculation and ChPT, a
good control over the additional quantum corrections to physical quantities which emerge
due to the finiteness of the volume is required. Only then, ChPT can serve as a reliable

21Formally, Σ(p2) up to O(p6) will yield dΣ
dp2 up to O(p4), to be multiplied by the lowest order expression

for the axial-vector pseudoscalar two-point function that starts at O(p2). (The order counting here is
done in terms of masses and momenta in the numerators, not in terms of the suppression via pion decay
constants.)
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validity check for the lattice calculation, or LECs can be properly extracted from the lattice
result.

ChPT in a finite volume [13, 14, 15] was introduced already shortly after the intro-
duction of the theory itself. Conceptually, a finite volume is introduced that restricts the
size of the Euclidean 3-dimensional space. The “time“ dimension is assumed to be much
larger. This treatment self-evidently breaks Lorentz invariance. A Passarino-Veltman type
integral reduction can still be performed, provided that additional projections obeying the
remaining symmetry are allowed and explicitly taken into account.

The introduction of a finite volume with periodic boundary conditions naturally re-
stricts and discretizes the set of allowed momenta to propagate, thus promoting momentum
integrals to sums. Our calculations are done in the ”p–regime” defined by MπL ≫ 1, i. e.
where the system is distorted mildly and the only change with respect to the continuous
case is the modification of the propagators of the meson fields due to the periodic boundary
conditions.

∫
dp

2π
F (p) → 1

L

∑

n∈Z

F (pn) ≡
∫

V

dp

2π
F (p), (48)

With the help of a Poisson summation formula, these can be moved back to a sum of
integrals

1

L

∑

n∈Z

F (pn) =
∑

lp

∫
dp

2π
eilpp F (p), (49)

where the summation over lp runs over the set of vectors of length nL and separation of
the lp = 0 term allows to elegantly perform a well-defined decomposition of an arbitrary
integral into an infinite volume (IV) and a finite volume (FV) part

I = I∞ + IV . (50)

The tensor reduction and the notation used for our integrals will be shown for the case
of a Euclidean space-time. They can be similarly obtained for a Minkowski space-time by
simple replacements and small adaptations. Regarding the transition and translation of
expressions between Euclidean and Minkowski space-time, the reader may consult section
C.

Regarding the Passarino-Veltman reduction, the four-vector

tμ ≡ (1, 0, 0, 0) (51)

is additionally allowed as projector in the FV case and sufficient to provide a reduction
to scalar components in the center-of-mass (cms) frame.22 We furthermore introduce the
purely spatial part of the metric as

tμν ≡ δμν − tμtν = diag(0, 1, 1, 1) (52)

22In this frame, p · lp = 0.
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as a convenient abbreviation.23

The remainder of this section has the aim to properly set up a notation for the inte-
grals. Since the structure of the FV integrals contains the (simpler) structure of the IV
integrals, we only show notation and reductions of the former. We use the integral notation
introduced in [11], i. e. we write the basic one-loop one-propagator integrals as

⌊X⌋ =
∫

V

ddr

(2π)d
X

(r2 +m2)n
, (53)

the one-loop two-propagator integrals as

〈X〉 =
∫

V

ddr

(2π)d
X

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (54)

and finally for the sunsets

〈〈X〉〉 ≡
∫

V

ddr

(2π)d
dds

(2π)d
X

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
. (55)

The reduction of the one-loop one-propagator integrals reads

⌊1⌋V = AV ,

⌊rμ⌋V = 0,

⌊rμrν⌋V = δμνA
V
22 + tμνA

V
23,

⌊rμrνrα⌋V = 0. (56)

The general two-propagator case allows for momentum flow, the full reduction can only be
performed in the cms frame as24

〈1〉V
∣
∣
cms

= BV ,

〈rμ〉V
∣
∣
cms

= pμB
V
1 ,

〈rμrν〉V
∣
∣
cms

= pμpνB
V
21 + δμνB

V
22 +BV

23tμν ,

〈rμrνrα〉V
∣
∣
cms

= pμpνpαB
V
31 + (δμνpα + δμαpν + δναpμ)B

V
32

+ (tμνpα + tμαpν + tναpμ)B
V
33, (57)

23Note that the FV effect has to be distinguished from other lattice effects, in particular also from the
introduction of a lattice spacing, although both of these effects have in common that they generally break
the three-dimensional Euclidean rotational symmetry down to a discrete cubic symmetry group. Note
also that this does not imply that the quantities that are evaluated cannot still be invariant under larger
symmetries. This is particularly obvious for our evaluation of quantities involving a single particle in its
cms frame with periodic boundary conditions: The quantities do not feel the cubic shape of the volume at
all, i. e. the volume is solely parametrized by a cubic length L via V = L3.

24The integral B0 that appears in the masses and decay constants can either be considered the general
integral B with zero momentum flow or alternatively as the one-propagator integral A with the propagator
squared, cf. equation (53) with n = 2. The same reduction as for A with n = 1 applies, obviously without
necessity to specify to the cms frame.
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The same holds for the sunset integrals. Here, the case with non-vanishing momentum
flow is necessary for our calculation (cf. figure 3 h). Since in an arbitrary frame only a
partial reduction

〈〈1〉〉V ≡ HV ,

〈〈rμ〉〉V ≡ HV
1 pμ +HV

3μ,

〈〈sμ〉〉V ≡ HV
2 pμ +HV

4μ,

〈〈rμrν〉〉V ≡ HV
21 pμpν +HV

22 δμν +HV
27μν ,

〈〈rμsν〉〉V ≡ HV
23 pμpν +HV

24 δμν +HV
28μν ,

〈〈sμsν〉〉V ≡ HV
25 pμpν +HV

26 δμν +HV
29μν , (58)

is possible, we specify to the cms frame where we can write

〈〈1〉〉V ≡ HV ,

〈〈rμ〉〉V ≡ HV
1 pμ,

〈〈sμ〉〉V ≡ HV
2 pμ,

〈〈rμrν〉〉V ≡ HV
21 pμpν +HV

22 δμν +HV
27 tμν ,

〈〈rμsν〉〉V ≡ HV
23 pμpν +HV

24 δμν +HV
28 tμν ,

〈〈sμsν〉〉V ≡ HV
25 pμpν +HV

26 δμν +HV
29 tμν . (59)

Relations between these integrals follow immediately from the reduction procedure by
taking Lorentz contractions. In our calculations, we use

p2H21 + dH22 + 3H27 +m2
1H = A(m2

2)A(m
2
3) (60)

to eliminate H22 and

dA22(m
2) + 3A23(m

2) +m2A(m2) = 0 . (61)

to eliminate A22 as traditionally done in the IV computations.25

An important comment has to be made about the finite volume sunset integrals.
Whereas the one-loop finite volume integrals are purely finite, the corrections to the HV

come with a single pole in ǫ. Note that these poles are obviously necessary to properly
cancel the divergences in the final result.26 We calculated the coefficients with the help of
the partial result in [11] and found

25A similar relation between the B0 type integrals was not needed since the integrals did not occur in
the calculation.

26In the one-loop reducible part of the two-loop terms, products of IV one-loop integrals with FV one-
loop integrals will emerge, i. e. FV integrals multiplied by a pole.
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H̃V =
λ0

16π2

(
AV (m2

1) + AV (m2
2) + AV (m2

3)
)
+

1

16π2

(
AV ǫ(m2

1) + AV ǫ(m2
2) + AV ǫ(m2

3)
)

+HV ,

H̃V
1 =

λ0

16π2

1

2

(
AV (m2

2) + AV (m2
3)
)
+

1

16π2

1

2

(
AV ǫ(m2

2) + AV ǫ(m2
3)
)
+HV

1 ,

H̃V
21 =

λ0

16π2

1

3

(
AV (m2

2) + AV (m2
3)
)
+

1

16π2

1

3

(
AV ǫ(m2

2) + AV ǫ(m2
3)
)
+HV

21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2)) +

1

3
AV

23(m
2
3)

)

+
1

16π2

(

AV ǫ
23 (m

2
1) +

1

3
AV ǫ

23 (m
2
2 +

1

3
AV ǫ

23 (m
2
3))

)

+HV
27 . (62)

For the finite part of the sunsets, we also separated the corresponding one-loop FV terms
AV ǫ as it was implicitly done in [11]. All terms containing AV ǫ then cancelled as expected
in the expressions for the masses and decay costants calculated in this thesis.

Regarding our numerical evaluation of the FV correction to a physical quantity, it
should be noted that we use physical IV masses as input for our numerical evaluation.
Additional terms will emerge in the p6 expression due to that choice. The generalization
of equation (39) therefore is

{

− Σ4(M
2
0 → M2

phys,IV ; p
2 → M2

phys,IV )
}

O(p4)

−Σ4(M
2
0 ; p

2 = M2
4 = M2

0 +∆m2
4,full)

}

O(p6) (63)

+Σ4(M
2
0 → M2

phys,IV = M2
0 +∆m2

4,IV ; p
2 → M2

phys,IV = M2
0 +∆m2

4,IV )

−Σ6(M
2
0 ; p

2 = M2
0 )

}∣
∣
∣
∣
∣
M2

0→M2
phys,IV

}

O(p6)
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9 Partial Quenching

Calculations in Lattice QCD are often performed in the partially quenched approximation.
As opposed to the (fully) quenched case where the effect of sea quark loops is neglected com-
pletely, the partially quenched result is obtained by including them with a set of masses
different from the ones used in the valence sector. These sea quark masses are usually
chosen larger, decreasing the computational cost of the calculation, and allowing for an
independent variation of valence quark masses without necessitating expensive reevalua-
tions of fermion determinants. The underlying theory is referred to as Partially Quenched
QCD (PQQCD). The partial quenching can also be introduced into ChPT. [16] It has
been argued in the literature [17, 18, 19] that the resulting theory, Partially Quenched
ChPT (PQChPT), is indeed the effective theory for PQQCD. The Lagrangian density is
structurally very similar to the Lagrangian of Chiral Perturbation Theory for genenic NF

flavours.27 Since the dynamical fields are no longer parametrized by N ×N matrices, but
are collected into ones of higher dimension, there is no operator reduction resulting from
Cayley-Hamilton relations. In fact, the only formal modification of the Lagrangian that is
needed is a generalization of the ordinary traces to so-called supertraces over the extended
Goldstone manifold. A definition will be given further below. An important advantage to
the use of partially quenched field theories is, as opposed to fully quenched calculations
where the sea contribution is neglected completely, that it is connected to the physical
"unquenched" underlying theory by a continuous transformation, i. e. a continuous defor-
mation of parameters. This does not only further extrapolations in the different masses due
to the explicit dependence, but allows even for a direct extraction of physical results from
unphysical simulations. By matching a PQQCD calculation from the lattice to a PQChPT
perturbative expansion, the LECs of ChPT can be determined, without accounting for the
partial quenching explicitly.28

9.1 The Supersymmetric Formulation

In the supersymmetric formulation [16], loops of bosonic ghost quarks cancel exactly the
valence loop contribution. The masses of the ghosts are fixed to the set of masses in the
valence sector. The resulting quenched result is then supplemented with virtual quantum
corrections originating from an additional set of sea quarks whose masses are different.

27This can be shown in different ways, e. g. the formal equivalence of the resulting equations of motion
or alternatively the replica method [20].

28Although it has been argued that the LECs of ChPT and its partially quenched version coincide, one
has to account for changes in the operator basis when one wishes to express the results in the classical
two- or three-flavour Gasser-Leutwyler notation. For the three-flavour case, this is discussed in section 2.1
of paper III. Note also the curious fact that L0 - being inaccessible both for unquenched simulations and
experiments - can only be extracted from partially quenched simulations.
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The procedure is being accomplished by parametrizing the Goldstone fields as

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

qV q̄V

] [

qV q̄S

] [

qV q̄B

]

[

qS q̄V

] [

qS q̄S

] [

qS q̄B

]

[

qB q̄V

] [

qB q̄S

] [

qB q̄B

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (64)

where the index V stands for valence, S stands for sea and B stands for boson.29

The Lagrangian structure

L4 =
12∑

i=0

L̂iXi + contact terms

= L̂0 〈uμuνuμuν〉+ L̂1 〈uμuμ〉2 + L̂2 〈uμuν〉〈uμuν〉
+ L̂3 〈(uμuμ)

2〉+ L̂4 〈uμuμ〉〈χ+〉+ L̂5 〈uμuμχ+〉

+ L̂6 〈χ+〉2 + L̂7 〈χ−〉2 +
L̂8

2
〈χ2

+ + χ2
−〉

− iL̂9 〈fμν
+ uμuν〉+

L̂10

4
〈f 2

+ − f 2
−〉

+ iL̂11

〈

χ̂−

(

∇μuμ −
i

2
χ̂−

)〉

+ L̂12

〈(

∇μuμ −
i

2
χ̂−

)2
〉

+ Ĥ1 〈F 2
L + F 2

R〉+ Ĥ2 〈χχ†〉, (65)

is similar to the case of standard ChPT, but due to the additional complexity of the
field, no Cayley-Hamilton relations are applied. Here, 〈 〉 denote supertraces, defined in
terms of ordinary ones by

Str

(
A B
C D

)

= TrA− TrD (66)

where B and C denote the fermionic blocks in the matrix. The supersinglet Φ0, generalizing
the η′, is integrated out to account for the axial anomaly as in standard ChPT. That implies
the additional condition

〈Φ〉 = Str (Φ) = 0 . (67)

29We use the terms boson/fermion as referring to the statistics obeyed by the fields. The ghost quarks
are spin 1/2 particles, but with bosonic statistics. Note that meson fields consisting of a boson and a
fermion obey fermionic statistics.
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This has important implications, in particular on the neutral propagator. The deriva-
tion and a detailed discussion of this can be found in [17, 18]. The resulting structure of
the neutral propagator, a proper setup of all notation and both technical and non-technical
details regarding the calculation, the reader can find in paper III.

9.2 The Quarkflow Method

An alternative approach does not make use of ghost quarks, but “follows the quark lines”
explicitly. The matrix Φ is written in terms of generic fields φij throughout the calcula-
tion.30 The construction of the Feynman diagrams is performed using these purely symbolic
indices.

Only afterwards, fields which connect to the external states are replaced by their proper
valence quarks fields. The remaining symbolic indices are now sea quark indices. They
are, in a last step, replaced by an explicit sum over all flavours of the desired sea quark
sector.

The results in paper III have been derived using both the quarkflow method [21] and
the supersymmetric formulation [16]. This serves, together with other consistency checks,
as an important cross-check for the correctness and reliability of the lengthy analytical
expressions.

10 QCD-like Theories

For field theories which are similar to QCD, but with quark fields transforming according
to different representations of the gauge group, the effective field theory framework can
be extended beyond Chiral Perturbation Theory. We refer to the underlying field theories
as “QCD-like”, and classify them according to their breaking pattern of the global chiral
symmetry [22, 23]. Independently of the specific gauge group employed, but depending
on whether the quark fields transform as a complex, real or pseudo-real representation, a
different effective field theory framework is necessary.31

Methods from Chiral Perturbation Theory can be used to calculate masses, decay con-
stants and vacuum expectation values also for QCD-like EFTs. Obvious computational
differences come from the various different unbroken subgroups and from the different
associated parametrizations of the Goldstone manifolds. The general assumption of sym-
metry breaking via a scalar quark condensate is kept.

The three different cases are discussed in more detail below. We have calculated masses,
decay constants and vacuum expectation values (VEVs). Our two-loop results include again

30This implies, obviously, the Lagrangian.
31Whereas the first case is a given a by generalization of the ChPT result to Nf quark flavours, the real

and pseudo-real case start from an extended global symmetry and are in the remainder also referred to as
the “adjoint” respective “two color” case since the fundamental representation of SU(2) is pseudo-real and
the adjoint representation of a matrix Lie group is real.
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simultaneous partial quenching and finite volume effects and thus provide higher precision
on both of these frontiers.32

10.1 Complex Representation: QCD/ChPT for general NF

This section generalizes the discussion of section 3 of standard ChPT to NF flavours. The
repetition of essential features also serves to set up a consistent notation for later use and
will furthermore allow the reader to easily compare the structure to the other two cases.33

The relevant part of the global chiral symmetry for QCD/ChPT with NF flavours reads
SU(NF )L × SU(NF )R. Its spontaneous breakdown generates a VEV

〈qLjqRi〉 =
1

2
〈qq〉δij (68)

that transforms under the broken part, but is left invariant under the vector subgroup
SU(NF )V .

The QCD Lagrangian with helicity-reduced spinors and with external fields included is
given by

L = qLiiγ
μDμqLi + qRiiγ

μDμqRi + qLiγ
μlμijqLj + qRiγ

μrμijqRj

−qRiMijqLj − qLiM†
ijqRj . (69)

where i is a flavour index, qL and qR are column vectors and the external fields lμ, rμ
and M = s − ip matrices (in flavour), and Dμq = ∂μq − iGμq is the covariant derivative
associated with the gauge group. The different quantities transform under the chiral group
as

qL → gLqL, qR → gRqR, M → gRMg†L ,

lμ → gLlμg
†
L + igL∂μg

†
L, rμ → gRrμg

†
L + igR∂μg

†
R . (70)

Defining, mainly for later use, a 2NF -dimensional column vector

q̂ =

(
qR
qL

)

(71)

and introducing the large 2NF × 2NF matrices

V̂μ =

(
rμ 0
0 lμ

)

, M̂ =

(
0 M

M† 0

)

, ĝ =

(
gR 0
0 gL

)

, (72)

the symmetry transformation (70) becomes

q̂ → ĝq̂ , V̂μ → ĝV̂μĝ
† + iĝ∂μĝ

† , M̂ → ĝM̂ĝ† . (73)

As indicated above, the VEV 〈qq〉 = 〈qRqL〉+ h.c. then leaves an invariance under SU(NF )V .

32For the model calculations, we restrict the partial quenching to the easiest case with two mass scales
only, i. e. dval = dsea = 1, although the extension is again straightforward (yielding more lengthy formulae).
The quarkflow method is employed for all computations.

33We use a notation with helicity-reduced Dirac spinors. Despite the labels L and R, a confusion
with Weyl spinors should be avoided. We rewrite the theories in terms on 2NF -dimensional vectors of
(helicity-reduced) spinors, following the arguments in [24].
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10.2 Real Representation: Adjoint

We define the charge conjugate of a spinor Ψ by

ΨC = CΨ̄T = Cγ0TΨ∗ = iγ2Ψ∗ (74)

where
C = iγ2γ0 (75)

denotes the charge conjugation matrix. A theory with quarks in the adjoint representation
has the Lagrangian density

L = trc (qLiiγ
μDμqLi) + trc (qRiiγ

μDμqRi) + trc (qLiγ
μlμijqLj) + trc (qRiγ

μrμijqRj)

−trc (qRiMijqLj)− trc

(

qLiM†
ijqRj

)

, (76)

The trace is to be performed over the gauge group indices (color). The covariant derivative
is Dμq = ∂μq − iGμq + iqGμ, note that this implies also Dμq = ∂μ − iGμq + iqGμ with
q = q†γ0.34 Using C from equation (75) above, we define

q̃Ri ≡ CqTLi (77)

which transform under the gauge group like the q̃R (and are furthermore right-handed under
the Lorentz group).35 This property enlarges the global symmetry group to SU(2N).36

Explicitly, with the construction

q̂ =

(
qR
q̃R

)

, V̂μ =

(
rμ 0
0 −lTμ

)

M̂ =

(
0 M

MT 0

)

, (78)

the Lagrangian (76) reads

L = trc
(
q̂iγμDμq̂

)
+ trc

(

q̂γμV̂μq̂j

)

− 1

2
trc

(

q̂CM̂q̂
T
)

− 1

2
trc

(

q̂TCM̂†q̂
)

, (79)

allowing for transformations out of SU(2N) according to

q̂ → ĝq̂ , V̂μ → ĝV̂μĝ
† + iĝ∂μĝ

† , M̂ → ĝM̂ĝT . (80)

34The Hermitian conjugate of the quark field transposes both Dirac and gauge indices.
35Here, in contrast to above, the transpose acts on Dirac (and later also flavour) indices, but not on the

color.
36This statement specifically means that the SU(N) × SU(N) of QCD gets enlarged to a SU(2N).

Note that an enlarged symmetry group of odd dimension is also possible since a total odd number of
helicity-reduced fermions can be achieved via including fields of the Majorana type. This is not possible
for the symplectic case though, to be discussed in section 10.3. To improve readability of the introduction
without restricting the applicability of the results, we choose SU(2N) to denote the global symmetry
group in the introduction whereas we use SU(N) in paper IV, i.e. in the latter the breaking pattern will
be SU(N) → SO(N).
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Since the VEV 〈trc (q̄q)〉 can be written as 〈trc
(
q̂TCJS q̂

)
〉+ h.c., with

JS =

(
0 I
I 0

)

(81)

and I the NF ×NF unit matrix, we note its invariance under transformations obeying

gTJSg = JS (82)

which we identify as the SO(2N) subgroup whose generators Vi are defined by

V T
i JS + JSVi = 0 .37 (83)

10.3 Pseudo-Real Representation: Two-Color QCD

The fundamental representation of SU(2) is pseudo-real. The Lagrangian for a QCD-like
theory with two colors reads

L = qLiiγ
μDμqLi + qRiiγ

μDμqRi + qLiγ
μlμijqLj + qRiγ

μrμijqRj

−qRiMijqLj − qLiM†
ijqRj . (84)

with Dμq = ∂μq − iGμq as for QCD. The charge conjugate field

q̃Rαi = ǫαβCqTLβi , (85)

now additionally needs application of the symplectic tensor ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 =
0 to obtain a right handed-handed fermion that indeed transforms as the fundamental
representation of SU(2). α, β denote gauge group indices. With

q̂ =

(
qR
q̃R

)

, V̂μ =

(
rμ 0
0 −lTμ

)

M̂ =

(
0 −M

MT 0

)

, (86)

the Lagrangian (84) becomes

L = q̂iγμDμq̂ + q̂γμV̂μq̂j −
1

2
q̂αCǫαβM̂q̂

T

β − 1

2
q̂αǫαβCM̂†q̂β . (87)

The symmetry is again extended to SU(2N), with the fields transforming as

q̂ → ĝq̂ , V̂μ → ĝV̂μĝ
† + iĝ∂μĝ

† , M̂ → ĝM̂ĝT . (88)

37A common choice for the generators of a SO(N) group are the purely imaginary Vi = −V T
i . The

resulting representation of the SO(N) group are then really SO(N) matrices, i. e. they are real. The
reader shall have in mind that the latter condition is not a necessary criterion that also the generators
of SO(2N) given in equation (83) do not immediately fulfill. A similarity transformation will of course
succeed in changing between canonical generator basis and the one given here.
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Since the VEV 〈q̄q〉 can be written as 〈q̂Tα ǫαβCJAq̂β〉+ h.c., with

JA =

(
0 −I
I 0

)

(89)

and I the NF ×NF unit matrix, we note its invariance under transformations obeying

gTJAg = JA (90)

which we identify as the Sp(2N) subgroup whose generators are defined by

V T
i JA + JAVi = 0 . (91)

10.4 Technical Remarks

As a matter of principle, all three calculations can be treated on equal footing.38 In
particular, we can choose a representation of the generators as 2N × 2N matrices in all
three cases. Here, we show both the generators for the invariant subgroup Vi and the
broken generators Xa in block matrix notation.

Vi =

(
A B
B† −AT

)

, Xa =

(
C D
D† CT

)

(92)

A,B,C,D are complex matrices of dimension N ×N . A is Hermitian, C is Hermitian
and traceless in all three cases. For the SO case, B is antisymmetric and D is symmetric.
For the Sp case, D is antisymmetric and B is symmetric. For the simpler SU case, B and
D are simply zero.39

Vi =

(
A 0
0 −AT

)

, Xa =

(
C 0
0 CT

)

(93)

As a side remark, equation (93) are the generators for the QCD case when treated on
equal footing with the other two, i.e. using a field basis where the left-handed spinors
have been traded for their charge conjugates, thus implying complex conjugation. In the
standard basis (71) for QCD that uses left- and right-handed quark fields, the generators
(93) instead become40

Vi =

(
A 0
0 A

)

, Xa =

(
C 0
0 −C

)

. (94)

38It should be noted that the real and the pseudo-real cases extend both the full chiral symmetry
group and the unbroken subgroup, compared to the QCD case, i. e. SU(2N) ⊃ SU(N)×SU(N), but also
SO(2N) ⊃ SU(N) and Sp(2N) ⊃ SU(N). The latter two are in accordance with the Vafa-Witten theorem
that states the conservation of vector symmetries under spontaneous breaking mechanisms [25, 26].

39To be precise, the resulting N2 Vi and (N2−1) Xa generate the full SU(N)L×SU(N)R×U(1)V . The
counting of generators obviously also works out in the other cases: In the Sp case, there are N2+N(N+1) =
2N2 +N Vi and (N2 − 1) +N(N − 1) = 2N2 −N − 1 Xa while there are N2 +N(N − 1) = 2N2 −N Vi

and (N2 − 1) +N(N + 1) = 2N2 +N − 1 Xa. In both cases, the sum equates to the desired 4N2 − 1
40Note also that the generator for U(1)V , being traceless in equation (93), now corresponds to the trace.

Loosely speaking, the matrices that generate U(1)V and U(1)A interchange.

44



element G C P

U gRUg†L UT U †

Dλ1 · · ·Dλn
U gRDλ1 · · ·Dλn

Ug†L (Dλ1 · · ·Dλn
U)T (Dλ1 · · ·DλnU)†

χ gRχg
†
L χT χ†

Dλ1 · · ·Dλn
χ gRDλ1 · · ·Dλn

χg†L (Dλ1 · · ·Dλn
χ)T (Dλ1 · · ·Dλnχ)†

rμ gRrμg
†
R + igR∂μg

†
R −lTμ lμ

lμ gLlμg
†
L + igL∂μg

†
L −rTμ rμ

fR
μν gRf

R
μνg

†
R −(fL

μν)
T fμν

L

fL
μν gLf

L
μνg

†
L −(fR

μν)
T fμν

R

Table 3: Transformation properties under the group (G), charge conjugation (C), and
parity (P ). The expressions for adjoint matrices are trivially obtained by taking the Her-
mitian conjugate of each entry. In the parity transformed expression it is understood that
the argument is (t,−�x) and that partial derivatives ∂μ act with respect to x and not with
respect to the argument of the corresponding function. Table adapted from [8]

For the SU case, we have not employed this (unnecessary large, redundant) parametriza-
tion, but instead generalized the quarkflow calculation from section 9.2 to NF flavours.
Both the Sp and SO calculations have been done with the representation of the Lie alge-
bra given in equation (92). The SO calculation has, as a cross-check for both the result and
the method, furthermore been derived independently by a modification of the quarkflow
calculation from section 9.2 that explicitly symmetrizes the fields in the flavour indices at
all computational steps.

A Construction of the Chiral Lagrangian

The construction of the chiral NLO Lagrangian can be systematically achieved by a careful
consideration of the transformation behaviour of the single elements under the symmetries
of QCD and their successive combination into larger building blocks and finally invariants.
Table 3 lists the transformation properties of the elements which lead to the general chiral
Lagrangian (in the notation used throughout section 3).

The enumeration of the possible terms can also be done very elegantly in a slightly
different notation. We introduce this new formalism first in order to then construct the
chiral Lagrangian in the general flavour case, later specifying to nf = 2 and nf = 3.
Starting from ChPT in the external field formulation with the canonical transformation
behaviour
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U → gR U g†L,

χ ≡ 2B̂ (s+ ip) → gR χ g†L,

lμ ≡ vμ − aμ → gL lμ g
†
L − i∂μ gL g

†
L,

rμ ≡ vμ + aμ → gR rμ g
†
R − i∂μ gR g†R. (95)

we define

u ≡ exp
(

iΦ/(
√
2F0)

)

; U = u2 (96)

to transform as

u → gRuh
† ≡ hug†L . (97)

This condition actually defines h ∈ SU(nF )V and determines it uniquely.41 We then
construct the chiral Lagrangian by using objects X that transform under chiral symmetry
as X → hXh†. At the present order, these are uμ, f

μν
± , χ± and χμ

− defined by

uμ = i
[
u† (∂μ − irμ) u− u (∂μ − ilμ) u

†] , χ = 2B (s+ ip) ,

χ± = u†χu† ± uχ†u , χμ
− = u†Dμχu† − uDμχ†u ,

fμν
± = uF μν

L u† ± u†F μν
R u , Dμχ = ∂μχ− irμχ+ iχlμ ,

F μν
L = ∂μlν − ∂νlμ − i [lμ, lν ] , F μν

R = ∂μrν − ∂νrμ − i [rμ, rν ] . (98)

The lowest order Lagrangian (5) is in this new notation simply given by

L2 =
F 2

4
〈uμu

μ + χ+〉 (99)

The most general Lagrangian, after elimination of redundant terms via partial integra-
tion, for the general nf flavour case reads

L4 = L̂0 〈uμuνuμuν〉+ L̂1 〈uμuμ〉2 + L̂2 〈uμuν〉〈uμuν〉+ L̂3 〈(uμuμ)
2〉+ L̂4 〈uμuμ〉〈χ+〉

+L̂5 〈uμuμχ+〉+ L̂6 〈χ+〉2 + L̂7 〈χ−〉2 +
L̂8

2
〈χ2

+ + χ2
−〉 − iL̂9 〈fμν

+ uμuν〉

+
L̂10

4
〈f 2

+ − f 2
−〉+ iL̂11

〈

χ̂−

(

∇μuμ −
i

2
χ̂−

)〉

+ L̂12

〈(

∇μuμ −
i

2
χ̂−

)2
〉

+Ĥ1 〈F 2
L + F 2

R〉+ Ĥ2 〈χχ†〉. (100)

Applying the lowest order equation of motion will eliminate L̂11 and L̂12, thus leaving 11
LECs besides the contact terms.

41Both of these statements are non-trivial, but can be shown using group theory. [27] Note that h
depends on gL, gR and u in a non-linear manner.
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Due to Cayley-Hamilton relations, we can achieve a further reduction by one in the
SU(3) case or by four in the SU(2) case. In this way, for the SU(3) case, we eliminate L̂0

from equation (100) via

〈uμuνuμuν〉 = −2〈uμuμu
νuν〉+

1

2
〈uμu

μ〉〈uνu
ν〉+ 〈uμuν〉〈uμuν〉 . (101)

In the two-flavour case, we exploit different cases of the general relation

{A,B} = A〈B〉+B〈A〉+ 〈AB〉 − 〈A〉〈B〉 (102)

valid for arbitrary 2 × 2 matrices. The Gasser-Leutwyler LECs in the SU(2) case are
related to the general basis in equation (100) by

l1 = −2 L̂0 + 4 L̂1 + 2 L̂3 ,

l2 = 4 L̂0 + 4 L̂2 ,

l3 = −8 L̂4 − 4 L̂5 + 16 L̂6 + 8 L̂8 ,

l4 = 8 L̂4 + 4 L̂5 ,

l5 = L̂10 ,

l6 = −2 L̂9 ,

l7 = −16 L̂7 − 8 L̂8 . (103)

To summarize, the SU(2) Lagrangian then reads in this notation42 (cf. also equation
(12) for other notation)

Lnf=2
4 =

l1
4
〈uμu

μ〉 〈uνu
ν〉+ l2

4
〈uμuν〉 〈uμuν〉+ l3

16
〈χ+〉2 +

il4
4

〈uμχ
μ
−〉

+
l5
4

〈
f 2
+ − f 2

−
〉
+

il6
2

〈f+μνu
μuν〉 − l7

16
〈χ−〉2

+ 3 contact terms (104)

whereas the nf = 3 Lagrangian is given by (cf. also equation (11) for other notation)

Lnf=3
4 = L1 〈uμu

μ〉 〈uνu
ν〉+ L2 〈uμuν〉 〈uμuν〉+ L3 〈uμu

μuνu
ν〉

+L4 〈uμu
μ〉 〈χ+〉+ L5 〈uμu

μχ+〉+ L6 〈χ+〉2 + L7 〈χ−〉2

+
L8

2

〈
χ2
+ + χ2

−
〉
− iL9 〈f+μνu

μuν〉+ L10

4

〈
f 2
+ − f 2

−
〉

+ 2 contact terms . (105)

The classification and reduction of the general Lagrangian at O(p6) can be performed
according to similar principles, but it additionally complicated due to the large number of
terms. This was done in [28] and refined in [29]. For a recent review regarding LECs and
their numerical determination, see [30].

42The additional contact term detχ is obviously of desired order in SU(2), but not in SU(3).
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Table 4: Overview over relevant sets of LECs and used notation in the different cases of
ChPT. The i + j notation denotes the number of physically relevant (i) and contact (j)
terms in the respective Lagrangians. At NLO, the latter ones are conventionally denoted hi

for nf = 2 and Hi for nf = 3. We also show the notation for partially quenched ChPT for
completeness. The difficulty in obtaining a minimal set of operators can be seen from the
fact that the number of independently physically relevant ci in the two-flavour case was long
thought to be 53 until it could be reduced to 52 due to an additional relation.

χPT χPT χPT PQχPT PQχPT

nf 2 3 n 2 3

LO F,B F0, B0 F̂0, B̂ F, B F0, B0

NLO li Li L̂i L
(2pq)
i L

(3pq)
i

i+ j 7+3 10+2 11+2 11+2 11+2

NNLO ci Ci Ki K
(2pq)
i K

(3pq)
i

i+ j 52+4 90+4 112+3 112+3 112+3

B Numerical Evaluation Procedures for FV Integrals

Two different methods for the numerical evaluation of FV integrals have been suggested
[13, 14, 15, 31]. The necessary cases emerging in our two-loop calculation including the
sunsets have been worked out in [11]. Following section 8 and the Poisson summation
theorem (49), it is readily apparent that the separation of IV and FV part of an integral
leaves a sum of integrals as the structure to be calculated numerically. Depending on the
preferred method, either the summation or the integration can be eliminated. The actual
evaluation routines then have to solve only a summation over modified Bessel functions
[13, 14, 15] or a numerical integration over Jacobi theta functions [31]. This is strictly true
for the one-propagator cases, for two or more propagators additional numerical integrations
over Feynman parameters might be necessary.

Strictly speaking, the Bessel function method does not only eliminate the integral, but
reduces the three-dimensional sum over momenta to a one-dimensional sum. For two-
propagator integrals then, the Bessel sum or the theta function integral are supplemented
by an additional integration over a Feynman parameter. The sunset case is more com-
plicated. As discussed in more detail in [11], the quantization of the sunset integral is
decomposed according to

〈〈X〉〉V ≡ 〈〈X〉〉r + 〈〈X〉〉s + 〈〈X〉〉t + 〈〈X〉〉rs, (106)

into parts with one loop momentum quantized (one per propagator) 〈〈X〉〉r,s,t and an addi-
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tional part emerging from the quantization of both (independent) loop momenta 〈〈X〉〉rs.
The 〈〈X〉〉r,s,t come with a three-dimensional sum over momenta and three integrations.
The Bessel method manages not only to reduce the three-dimensional sum to a one-
dimensional one, but also eliminates one integration. The theta function method on the
other hand eliminates the sum completely, but leaving all three integrations. The part
〈〈X〉〉rs with both loop momenta quantized naturally comes with two three-dimensional
sums in addition to the three integrations. Here, it should be noted that the Bessel method
leaves three one-dimensional sums and two integrations whereas the theta function method
can eliminate both summations completely, leaving only integrals over three parameters to
be performed numerically.

It turns out that the Bessel function based method is to be preferred for large values
of ML due to faster convergence whereas for small and medium ML rather the Jacobi
method should be applied. For details, consider [11].

C Translation between Minkowski and Euclidean Space-

Time

The required substitutions are

∫
dqr

(2π)d
←→ 1

i

∫
dqr

(2π)d
,

δμν ←→ −gμν

p · q, p2 ←→ −p · q, − p2

tμν ←→ −tμν
1

p2 +m2
←→ − 1

p2 −m2
, (107)

with the Euclidean expressions on the left hand side and the corresponding Minkowski
equivalent on the right. tμν corresponds to the spatial part of the metric δμν or gμν re-
spectively, the latter is defined with signature (+,−,−,−). Note that this implies that
Passarino-Veltman type integral identities will look different in both space-time conven-
tions, e. g. equation (61) in Minkowski space-time reads

dA22(m
2) + 3A23(m

2)−m2A(m2) = 0 . (108)

49



References

[1] G. Colangelo and S. Durr, Eur. Phys. J. C33 (2004) 543–553,
arXiv:hep-lat/0311023 [hep-lat].

[2] G. Colangelo and C. Haefeli, Phys. Lett. B590 (2004) 258–264,
arXiv:hep-lat/0403025 [hep-lat].

[3] G. Colangelo, S. Durr, and C. Haefeli, Nucl. Phys. B721 (2005) 136–174,
arXiv:hep-lat/0503014 [hep-lat].

[4] G. Colangelo and C. Haefeli, Nucl. Phys. B744 (2006) 14–33,
arXiv:hep-lat/0602017 [hep-lat].

[5] S. Weinberg, Physica A96 (1979) 327.

[6] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.

[7] J. Gasser and H. Leutwyler, Nucl.Phys. B250 (1985) 465.

[8] S. Scherer and M. R. Schindler, arXiv:hep-ph/0505265 [hep-ph].

[9] J. Bijnens, Prog.Part.Nucl.Phys. 58 (2007) 521–586, arXiv:hep-ph/0604043
[hep-ph].

[10] G. Amoros, J. Bijnens, and P. Talavera, Nucl.Phys. B568 (2000) 319–363,
arXiv:hep-ph/9907264 [hep-ph].

[11] J. Bijnens, E. Boström, and T. A. Lähde, JHEP 1401 (2014) 019, arXiv:1311.3531
[hep-lat].

[12] J. Vermaseren, arXiv:math-ph/0010025 [math-ph].

[13] J. Gasser and H. Leutwyler, Phys.Lett. B184 (1987) 83.

[14] J. Gasser and H. Leutwyler, Phys.Lett. B188 (1987) 477.

[15] J. Gasser and H. Leutwyler, Nucl.Phys. B307 (1988) 763.

[16] C. W. Bernard and M. F. L. Golterman, Phys. Rev. D49 (1994) 486–494,
arXiv:hep-lat/9306005 [hep-lat].

[17] S. R. Sharpe and N. Shoresh, Phys. Rev. D62 (2000) 094503,
arXiv:hep-lat/0006017 [hep-lat].

[18] S. R. Sharpe and N. Shoresh, Phys. Rev. D64 (2001) 114510,
arXiv:hep-lat/0108003 [hep-lat].

50



[19] C. Bernard and M. Golterman, Phys. Rev. D88 (2013) no. 1, 014004,
arXiv:1304.1948 [hep-lat].

[20] P. H. Damgaard and K. Splittorff, Phys. Rev. D62 (2000) 054509,
arXiv:hep-lat/0003017 [hep-lat].

[21] S. R. Sharpe, Phys. Rev. D46 (1992) 3146–3168, arXiv:hep-lat/9205020
[hep-lat].

[22] M. E. Peskin, Nucl. Phys. B175 (1980) 197–233.

[23] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot, and A. Zhitnitsky,
Nucl. Phys. B582 (2000) 477–513, arXiv:hep-ph/0001171 [hep-ph].

[24] J. Bijnens and J. Lu, JHEP 11 (2009) 116, arXiv:0910.5424 [hep-ph].

[25] C. Vafa and E. Witten, Phys. Rev. Lett. 53 (1984) 535.

[26] C. Vafa and E. Witten, Nucl. Phys. B234 (1984) 173.

[27] S. R. Coleman, J. Wess, and B. Zumino, Phys.Rev. 177 (1969) 2239–2247.

[28] H. Fearing and S. Scherer, Phys.Rev. D53 (1996) 315–348, arXiv:hep-ph/9408346
[hep-ph].

[29] J. Bijnens, G. Colangelo, and G. Ecker, JHEP 9902 (1999) 020,
arXiv:hep-ph/9902437 [hep-ph].

[30] J. Bijnens and G. Ecker, arXiv:1405.6488 [hep-ph].

[31] D. Becirevic and G. Villadoro, Phys.Rev. D69 (2004) 054010,
arXiv:hep-lat/0311028 [hep-lat].

51





Paper I





Der Harfner

Wer nie sein Brot mit Thränen aß,
Wer nie die kummervollen Nächte

Auf seinem Bette weinend saß,

Der kennt euch nicht, ihr himmlischen Mächte.

Ihr schickt ins Leben uns hinein,
Ihr lasst den Armen schuldig werden,
Dann überlasst ihr ihn der Pein:
Denn alle Schuld rächt sich auf Erden.

Johan Wolfgang von Goethe





LU TP 12-24
June 2012

Closing the Window on

Light Charged Higgs Bosons in the NMSSM

Johan Rathsman∗ and Thomas Rössler†
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I. INTRODUCTION

With the successful start-up of the LHC and the intriguing results from the first year of
data-taking at the center of mass energy of 7 TeV and a integrated luminosity close to ≈ 5 fb−1

for each of the ATLAS and CMS experiments, the ongoing run in 2012 is set to be a milestone
in particle physics. The possible signal for a Higgs boson around 125 GeV may or may not
be confirmed and the search for physics Beyond the Standard Model (BSM) will continue.
Contrary to the neutral Higgs boson, which if discovered may need to be analyzed in detail
regarding its branching fraction into various channels in order to determine whether it is the
Standard Model (SM) Higgs boson or not, the discovery of a charged Higgs boson would be an
unmistakable sign of BSM physics.

The charged Higgs boson arises in theories with more than one Higgs doublet. The prime
example is the MSSM [1, 2] which has two Higgs doublets, leading to two CP-even Higgs
bosons (h,H) and one CP-odd (A) in the case of CP-conservation and two charged states
(H±) after electroweak symmetry breaking. In this case the two Higgs doublets are required by
supersymmetry with one of the giving masses to the up-type fermions and one to the down-type
ones. For a complete introduction to the Higgs sector in the MSSM we refer to [3].

The main reason for introducing supersymmetry (for a general introduction to supersym-
metric theories we refer to [4]) is to solve the so called hierarchy problem, i.e. why the scale of
the electroweak interaction is so much smaller than the cut-off of the SM, normally taken to be
the Planck mass where gravity becomes the dominant force and the SM breaks down. With the
Higgs boson being a scalar particle, the higher order corrections to its mass are proportional
to this cut-off and with the SM only being an effective theory this cut-off dependence cannot
be renormalized away. In a supersymmetric theory this problem is essentially solved by the
introduction of the fermionic partners of the Higgs fields, which only get logarithmic corrections
to their masses and thereby avoids fine-tuning. In turn this means that the Higgs boson masses
are also protected from receiving quadratic corrections as long as supersymmetry is not broken
or only softly broken.

In addition to solving the hierarchy problem supersymmetry also offers a candidate for cold
dark matter [5, 6] in the case that R-symmetry is preserved, which in turn is introduced to avoid
terms in the Lagrangian that otherwise would mediate proton decay. In this case the lightest
supersymmetric particle (LSP) is stable and generically it has the right mass and cross-section
to constitute the observed dark matter. Supersymmetry also improves the unification of gauge
forces at an hypothesized grand unification scale although the unification is not exact and it
does depend on the details of the spectrum of SUSY-particles.

As is well known, the MSSM by itself is not without problems. Leaving the question of the
precise mechanism for supersymmetry breaking aside, the MSSM faces the so called μ-problem.
This relates to the magnitude of the dimensionful μ-parameter which couples the two Higgs
doublets to each other in the superpotential. In order to avoid large cancellations between this
contribution to the Higgs masses and the soft supersymmetry breaking terms as well as having
a phenomenologically viable supersymmetric theory (mainly having a large enough chargino
mass), the magnitude of μ should be of order the electroweak or supersymmetry breaking
scales. The problem is then that there is no a priori reason for this parameter to have any
particular value, in principle it could be anything up to the Planck scale, so why is it similar
to the electroweak or supersymmetry breaking scales?

In the NMSSM the μ-problem is solved by introducing an additional Higgs singlet into the
theory. After supersymmetry breaking this field gets a vacuum expectation value (vev) that
effectively acts as a μ-term. The original μ-term in the superpotential can then be set to zero
without spoiling the viability of the theory. For a more detailed review of the NMSSM we refer
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to [7, 8].

The additional Higgs singlet has important consequences for the phenomenology of the Higgs
sector. In the MSSM, the masses of the heavy Higgs bosons (H,A,H±) are closely related to
each other as they originate from the same (second) Higgs doublet if viewed in the Higgs basis
where only one (the first) of the Higgs doublets has a vev. For example, at tree-level the masses
of the CP-odd and charged Higgs bosons are related by m2

H± = m2
A +m2

W . As a consequence
the decay H± → AW is typically not open.

In the NMSSM the additional Higgs singlet means that there is one more CP-even and
one more CP-odd field with a separate mass scale introduced into the Higgs sector. As a
consequence, the by now three CP-even and two CP-odd electroweak states will mix into the
respective mass eigenstates. Thus the mass-relations from the MSSM will be altered. This is
particularly evident in the CP-odd sector where the lightest state a1 may now be much lighter
than the charged Higgs boson – even after taking experimental constraints into account as
discussed below – opening up the possibility for the h± → a1W decay to be dominant. In turn
this means that the search for charged Higgs bosons, in t-quark decays for example, has to be
widened also to include this decay channel.

The decay h± → a1W has already been considered to different levels of detail [9–11] in the
literature and there are constraints from the DELPHI experiment for ma1 > 12 GeV [12], as
well as the CDF experiment for the case a1 → τ+τ− [13]. In this paper we want to focus on
the region in parameter space where the a1 mass is above the bb̄ threshold but still so close to
it that the two b-quarks will fragment into a single bb̄–jet. The viability of scenarios with light
a1’s have also been considered by [14–18].

Our paper is organized as follows. In the next section we give some basic properties of
the Higgs sector in the NMSSM that are relevant to our discussion. We then discuss the
constraints on the parameter space in section 3, including the latest results from LHC. In
section 4 we illustrate how the signal h± → a1W can be searched for in tt̄-production taking
into account the appropriate backgrounds. Section 5 contains a discussion of the implications of
the possible Higgs signal from the ATLAS and CMS experiments and in section 6 we summarize
and conclude.

II. BASIC PROPERTIES OF THE NMSSM

We consider the Z3-symmetric version of the NMSSM with the superpotential given by

WNMSSM = WMSSM + λŜĤu · Ĥd + κŜ3 (1)

where WMSSM is the superpotential of the MSSM with μ set to zero. The soft supersymmetry
breaking potential relative to the MSSM is then given by

V NMSSM
soft = V MSSM

soft +m2
S|S|2 +

(

λAλSHu ·Hd +
1

3
κAκS

3 + h.c.

)

(2)

where the part of V MSSM
soft only depending on the Higgs fields is given by,

V MSSM
soft,higgs = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 . (3)

In addition V MSSM
soft contains all the dependence on the other soft supersymmetry breaking

parameters: the gaugino masses M1,M2,M3, the tri-linear couplings au, ad, ae, the squark
masses MQ,Mu,Md, and finally the slepton masses ML,Me. In the following we will assume
minimal flavour violation so that the sfermion mass matrices are diagonal and the tri-linear
couplings are proportional to the corresponding Yukawa coupling matrices au = Auyu etc.
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After electroweak symmetry breaking, and assuming that CP is conserved, the Higgs sector
will contain three CP-even Higgs bosons (h1, h2, h3), two CP-odd (a1, a2) and one charged (h±),
where the states are ordered in terms of increasing mass. In the same way as in the MSSM the
minimization conditions for the Higgs potential allows one to trade the mHu

,mHd
parameters

for the doublet vev v ≈ 174 GeV and tan β = vu/vd. Similarly mS can be expressed in terms
of the singlet vev vs which in turn gives rise to the effective μ-parameter, μ = λvs. All in all
this leaves us with 6 unknown parameters describing the Higgs sector of NMSSM at tree-level:
tan β, μ, λ, κ, Aλ, Aκ. Below we will trade the latter two parameters for the masses mh± and
ma1 .

As already alluded to the mass-eigenstates are mixtures of the electroweak eigenstates.
More specifically, writing Sweak = (Re(Hu),Re(Hd),Re(S)) we have hi = SijS

weak
j . (In the

MSSM limit this means that S12 = − sinα.) Similarly for the CP-odd states we have ai =
AijA

weak
j with Aweak = (Im(cos βHu + sin βHd), Im(S)). Here the mixing matrix is simply

A =

(
cos θA sin θA
− sin θA cos θA

)

. Together with the ratio of the two doublet vevs (or equivalently the

rotation angle needed to go to the Higgs basis where only one of the doublets have a vev) tan β,
the mixing matrices S and A specify the reduced couplings to fermions and gauge bosons as
given in table I.

Vertex NMSSM MSSM SM

h1tt
S11

sinβ

cosα

sinβ
1

h1bb
S12

cosβ

sinα

cosβ
1

h2tt
S21

sinβ

sinα

sinβ
n.a.

h2bb
S22

cosβ

cosα

cosβ
n.a.

a1tt cotβ cos θA cotβ n.a.

a1bb tanβ cos θA tanβ n.a.

h1V V sinβ S11 + cosβ S12 sin(β − α) 1

h2V V sinβ S21 + cosβ S22 cos(β − α) n.a.

a1h1Z (cosβ S11 − sinβ S12) cos θA cos(β − α) n.a.

a1h2Z (cosβ S21 − sinβ S22) cos θA sin(β − α) n.a.

h1h
+W− cosβ S11 − sinβ S12 cos(β − α) n.a.

a1h
+W− cos θA 1 n.a.

TABLE I. Reduced Higgs couplings in the NMSSM compared to the MSSM and the SM (when

applicable). Note that the reduced couplings to fermions are identical for all three generations, even

if only the third generation is displayed here. The couplings to h3 can be obtained from the h1 ones

by the replacements S11 → S31 and S12 → S32 wheras the couplings to a2 can be obtained from the

a1 ones by the replacement cos θA → sin θA.

III. EXPERIMENTAL CONSTRAINTS

In this section we will explore to what extent the process we are interested in is constrained
by existing experimental data. Since we are interested in a light h± (with mh± < mt) and
a light a1 there are constraints both from collider experiments as well as low-energy flavour
experiments. However, before going in to the various constraints we will specify the scenarios
that we have considered and then come back to the question of experimental constraints.
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A. Specification of SUSY scenario considered

In the following we will consider a variant of the well motivated mmax
h -scenario in the MSSM

[19], similarly to what was done in [17]. Thus we will consider a universal scale MSUSY for the
sfermion masses at the supersymmetry breaking scale. In other words we assume, as already
stated, that the sfermion mass matrices (MQ etc) are diagonal, and furthermore we assume that
all diagonal entries are equal toMSUSY which we keep fixed at 1 TeV. In addition we assume that
the gaugino masses are related as in the constrained MSSM, where supersymmetry breaking is
assumed to be mediated by gravity, namely M1 = 100 GeV, M2 = 200 GeV, M3 = 800 GeV.
Finally we will assume that At = Ab = Aτ but contrary to what was done in [17] we will let
them vary in the range At ∈ [−5000, 5000] GeV so that the amount of mixing between the t̃L
and t̃R is unconstrained.

For the Higgs sector we will let all six parameters vary freely. However, as was done in [17],
we will trade the Aκ parameter for ma1 and Aλ parameter for mh± using an iterative procedure
starting from the tree-level relations:

m2
h± =

2μ

sin 2β

(

Aλ +
κ

λ
μ
)

+m2
W − λ2v2 (4)

M2
P =

⎛

⎜
⎝

2μ

sin 2β

(

Aλ +
κ

λ
μ
)

λv
(

Aλ − 2
κ

λ
μ
)

λv
(

Aλ − 2
κ

λ
μ
) λ2v2 sin 2β

2μ

(

Aλ + 4
κ

λ
μ
)

− 3
κ

λ
Aκμ

⎞

⎟
⎠ , (5)

where the latter gives the masses of the mass-eigenstates a1, a2 after diagonalisation. Thus the
parameters we consider with their respective ranges are:

tan β ∈ [1, 60],

λ ∈ [0, 0.7],

κ ∈ [−0.7, 0.7],

μ ∈ [125, 1000] GeV,

mh± ∈ [80, 170] GeV,

ma1 ∈ [4, 150] GeV.

The limits for the various parameters has been chosen as follows: For tan β , κ and λ we impose
perturbativity up to the GUT scale which effectively means that any value out side the above
regions are bound to fail. (In addition some points inside these regions also fail because of this
requirement.) The lower limits on μ and mh± are dictated by experimental constraints. The
upper limit on μ is not a hard one but follows from the implicit assumption that μ should be
of order the electroweak scale whereas the upper limit on mh± is given by the condition that
the decay t → bh+ should be open. The reason for letting μ vary freely is mainly that this
decreases the correlations between the masses of the Higgs bosons as will be discussed more
below. Finally the lower limit on ma1 is chosen in order to have a1 → τ+τ− open whereas the
upper limit follows from having mh± < 170 GeV.

In order to calculate the resulting models from the inputs we use the package NMSSMTools
version 3.2.0 [20, 21] with default settings. Among other thing this means that we impose
perturbativity of the model up to the GUT scale. Finally, in all scans we generate ∼ 1 M
points (with flat priors in the parameters considered) which fulfill the theoretical constraints
implemented in NMSSMTools.
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B. Current experimental constraints

The most important constraints comes from the direct searches for Higgs bosons for which
we use the package HiggsBounds version 3.7.0 [22, 23]. In addition there are also constraints
from direct searches for supersymmetric particles, various flavour constraints and in principle
also the anomalous magnetic moment of the muon as well as the relic density of dark matter.
We have not applied the lattr two constraints for the following reasons. To investigate the
amount of dark matter in the various models one would also need to vary the gaugino masses
as was done in [24]. Since we keep these fixed we have not applied the dark matter constraints.
On the same vain we have not applied the constraint from the anomalous magnetic moment
of the muon, since this depends on the masses of the scalar partners of the muon and the
neutrinos, apart from requiring μ to be positive.

When it comes to the flavour constraints the situation is more involved in that various
constraints have different level of model dependence. On the one hand there are constraints
from tree-level mediated processes such as Bu → τ+ντ , which only depend on the Higgs sector
and on the other hand there a constraints from loop-mediated processes such as Bs → μ+μ− and
b → sγ which depend on details of the supersymmetric sector of the model. In the following we
will limit ourselves to applying the most severe constraints from Bu → τ+ντ , which limits the
available parameter space in [mh± , tan β] and Bs → μ+μ− which puts limits on [ma1 , tan β]. The
latter constraint is especially important since we will consider light a1 which is very constrained
by the data from LHCb and CMS [25, 26]. Finally we apply the direct constraints from searches
for supersymmetric particles. For all constraints except the Higgs bosons we use NMSSMTools
version 3.2.0.

The results from the scan are displayed in Fig. 1 with black points being viable models
from a theory point of view but excluded by the direct searches for Higgs bosons and coloured
points being allowed by the same constraint. Of primary interest are the allowed regions in
[ma1 ,mh± ]. As is clear from the figure there is a distinct region of points with ma1 ∼ 2mB ≈
10.6 GeV allowed by all constraints (indicated by green colour) for essentially any value of
mh± � 90 GeV. The same is also true in the constrained mmax

h scenario where μ = 200 GeV
and At = −

√
6MSUSY + μ cot β are fixed as was already noted in [17]. However, at difference

to the constrained mmax
h scenario there are regions with larger ma1 that are allowed also for

mh± � 120 GeV.

Looking at the [mh± , tan β]-plane one clearly sees the constraint from Bu → τ+ντ for in-
termediate tan β (show as blue points). For larger tan β there is a cancellation between the
SM and h± contributions, which makes this region allowed by Bu → τ+ντ , but instead the
constraints from Bs → μ+μ− come into play (red points). It should be noted that the points
excluded by Bu → τ+ντ are plotted on top of the constraints from Bs → μ+μ−. Similarly
the constraints from searches for supersymmetric particles are plotted (in yellow) on top of the
constraints from B-decays, but with the cut μ > 125 GeV there are hardly any points excluded
by this constraint. Finally we note that for tan β � 15 there are allowed points in parameter
space for essentially any value of mh± � 90 GeV.

Turning to the [ma1 , tan β]-plane we see that the region ma1 ∼ 2mB is allowed by all con-
straints up to tan β � 10, whereas for larger tan β there are points allowed by direct Higgs
boson searches but not allowed by Bs → μ+μ− and Bu → τ+ντ . Given the uncertainties re-
lated to the indirect constraints from B-decays we conclude that there is a region in parameter
space with ma1 ∼ 2mB, mh± ∈ [90, 170] GeV, and tan β ∈ [1, 60] that should be searched for by
the ATLAS and CMS experiments. It should also be noted that values both above and below
the threshold ma1 = 2mB are allowed by the constraints.

Before turning to the signal of interest, i.e. Br(h± → a1W ), we also show in Fig. 1 the
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FIG. 1. Correlations between the parameters of the scan in the scenario under consideration (see text

for details) with the various constraints applied as follows. All points in black are viable model points

but are excluded by HiggsBounds. The coloured points are allowed by HiggsBounds and plotted in

the following order: red points are excluded by Bs → μ+μ−, blue points are excluded by Bu → τ+ντ ,

yellow points are excluded by direct searches for supersymmetric particles, and finally green points

are allowed by all constraints considered.

effects of the various constraints when projected onto the [κ, λ] and [At, μ]-planes. From the
first of these plots one clearly sees the constraint

√
κ2 + λ2 � 0.7 which arises from requiring

perturbativity up to the GUT scale. From the second we see that the constraints imply |At| �
3500 GeV, which essentially follows from the radiative corrections to the lightest CP-even Higgs
becoming small or even negative for large |At| relative to the value MSUSY = 1 TeV that we
are using. We also see that for μ there are hardly no experimental constraints in the region
considered. On the other hand, if we would extend μ to values smaller than 125 GeV then all
those points would be excluded by searches for supersymmetric particles.

As promised we turn now to the resulting branching ratios for the decay h± → a1W . From
Fig. 2 we observe the following general feature, the branching ratio can be large as soon as
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FIG. 2. The branching ratio for h± → a1W when scanning over the parameters in the scenario under

consideration (see text for details) with the various constraints applied. The colour coding is the same

as in Fig. 1

the channel is open (ma1 < mh± − mW ) except for large tan β where the decay h± → τντ
becomes dominant. Concentrating on those points that pass all the constraints considered and
the region ma1 ∼ 2mB we also see from the lower right plot that Br(h± → a1W ) � 0.9 as long
as tan β � 10 and mh± � 100 GeV. Thus we can conclude that not only is the parameter space
region ma1 ∼ 2mB, mh± ∈ [100, 170] GeV, and tan β ∈ [1, 10] allowed - in this region the decay
h± → a1W is also dominant. In the next section we will exemplify how the so far unexplored
region of parameter space with ma1 ∈ [10, 12] GeV can be probed by searching for h± → a1W
with a1 → bb̄ in tt̄-production at the LHC.

Before ending this section we also show in Fig. 3 the branching rations for the decay chains
of interest, i.e. t → bh+, t → bh+ → ba1W , and t → bh+ → ba1W → bbb̄W as a function of
tan β when restricting to parameter space points with mh± < 160 GeV. As can be seen from the
figure, points with Br(t → bh+) as large as 0.2 are still allowed when the decay h± → a1W is
included. This should be compared with the experimental constraints from ATLAS and CMS
which so far have assumed that Br(h± → τντ ) = 1 giving a limit Br(t → bh+) � few percent
[27, 28].

IV. SEARCH STRATEGY

In the following section we will perform a signal-to-background analysis for three different
charged Higgs masses: mh+ = 100, 130 and 150 GeV respectively. For definiteness we have
used tan β = 50 when simulating the signal but the end results will not depend on this value.
The mass of the a1 is set to 11 GeV throughout as an example of a small a1 mass that is just
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FIG. 3. The branching ratios for the decay chains t → bh+, t → bh+ → ba1W , and t → bh+ →
ba1W → bbb̄W respectively when scanning over the parameters in the scenario under consideration

(see text for details) with the various constraints applied and only considering points with mh± < 160

GeV. The colour coding is the same as in Fig. 1

above bb̄-threshold. The three charged Higgs masses are chosen to illustrate different kinematic
properties: at mh± = 150 GeV the b-jet from the t → bh+ decay will be rather soft whereas
the a1 from the h+ will be harder. For mh± = 100 GeV the situation will be the opposite, and
in the intermediate case mh± = 130 GeV both jets can be relatively hard and in addition the
available phase-space will be largest.

We aim to reconstruct the signal process where one of the t-quarks decays leptonically via
h± → a1W with W → ℓνℓ and the other hadronically via W → jj as illustrated in Fig. 4.
All cross-sections have been corrected for these enforced W decays as well as a factor of 2 for
taking account of the process also with interchanged roles between the t and the t̄. Because
the a1 is supposed to decay close to threshold to bb̄, we aim for a reconstruction where the two
b’s from the a1 are clustered together to give a single bb̄-jet.

As backgrounds to the process we consider the irreducible tt̄bb̄ as well as, because of its
higher magnitude, tt̄ with one jet being accidentally b-tagged (weighted with a mis-tagging
probability, assumed to be 0.01 [29, 30]). In order to include also the single top contributions
to the background we have simulated the processes t̄bW+bb̄ and t̄bW+ respectively, but in the
following we will denote them as tt̄bb̄ and tt̄ for simplicity. For other reducible backgrounds,
such as W + b jets, we assume that similar procedures can be applied as in the tt̄ cross-section
determination. For example, requiring two b-tagged jets reduces the W +bjets background to tt̄
production to about 10% [31]. Several cuts are applied to strengthen the signal and to suppress
the background as will be discussed in the following.

A center-of-mass energy of 8 TeV at the Large Hadron Collider is assumed throughout the
whole analysis. For the generation of the hard matrix elements, we use MadGraph 5 [32] with a
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FIG. 4. Illustrations of tt̄ production in proton-proton collisions with the subsequent decay chain

considered in this paper.

fixed renormalization and factorization scale (set as default to the Z mass) and the ’CTEQ6L1’
parton distribution functions. To supply MadGraph with the proper parameters of the signal
we have for simplicity used a simple two Higgs Doublet Model with the masses given above as
implemented in the Two Higgs Doublet Model Calculator 2HDMC [33]. The only important
difference to the NMSSM then arises from the h± → a1W decay giving and extra factor cos2 θA
(cf. Table I). All other steps to generate complete events, such as radiation, underlying events
and hadronization, are carried out using Pythia 8. We start from bare samples of 100000
events for the different signals as well as the tt̄bb̄ background whereas for the tt̄ background we
have 50 times higher statistics to start with. There is no detector simulation included in this
exploratory analysis but we have simulated b-tagging in a simplified way as detailed below.

For all processes we use the leading order cross-sections obtained from MadGraph. On the
one hand this means that there is an overall scale factor which is more or less the same for
both signal and background. On the other hand the rates will be lower than what would have
been result if higher order cross-sections had been used. All in all this means that the signal
over background rates we find will be underestimated in this respect. For example we get a LO
cross-section for pp → tt̄ process in the SM of 138 pb to be compared with the NNLL resummed
result of 232 pb [34].

A. Reconstruction of the leptonic W

To reconstruct the leptonicW , we first need to identify the charged lepton (e or μ) associated
to the hard process. The transverse momentum (p⊥) and pseudo-rapidity (η)-distributions
are shown in Fig. 5. After applying cuts on the lepton kinematics (p⊥ > 20 GeV, |η| <
2.5), we require the summed p⊥ of the surrounding particles in an (η, φ)-cone of size ∆R =
√

∆η2 +∆φ2 = 0.3 around the lepton to be less than 10 GeV to call it isolated 1. On the whole
event then, we require to have precisely one isolated lepton in the final state.

The next step in reconstructing the leptonicW is to identify the missing energy (MET)/missing
�p⊥ of the event with the transverse momentum of the neutrino. Assuming the W to be on
mass-shell and using a mass-less neutrino then leaves two possible solutions for the longitudinal

1 The numerical values for the p⊥ cut and the cone size have been optimized by observation of the changes in

efficiency and purity when varying the cuts
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FIG. 5. Transverse momentum and pseudo-rapidity of the charged lepton from the W decay and

missing transverse energy (MET) before applying cuts.

momentum of the neutrino pνz = A±
√
D with

A =
m2

Wplz + 2plz(�pν⊥�pl⊥)

2m2
⊥l

, (6)

D =
E2

l

m4
⊥l

(
m4

W

4
− (�pν⊥)

2(�pl⊥)
2 + (�pν⊥�pl⊥)

2 + (�pν⊥�pl⊥)m
2
W ) . (7)

In order to have a more accurate reconstruction of pνz we have applied a cut E/⊥ > 30 GeV.
In addition, different selection criteria for the choice of the sign have been examined, e.g. the
invariant mass of the reconstructed h±. Among these, the most viable one turned out to be
a simple selection of the smaller |pνz|, which is correct in roughly three quarters of the signal
events.

B. Jet reconstruction and tagging

For the reconstruction of the hadronic part of the event, we consider different jet clustering
schemes (anti-kT [35], Cambridge/Aachen [36], kT [37, 38]) as well as cone-sizes. All particles,
except neutrinos and the isolated lepton, in the rapidity range |η| < 4.9 are fed into FastJet [39,
40]. The resulting clustered jets are required to have p⊥ > 20 GeV. Afterwards, a simplified
b-tagging is simulated for all jets in the region |η| < 2.5 by comparing the (η, φ) of the jets to
the b-quarks of the hard process. All jets within ∆R = 0.4 are then classified as b-jets.
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FIG. 7. Mass reconstruction of the hadronically decaying W (left) and t-quark (right) for the signal

with mh± = 130 GeV when R = 0.5 (left) and using the anti-kT algorithm (right).

The jet-algorithms requires to specify the distance measure R used when calculating the jet
measure. Since we want to cluster the bb̄ pair from the a1 into one jet, it is crucial that the
distance between the two subjets is not too large. Fig. 6 shows the distance measure between
the two b-quarks on parton level for different a1 masses. As can be seen from the figure, for
reasonable clustering cone sizes (around 0.4 to 0.6) and with ma1 in the region of interest for
this analysis, the two b-quarks will most likely be clustered together as a single jet.

As an ideal reconstruction will now give rise to three b-jets, the correct reconstruction of the
h± will be enhanced by the identification of the “wrong” b-jet which comes from the t̄ together
with the hadronically decaying W−. The strategy to achieve this here is to first find the pair of
untagged jets that is closest to the W mass and then combine this pair with the b-jet that gives
a mass closest to the t mass. This b-jet will then be excluded in the h± reconstruction, reducing
the number of b-jets which have to be considered (in an event with a so far correct clustering
in the desired way) to two. In addition to this, we put cuts on the quality of the reconstruction
by requiring the reconstructed masses shown in Fig. 7 to be in the regions mW ± 20 GeV or
mt ± 30 GeV respectively. We have checked that the reconstruction of the W and t masses are
quite independent of the choice of jet clustering scheme and cone-size as is also shown in Fig. 7.
Only the 0.3 cone size gives a slightly inferior top reconstruction, but then the a1 will also not
give rise to a single b-jet. If not mentioned differently, we thus use the anti-kT algorithm with
R = 0.5 in the following.
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FIG. 9. Reconstructed charged Higgs masses, using either the higher-p⊥ (left) or the lower-p⊥ (right)

b-jet combined with the leptonically decaying W .

Using the jet-reconstruction outlined above we obtain the jet and b-jet multiplicity respec-
tively shown in Fig. 8. As is clear from the figure, the number of jets peaks around the expected
five and the number of b-jets is a typically smaller than ideal which is due to the limited b-
tagging region enforced. Also note the large decrease in b-jet multiplicity for the tt̄ sample from
2 to 3. Here the 3 b-jet sample arises from gluon splitting into bb̄ and we do not take it into
account below since that would amount to double counting with the tt̄bb̄ background.

Given the large background from tt̄ for the two b-jet sample we resort to requiring at least
three b-jets. Assuming that one of the b-jets has been identified as coming from the t-quark
this leaves two b-jets that may originate from the h±. Due to the strong dependence of the
hardness of the b-jet from the t → h+b decay on the h± mass, we consider both of these
remaining solutions in general as possible candidates for the h± reconstruction. The resulting
distributions when combining with the leptonically decaying W are shown in Fig. 9. In the
h± reconstruction, we thus require 3 b-jets for the signals and the tt̄bb̄ background, while we
require 2 b-jets in the tt̄ sample. For the latter we then assume that any of the non b-jets inside
the b-tagger region (|η| < 2.5) can be mis-tagged with a probability of 0.01 per jet [29, 30].
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C. Signal significance and reach

To estimate the signal reach as well as its significance, we choose a common window of 90 to
160 GeV to integrate the signal as well as the backgrounds. We correct for b-tagging efficiencies
which we assume to be 0.6 per b-jet. The resulting cross-sections are shown in Table II.

σpeak [fb]

signal/background 100 GeV 130 GeV 150 GeV tt̄bb̄ tt̄ Σ BG

High p⊥ channel 0.78 7.9 3.7 3.0 0.9 3.9

Low p⊥ channel 0.97 9.2 4.7 4.8 1.2 6.0

TABLE II. Integrated signal cross-sections (cf figure 9) for the three different charged Higgs masses

as well as the two backgrounds. The integration region is 90 to 160 GeV

S/
√
B ratios for the three different mass cases are then calculated for an integrated luminos-

ity of 20 fb−1 and summarized in Table III. The table also shows the branching ratios at the
simulated parameter points, as well as the extrapolations to branching ratios necessary for a 5σ
discovery. From the table it is clear that for mh± ∼ 130 GeV, the discovery reach is maximal.
For smaller or larger mh± , the limitations in phase space will reduce the branching ratio for
h± → a1W and t → h±b respectively. In the former case this means that the standard decay
channel h± → τντ will also be significant.

mh± 100 GeV 130 GeV 150 GeV

b-jet selection high p⊥ low p⊥ high p⊥ low p⊥ high p⊥ low p⊥

S/
√
B 1.77 1.76 18.0 16.7 8.5 8.5

BR(t → bh+ → ba1W → bbb̄W ) 0.0051 0.022 0.015

BRcrit 0.014 0.014 0.0060 0.0065 0.0085 0.0085

TABLE III. The S/
√
B ratios obtained for an integrated luminosity of 20 fb−1 for the different signals

considered together with the branching ratios for the total decay chain t → bh+ → ba1W → bbb̄W

of the respective parameter points and a linear extrapolation to the critical branching ratio necessary

for a 5σ discovery.

Before ending this section we note that similarly to the standard decay modes of the charged
Higgs boson it should be possible to use the spin-correlations between the decay products of
the two top quarks as a way of enhancing the signal [41–43].

V. COMPATIBILITY WITH POSSIBLE HIGGS SIGNAL

Recently the ATLAS and CMS experiments announced the combined results of the SM
Higgs (φ) searches using ≈ 5 fb−1 of data from 2011 [44, 45]. In short they can be summarized
as follows: the CMS experiment has ruled out the region mφ ∈ [129, 600] GeV at the 95 %
confidence level as expected whereas in the region [118,129] GeV they have not been able to
make any exclusion at all even though they expected to be able to do so at the 95 % confidence
level, the ATLAS experiment has similarly ruled out the regions mφ ∈ [112.9, 115.5] GeV,
mφ ∈ [131, 238] GeV, and mφ ∈ [251, 466] GeV at the 95 % confidence level whereas they had
expected to rule out the region [125, 519] GeV.
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Instead, both experiments have found an excess of events in the regions mφ ∼ 126 GeV
and mφ ∼ 124 GeV for ATLAS and CMS respectively, which when corrected for the so called
look-elsewhere-effect and combining the different channels has a statistical significance of about
2σ for each of the two experiments. Although not statistically significant these results have
stirred a lot of excitement in the high-energy physics community [24, 46–54]. It will most likely
not be possible to draw any final conclusions about whether this is a true signal or not before
the end of the run in 2012 which will give another ∼ 20 fb−1 of data.

One of the most important properties of the possible signal at the LHC is that the φ → γγ
channel is similar to what is expected from the SM. Therefore we start by considering the would
be signal from the h1 as well as the h2 compared to what is expected in the SM for a Higgs
boson (φ) with the same mass. Assuming that gluon-gluon fusion dominates the production,
which we have verified is always the case in the scenarios we consider, this ratio is given by

Rhi
ggγγ =

σ(gg → hi)NMSSM

σ(gg → φ)SM

Br(hi → γγ)NMSSM

Br(φ → γγ)SM
≃ Γ(hi → gg)NMSSM

Γ(φ → gg)SM

Br(hi → γγ)NMSSM

Br(φ → γγ)SM
(8)

where in the second equality, following for example [51, 53], we have made the implicit as-
sumption that the difference in radiative corrections for the production and decay processes are
canceled in the ratio.

The results obtained for this quantity when using the same scan as in section III are displayed
in Fig. 10. From the figure it is clear that if the possible signal seen at the LHC is the h1 then
we would have to have ma1 � 60 GeV. Even so Rh1

ggγγ does not become larger than ∼ 0.5
for mh1 � 120 GeV in our scan and there appears to be an upper bound mh1 � 122 GeV.
However, the difference in mass compared to the possible observation is so small that it should
be considered to be within the theoretical uncertainty 2. In any case it is clear that it is hardly
possible to have a light a1 if it is the h1 that has been seen at the LHC.

Next we turn to the possibility that it is the h2 that has been seen by the LHC experiments.
The results of the scan are also shown in Fig. 10. As can be seen from the figure the results
are more promising in this case. There are points with Rh2

ggγγ � 0.1 also for small ma1 and
intermediate mh± that have mh2 in the region indicated by the LHC experiments.

In order to explore this possibility more closely we show in Fig. 11 the results when fixing
the a1 mass to 11 GeV as was done in section IV for the three cases mh± = 100, 130, 160 GeV.
As can be seen from the figure, for the intermediate charged Higgs mass it is possible to reach
Rh2

ggγγ ∼ 0.15. However it should be noted that in this case, as also shown in the figure, the
branching fraction for h± → a1W is quite small meaning that the standard decay channel
h± → τντ can be used even though with a slightly reduced branching fraction.

The last logical possibility would be that it is the h3 that has been observed by the CERN
experiments. However, in the scenarios we consider it turns out that Rh3

ggγγ is always small.

The trends seen in Fig. 11 can be understood on more general grounds from the difficulties
of having a light a1 with mass ma1 < mhi

/2 and at the same time have a large Rhi
ggγγ. The

first problem is that unless the triple Higgs coupling ghia1a1 is small the decay hi → a1a1 will
become dominant. Looking at the structures of ghia1a1 , which for example can be found in [8],
this means that both λ and κ typically have to be small. Secondly the decay hi → a1Z will
also dominate if ma1 < mhi

− mZ unless the corresponding reduced coupling given in table I
is small. In other words we need (cos βSi1 − sin βSi2) cos θA to be small. There are essentially
three ways to achieve this. If cos θA is small then a1 will be mainly singlet like and decouple.
However, then h± → a1W will also be small. The second possibility is that Si1 and Si2 are

2 For example, including the full one-loop corrections and the two-loop ones from the t and b Yukawa couplings

could push the h1 mass bit higher in compliance with the possible signal. Similarly increasing MSUSY would

also increase mh1
.

71



FIG. 10. The signal for h1 → γγ (left) and h2 → γγ (right) relative to the standard model when

scanning over the parameters in the scenario under consideration (see text for details) with the various

constraints applied. The colour coding is the same as in Fig. 1

small, but then the would-be-signal would be mainly singlet-like and not produced in the first
place, so Si3 has to be small. Finally then, the combination (cos βSi1− sin βSi2) could be small
but then the complementary combination (sin βSi1 + cos βSi2) would have to be large giving
an increased coupling hi → V V . All in all this means that is difficult to have a light a1 that is
not decoupled and still have a large Rhi

ggγγ, although it cannot be completely ruled out.

VI. SUMMARY AND CONCLUSIONS

We have considered a well motivated class of supersymmetric extensions of the standard
model with non-minimal Higgs sector – namely the CP-conserving NMSSM. In these types
of models the additional Higgs singlet can modify the phenomenology of the Higgs sector in
many different ways. In this paper we have specifically addressed the possibility of having a
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FIG. 11. The signal for h2 → γγ relative to the standard model (left) and the branching fraction for

h± → a1W (right) in a scan with ma1 = 11 GeV and mh± fixed at 100 (top), 130 (middle), and 160

(bottom) GeV respectively. The colour coding for the various constraints is the same as in Fig. 1

light CP-odd Higgs boson close to, but still above the bb̄ threshold. This in turn means that
the light charged Higgs boson, with mass mh± < mt, can decay into a1W in addition to the
standard decays h±

→ τντ , thus invalidating the interpretations made of charged Higgs bosons
searches assuming that Br(h±

→ τντ ) = 1.

When investigating the viability of these types of scenarios we have found that the experi-
mental constraints from direct searches are quite weak even when taking the latest constraints
from LHC into account. The constraints from indirect searches in B-decays are more constrain-
ing but also more model dependent. Even when including the results from the most important
ones, namely Bu → τντ and Bs → µ+µ−, we still find a region of parameter space that is
allowed with tan β ∈ [1, 10]. This is precisely the same region as the one where the decay
h±

→ a1W can be dominant.

The phenomenology of these types of scenarios is special in that, due to its low mass, the
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a1 will decay into a single bb̄ jet. Even so we have shown that it is possible to reconstruct the
decay h±

→ a1W using standard jet finding algorithms when the W decays leptonically. This
requires to use the missing transverse momentum to calculate the four momentum of the W ,
which can then be combined with the a1-jet to give a mass peak at mh± . The other t quark
is assumed to decay hadronically according to t → bjj giving an additional handle to identify
the events of interest. The most important background is thus the irreducible one from tt̄bb̄

production but we have also taken into account the tt̄ background by considering the possibility
of mis-tagging ordinary jets as b-jets.

Based on our study we find that with an integrated luminosity of 20 fb−1 it should be
possible to discover a charged Higgs bosons in these types of scenarios as long as the combined
branching fraction for the decay chain t → bh+

→ ba1W → bbb̄W is larger than ≈ 0.01.

Finally we have also investigated the phenomenological consequences of the possible Higgs
signal seen at the LHC on the types of scenarios we consider. We find that it is difficult to have
a light a1 that is not decoupled and at the same time have a combined production and decay
into γγ for one of the CP-even Higgs bosons with mass ∼ 125 GeV. As a consequence we have
not been able to find regions of parameter space where the h±

→ a1W decay dominates and
at the same time are compatible with the possible Higgs signal. This means that irrespectively
of whether the possible Higgs signal is substantiated or not, the LHC experiments should be
able to either discover or put very tight constraints on a light charged Higgs bosons also in the
NMSSM.

Note added:

On July 4, 2012 the ATLAS and CMS experiments announced the discovery of a new Higgs-like
particle in the same mass region as the previous observations already cited in the text.
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Paper II





Das Grab im Busento

Nächtlich am Busento lispeln

bei Cosenza dumpfe Lieder.

Aus den Wassern schallt es Antwort,

in den Wirbeln klingt es wider.

Und den Fluss hinauf, hinunter

zieh’n die Schatten tapfrer Goten,

Die den Alarich beweinen,

ihres Volkes besten Toten.

Allzu früh und fern der Heimat

mussten sie ihn hier begraben,

Während noch die Jugendlocken

seine Schultern blond umgaben.

Und am Ufer des Busento

reihten sie sich um die Wette.

Um die Strömung abzuleiten

gruben sie ein frisches Bette.

In der wogenleeren Höhlung

wühlten sie empor die Erde,

Senkten tief hinein den Leichnam

mit der Rüstung, auf dem Pferde.

Deckten dann mit Erde wieder

ihn und seine stolze Habe,

Dass die hohen Stromgewächse

wüchsen aus dem Heldengrabe.

Abgelenkt zum zweiten Male,

ward der Fluss herbeigezogen.

Mächtig in ihr altes Bette

schäumten die Busentowogen.

Und es sang ein Chor von Männern

"Schlaf in deinen Heldenehren!

Keines Römers schnöde Habsucht

soll dir je dein Grab versehren!"

Sangen’s, und die Lobgesänge

tönten fort im Gotenheere.

Wälze sie, Busentowelle,

wälze sie von Meer zu Meere!

August Graf von Platen
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Abstract

We calculate the finite volume corrections to meson masses and decay constants in
two and three flavour Chiral Perturbation Theory to two-loop order. The analytical
results are compared with the existing result for the pion mass in two-flavour ChPT
and the partial results for the other quantities. We present numerical results for all
quantities.

81



1 Introduction

Lattice QCD now provides good calculations of a number of quantities relevant for low-
energy particle physics as reviewed in [1]. These need several extrapolations, in the quark
masses, in the lattice spacing, in the lattice size and in lattice artefacts. Chiral Perturbation
Theory (ChPT) [2, 3, 4] provides guidance for all of these extrapolations. In particular, it
can be used to estimate the corrections due to the finite lattice size. This was introduced
by Gasser and Leutwyler in [5, 6, 7]. This is an alternative method compared to the one
introduced by Lüscher [8] where the leading finite size corrections can be derived using the
scattering amplitude.

In this paper we will restrict ourselves to the p-regime with mπL >> 1. We will not
do the all order integration over the zero mode as is necessary in the so-called ǫ-regime
[5, 6, 7]. The finite volume corrections to the mass and decay constant in the equal mass
case to one-loop order were calculated in these original papers. Since then, there have been
many studies of finite size effects at one-loop order in ChPT, in particular the masses and
decay constants to that order were derived in [9] and [10].

In infinite volume the ChPT expressions for masses and decay constants are known for
all relevant cases and including a number of extensions as e.g. partially quenched ChPT to
two-loop order. This is reviewed in [11]. There exist a few two-loop calculations at finite
volume in ChPT. The mass in two-flavour ChPT was studied in [12] and the quark-anti
quark vacuum expectation value in three-flavour ChPT in [13], the latter can be extended
to the ǫ-regime [14].

The main purpose of this paper is to provide the two-loop finite volume expressions in
two and three-flavour ChPT for the masses and decay constants. The extension to partially
quenched ChPT is planned for future work. The main reason this was not done earlier
is the complexity of the sunset integral at finite volume. The needed integrals have been
recently worked out in [15]. We will use their expressions extensively. Our expressions
are valid in the frame with ~p = 0, often called the center-of-mass frame. In the so-called
moving frames or with twisted boundary conditions there will be additional terms.

Some preliminary numerical results were reported in [16]. We find the typical e−mπL

behaviour for most quantities as expected. The corrections for the pion mass and decay
constant are significant at the present lattice size and precision in lattice QCD calculations.
The corrections for the kaon decay constant are needed but are not quite as large. The kaon
mass has corrections below 1% and the corrections for the eta mass and decay constant
turn out to be negligible at present precision. These results are in qualitative agreement
with the earlier work.

We give a short list of references for ChPT and discuss some small points in Sect. 2.
The definitions of the integrals we use and how they relate to the results in [15] is given in
Sect. 3. The next section contains our first major results. The full finite volume correction
to the pion mass and decay constant to two-loop order in ChPT. Sect. 5 contains the results
for the three-flavour case for pion, kaon and eta for both the mass and decay constant but
the large two-loop order formulas are collected in the appendices. The detailed numerical
discussion of our results is in Sect. 6.
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2 Chiral Perturbation Theory

An introduction to ChPT can be found in [17] and in the two-loop review [11]. The lowest
order and p4-Lagrangian can be found in [3] and [4] for the two and three flavour case
respectively. The order p6 Lagrangian is given in [18]. We use the standard renormalization
scheme in ChPT. The needed part for the finite volume integrals is discussed in Sect. 3. An
extensive discussion of the scheme can be found in [19] and [20]. An important comment
is that the LECs do not depend on the volume [7].

We prefer to designate orders by the p-counting order at which the diagram appears.
Thus we refer to order p2, order p4 or one-loop order and order p6 or two-loop order and
include in the terminology one- or two-loop order also the diagrams with fewer loops but
the same order in p-counting.

We present the formulas here in terms of the physical infinite volume masses and decay
constants.

3 Comments on the finite volume integrals

The loop integrals at finite volume at one-loop are well known. The difference with infinite
volume is that there is a sum over discrete momenta in every direction with a finite size
rather than a continuous integral. The use of the Poisson summation formula allows to
identify the infinite volume part and the finite volume corrections. The remainder can
be done in two ways. For one-loop tadpole integrals the first one was introduced in the
original work [5, 6, 7] and one remains with a sum over Bessel functions, that for large ML
converges fast. The other method can be found in [9] and one remains with an integral over
a Jacobi theta function, this method can be used for small and medium ML as well. The
extensions to other one-loop integrals can be done in both cases by combining propagators
with Feynman parameters. The first method was extended to the equal mass two-loop
sunset integral in [12]. The general mass case was then done in both methods in [15]. The
methods are explained in detail in [15] for both the one and two-loop case. Note that here
we use Minkowski notation for the integrals.

The tadpole integrals A and Aµν are defined via

{

A(m2), Aµν(m
2)
}

=
1

i

∫

V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (1)

The B0 tadpole integrals are defined similarly with a doubled propagator, alternatively
as the derivative w.r.t. m2 of the A-tadpoles. The subscript V on the integral indicates
that the integral is a discrete sum over the three spatial components and an integral over
the remainder. At finite volume, there are more Lorentz-structures possible. We define
the tensor tµν as the spatial part of the Minkowski metric gµν , to express these. For the
center-of-mass (cms) case this is sufficient. The needed functions for Aµν are

Aµν(m
2) = gµνA22(m

2) + tµνA23(m
2) . (2)
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In infinite volume A22 can be rewritten in terms of A. At finite volume, the relation is

dA22(m
2) + 3A23(m

2) = m2A(m2) . (3)

This is used to remove A22 from our expressions. In addition we do an expansion in ǫ with
d = 4− 2ǫ via

A(m2) = λ0
m2

16π2
+ A(m2) + AV (m2) + ǫ

(

Aǫ(m2) + AV ǫ(m2)
)

+ · · · . (4)

with λ0 =
1
ǫ
+log(4π)+1−γ and similarly for the other one-loop integrals. λ0 corresponds

to the usual MS variant used in ChPT. Doing the renormalization introduces a subtraction

point dependence which corresponds to using for A(m2) and B
0
(m2)

A(m2) =
−m2

16π2
log

m2

µ2
, B

0
(m2) =

−1

16π2

(

log
m2

µ2
+ 1

)

. (5)

The sunset integrals are defined as
{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(m2
1,m

2
2,m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dds

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(r2 −m2
1) (s

2 −m2
2) ((r + s− p)2 −m2

3)
. (6)

The subscript V again indicates that the spatial dimensions are a discrete sum rather than
an integral. The conventions correspond to those in infinite volume of [21]. The interchange
r,m2

1 ↔ s,m2
2 shows that Hs

µ, H
ss
µν are related directly to Hr

µ, H
rr
µν . H

rs
µν can also be related

to Hµν using the trick shown in [21] which remains valid at finite volume in the cms frame
[15].

In the cms frame we define the functions1

Hµ = pµH1 (7)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

The arguments of all functions in the cms frame are (m2
1,m

2
2,m

2
3, p

2). These functions
satisfy the relations, valid in finite volume [15],

H1(m
2
1,m

2
2,m

2
3, p

2) +H1(m
2
2,m

2
3,m

2
1, p

2) +H1(m
2
3,m

2
1,m

2
2, p

2) = H(m2
1,m

2
2,m

2
3, p

2) ,

p2H21 + dH22 + 3H27 −m2
1H = A(m2

2)A(m
2
3) . (8)

The arguments of the sunset functions in the second relation are all (m2
1,m

2
2,m

2
3, p

2). These
relations have been used to remove H22 from the final result and simplify the expressions
somewhat.

1In the cms frame we have that tµν = gµν − pµpν/p
2 but the given separation appears naturally in the

calculation [15]. It also avoids singularities in the limit p → 0.
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We now split the functions in an infinite volume part H̃i and a finite volume correction
H̃V

i with Hi = H̃i+H̃V
i . The infinite volume part was derived in [21]. For the finite volume

parts we define

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ǫ(m2
1) + AV ǫ(m2

2) + AV ǫ(m2
3)
)

+HV ,

H̃V
1 =

λ0

16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ǫ(m2
2) + AV ǫ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0

16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ǫ(m2
2) + AV ǫ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2) +

1

3
AV

23(m
2
3)
)

+
1

16π2

(

AV ǫ
23 (m

2
1) +

1

3
AV ǫ

23 (m
2
2) +

1

3
AV ǫ

23 (m
2
3)
)

+HV
27 , (9)

Note that the finite parts are defined slightly different compared to the infinite volume
definition in [21]. Here we have pulled out the extra parts with AV ǫ. These functions
cancel in the final result. We will also use the derivatives w.r.t. p2 of the sunset integrals.
These we denote with an extra prime, HV ′

i ≡ (∂/∂p2)HV
i .

The functions HV
i can be computed with the methods of [15]. They correspond to

adding the parts labeled with G and H in Sect. 4.3 and the part of Sect. 4.4 in [15].
We have in addition added the derivatives w.r.t. p2 for all the integrals and checked the
analytical results with numerical differentiation.

For all cases discussed we have done checks that both methods, via Bessel or Jacobi
theta functions, give the same results.

4 Two-flavour results

The diagrams needed to obtain the mass are shown in Fig. 1. We write the result for the
mass at finite volume in the form

mV 2
π = m2

π +∆Vm2
π , ∆Vm2

π = ∆Vm2(4)
π +∆Vm2(6)

π . (10)

m2
π and Fπ denote the infinite volume physical pion mass and decay constant. We have

reproduced the expression for the infinite volume mass derived in [22, 23, 24]. The extra
parts due to the finite volume are

F 2
π∆

Vm2(4)
π = −1

2
m2

πA
V (m2

π) ,

F 4
π∆

Vm2(6)
π = m4

πA
V (m2

π)
(

− lr4 + 5 lr3 + 8 lr2 + 14 lr1
)

+m2
πA

V
23(m

2
π)
(

− 12 lr2 − 6 lr1
)

+AV (m2
π)
(

13/12
1

16π2
m4

π − 7/4A(m2
π)m

2
π

)

+ AV (m2
π)

2
(

− 3/8m2
π

)

+AV (m2
π)B

0V (m2
π)
(

1/4m4
π

)

+HV (m2
π,m

2
π,m

2
π,m

2
π)
(

5/6m4
π

)

+HV
21(m

2
π,m

2
π,m

2
π,m

2
π)
(

3m4
π

)

+HV
27(m

2
π,m

2
π,m

2
π,m

2
π)
(

− 3m2
π

)

. (11)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: The Feynman diagrams needed for the mass calculation. A dot indicates a vertex
of order p2, a filled box of order p4 and an open box of order p6.

∆Vm2(4)
π agrees with the results of [5]. The comparison of ∆Vm2(6)

π with the result in [12] is
not quite so simple. The reason is that the splitting in parts has been done very differently
there and here. However, we agree on the sunset part, (44) in [12] and on the part that
has lri multiplying finite volume integrals in (38) in [12]. The latter was first derived in
[25]. Both their and our result are independent of the subtraction scale.

The pion decay constant is defined by

〈0|ūγµγ5d|π−(p)〉 =
√
2iFπpµ . (12)

It can be computed by the diagrams of Fig. 1 where the outgoing meson is replaced by an
insertion of the axial current. The diagrams needed for wave-function renormalization are
the same as those for the mass. The calculation proceeds along the same lines as above.
We reproduce the known infinite volume results of [22, 23, 24]. The decay constant at
finite volume we write as

F V
π = Fπ +∆VFπ , ∆VFπ = ∆VF (4)

π +∆VF (6)
π . (13)

The results are:

Fπ∆
VF (4)

π = AV (m2
π) ,

F 3
π∆

VF (6)
π = +AV (m2

π)m
2
π

(

3/2 lr4 − 4 lr2 − 7 lr1
)

+ AV
23(m

2
π)
(

6 lr2 + 3 lr1
)

+AV (m2
π)
(

− 1/3
1

16π2
m2

π + 1/2A(m2
π)
)

+ AV (m2
π)B

0V (m2
π)
(

− 1/2m2
π

)

+HV (m2
π,m

2
π,m

2
π,m

2
π)
(

− 1/2m2
π

)

+HV
27(m

2
π,m

2
π,m

2
π,m

2
π)
(

3/2
)
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+HV ′(m2
π,m

2
π,m

2
π,m

2
π)
(

5/12m4
π

)

+HV ′

21 (m
2
π,m

2
π,m

2
π,m

2
π)
(

3/2m4
π

)

+HV ′

27 (m
2
π,m

2
π,m

2
π,m

2
π)
(

− 3/2m2
π

)

. (14)

∆VF (4)
π agrees with the results of [5]. Here there exists no full two-loop calculation but an

evaluation for the case with at most one propagator at finite volume [26]. We agree with
their result for the terms containing lri if the term multiplying B2 in (54) in that paper is
divided by 2. Comparing with the remainder is difficult due to the very different treatment
of the loop integrals.

5 Three-flavour results

The principle of the calculation is exactly the same as before. The diagrams needed for
the mass are shown in Fig. 1. However, we now need to use the three-flavour Lagrangians
and include the kaons and eta as well. As a result the expressions become much more
cumbersome. Here we use as symbols, mπ, mK and mη as the physical volume pion, kaon
and eta mass at infinite volume. We have rewritten all expressions as an expansion in these
masses and in the physical pion decay constant at infinite volume. Given that the eta mass
to lowest order is given by the Gell-Mann–Okubo relation, there is an inherent ambiguity
in precisely how one writes the result in the combination of kaon and eta masses. The
form of the p6 result given here is to be used together with the form for the p4 expressions
given here as well.

The pion, kaon and eta masses at two-loop order in infinite volume are known, [21], we
have reproduced that result. The finite volume corrections for the masses are given by

mV 2
i = m2

i +∆Vm2
i , ∆Vm2

i = ∆Vm
2(4)
i +∆Vm

2(6)
i , (15)

for i = π,K, η. The p4 results are:

F 2
π∆

Vm2(4)
π = AV (m2

π)
(

− 1/2m2
π

)

+ AV (m2
η)
(

1/6m2
π

)

,

F 2
π∆

Vm
2(4)
K = AV (m2

η)
(

− 1/4m2
η − 1/12m2

π

)

,

F 2
π∆

Vm2(4)
η = AV (m2

π)
(

1/2m2
π

)

+ AV (m2
K)
(

−m2
η − 1/3m2

π

)

+AV (m2
η)
(

8/9m2
K − 7/18m2

π

)

. (16)

These agree with the expressions in [9, 10, 27]. The way in which the corrections are
written is to be in agreement with the way the infinite volume result was written in [21].
The order p6 expressions are rather large, they can be found in App. A. The contributions
with at most one pion propagator at finite volume were calculated in [27] for the kaon and
eta in three flavour ChPT, the expression for the pion was done in two-flavour ChPT and
discussed above. We agree with the Lr

i times finite volume part there. The remainder is
difficult to compare due to the different treatment of the integrals.
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The decay constants for the mesons are defined similarly to (12) via

〈0|ūγµγ5d|π−(p)〉 =
√
2iFπpµ ,

〈0|ūγµγ5s|K−(p)〉 =
√
2iFKpµ ,

〈0| 1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)〉 =
√
2iFηpµ . (17)

Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF

(4)
i +∆VF

(6)
i , (18)

for i = π,K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) + AV (m2

K)
(

1/2
)

,

Fπ∆
VF

(4)
K = AV (m2

π)
(

3/8
)

+ AV (m2
K)
(

3/4
)

+ AV (m2
η)
(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)
(

3/2
)

. (19)

These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual values we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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Figure 2: The relative finite volume corrections for the mass squared and decay constant
of the pion in two-flavour ChPT at a fixed infinite volume pion mass mπ = mπ0 . Shown
are the one-loop or p4 corrections, the full p6 result and the part only dependent on the
lri , p

6lri , and the sum of the p4 and p6 result. mπL = 2, 4 correspond to L ≈ 2.9, 5.8 fm.
(a) The pion mass, plotted is (mV 2

π − m2
π)/m

2
π. (b) The pion decay constant. Plotted is

−(F V
π − Fπ)/Fπ.

changing the scale to µ = 500 MeV does not change the result, but it does increase the lri
part. The equivalent plot for the relative correction to Fπ is shown in Fig. 2(b).

We can also perform a study of the corrections at other values of mπ or as a function
of mπ. One of the problems here is what to with the value of Fπ that should be used.
If we use the infinite volume formulas to two-loop order of [24] which are expressed in
the form Fπ/F = f(Fπ,mπ) for another pion mass m̃π we determine the associated value
of the decay constant, F̃π by solving F̃π/Fπ = f(F̃π, m̃π)/f(Fπ,mπ) numerically. The
contribution from the p6 LECs cri we have put to zero. This procedure might differ from
the values of F̃π used in [12]. To compare with their numerical results we have plotted
in Fig. 3 the equivalent of their Fig. 5. Namely Rmπ

= mV
π /mπ − 1 where we have

numerically calculated Rmπ
=
√

(m2
π +∆Vm2

π)/m
2
π − 1. The calculated values of Fπ are

90.1, 103.2, 113.8 for mπ = 100, 300, 500 MeV. The resulting values of Rmπ
as shown in

Fig. 3(a) are in reasonable agreement with Fig. 5 in [12]. There is already a difference at
order p4, so we suspect it is simply due to somewhat different values of Fπ. The one-loop
result for RFπ

agrees with Fig. 2 in [26] with small differences probably due to the difference
in Fπ and the difference in the lri -dependent part. Our result for the p6 result is somewhat
larger.

89



 0.0001

 0.001

 0.01

 0.1

 2  2.5  3  3.5  4

R
m

π

L (fm)

m
π
=100 MeV

m
π
=300 MeV

m
π
=500 MeV

p
4

p
4
+p

6

(a)

 0.001

 0.01

 0.1

 2  2.5  3  3.5  4

−
R

F
π

L (fm)

m
π
=100 MeV

m
π
=300 MeV

m
π
=500 MeV

p
4

p
4
+p

6

(b)

Figure 3: The relative finite volume corrections for the mass and decay constant of the
pion in two-flavour ChPT at three values of the infinite volume pion mass. (a) Rmπ

=
mV

π /mπ − 1. (b) RFπ
= F V

π /Fπ − 1, plotted is −RFπ
.

6.2 Three-flavour results: masses

The values of the low-energy constants, Lr
i and Cr

i , we take from the review [31], in
particular the set labeled BE14 there. In addition, the formulas require the infinite volume
physical masses for the pion, kaon and eta mass as well as the pion decay constant. The
masses and Fπ we use for the physical isospin averaged case are listed at the start of this
section. For changed values of the infinite volume pion and kaon mass, m̃π, m̃K , we proceed
similarly to Fπ for the two-flavour case. We solve self-consistently the set of equations for
m̃η, F̃π, F̃K/F̃π and F̃η/F̃π. For the latter ratios we use the expanded version, similar to
what was done in [31], see Eq. (45) in there. The results for a number of input cases is
shown in Tab. 1. The top line is the physical case. The resulting output is within the
expected quality of the fit in [31]. The next two lines have the kaon mass tuned to keep
the same value of ms. The value of Fπ can be compared with the result for the two-flavour
case given above.

Let us have a look at the pion mass finite volume corrections for the physical case. The
comparison of the two- and three-flavour results are plotted in Fig. 4(a). The one-loop
result differs only by a very small kaon and eta loop. The difference is not visible in the
figure. The two-loop results are also in very good agreement. The convergence is quite
reasonable.

The equivalent results for the kaon and eta are plotted in Fig. 5. The one-loop result
for the kaon mass has only an eta loop as can be seen from (16). As a result, that part
is very small. The total result is thus essentially coming only from two-loop order. The
eta mass has a negative one-loop finite volume contribution. The pure loop part and the

90



mπ mK mη Fπ FK/Fπ Fη/Fπ m̂/m̂phys ms/msphys ms/m̂
134.9764∗ 494.53∗ 545.9 92.2∗ 1.199 1.306 1∗ 1∗ 27.3

100 487.14 540.46 90.4 1.219 1.337 0.547 1.000 49.9
300 549.6 593.73 101.4 1.099 1.154 5.025 1.000 5.43
100 400 446.53 87.3 1.199 1.293 0.518 0.644 33.9
100 495 549.07 90.7 1.219 1.340 0.550 1.037 51.4
300 495 533.00 100.3 1.094 1.138 4.867 0.778 4.36
495 495 495.00 108.0 1 1 12.70 0.465 1

Table 1: The self consistent solution for the infinite volume values of mη, Fπ, FK , Fη

and the output quark mass ratios compared with the physical one. Units for dimensional
quantities are in MeV . The input values for the physical case are starred.
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Figure 4: The finite volume corrections to the pion mass squared at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity (mV 2

π −m2
π)/m

2
π. (a) Comparison of

the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

Lr
i -dependent part of the p

6 contribution are of the expected size. However, there is a very
strong cancellation between the two parts leaving a very small positive correction. The
total finite volume correction for the eta mass is negative.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion mass squared for a number of different
scenarios. In Fig. 6(a) we look at three cases. The bottom two lines are the physical case
labeled with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we have
plotted two cases, mK = 400 and 495 MeV. The effect of the change in the pion mass is
quite large while the effect due to the kaon mass change is smaller. The effect of changing
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Figure 5: The corrections to the kaon and eta mass squared for the physical case. Plotted
is the quantity (mV 2

i − m2
i )/m

2
i for i = K, η. Shown are the one-loop, the two-loop, the

sum and the two-loop Lr
i dependent part. (a) Kaon, the p4 is so small that p6 and p4 + p6

are indistinguishable. (b) Eta, note the signs, some parts are negative.

the pion mass can be better seen in Fig. 6(b) where we kept the kaon mass at 495 MeV
while varying the pion mass. The L dependence is given as a function of mπ0L with the
physical π0 mass.

We have plotted the same cases for the finite volume corrections to the kaon mass
squared in Fig. 7. The one-loop correction for the physical case andmπ,mK = 100, 495 MeV
is virtually identical. The p4 + p6 is a bit more different for the three cases as can be seen
in Fig. 7(a). In Fig. 7(b) we have shown the corrections for a fixed kaon mass but three
different pion masses. The bottom three lines are the one-loop result while the top three
lines are the full result. Note that, as it should be, the case where the pion mass and kaon
mass are the same, the finite volume corrections to the kaon are the same as for the pion
in Fig. 6(b). This is another small check on our result.

We have plotted the same cases once more for the finite volume corrections to the eta
mass squared in Fig. 8. Here the result is rather variable due to cancellations. In Fig. 8(a)
the one-loop corrections increase going from the physical case via mπ,mK = 100, 495 MeV
to mπ,mK = 100, 400 MeV. The two-loop corrections are rather small in the first two
cases, due to the cancellations between the pure two-loop and the Lr

i dependent part. The
one-loop correction for the physical case and mπ,mK = 100, 495 MeV is virtually identical.
The p4 + p6 is a bit more different for the three cases. In Fig. 8(b) we have shown the
corrections for a fixed kaon mass but three different pion masses. The bottom lines are
the case with mπ,mK = 495 MeV. It agrees with the pion and kaon corrections for this
case. For mπ = 300 MeV the correction is negative but goes through zero for small L due
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Figure 6: The finite volume corrections to the pion mass squared for a number of cases
listed in Tab. 1. Plotted is the quantity (mV 2

π − m2
π)/m

2
π. (a) Physical case, bottom

two lines, (mπ,mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ =
100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Figure 7: The finite volume corrections to the kaon mass squared for a number of cases
listed in Tab. 1.for the physical case. Plotted is the quantity (mV 2

K − m2
K)/m

2
K . (a)

Physical case and (mπ,mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and
mπ = 100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Figure 8: The finite volume corrections to the eta mass squared for a number of cases
listed in Tab. 1.for the physical case. Plotted is the quantity (mV 2

η −m2
η)/m

2
η. (a) Physical

case and (mπ,mK) = (100, 495) and (100, 400) MeV. Lines are for the one-loop result at
the right bottom physical case, middle (mπ,mK) = (100, 495), top (mπ,mK) = (100, 400).
The first two have only a small change due to p6, while for the last case there is a large
cancellation between one and two-loops. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV.
The size L is given in units of the physical π0 mass.

to a cancellation between one-and two-loop results. The p6 correction for mπ = 100 MeV
is very small, we again have a large cancellation between the pure two-loop and the Lr

i

dependent part.
We did not compare with the numerical results in [27], since there was a small mistake

in the relevant figures [32].

6.3 Three-flavour results: decay constants

We will use exactly the same input values as in the previous subsection now but for the
decay constants. Note that here in most cases the finite volume correction is negative.

The comparison of the two- and three-flavour results for the pion decay constant is
plotted in Fig. 9(a). The one-loop result differs only by a very small kaon and eta loop.
The difference is not visible in the figure. The two-loop results are also essentially indis-
tinguishable. The convergence is quite reasonable. The bottom line and top line(s) are
respectively the one-loop and the sum of one- and two-loops. Note that in agreement with
the earlier estimates there is a sizable correction at finite volume even at mπL = 2.

The equivalent results for the kaon and eta are plotted in Fig. 10. The kaon decay con-
stant corrections are somewhat smaller than for the pion, but still important for precision
studies. The one-loop result for the eta decay constant has only a kaon loop as can be
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Figure 9: The finite volume corrections to the pion decay constant at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity −(F V

π − Fπ)/Fπ. (a) Comparison of
the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

seen from (16). As a result, that part is very small. The total result comes mainly from
two-loop order. The eta mass has a negative one-loop finite volume contribution. The
pure loop part and the Lr

i -dependent part of the p6 contribution are of the expected size.
However, there is a very strong cancellation between the two parts leaving a very small
positive correction. The total finite volume correction for the eta decay constant is quite
small.

We can also check how the finite volume correction depends on the different masses. In
Fig. 11 we have plotted the corrections to the pion decay constant for several scenarios. In
Fig. 11(a) we look at three cases. The bottom two lines are the physical case labeled with
mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we have plotted two
cases, mK = 400 and 495 MeV. The effect of the change in the pion mass is quite large
while the effect due to the kaon mass change is smaller. In Fig. 11(b) we can see the effect
of only varying the pion mass.

We have plotted the same cases for the finite volume corrections to the kaon decay
constant in Fig. 12. In Fig. 12(a), the bottom two-lines are the physical case. The four
top lines are with mπ = 100 MeV, where the smaller kaon mass gives a somewhat larger
correction. In Fig. 12(b) we have shown the corrections for a fixed kaon mass but three
different pion masses. The bottom three lines are the one-loop result while the top three
lines are the full result. Note that, as it should be, for the case where the pion mass and
kaon mass are the same, the finite volume corrections to the kaon are the same as for the
pion in Fig. 11(b). This is another small check on our result.
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Figure 10: The corrections to the kaon and eta decay constant for the physical case. Plotted
is the quantity −(F V

i −Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum
and the two-loop Lr

i dependent part. (a) Kaon. (b) Eta.
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Figure 11: The finite volume corrections to the pion decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

π −Fπ)/Fπ. (a) Physical case and (mπ,mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the
eta decay constant squared in Fig. 13. In Fig. 13(a) the one-loop corrections for the

96



0.001

0.01

 2  2.5  3  3.5  4

−
∆

V
F

K
/F

K

m
π

0 L

m
π
=m

π
0

m
π
=100 MeV

p
4
 mK=400 MeV

p
4
+p

6
 mK=400 MeV

p
4

p
4
+p

6

(a)

1e-06

1e-05

0.0001

0.001

0.01

0.1

 2  2.5  3  3.5  4

−
∆

V
F

K
/F

K

m
π

0 L

m
π
=100 MeV

m
π
=300 MeV

m
π
=495 MeV

p
4

p
4
+p

6

(b)

Figure 12: The finite volume corrections to the kaon decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

K−FK)/FK . (a) Physical case and (mπ,mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

physical case and mπ,mK = 100, 495 MeV are extremely close, since it only depends on
the kaon mass. The p6 corrections for both cases are quite different though. Finally, for
mπ,mK = 100, 400 MeV both the one- and two-loop corrections are larger but the total
correction remains fairly small. In Fig. 13(b) we have shown the corrections for a fixed
kaon mass but three different pion masses. The p4 correction is thus identical for the three
cases. The correction for mπ,mK = 495 MeV agrees with the pion and kaon corrections
for this case. The total correction remains small for all cases.

We did not compare with the numerical results in [27], since there was a small mistake
in the relevant figures [32].

7 Conclusions

In this paper we calculated the finite volume corrections to two-loop order in ChPT. The
pion mass and decay constant we calculated both in two and three-flavour ChPT. The kaon
and eta mass and decay constant we obtained in three-flavour ChPT. These expressions in
the main text and the appendices are the main result of this work.

We have compared as far as possible with existing work, where we are in agreement
with the known one-loop results and have some disagreements with the existing results at
two-loop order. What we agree on and differ on is discussed in Sects. 4 and 5. Note that a
full comparison at the analytical level was not possible due to the large differences in the
loop integral treatments.
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Figure 13: The finite volume corrections to the eta decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

η −Fη)/Fη. (a) Physical case and (mπ,mK) =
(100, 495) and (100, 400) MeV. The bottom line is the one-loop result for the physical
case and (mπ,mK) = (100, 495). Others as labeled. (b) mK = 495 MeV and mπ =
100, 300, 495 MeV. The size L is given in units of the physical π0 mass.

We have presented numerical results for a number of representative cases. In all cases
the exponential decay e−mπ/L is clearly visible and as expected the numbers are dominated
by the finite volume pion loops. The corrections at order p6 are sometimes large, especially
when the order p4 result did not contain pion loops. We find that the finite volume
corrections are necessary for the pion mass and decay constant as well as the kaon decay
constant. The kaon mass receives corrections at a somewhat lower level while finite volume
corrections for the eta mass and decay constant are at present negligible.

The numerical work has been done using C++. The programs will be made available
together with the infinite volume results in [33]. The analytical work relied heavily on
FORM [34].
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A Three flavour p6 expressions for the masses

This appendix lists the order p6 result for the three-flavour ChPT finite volume corrections
to the masses squared at order p6.
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B Three flavour p6 expressions for the decay constants

This appendix lists the order p6 result for the three-flavour ChPT finite volume corrections
to the decay constants at order p6.
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Abstract

We present a calculation of the finite volume corrections to meson masses and
decay constants in three flavour Partially Quenched Chiral Perturbation Theory
(PQChPT) through two-loop order in the chiral expansion for the flavour-charged
(or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three
sea quark flavours with one, two or three different masses. We reproduce the known
infinite volume results and the finite volume results in the unquenched case. The
calculation has been performed using the supersymmetric formulation of PQChPT
as well as with a quark-flow technique.

Partial analytical results can be found in the appendices. Some examples of cases
relevant to lattice QCD are studied numerically. Numerical programs for all results
are available as part of the CHIRON package.
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1 Introduction

Quantum chromodynamics (QCD) is nowadays accepted to be the theory describing the
strong force. The smallness of the coupling constant at high energies makes it possible to
test and confirm the theory in highly energetic scattering. It also provides – at least in
principle – a way to obtain various low-energy hadronic observables, such as masses and
decay constants, but it has hitherto been impossible to derive such quantities of interest in
terms of analytical expressions by means of ab initio calculations. A numerical approach
that can circumvent the problem is lattice QCD. A review of the applications to flavour and
low-energy hadron physics is [1]. To calculate observables, one uses a numerical evaluation
of the QCD path integral in a Monte Carlo approach. A number of restrictions follow
from the nature of the calculation. Since it is carried out on a space-time lattice in a
finite volume, it is of high interest to have the effect of the finite volume under good
control. Furthermore, although lattice computations in meson physics are now feasible
when using physical parameters for the light quark masses, a lot of calculations still use
unphysically high masses for the quarks. It is also useful to vary quark masses to study a
number of phenomena. A common solution to study quark mass dependence with lower
computational needs is given by partial quenching. In partially quenched QCD (PQQCD),
one associates different masses (usually larger ones) to the sea quarks and the valence
quarks. Valence quarks are those connected to the external operators while sea quarks
are those in the fermion determinant or equivalently in closed loops. Sea quarks are only
connected to external states via gluons.

The preferable way to correct for unphysical quark masses is by means of Chiral Per-
turbation Theory (ChPT) [2, 3, 4]. Finite volume effects for ChPT have been introduced
in [5, 6, 7]. The corresponding effective theory for PQQCD is given by Partially Quenched
Chiral Perturbation Theory (PQChPT) [8]. The arguments underlying this are elaborated
in [9].

The proper matching of calculations in PQChPT to results from Partially Quenched
Lattice QCD allows a whole new landscape of possibilities, such as improved validation and
extrapolation of lattice results, or a more accurate determination of the chiral low-energy
constants (LECs), see e.g. [10]. It should be stressed that, as opposed to fully quenched cal-
culations, partially quenched calculations are connected to their corresponding unquenched
scenarios by a continuous change in variables, making it possible to immediately extract
physical results from otherwise unphysical simulations.

In this paper, we address the finite volume corrections through two-loop order in the
PQChPT framework, specifically for the flavour-charged or off-diagonal mesons. The in-
finite volume (IV) results in PQChPT to this order are known for three [11, 12, 13] and
two [14] sea quark flavours. The finite volume (FV) corrections in (unquenched) ChPT at
two-loop order have been addressed in our earlier study [15]. The needed integrals have
been worked out in [16]. Our expressions are valid in the frame with vanishing spatial
momentum, ~p = 0, often called the center-of-mass frame. In the so-called moving frames
or with twisted boundary conditions there will be additional terms. We have chosen to
present our result in terms of lowest order masses given the ambiguity in expressing the
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results in terms of the large number of possible different physical masses.
Earlier work on finite volume corrections at NNLO are besides our own work [15], the

pion mass in two-flavour ChPT [17] and the vacuum expectation value in three flavour
ChPT [18]. Extensions of the latter work to partially quenched are in [19]. We did not
find published results for the finite volume corrections at one-loop order in the partially
quenched case. They are however implicit in the expressions given for the staggered par-
tially quenched case in [20, 21].

We give a short list of references for ChPT and discuss some small points in Sect. 2. The
definitions of the integrals we use and how they relate to the results in [16] is given in Sect. 3.
The next section describes our major result which is the full finite volume correction to the
pion mass and decay constant to two-loop order in ChPT. Sect. 4 contains the results for
the three-flavour case for pion, kaon and eta for both the mass and decay constant. The
large two-loop order formulas are collected for one case in the appendices and all of them
can be downloaded from [22]. A numerical discussion of our results is in Sect. 5.

2 Partially Quenched Chiral Perturbation Theory

This section is very similar to the description of PQChPT given in [13] since our work is
the extension to finite volume of that paper.

An introduction to ChPT can be found in [23] and in the two-loop review [24]. The
lowest order and p4-Lagrangian can be found in [4]. The order p6 Lagrangian is given in
[25]. We use the standard renormalization scheme in ChPT. An extensive discussion of the
renormalization scheme can be found in [26] and [27]. Important for our work is that the
LECs do not depend on the volume [7]. An introduction with applications to lattice QCD
is [28]. References to more introductory literature can be found on [22].

The expansion in ChPT is in momenta p and quark-masses. We count the latter as two
powers of p. This counting is referred to as p-counting. We prefer to designate orders by
the p-counting order at which the diagram appears. Thus we refer to lowest order (LO) as
order p2, next-to-leading order (NLO) as order p4 or one-loop order and next-to-next-to-
leading order (NNLO) as order p6 or two-loop order and include in the terminology one-
or two-loop order also the diagrams with fewer loops but the same order in p-counting.

2.1 The Lagrangian

Three massless quark flavours QCD has a chiral symmetry

G = SU(nf )L × SU(nf )R . (1)

which is spontaneously broken to the diagonal subgroup SU(3)V . The Goldstone bosons
following from this spontaneous breakdown are described by the meson octet matrix

φ(x) =









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 1√
3
η









, (2)
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The flavour-singlet component has been integrated out since it is heavy due to the U(1)A
anomaly. The spontaneous symmetry breaking is the basis of ChPT.

In partially quenched QCD one distinguishes between valence and sea quarks. Valence
quarks are connected to the external states (or operators) while the sea-quarks are those
contributing in closed loops only connected via gluons to external states. These can be
given different masses in lattice QCD calculations. The ChPT for this partial quenching
can be done by studying the quark flow generalizing the quenched case studied in [29].
One can then treat the sea and valence lines differently. Alternatively, one can make use
of the supersymmetric formulation of PQChPT [8]. In the latter, three corresponding sets
of quarks are introduced instead of only two: In addition to the valence and sea sector,
a set of so-called ghost quarks is added. These are “bosonic” in the sense that they are
treated as commuting variables. With their masses fixed to the same numerical values
as present in the valence sector, they will cancel exactly the contribution coming from
closed valence quark loops. Most of the remainder of this section will be concerned with
the supersymmetric formulation. The changes needed to use a quark flow technique are
discussed at the end.

The chiral symmetry group is formally extended to the graded1

G = SU(nval + nsea|nval)L × SU(nval + nsea|nval)R , (3)

for the case of nval valence and nsea quarks. The chiral group G is spontaneously broken
to the diagonal subgroup SU(nval + nsea|nval)V . We will work in the flavour basis rather
than in the meson basis. We will thus use fields φab corresponding to the flavour content
of qaq̄b. The mixing of the neutral eigenstates and the integrating out of the singlet degree
of freedom is taken care of by using a more complicated propagator2.

The corresponding Goldstone degrees of freedom are put in a matrix with the generic
structure

Φ =



















[

qV q̄V
] [

qV q̄S
] [

qV q̄B
]

[

qS q̄V
] [

qS q̄S
] [

qS q̄B
]

[

qB q̄V
] [

qB q̄S
] [

qB q̄B
]



















. (4)

V denotes valence, S denotes sea and B denotes the bosonic ghost quarks. Note that the
meson fields containing one single ghost quark only will themselves obey fermionic, i. e.
anticommuting, statistics.

The structure of the Lagrangian is similar to standard ChPT for a generic number of
flavours. The lowest order Lagrangian is

L2 =
F 2
0

4
〈uµu

µ + χ+〉 . (5)

1The precise structure of the symmetry group is somewhat different, but the one given here is sufficient
for both the present discussion as well as for practical calculations. The “approximate” symmetry group
reproduces the right Ward identities [10, 30].

2This is described in detail in [30]. It is possible to use the same method also in standard ChPT.
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At one-loop, it is given by

L4 = L̂0 〈uµuνuµuν〉+ L̂1 〈uµuµ〉2 + L̂2 〈uµuν〉〈uµuν〉+ L̂3 〈(uµuµ)
2〉

+L̂4 〈uµuµ〉〈χ+〉+ L̂5 〈uµuµχ+〉+ L̂6 〈χ+〉2 + L̂7 〈χ−〉2 +
L̂8

2
〈χ2

+ + χ2
−〉+ . . . .(6)

We show only the terms relevant for our work.
The generalized Goldstone manifold is parametrized by

u ≡ exp
(

iΦ/(
√
2F̂ )

)

(7)

similar to the exponential representation in standard ChPT. It is a 9 × 9 matrix with
fermionic parts. We have furthermore introduced

uµ = i
{

u†(∂µ − irµ) u− u (∂µ − ilµ) u
†
}

,

χ± = u†χu† ± uχ† u . (8)

The matrix χ is for this work restricted to

χ = 2B0 diag(m1, . . . ,m9) (9)

with mi the quark mass of quark i and B0 a LEC. We have here m1 = m7,m2 = m8,m3 =
m9 as the valence masses and m4,m5,m6 as the sea quark masses. Ordinary traces have
been replaced by supertraces, denoted by 〈 〉, defined in terms of the ordinary ones by

Str

(

A B
C D

)

= TrA− TrD . (10)

B and C denote the fermionic blocks in the matrix. The supersinglet Φ0, generalizing the
η′, is integrated out to account for the axial anomaly as in standard ChPT, implying the
additional condition

〈Φ〉 = Str (Φ) = 0 . (11)

However, as mentioned above, we will work in the flavour basis enforcing the constraint
(11) via the propagator.

A calculation in PQChPT has to be performed using a larger set of operators since no
further reduction by means of Cayley-Hamilton relations can be performed. The three-
flavour PQChPT Lagrangian (equation (6)) thus has 11 LECs for PQChPT.

The LECs for standard three flavour ChPT are related to those of three flavour PQChPT
via

Lr
1 = L̂r

1 + L̂r
0/2, Lr

2 = L̂r
2 + L̂r

0, Lr
3 = L̂r

3 − 2 L̂r
0, (12)

and Lr
i = L̂r

i for the others. Note that a numerical value for L̂0 cannot be obtained by
experiment, but can be determined only via PQQCD lattice simulations or modelling.

An additional comment is that the divergences for PQChPT are directly related to
those for nsea-flavour ChPT [27] when all traces are replaced by supertraces. This can be
argued using the formal equivalence of the equations of motion used or via the replica trick
[31].
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2.2 The propagator and notation for masses and residues

The variant of PQChPT, considered in this paper, comes with three valence quarks, with
masses m1,m2,m3 and three sea quarks with masses m4,m5,m6. The additional ghost
quarks emerging only in the supersymmetric formulation have masses m7,m8,m9. They
do not appear explicitly since they are fixed to the ones in the valence sector, i.e. m7 = m1,
m8 = m2, m9 = m3.

We use the numbers dval and dsea to denote the number of non-degenerate quark masses
in each sector. In the case of two non-degenerate mass scales for one sector, it is the
two masses with the lowest indices that we set degenerate, which will in turn both be
represented by the mass scale with the lowest index, e.g. in the case dsea = 2 we have
m4 = m5 6= m6 and expressions will be explicitly dependent on m4 and m6 only.

In fact we will always absorb a factor 2B0 in the notation and we use

χi ≡ 2B0mi , χij ≡
1

2
(χi + χj) . (13)

The lowest order masses for off-diagonal mesons with flavour content qiq̄j are given by
χij and we will use χi rather then χii for equal masses. Dealing with masses for the
diagonal valence mesons in PQChPT is not trivial. This is discussed in detail in [30] and
extended to NNLO in [32]. The diagonal sea quark sector has two masses associated with
it, corresponding to the neutral pion and eta masses. These we denote by χπ and χη. They
are defined as the solutions to the equations

χπ + χη =
2

3
(χ4 + χ5 + χ6) ,

χπχη =
1

3
(χ4χ5 + χ5χ6 + χ4χ6) . (14)

They are non-polynomial in the sea masses χj for three non-degenerate quark masses, i.e.
dsea = 3. For dsea = 2 one has instead χπ = χ4 and χη = (1/3)(χ4 + 2χ6).

The flavour-charged propagator, connecting φij with φji, is given by [8, 10, 30]

−i Gc
ij(k) =

ǫj
k2 − χij + iε

(i 6= j) . (15)

with χij ≡ (χi +χj)/2, the lowest order meson mass, and the signature ǫj is defined as +1
for the flavor indices of the nval + nsea fermionic quarks, and as −1 for the flavor indices of
the nval bosonic ghost quarks. In the present calculation, with the number of valence and
sea quarks as given above, ǫj thus takes the values

ǫj =

{

+1 for j = 1, . . . , 6
−1 for j = 7, 8, 9 .

(16)

The flavour-neutral propagator, connecting a flavour field φii to φjj, on the other hand
suffers from additional contributions emerging from the elimination of the Φ0 and the
partial quenching [8, 10, 30]. We write it as

Gn
ij(k) = Gc

ij(k) δij −Gq
ij(k)/nsea. (17)
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The additional terms are either

−i Gq
ij(k) =

Ri
jπη

k2 − χi + iε
+

Rj
iπη

k2 − χj + iε

+
Rπ

ηij

k2 − χπ + iε
+

Rη
πij

k2 − χη + iε
, (18)

for the case with i 6= j and χi 6= χj, or

−i Gq
ij(k) =

Rd
i

(k2 − χi + iε)2
+

Rc
i

k2 − χi + iε

+
Rπ

ηii

k2 − χπ + iε
+

Rη
πii

k2 − χη + iε
, (19)

for the case with χi = χj which clearly includes i = j. In the second case, the sum of single
poles is supplemented with an unphysical double pole. Since double poles emerge due
to the partial quenching in the valence sector, they disappear by taking the appropriate
unquenched limit.

Using the ratios of products of differences of masses

Rz
ab = χa − χb,

Rz
abc =

χa − χb

χa − χc

,

Rz
abcd =

(χa − χb)(χa − χc)

χa − χd

,

Rz
abcdefg =

(χa − χb)(χa − χc)(χa − χd)

(χa − χe)(χa − χf )(χa − χg)
, (20)

the residues R of the neutral meson propagator in equations (18) and (19) are (for dsea = 3)

Ri
jkl = Rz

i456jkl, Rd
i = Rz

i456πη, Rc
i = Ri

4πη +Ri
5πη +Ri

6πη −Ri
πηη −Ri

ππη. (21)

Note that many of these quantities vanish when i takes the value of a sea quark index.
The sea-quark propagators thus do not contribute any double poles as expected since these
originate from the quenching in the valence sector.

For dsea = 2 or χπ = χ5 = χ4. The needed residues simplify to

Ri
jk = Rz

i46jk, Rd
i = Rz

i46η, Rc
i = Ri

4η +Ri
6η −Ri

ηη. (22)

The corresponding propagator can be obtained by removing all pion indices as well as the
pion mass pole from equations (18) and (19).

The physically less interesting case dsea = 1 immediately yields χπ = χη = χ6 = χ5 =
χ4. All residues from the sea quark sector are reduced to numbers, only

Ri
j = Rz

i4j, R
d
i = Rz

i4 , (23)

appear.
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2.3 The quark flow case

We have performed the calculation using the supersymmetric method described above but
also with the quark flow method [29]. We use the same Lagrangians as in (5) and (6) but
with normal traces everywhere. The matrix Φ is now written in terms of generic fields φij

and all indices are kept symbolic implying summations.
Connecting propagators of a field φij to φkl should be done by using

Gijkl(k) = Gc
ij(k)δilδjk − δijδklG

q
ik(k)/nsea . (24)

The propagators Gc
ij(k), G

q
ij(k) remain the same but we can now disregard the factors ǫj

since with this method there are no bosonic ghost quarks.
After constructing the Feynman diagrams using the above, the quark flow is visible

following the symbolic flavour indices. Next, one replaces the index lines that connect to
external fields or operators by their appropriate valence value. The remaining index lines
are now sea indices and are summed over with the sea quark indices.

The results obtained with the quark flow method agreed in all cases with those of the
supersymmetric method.

3 The finite volume integrals

The loop integrals at finite volume at one-loop are well known. There is a sum over
discrete momenta in every direction with a finite size rather than a continuous integral.
The Poisson summation formula allows to identify the infinite volume part and the finite
volume corrections. The remainder can be done with two different methods. For one-
loop tadpole integrals the first method was introduced by [5, 6, 7] and a sum over Bessel
functions, that for large ML converges fast, remains to be done. With the other method
one remains instead with an integral over a Jacobi theta function, this method can be used
for small and medium ML as well. It can be found in [33]. The extensions to other one-
loop integrals is done in both cases by combining propagators with Feynman parameters.
The first method was extended to the equal mass two-loop sunset integral [17] and later to
the more general mass case in [16]. The latter extended the Jacobi theta function method
as well to the sunset case. Details and further references can be found in [16]. In this paper
we use Minkowski notation for the integrals.

For the one-loop integrals needed here, we use a notation that does a first classi-
fication according to the sum of the powers of the propagators with different masses,
m1,m2, ...,mmax. We label the integrals A,B,C,D for a total power of propagators of
n = 1, 2, 3, 4 respectively, since total powers of up to 4 can appear in the calculation as
follows from the discussion of double poles in Sec. 2.2. The different mass scales are given
as consecutive arguments of the integral. Alternatively, if only one mass scale in total is
present, we omit its repetition as a shorthand notation. For the present calculation at most
two different scales can appear.
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Both scalar and tensor integrals will occur, e. g. in the simplest case of one single
propagator raised to single power

{

A(m2), Aµν(m
2)
}

=
1

i

∫

V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (25)

We used the subscript V to indicate it is a finite volume sum and integral.
More Lorentz structures are possible than in the infinite volume case. We define the

tensor tµν as the spatial part of the Minkowski metric gµν , to express these. For the
center-of-mass (cms) case this is sufficient. The needed functions for the above example
are

Aµν(m
2) = gµνA22(m

2) + tµνA23(m
2) . (26)

We then use Passarino-Veltman identities in order to further simplify the result. In infinite
volume the relation obtained by considering gµνAµν(m

2) can be used to remove A22. In
finite volume, we again remove the A22-type integrals from the extended relation

dA22(m
2) + 3A23(m

2) = m2A(m2) . (27)

Each integral is split into an infinite volume contribution and a finite volume correction
by means of the Poisson summation formula, while simultaneously being expanded in ǫ up
to the necessary order.

A(m2) = λ0
m2

16π2
+ A(m2) + AV (m2) + ǫ

(

Aǫ(m2) + AV ǫ(m2)
)

+ · · · . (28)

Here, λ0 = 1
ǫ
+ log(4π) + 1 − γ. The same split is done for all one-loop integrals. The

expressions can be obtained by using the relations

B(m2) =
∂

∂m2
A(m2),

C(m2) =
1

2

∂

∂m2
B(m2),

D(m2) =
1

3

∂

∂m2
C(m2),

B(m2
1,m

2
2) =

A(m2
1)− A(m2

2)

m2
1 −m2

2

. (29)

The sunset integrals, defined as
{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(n,m2
1,m

2
2,m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dds

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(r2 −m2
1)

n1 (s2 −m2
2)

n2 ((r + s− p)2 −m2
3)

n3
, (30)

now come with eight different pole configurations. We label these by the index n according
to Tab. 1 analoguous to the infinite volume definitions of [11, 12, 13, 14].
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n1 n2 n3

n = 1 1 1 1

n = 2 2 1 1
n = 3 1 2 1
(n = 4) 1 1 2

n = 5 2 2 1
(n = 6) 2 1 2
n = 7 1 2 2

n = 8 2 2 2

Table 1: Overview of the notation for the possible configurations of powers of propagators
in the H functions in PQChPT. Redundant configurations are given in parentheses.

The interchange (r,m2
1, n1) ↔ (s,m2

2, n2) allows to show that Hs
µ, H

ss
µν are related di-

rectly to Hr
µ, H

rr
µν . Hrs

µν can also be related to Hµν using the trick shown in [34] and also
used in [16], now taking the pole configurations into account properly. The resulting Hµν

and Hµ can then be reduced to six pole configurations only, cf. table 1, the bracketed
ones can be eliminated via the interchange above. In the scalar case H, only four pole
configurations are needed.

For the partially quenched calculation we thus generalized the sunset integrals used in
our earlier work via

H(χi, χj, χk; p
2) → H(n, χi, χj, χk; p

2), (31)

introducing the new index n for the pole configurations as the first argument. Note on the
side that all new pole configurations are related to the simplest one by differentiation with
respect to the mass scales.

In the cms frame, we reduce the tensor structure of the sunsets as

Hµ = pµH1 (32)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

As in [15], we renormalize the FV sunsets by not only subtracting the infinite part but also
an additional finite part containing O(ǫ) contributions of one-loop integrals. In this way,
the latter integrals will cancel out of the final result, and thus do not need to be computed.
The splitting for n = 1

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ǫ(m2
1) + AV ǫ(m2

2) + AV ǫ(m2
3)
)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p6). Cir-
cular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6). The
tree level diagrams (a,b,i) do not contribute to finite volume corrections.

+HV ,

H̃V
1 =

λ0

16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ǫ(m2
2) + AV ǫ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0

16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ǫ(m2
2) + AV ǫ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2) +

1

3
AV

23(m
2
3)
)

+
1

16π2

(

AV ǫ
23 (m

2
1) +

1

3
AV ǫ

23 (m
2
2) +

1

3
AV ǫ

23 (m
2
3)
)

+HV
27 , (33)

has to be generalized for the other pole configurations by taking the appropriate derivatives
w.r.t. the masses.

4 Analytical results

The calculation of the masses proceeds in the usual way from the Feynman diagrams for
the self-energy shown in Fig. 1. We have performed the calculation for the off-diagonal
mesons, i.e. consistening of a valence quark and a different valence anti-quark, and for the
case of three flavours of sea quarks. The calculation has been done for all mass cases, equal
and different valence quark-masses, dval = 1, 2, and sea quark masses all equal, dsea = 1,
two equal and the third different, dsea = 2 and all three different, dsea = 3.

A large number of checks have been done on the calculations. They have been performed
both in the supersymmetric formalism and using quark flow techniques. The infinite volume
results are also in full agreement with [11, 12, 13]. The finite volume parts agree with our
earlier results [15] when these are expressed in terms of lowest order masses and when the
sea masses are put equal to the valence masses.
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The formulas especially for the case of three different sea quark masses are very long. In
App. A we list the case of equal valence masses and two sea quark masses. This corresponds
to the charged pion mass in the isospin limit. The other cases can be downloaded from
[22].

The masses are given as

m2
ij = χij +m

2(4)
ij +∆Vm

2(4)
ij +m

2(6)
ij +∆Vm

2(6)
ij . (34)

In addition a superscript indicating dvaldsea is added. The infinite volume and the one-
loop finite volume corrections were known before. The new parts are the two-loop finite
volume corrections. These we split in addition in an Lr

i dependent part and a pure two-loop
contribution

∆Vm
2(6)
ij = ∆Vm

2(6L)
ij +∆Vm

2(6R)
ij . (35)

The subscript ij is set to 12 for dval = 1 and to 13 for dval = 2 similar to the infinite volume
work.

The decay constant is defined in the usual way as

〈0|q̄jγµγ5qi|Mij(p)〉 = i
√
2Fijpµ , (36)

for the pseudoscalar mesonMij with quark content i 6= j and momentum p. The calculation
needs the diagrams of Fig. 1 for the wave function renormalization and the same ones with
one external meson leg replaced by an insertion of the axial current.

We split the result as

Fij = F0 + F
(4)
ij +∆V F

(4)
ij + F

(6)
ij +∆V F

(6)
ij . (37)

The NNLO part is split again in

∆V F
(6)
ij = ∆V F

(6L)
ij +∆V F

2(6R)
ij . (38)

The calculations have been done using the supersymmetric and the quark flow methods.
The infinite volume and NLO results agree with the known expressions and the result
reduces in the correct limit to the unquenched results of our earlier work [15]. The formulas
are rather long, the case for equal valence masses and two different sea masses corresponding
to the charged pion decay constant in the isospin limit is given in App. B. The expressions
for the other cases can be downloaded from [22].

5 Numerical examples

The intention is that various lattice QCD collaborations can use our formulas. All cases
discussed have been included in the package CHIRON [35] available from [36]. The nu-
merical results shown in this section have been obtained with that implementation. The
programs have been cross-checked with an independent version. It has been checked that
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the results reduce in the appropriate limits to those of our earlier work [15]. For this pur-
pose the expressions obtained in [15], but rewritten in terms of lowest order masses and
decay constants, have been implemented and included in CHIRON [36]. In addition, a
check has been done that the different mass cases reduce to each other numerically.

For input values we have chosen the recent global fit for the Lr
i [37]. We have set the

extra LEC Lr
0 = 0. We always use a scale of µ = 0.77 GeV. For the size of the lattice we

present results for a length L such that ML = 2 for M = 0.13 GeV. The lowest order pion
decay constant we have chosen throughout as F0 = 87.7 MeV.

The numerical results are presented via

∆V
M =

m2V
ij −m2∞

ij

χij

∆V
F =

F V
ij − F∞

ij

F0

. (39)

We thus plot the size of the finite volume corrections relative to the lowest order value
of the quantity under consideration. Note that the results are for charged or off-diagonal
mesons. They consist of a quark and a different anti-quark which might have equal mass.

5.1 dval = dsea = 1

Here we set all valence and all sea masses equal, dval = dsea = 1. The size of the finite
volume corrections as a function of χ1 and χ4 is shown in Fig. 2. The corrections in this
case are reasonable, at most a few %, except for very low masses and become very large
for low valence and high sea quark mass.

5.2 The pion mass

In this subsection we look at the case where the lowest order mass is around the pion
mass. We plot ∆V

M with
√
χ12 = 0.13 GeV. The strange sea quark mass we have always

chosen such that the average lowest order kaon mass is 0.45 GeV. This corresponds to√
χ6 =

√

2(0.45)2 − (0.13)2 GeV ≈ 0.623 GeV. The other input parameters are chosen as
given in the introduction of this section. We have restricted the sea up and down quark
masses corresponding to a lowest order sea quark pion of 100 to 300 MeV.

The first case we look at is dval = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass. This is the isospin limit. The result is shown in Fig. 3(a). There is a rather
large cancellation between the p4 and p6 correction while the p6 contribution coming from
the Lr

i is fairly small.
We now include isospin breaking in the valence sector. We thus look at the case

with dval = 2, dsea = 2. We fix the valence quark masses such that χ1 + χ2 = 2χ12 and
χ1/χ2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in Fig. 3(b).
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Figure 2: The finite volume corrections relative to the lowest order value as defined in
(39) for the case with all valence masses equal and all sea masses equal. Left: ∆V

M the
correction to the mass-squared, contour lines are drawn at 0.03, 0.01, 0.003, 0,−0.03,−0.01
starting from the bottom left and going counterclockwise. Right: The correction to the
decay constant, contour lines are drawn at −0.001,−0.002,−0.005,−0.01,−0.02,−0.05
going from top-right to bottom-left.

The opposite case, isospin breaking in the sea sector, but not in the valence sector, leads
to numerically similar but opposite sign corrections. Here we used χ1 = χ2, χ4 = χ5/2 and
χ4 + χ5 = 2χav. The results are shown in Fig. 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
χ1/χ2 = 1/2, χ4 = χ5/2 and χ4+χ5 = 2χav. The results are shown in Fig. 3(d). The total
isospin corrections are rather small.

The numerical cancellation between the isospin breaking in the valence and sea quark
case is accidental. The corrections due to valence and sea quark masses are all second order
in isopin breaking. The same argument as in the unquenched case goes through both for
the valence and sea quark masses. We have compared four scenarios in Fig. 4. We show
the p4 and the full p4 + p6 result first with no isospin breaking, then only in the valence
sector or only in the sea sector and finally in both sectors. The curves are those shown in
Fig. 3(a-d). We have checked numerically by using a different ratio for the isospin breaking
that the corrections are indeed second order in isospin breaking.

5.3 The pion decay constant

In this subsection we look at the same cases as before. The lowest order mass is around the
pion mass. We plot ∆V

F with
√
χ12 = 0.13 GeV. and as before

√
χ6 =

√

2(0.45)2 − (0.13)2 GeV
≈ 0.623 GeV. The other input parameters are again chosen as given in introduction of this
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Figure 3: The corrections for the pion mass relative to the lowest order mass as a function
of the average up and down sea quark mass via χav. (a) The isospin limit, χ1 = χ2,
χ4 = χ5 = χav. (b) Isospin breaking in the valence sector, χ1 = χ3/2 and χ4 = χ5 = χav.
(c) Isospin breaking in the sea sector, χ1 = χ2 and χ4 = χ5/2. (d) Isospin breaking in both
sectors, χ1 = χ3/2 and χ4 = χ5/2.
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Figure 4: Comparing the finite volume correction for the meson masses for the cases with
no isospin breaking (none), only in the valence sector (val), only in the sea sector (sea)
and in both (full) for the meson mass squared. The upper curves are the p4, the bottom
the p4 + p6 results.

section. We have restricted the sea up and down quark masses corresponding to a lowest
order sea quark pion of 100 to 300 MeV.

The first case we look at is dval = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass, i.e. the isospin limit. The result is shown in Fig. 5(a). The total p6 correction
is fairly small.

We now include isospin breaking in the valence sector. We thus look at the case
with dval = 2, dsea = 2. We fix the valence quark masses such that χ1 + χ2 = 2χ12 and
χ1/χ2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in Fig. 3(b).

The opposite case, isospin breaking in the sea sector but not in the valence sector leads
to numerically much smaller effects. Here we used χ1 = χ2, χ4 = χ5/2 and χ4+χ5 = 2χav.
The results are shown in Fig. 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
χ1/χ2 = 1/2, χ4 = χ5/2 and χ4+χ5 = 2χav. The results are shown in Fig. 3(d). The total
isospin corrections are failry small.

The corrections due to valence and sea quark masses are all second order in isospin
breaking. The same argument as in the unquenched case goes through both for the valence
and sea quark masses. We compare the same four scenarios as for the pion mass, no isospin
breaking, only in the valence sector, only in the sea sector and in both sectors. The curves
are those shown in Fig. 5(a-d).
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Figure 5: The corrections for the pion decay constant relative to its lowest order value
as a function of the average up and down sea quark mass via χav. (a) The isospin limit,
χ1 = χ2, χ4 = χ5 = χav. (b) Isospin breaking in the valence sector, χ1 = χ3/2 and
χ4 = χ5 = χav. (c) Isospin breaking in the sea sector, χ1 = χ2 and χ4 = χ5/2. (d) Isospin
breaking in both sectors, χ1 = χ3/2 and χ4 = χ5/2.
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Figure 6: Comparing the finite volume correction for the meson decay constant and masses
for the cases with no isospin breaking (none), only in the valence sector (val), only in the
sea sector (sea) and in both (full) for the meson mass squared. (a) p4 (b) p4 + p6.

5.4 The kaon mass and decay constant

We now look only at the dval = dsea = 2 case but choose the valence masses such that we
have a lowest order pion mass of 130 MeV and a lowest order kaon mass of 450 MeV. This
corresponds to

√
χ1 = 130 MeV and

√
χ3 ≈ 623 MeV. We plot the finite volume corrections

relative to the lowest order value of the quantity in Fig. 7 as a function of χ4 = χ5. For
the sea quark strange mass we use χ6 = 1.02χ3. The LECs are again the ones from [37]
and L such that ML = 2 for M =130 MeV.

For the kaon we see that we reproduce the results of [15] that near the physical case
the p4 corrections are very small. The total finite volume corrections to the mass remain
fairly small. The kaon decay constant has larger corrections but they remain in the few %
region for the parameters considered.

6 Conclusions

We have computed the NNLO expressions for the masses and decay constants in three-
flavour partially quenched ChPT for all possible mass cases. The calculation has been
performed using two different formalisms, quark-flow and the supersymmetric method.
The known infinite volume expressions have been reproduced. We quoted the expressions
for the equal valence and two different sea quark masses in the appendices. The other cases
can be obtained from [22].

The numerical work shows finite volume corrections of a similar size as those in the
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Figure 7: The finite volume corrections for a valence mass close to the kaon mass relative
to the lowest order value. (a) the kaon mass squared. (b) the kaon decay constant.

unquenched case [15]. We have presented some representative numerics. The numerical
work has been done using C++. The programs are available together with the infinite
volume results in [36]. The analytical work relied heavily on FORM [38].
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+ AV (χ14)
2
(

− 2/27Rz
146η

+5/27χ1 R
z
16η + 1/54 (2χη − 2χ4 − 47χ1) + 1/27

(

4χη + 4χ4 + 9χ1)R
z
η61

2
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+1/27 (4χη + χ1)R
z
η61 − 1/54 (4χ4 + 13χ1)R

c
146η

)

+ AV (χ14)A
V (χ16)

(

− χ1

)

+AV (χ14)A
V (χη)

(

− 2/45 (χη − χ4)− 8/45 (χη + 9χ1)R
z
η61

2 − 4/45 (2χη − χ4 + 9χ1)R
z
η61

)

+AV (χ14)B
V (χ1)

(

8/9χ1 R
z
146η − 4/9 (χ4 + 2χ1)χ1 R

z
16η

)

+AV (χ14)B
V (χ1, χη)

(

− 4/9 (χ4 + 2χ1)χ1 R
z
η61

)

+ AV (χ16)
1

16π2

(

− 1/12χ1 R
z
146η

−1/18 (6χη + 3χ6 + χ1)χ1 R
z
η61 + 1/36 (6χη + 3χ6 + χ1)χ1 R

z
η61

2 + 1/72 (12χη + 15χ6

+36χ4 − χ1)χ1 + 1/36 (3χ6 + 7χ1)χ1 R
z
14η − 1/72 (3χ6 + 7χ1)χ1 R

c
146η

)

+AV (χ16)
2
(

− 1/27Rz
146η + 5/54χ1 R

z
14η + 1/27 (2χη − 2χ6 − 5χ1) + 1/54 (4χη + 4χ6

+9χ1)R
z
η61

2 − 1/27 (4χη + χ1)R
z
η61 − 1/108 (4χ6 + 13χ1)R

c
146η

)

+AV (χ16)A
V (χη)

(

− 4/45 (χη − χ6)− 4/45 (χη + 9χ1)R
z
η61

2 + 4/45 (2χη − χ6 + 9χ1)R
z
η61

)

+AV (χ16)B
V (χ1)

(

4/9χ1 R
z
146η − 2/9 (χ6 + 2χ1)χ1 R

z
14η

)

+ AV (χ16)B
V (χ1, χη)

(

4/9 (χ6

+2χ1)χ1 R
z
η61

)

+ AV (χ4)B
V (χ1)

(

1/3χ1 χ4 R
z
16η

2
)

+AV (χ4)B
V (χ1, χη)

(

2/3χ1 χ4 R
z
16η R

z
η61

)

+ AV (χ4)B
V (χη)

(

1/3χ1 χ4 R
z
η61

2
)

+AV (χ46)A
V (χη)

(

− 2/3χ1 R
z
η61

2 − 4/9χ1 R
z
16η R

z
η61 + 4/9χ1 R

z
14η R

z
η61

)

+AV (χ46)B
V (χ1)

(

4/27 (χ6 + χ4 + χ1)χ1 R
z
14η R

z
16η + 2/27 (χ6 − χ1)χ1 R

z
14η

2

+2/27 (χ4 − χ1)χ1 R
z
16η

2
)

+ AV (χ46)B
V (χ1, χη)

(

− 4/27 (χ6 − χ4 − 3χ1)χ1 R
z
14η R

z
η61

−4/27 (2χ6 + χ4 + 3χ1)χ1 R
z
16η R

z
η61

)

+ AV (χ46)B
V (χη)

(

− 2/9 (3χη + χ4)χ1 R
z
η61

2
)

+AV (χη)
2
(

2/9χ1 R
z
η61

4
)

+ AV (χη)B
V (χ1)

(

− 2/9χ1 R
z
146η R

z
η61

2 + 2/27χ1 χ6 R
z
14η

2

+1/27χ1 χ4 R
z
16η

2 − 4/9χ2
1 R

c
146η R

z
η61

2
)

+ AV (χη)B
V (χ1, χη)

(

− 8/27χ1 χ6 R
z
14η R

z
η61

+2/27χ1 χ4 R
z
16η R

z
η61 + 8/9χ2

1 R
z
η61

4
)

+ AV (χη)B
V (χη)

(

1/27 (8χ6 + χ4)χ1 R
z
η61

2
)

+AV (χη)C
V (χ1)

(

− 4/9χ2
1 R

z
146η R

z
η61

2
)

+BV (χ1)
2
(

1/18χ1 R
z
146η

2 + 2/9χ2
1 R

z
146η R

c
146η

)

+BV (χ1)B
V (χ1, χη)

(

− 4/9χ2
1 R

z
146η R

z
η61

2
)

+BV (χ1)C
V (χ1)

(

2/9χ2
1 R

z
146η

2
)

+AV
23(χ1)

1

16π2

(

3/4χ1 − 1/2χ1 R
z
16η − 1/4χ1 R

z
14η

)

+ AV
23(χ14)

1

16π2

(

1/6χ1 − 1/3χ1 R
z
η61

−1/3χ1 R
z
η61

2 − 1/3χ1 R
z
16η + 1/6χ1 R

c
146η

)

+ AV
23(χ16)

1

16π2

(

1/12χ1 + 1/3χ1 R
z
η61

−1/6χ1 R
z
η61

2 − 1/6χ1 R
z
14η + 1/12χ1 R

c
146η

)

+HV (1, χ1, χ1, χ1, χ1)
(

1/3χ2
1 + 2/9χ2

1 R
c
146η

2
)

+HV (1, χ1, χ1, χη, χ1)
(

− 8/9χ2
1 R

c
146η R

z
η61

2
)

+HV (1, χ1, χ14, χ14, χ1)
(

− 11/18χ1 R
z
146η

−5/6χ2
1 R

c
146η − 1/9 (4χ4 − 7χ1)χ1 R

z
16η

)

+HV (1, χ1, χ16, χ16, χ1)
(

− 11/36χ1 R
z
146η

−5/12χ2
1 R

c
146η − 1/18 (4χ6 − 7χ1

)

χ1 R
z
14η

)

+HV (1, χ1, χη, χη, χ1)
(

8/9χ2
1 R

z
η61

4
)
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+HV (1, χ14, χ14, χη, χ1)
(

1/27 (χη − χ4) (χη − χ4 − 6χ1) + 4/27 (χη + 2χ1) (χη − 4χ1)R
z
η61

2

+4/27 (χ2
η − χ4 χη − 4χ1 χη + χ1 χ4 − 6χ2

1)R
z
η61

)

+HV (1, χ16, χ16, χη, χ1)
(

2/27 (χη

−χ6) (χη − χ6 − 6χ1) + 2/27 (χη + 2χ1) (χη − 4χ1)R
z
η61

2 − 4/27 (χ2
η − χ6 χη − 4χ1 χη

+χ1 χ6 − 6χ2
1)R

z
η61

)

+HV (1, χ4, χ14, χ14, χ1)
(

3/4χ1 χ4

)

+HV (1, χ46, χ14, χ16, χ1)
(

1/2 (χ6

+χ4)χ1

)

+HV (1, χη, χ14, χ14, χ1)
(

1/12χ1 χη + 1/3χ1 χη R
z
η61 + 1/3χ1 χη R

z
η61

2
)

+HV (1, χη, χ16, χ16, χ1)
(

1/6χ1 χη − 1/3χ1 χη R
z
η61 + 1/6χ1 χη R

z
η61

2
)

+HV (2, χ1, χ1, χ1, χ1)
(

4/9χ2
1 R

z
146η R

c
146η

)

+HV (2, χ1, χ1, χη, χ1)
(

− 8/9χ2
1 R

z
146η R

z
η61

2
)

+HV (2, χ1, χ14, χ14, χ1)
(

− 5/6χ2
1 R

z
146η

)

+HV (2, χ1, χ16, χ16, χ1)
(

− 5/12χ2
1 R

z
146η

)

+HV (5, χ1, χ1, χ1, χ1)
(

2/9χ2
1 R

z
146η

2
)

+HV
1 (1, χ1, χ14, χ14, χ1)

(

4/9χ1 R
z
146η + 4/3χ2

1 R
c
146η

+4/9 (χ4 − 4χ1)χ1 R
z
16η

)

+HV
1 (1, χ1, χ16, χ16, χ1)

(

2/9χ1 R
z
146η + 2/3χ2

1 R
c
146η

+2/9 (χ6 − 4χ1)χ1 R
z
14η

)

+HV
1 (1, χ14, χ14, χη, χ1)

(

4/9 (χη − χ4)χ1 + 16/9 (χη

+2χ1)χ1 R
z
η61

2 + 8/9 (2χη − χ4 + 2χ1)χ1 R
z
η61

)

+HV
1 (1, χ16, χ16, χη, χ1)

(

8/9 (χη − χ6)χ1

+8/9 (χη + 2χ1)χ1 R
z
η61

2 − 8/9
(

2χη − χ6 + 2χ1)χ1 R
z
η61

)

+HV
1 (2, χ1, χ14, χ14, χ1)

(

4/3χ2
1 R

z
146η

)

+HV
1 (2, χ1, χ16, χ16, χ1)

(

2/3χ2
1 R

z
146η

)

+HV
21(1, χ1, χ14, χ14, χ1)

(

χ2
1 R

z
16η − 1/2χ2

1 R
c
146η

)

+HV
21(1, χ1, χ16, χ16, χ1)

(

1/2χ2
1 R

z
14η

−1/4χ2
1 R

c
146η

)

+HV
21(1, χ4, χ14, χ14, χ1)

(

9/4χ2
1

)

+HV
21(1, χ46, χ14, χ16, χ1)

(

3χ2
1

)

+HV
21(1, χη, χ14, χ14, χ1)

(

1/4χ2
1 + χ2

1 R
z
η61 + χ2

1 R
z
η61

2
)

+HV
21(1, χη, χ16, χ16, χ1)

(

1/2χ2
1

−χ2
1 R

z
η61 + 1/2χ2

1 R
z
η61

2
)

+HV
21(2, χ1, χ14, χ14, χ1)

(

− 1/2χ2
1 R

z
146η

)

+HV
21(2, χ1, χ16, χ16, χ1)

(

− 1/4χ2
1 R

z
146η

)

+HV
27(1, χ1, χ14, χ14, χ1)

(

− χ1 R
z
16η

+1/2χ1 R
c
146η

)

+HV
27(1, χ1, χ16, χ16, χ1)

(

− 1/2χ1 R
z
14η + 1/4χ1 R

c
146η

)

+HV
27(1, χ4, χ14, χ14, χ1)

(

− 9/4χ1

)

+HV
27(1, χ46, χ14, χ16, χ1)

(

− 3χ1

)

+HV
27(1, χη, χ14, χ14, χ1)

(

− 1/4χ1 − χ1 R
z
η61 − χ1 R

z
η61

2
)

+HV
27(1, χη, χ16, χ16, χ1)

(

− 1/2χ1 + χ1 R
z
η61 − 1/2χ1 R

z
η61

2
)

+HV
27(2, χ1, χ14, χ14, χ1)

(

1/2χ1 R
z
146η

)

+HV
27(2, χ1, χ16, χ16, χ1)

(

1/4χ1 R
z
146η

)

(42)

B Expressions for the decay constant

F0∆
VF

2(4)12
12 = +AV (χ14)

(

1
)

+ AV (χ16)
(

1/2
)

(43)

F 3
0∆

VF
2(6L)12
12 = +AV (χ1)

(

− 4/3 L̂r
5 χ1 R

c
146η + 4 L̂r

3 R
z
146η + 4 L̂r

3 χ1 R
c
146η − 10 L̂r

2 χ1 − 4 L̂r
1 χ1
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+4 L̂r
0 R

z
146η + 4 L̂r

0 χ1 R
c
146η

)

+ AV (χ14)
(

4 L̂r
5 χ1 − 4 (χ6 + 2χ4) L̂

r
4 − 10 (χ4 + χ1) L̂

r
3

−4 (χ4 + χ1) L̂
r
0

)

+ AV (χ16)
(

2 L̂r
5 χ1 − 2 (χ6 + 2χ4) L̂

r
4 − 5 (χ6 + χ1) L̂

r
3 − 2 (χ6 + χ1) L̂

r
0

)

+AV (χ4)
(

12 L̂r
4 χ4 − 6 L̂r

2 χ4 − 24 L̂r
1 χ4

)

+ AV (χ46)
(

8 (χ6 + χ4) L̂
r
4 − 4 (χ6 + χ4) L̂

r
2

−16 (χ6 + χ4) L̂
r
1

)

+ AV (χη)
(

8/3 L̂r
5 χ1 R

z
η61

2 − 8 L̂r
3 χη R

z
η61

2 − 2 L̂r
2 χη − 8 L̂r

1 χη

−8 L̂r
0 χη R

z
η61

2 + 4/3 (2χ6 + χ4) L̂
r
4

)

+BV (χ1)
(

− 4/3 L̂r
5 χ1 R

z
146η + 4 L̂r

3 χ1 R
z
146η

+4 L̂r
0 χ1 R

z
146η

)

+BV (χ14)
(

8 (χ4 + χ1) (χ6 + 2χ4) L̂
r
6 − 4 (χ4 + χ1) (χ6 + 2χ4) L̂

r
4

+4 (χ4 + χ1)
2 L̂r

8 − 2 (χ4 + χ1)
2 L̂r

5

)

+BV (χ16)
(

4 (χ6 + χ1) (χ6 + 2χ4) L̂
r
6

−2 (χ6 + χ1) (χ6 + 2χ4) L̂
r
4 + 2 (χ6 + χ1)

2 L̂r
8 −

(

χ6 + χ1)
2 L̂r

5

)

+ AV
23(χ1)

(

− 4 L̂r
3 R

c
146η

+6 L̂r
2 + 12 L̂r

1 − 4 L̂r
0 R

c
146η

)

+ AV
23(χ14)

(

12 L̂r
3 + 24 L̂r

0

)

+ AV
23(χ16)

(

6 L̂r
3 + 12 L̂r

0

)

+AV
23(χ4)

(

18 L̂r
2

)

+ AV
23(χ46)

(

24 L̂r
2

)

+ AV
23(χη)

(

8 L̂r
3 R

z
η61

2 + 6 L̂r
2 + 8 L̂r

0 R
z
η61

2
)

+BV
23(χ1)

(

− 4 L̂r
3 R

z
146η − 4 L̂r

0 R
z
146η

)

(44)

F 3
0∆

VF
2(6R)12
12 = +A(χ1)B

V (χ14)
(

1/18Rz
146η − 1/9 (χ4 + 2χ1)R

z
16η

)

+A(χ1)B
V (χ16)

(

1/36Rz
146η − 1/18 (χ6 + 2χ1)R

z
14η

)

+A(χ14)A
V (χ14)

(

5/54− 5/27Rz
η61 − 5/27Rz

η61
2 − 5/27Rz

16η + 5/54Rc
146η

)

+A(χ16)A
V (χ16)

(

5/108 + 5/27Rz
η61 − 5/54Rz

η61
2 − 5/54Rz

14η + 5/108Rc
146η

)

+A(χη)B
V (χ14)

(

− 1/36 (χη − χ4)− 1/9 (χη + χ4 + χ1)R
z
η61 − 1/9 (χη − χ1)R

z
η61

2
)

+A(χη)B
V (χ16)

(

− 1/18 (χη − χ6) + 1/9 (χη + χ6 + χ1)R
z
η61 − 1/18 (χη − χ1)R

z
η61

2
)

+B(χ14)A
V (χ1)

(

1/18Rz
146η − 1/9 (χ4 + 2χ1)R

z
16η

)

+B(χ14)A
V (χη)

(

− 1/36 (χη − χ4)

−1/9 (χη + χ4 + χ1)R
z
η61 − 1/9 (χη − χ1)R

z
η61

2
)

+B(χ16)A
V (χ1)

(

1/36Rz
146η

−1/18 (χ6 + 2χ1)R
z
14η

)

+B(χ16)A
V (χη)

(

− 1/18 (χη − χ6) + 1/9 (χη + χ6 + χ1)R
z
η61

−1/18 (χη − χ1)R
z
η61

2
)

+ AV (χ1)
1

16π2

(

1/8χ1 − 1/12χ1 R
z
16η − 1/24χ1 R

z
14η

)

+AV (χ1)B
V (χ14)

(

1/18Rz
146η − 1/9 (χ4 + 2χ1)R

z
16η

)

+ AV (χ1)B
V (χ16)

(

1/36Rz
146η

−1/18 (χ6 + 2χ1)R
z
14η

)

+ AV (χ14)
1

16π2

(

1/12Rz
146η − 1/24 (χη + 6χ6 + 14χ4 + 5χ1)

−1/12 (2χη + χ4 + χ1)R
z
η61 − 1/12 (2χη + χ4 + χ1)R

z
η61

2 − 1/12 (χ4 + 3χ1)R
z
16η

+1/24 (χ4 + 3χ1)R
c
146η

)

+ AV (χ14)
2
(

5/108− 5/54Rz
η61 − 5/54Rz

η61
2 − 5/54Rz

16η

+5/108Rc
146η

)

+ AV (χ16)
1

16π2

(

1/24Rz
146η + 1/12 (2χη + χ6 + χ1)R

z
η61

−1/24 (2χη + χ6 + χ1)R
z
η61

2 − 1/48
(

4χη + 5χ6 + 12χ4 + 5χ1)− 1/24 (χ6 + 3χ1)R
z
14η
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+1/48 (χ6 + 3χ1)R
c
146η

)

+ AV (χ16)
2
(

5/216 + 5/54Rz
η61 − 5/108Rz

η61
2 − 5/108Rz

14η

+5/216Rc
146η

)

+ AV (χη)B
V (χ14)

(

− 1/36 (χη − χ4)− 1/9 (χη + χ4 + χ1)R
z
η61

−1/9 (χη − χ1)R
z
η61

2
)

+ AV (χη)B
V (χ16)

(

− 1/18 (χη − χ6) + 1/9 (χη + χ6 + χ1)R
z
η61

−1/18 (χη − χ1)R
z
η61

2
)

+ AV
23(χ1)

1

16π2

(

− 3/8 + 1/4Rz
16η + 1/8Rz

14η

)

+AV
23(χ14)

1

16π2

(

− 1/12 + 1/6Rz
η61 + 1/6Rz

η61
2 + 1/6Rz

16η − 1/12Rc
146η

)

+AV
23(χ16)

1

16π2

(

− 1/24− 1/6Rz
η61 + 1/12Rz

η61
2 + 1/12Rz

14η − 1/24Rc
146η

)

+HV (1, χ1, χ14, χ14, χ1)
(

1/12Rz
146η − 1/6χ1 R

z
16η + 1/12χ1 R

c
146η

)

+HV (1, χ1, χ16, χ16, χ1)
(

1/24Rz
146η − 1/12χ1 R

z
14η + 1/24χ1 R

c
146η

)

+HV (1, χ4, χ14, χ14, χ1)
(

− 3/8χ4

)

+HV (1, χ46, χ14, χ16, χ1)
(

− 1/4 (χ6 + χ4)
)

+HV (1, χη, χ14, χ14, χ1)
(

− 1/24χη − 1/6χη R
z
η61 − 1/6χη R

z
η61

2
)

+HV (1, χη, χ16, χ16, χ1)
(

− 1/12χη + 1/6χη R
z
η61 − 1/12χη R

z
η61

2
)

+HV (2, χ1, χ14, χ14, χ1)
(

5/54χ1 R
z
146η

)

+HV (2, χ1, χ16, χ16, χ1)
(

5/108χ1 R
z
146η

)

+HV
1 (2, χ1, χ14, χ14, χ1)

(

− 1/108χ1 R
z
146η

)

+HV
1 (2, χ1, χ16, χ16, χ1)

(

− 1/216χ1 R
z
146η

)

+HV
1 (3, χ14, χ1, χ14, χ1)

(

− 1/54χ1 R
z
146η

)

+HV
1 (3, χ16, χ1, χ16, χ1)

(

− 1/108χ1 R
z
146η

)

+HV
27(1, χ1, χ14, χ14, χ1)

(

1/2Rz
16η − 1/4Rc

146η

)

+HV
27(1, χ1, χ16, χ16, χ1)

(

1/4Rz
14η − 1/8Rc

146η

)

+HV
27(1, χ4, χ14, χ14, χ1)

(

9/8
)

+HV
27(1, χ46, χ14, χ16, χ1)

(

3/2
)

+HV
27(1, χη, χ14, χ14, χ1)

(

1/8 + 1/2Rz
η61 + 1/2Rz

η61
2
)

+HV
27(1, χη, χ16, χ16, χ1)

(

1/4− 1/2Rz
η61 + 1/4Rz

η61
2
)

+HV
27(2, χ1, χ14, χ14, χ1)

(

− 1/4Rz
146η

)

+HV
27(2, χ1, χ16, χ16, χ1)

(

− 1/8Rz
146η

)

+H
′V (1, χ1, χ1, χ1, χ1)

(

1/6χ2
1 + 1/9χ2

1 R
c
146η

2
)

+H
′V (1, χ1, χ1, χη, χ1)

(

− 4/9χ2
1 R

c
146η R

z
η61

2
)

+H
′V (1, χ1, χ14, χ14, χ1)

(

− 11/36χ1 R
z
146η − 5/12χ2

1 R
c
146η − 1/18 (4χ4 − 7χ1)χ1 R

z
16η

)

+H
′V (1, χ1, χ16, χ16, χ1)

(

− 11/72χ1 R
z
146η − 5/24χ2

1 R
c
146η − 1/36 (4χ6 − 7χ1)χ1 R

z
14η

)

+H
′V (1, χ1, χη, χη, χ1)

(

4/9χ2
1 R

z
η61

4
)

+H
′V (1, χ14, χ14, χη, χ1)

(

1/54 (χη − χ4) (χη − χ4

−6χ1) + 2/27 (χη + 2χ1) (χη − 4χ1)R
z
η61

2 + 2/27 (χ2
η − χ4 χη − 4χ1 χη + χ1 χ4 − 6χ2

1)R
z
η61

)

+H
′V (1, χ16, χ16, χη, χ1)

(

1/27 (χη − χ6) (χη − χ6 − 6χ1) + 1/27 (χη + 2χ1) (χη − 4χ1)

Rz
η61

2 − 2/27 (χ2
η − χ6 χη − 4χ1 χη + χ1 χ6 − 6χ2

1)R
z
η61

)

+H
′V (1, χ4, χ14, χ14, χ1)

(

3/8χ1 χ4

)

+H
′V (1, χ46, χ14, χ16, χ1)

(

1/4 (χ6 + χ4)χ1

)

+H
′V (1, χη, χ14, χ14, χ1)

(

1/24χ1 χη
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+1/6χ1 χη R
z
η61 + 1/6χ1 χη R

z
η61

2
)

+H
′V (1, χη, χ16, χ16, χ1)

(

1/12χ1 χη − 1/6χ1 χη R
z
η61

+1/12χ1 χη R
z
η61

2
)

+H
′V (2, χ1, χ1, χ1, χ1)

(

2/9χ2
1 R

z
146η R

c
146η

)

+H
′V (2, χ1, χ1, χη, χ1)

(

− 4/9χ2
1 R

z
146η R

z
η61

2
)

+H
′V (2, χ1, χ14, χ14, χ1)

(

− 5/12χ2
1 R

z
146η

)

+H
′V (2, χ1, χ16, χ16, χ1)

(

− 5/24χ2
1 R

z
146η

)

+H
′V (5, χ1, χ1, χ1, χ1)

(

1/9χ2
1 R

z
146η

2
)

+H
′V
1 (1, χ1, χ14, χ14, χ1)

(

2/9χ1 R
z
146η + 2/3χ2

1 R
c
146η + 2/9 (χ4 − 4χ1)χ1 R

z
16η

)

+H
′V
1 (1, χ1, χ16, χ16, χ1)

(

1/9χ1 R
z
146η + 1/3χ2

1 R
c
146η + 1/9 (χ6 − 4χ1)χ1 R

z
14η

)

+H
′V
1 (1, χ14, χ14, χη, χ1)

(

2/9 (χη − χ4)χ1 + 8/9 (χη + 2χ1)χ1 R
z
η61

2 + 4/9 (2χη − χ4

+2χ1)χ1 R
z
η61

)

+H
′V
1 (1, χ16, χ16, χη, χ1)

(

4/9 (χη − χ6)χ1 + 4/9 (χη + 2χ1)χ1 R
z
η61

2

−4/9 (2χη − χ6 + 2χ1)χ1 R
z
η61

)

+H
′V
1 (2, χ1, χ14, χ14, χ1)

(

2/3χ2
1 R

z
146η

)

+H
′V
1 (2, χ1, χ16, χ16, χ1)

(

1/3χ2
1 R

z
146η

)

+H
′V
21 (1, χ1, χ14, χ14, χ1)

(

1/2χ2
1 R

z
16η − 1/4χ2

1 R
c
146η

)

+H
′V
21 (1, χ1, χ16, χ16, χ1)

(

1/4χ2
1 R

z
14η − 1/8χ2

1 R
c
146η

)

+H
′V
21 (1, χ4, χ14, χ14, χ1)

(

9/8χ2
1

)

+H
′V
21 (1, χ46, χ14, χ16, χ1)

(

3/2χ2
1

)

+H
′V
21 (1, χη, χ14, χ14, χ1)

(

1/8χ2
1 + 1/2χ2

1 R
z
η61

+1/2χ2
1 R

z
η61

2
)

+H
′V
21 (1, χη, χ16, χ16, χ1)

(

1/4χ2
1 − 1/2χ2

1 R
z
η61 + 1/4χ2

1 R
z
η61

2
)

+H
′V
21 (2, χ1, χ14, χ14, χ1)

(

− 1/4χ2
1 R

z
146η

)

+H
′V
21 (2, χ1, χ16, χ16, χ1)

(

− 1/8χ2
1 R

z
146η

)

+H
′V
27 (1, χ1, χ14, χ14, χ1)

(

− 1/2χ1 R
z
16η + 1/4χ1 R

c
146η

)

+H
′V
27 (1, χ1, χ16, χ16, χ1)

(

− 1/4χ1 R
z
14η + 1/8χ1 R

c
146η

)

+H
′V
27 (1, χ4, χ14, χ14, χ1)

(

− 9/8χ1

)

+H
′V
27 (1, χ46, χ14, χ16, χ1)

(

− 3/2χ1

)

+H
′V
27 (1, χη, χ14, χ14, χ1)

(

− 1/8χ1 − 1/2χ1 R
z
η61

−1/2χ1 R
z
η61

2
)

+H
′V
27 (1, χη, χ16, χ16, χ1)

(

− 1/4χ1 + 1/2χ1 R
z
η61 − 1/4χ1 R

z
η61

2
)

+H
′V
27 (2, χ1, χ14, χ14, χ1)

(

1/4χ1 R
z
146η

)

+H
′V
27 (2, χ1, χ16, χ16, χ1)

(

1/8χ1 R
z
146η

)

(45)
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Abstract

We present a calculation of the meson masses, decay constants and quark-antiquark
vacuum expectation value for the three generic QCD-like chiral symmetry breaking
patterns SU(NF ) × SU(NF ) → SU(NF )V , SU(NF ) → SO(NF ) and SU(2NF ) →
Sp(2NF ) in the effective field theory for these cases. We extend the previous two-loop
work to include effects of partial quenching and finite volume.

The calculation has been performed using the quark flow technique. We reproduce
the known infinite volume results in the unquenched case. The analytical results can
be found in the supplementary material.

Some examples of numerical results are given. The numerical programs for all
cases are included in version 0.54 of the CHIRON package.

The purpose of this work is the use in lattice extrapolations to zero mass for
QCD-like and strongly interacting Higgs sector lattice calculations.
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1 Introduction

Effective field theory is used extensively in the study of strongly interacting gauge theories.
A recent review covering a number of different applications in addition to other methods
is [1]. Besides general interest in understanding strongly interacting gauge theories, they
might still be useful as an alternative for the Standard Model Higgs sector as well as for
dark matter. These applications have been reviewed recently at the 2015 [2, 3] and 2013
[4] lattice conferences. A number of recent lattice studies is [5]. Reviews of technicolor and
strongly interacting Higgs sectors are [6, 7, 8].

Lattice studies are always performed at a nonzero fermion mass. In order to obtain
results in the massless limit extrapolations are needed. A main tool for this in the context
of lattice QCD is Chiral Perturbation Theory (ChPT) [9, 10, 11].

In the case of equal mass fermions three main symmetry breaking patterns are possible
[12, 13, 14]. For NF Dirac fermions in a complex representation the global symmetry
group is SU(NF )L × SU(NF )R and it breaks spontaneously to the diagonal subgroup
SU(NF )V . For NF Dirac fermions in a real representation the global symmetry group is
SU(2NF ) and it breaks spontaneously to SO(2NF ). An alternative possibility is that we
have NF Majorana fermions in a real representation with a global symmetry group SU(NF )
spontaneously broken to SO(NF ). We show in this work that the EFT for the quantities
we consider is really the same as for Dirac fermions. The final case is NF Dirac fermions
in a pseudo-real representation. The global symmetry group is again SU(2NF ) but in this
case it is expected to be broken spontaneously to Sp(2NF ).

The effective field theory (EFT) for these cases is discussed at tree level or lowest order
(LO) in [15]. At next-to-leading order (NLO) the first case is simply ChPT for NF light
quarks with a symmetry breaking pattern of SU(NF ) × SU(NF ) → SU(NF ), a direct
extension of the QCD case and was already done in [11]. The pseudo-real case was done
at NLO by [16]. The SU(2NF ) → SO(2NF ) case was done in [17]. The extension for all
three cases to next-to-next-to-leading order (NNLO) was done in earlier work by one of
the authors [18]. More references to earlier work can be found there and in [19, 20].

This paper is an extension to the work of [18]. We add a short discussion showing
that the calculations and the Lagrangian for the real case also covers the case of Majorana
fermions in a real representation. The main part of the work concerns the extension of the
calculations at NNLO order of the masses, decay constants and vacuum expectation values
to include effects of partial quenching and finite volume.

Partial quenching was introduced in ChPT by [21]. A thorough discussion of the as-
sumptions involved is in [22]. It allows to study a number of variations of input parameters
at reduced cost, as discussed in e.g. [23]. We do not use the supersymmetric method in-
troduced in [21] and extended (at NLO) to the cases discussed here in [17]. We only use
the quark-flow technique introduced in [24]. Two-loop results in infinite volume partially
quenched ChPT (PQChPT) for the masses and decay constants are in [25, 26, 27]. The
definitions of the infinite volume integrals we use can be found there.

Finite volume effects in ChPT were introduced in ChPT in [28, 29, 30]. Early two-
loop work is [31, 32]. The vacuum expectation value was discussed in more detail in [33].
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After the proper evaluation of the finite volume two-loop sunsetintegrals using two different
methods [34] the masses and decay constants were treated in both the unquenched [35]
and partially quenched [36] case. In particular the integral notation at finite volume we
use is defined in [36].

In Sect. 2 we recapitulate briefly the discussion from [18] at the quark level and add
the case with Majorana fermions. Sect. 3 similarly recapitulates [18] at the effective field
theory level and adds the Majorana fermion case. The cases with Dirac fermions and
Majorana fermions are essentially identical from the EFT point of view for the quantities
we consider. The underlying reason is an U(2NF ) transformation that relates the two cases
as discussed in Sect. 4. Partial quenching and the quark.flow techniques we have used for
the different cases is discussed to some extent in Sect. 5. For a discussion on finite volume
and the notation used there we refer to [36]. Our analytical results are described in Sect. 6,
in particular we clarify the definitions of the decay constant and vacuum expectation value
used in terms of quark fields. The numerical examples and checks are presented in Sect. 7.
The analytical formulas are included in the supplementary file [37] and the numerical
programs are available via CHIRON, [38, 39]. The last section briefly recapitulates the
main points of our work.

2 Quark level

2.1 The three Dirac fermion cases

The discussion here is kept very short, longer versions can be found in [15] and [18]. This
subsection is mainly included to show normalization conventions.

QCD or complex representation In the NF equal mass Dirac fermions in a complex
representation, we put the NF fermions together in an NF column matrix q. The global
symmetry transformation by gL × gR ∈ SU(NF )L × SU(NF )R is given by

qL → gLqL, qR → gRqR, lµ → gLlµg
†
L+ igL∂µg

†
L , rµ → gRlµg

†
R+ igR∂µg

†
R , M → gRMg†L .

(1)
The matrix M = mqI + s + ip brings the quark mass term mqI and the external scalar
s and pseudo-scalar densities in the Lagrangian via −qRMqL + h.c.. The external fields
lµ, rµ are in the Lagrangian via qLγ

µlµqL+qRγ
µrµqR. Taking derivatives w.r.t. the external

fields allows to calculate relevant Green functions [10, 11]. In particular, deriving w.r.t. s11
allows us to obtain 〈qL1qR1 + qR1qL1〉 and derivatives w.r.t. aµ12 with rµ12 = −lµ12 = aµ12
allows access to matrix-elements of q2γ

µγ5q1 The symmetry is spontaneously broken by a
vacuum expectation value

〈qLjqRi〉 = v0δij . (2)

This leaves a global symmetry SU(NF )V with gL = gR unbroken.
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Adjoint or real representation When the fermions are in a real representation, we can
introduce besides the NF right handed fermions qRi a second set of right handed fermions
in the same gauge group representation, q̃Ri = CqTLi. These can be put together in a 2NF

column vector q̂, q̂T = (qR1 . . . qRNF
q̃R1 . . . q̃RNF

). The global symmetry transformation
with g ∈ SU(2NF ) is now

q̂ → gq̂, V̂µ → gV̂µg
†, M̂ → gM̂gT . (3)

We define the external densities and currents as in the QCD case with rµ, lµ and M. We
define 2NF × 2NF matrices

M̂ =

(

0 M
MT 0

)

, V̂µ =

(

rµ 0
0 −lTµ

)

. (4)

Note that the global symmetry can change quark-antiquark currents to diquark currents.
The fermions condense forming a vacuum expectation value

1

2
〈q̂Tj Cq̂j〉 = v0JSij JS =

(

0 I
I 0

)

. (5)

This leaves a global symmetry SO(2NF ) with gJSg
T = I.

Nc = 2 or pseudo-real representation When the fermions are in a pseudo-real rep-
resentation, we can introduce besides the NF right handed fermions qRia again a second
set of right handed fermions in the same gauge group representation, q̃Ria = ǫabCq

T
Lib. a, b

are gauge indices and the extra Levi-Civita tensor ǫab is needed to have q̃Ria transform
under the gauge group as qiRa. The explicit formula is for the case of the fundamnetal
representation with Nc = 2. qRi and q̃Ri can be put together in a 2NF column vector q̂,
q̂T = (qR1 . . . qRNF

q̃R1 . . . q̃RNF
). The global symmetry transformation with g ∈ SU(2NF )

is now
q̂ → gq̂, V̂µ → gV̂µg

†, M̂ → gM̂gT . (6)

We define the external densities and currents as in the QCD case with rµ, lµ and M. We
then define

M̂ =

(

0 −M
MT 0

)

, V̂µ =

(

rµ 0
0 −lTµ

)

. (7)

Note that the global symmetry can again change quark-antiquark currents to diquark
currents. The fermions condense forming a vacuum expectation value

1

2
〈q̂TjaǫabCq̂jb〉 = v0JAij JA =

(

0 −I
I 0

)

. (8)

This leaves a global symmetry Sp(2NF ) with gJAg
T = I.
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2.2 Majorana fermions in a real representation

In the earlier work [18] at infinite volume Dirac fermions and Dirac masses were assumed.
It was then also asumed that the vacuum condensate was aligned with the Dirac fermion
masses. There is in fact another possibility. Majorana fermions with a Majorana mass in a
real representation of the gauge group. In this case the global symmetry is SU(NF ). It is
expected to be spontaneously broken down to SO(NF ) which is aligned with the Majorana
masses.

A Majorana spinor is a Dirac spinor that satisfies

ψ = Cψ
T

or ψ =

(

ψM

−iσ2ψ∗
M

)

. (9)

The last equality are in the chiral representation for the Dirac matrices. The Lagrangian
for a single free Majorana fermion is

1

2
ψiγµ∂µψ − m

2
ψψ = ψ†

MCiσ
µ∂µψ − im

2

(

ψT
Mσ

2ψ + ψ†
Mσ

2ψ∗
)

. (10)

σ0 = I, σi = −σi. If we want to gauge this for m 6= 0 the mass term requires the fermions
to be in a real representation of the gauge group.

For NF Majorana fermions ψMi in the adjoint representation with external fields V̂µ
and M̂ the Lagrangian, put in a big column vector q̂T = (ψT

1 . . . ψ
T
NF

) is

L =
1

2
trc
(

q̂†iσµ(iDµ + V̂µ)q̂
)

− 1

2
trc
(

q̂Tσ2M̂†q̂ + q̂†σ2M̂q̂∗
)

. (11)

This Lagrangian has a global SU(NF ) symmetry with g ∈ SU(NF ) with

q̂ → gq̂, , V̂µ → gV̂µg
† + ig∂µg

† , M̂ → gM̂gT . (12)

The maximal symmetry argument says that in this case the fermions will condense to
the flavour neutral vacuum 〈trc

(

q̂TCq̂
)

〉. This is conserved by the part of the global group

that satisfies ggT = I or the conserved part of the global symmetry group is SO(NF ).
Note that the form of the vacuum and the form of the mass term are the only differences

as far as the global symmetry group and its breaking are concerned compared to the case
with NF/2 Dirac fermions in a real representation.

3 Effective field theory

3.1 The general LO and NLO Lagrangian

The ChPT Lagrangian for NF flavours at LO and NLO has been derived in [11]. The
Lagrangian for the other cases has the same form as has been shown in [15, 18] and other
papers. The precise derivation can be found in [18] and the Majorana fermion case below
in Sect. 3.3.
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In terms of the quantities uµ, f±µν , χ± defined below for each case the lowest order
Lagangian is

L2 =
F 2

4
〈uµuµ + χ+〉 . (13)

Here we use the notation 〈A〉 = trF (A), denoting the trace over flavours. The NLO
Lagrangian derived by [11] reads

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉

+L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈f+µνu
µuν〉+ 1

4
L10〈f 2

+ − f 2
−〉+

1

2
H1〈f 2

+ − f 2
−〉+

1

4
H2〈χ2

+ − χ2
−〉 . (14)

The NNLO Lagrangian has been classified for the NF -flavour case in [40]. The Lagrangian
at NNLO for the other cases is not known, the direct equivalent of the results in [40] is
definitely a complete Lagrangian but might not be minimal. For this reason we do not
quote the dependence on the NNLO Lagrangian in the real and pseudo-real cases.

The divergences at NLO were derived for the QCD case in [11], for the others in [16, 18].
At NNLO only the QCD case is known [41].

3.2 The three Dirac fermion cases

A more extensive discussion can be found in [15, 18]. Here we simply quote the results.
When we have a global symmetry group G with generators T a which is spontaneously

broken down to a subgroup H with generators Qa which form a subset of the T a, the
Goldstone bosons can be described by the coset G/H. This coset can be parametrized [42]
via the broken generators Xa. Below we explain what is used for the different cases. We
always work with generators normalized to 1, i.e. 〈XaXb〉 = δab.

The quantities used from the quark level are given in Sect. 2.

QCD or complex representation The Goldstone boson manifold is in this case SU(NF )×
SU(NF )/SU(NF ) which itself has the structure of an SU(NF ) Note that the axial gener-
ators do not generate a subgroup of SU(NF )× SU(NF ) even if G/H has the structure of
a group in this case.

We choose as the broken generators Xa the generators of SU(NF ) ≈ G/H. The
quantities needed to construct the Lagrangian and their symmetry transformations are

u = exp

(

i√
2F

πaXa

)

→ gRuh
† ≡ hug†L

uµ = i
(

u†(∂µ − irµ)u− u(∂µ − lµ)u
†
)

→ huµh
† ,

χ = 2B0M → gRχg
†
L

χ± = u†χu† ± uχ†u→ hχ±h
† ,
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lµν = ∂µlν − ∂µlν − ilµlµ + ilνlµ → gLlµνg
†
L

rµν = ∂µrν − ∂µrν − irµrµ + irνrµ → gRrµνg
†
R

f±µν = ulµνu
† ± u†rµνu→ hf±µνh

† . (15)

The first line defines h [42].

Adjoint or real representation The Goldstone boson manifold is in this case SU(2NF )/SO(2NF ).
The unbroken generators satisfy QaJS = −JSQaT which follows from gJSg

T = JS. The
broken generators satisfy JSX

a = XaTJS.
The quantities needed to construct the Lagrangians are [18]

u = exp

(

i√
2F

πaXa

)

→ guh†

uµ = i
(

u†(∂µ − iV̂µ)u− u(∂µ + iJSV̂
T
µ JS)u

†
)

,

χ = 2B0M̂
χ± = u†χJSu

† ± uJSχ
†u

V̂µν = ∂µV̂ν − ∂νV̂µ − i
(

V̂µV̂ν − V̂νV̂µ
)

f±µν = JSuV̂µνu
†JS ± uV̂µνu

† (16)

The first line defines h by requiring that guh† is of the form exp(iπaXa/(
√
2F )). Note that

the derivation used JSu = uTJS.

Nc = 2 or pseudo-real representation The Goldstone boson manifold is SU(2NF )/Sp(2NF ).
The unbroken generators satisfy QaJA = −JAQaT which follows from gJAg

T = JA. The
broken generators satisfy JAX

a = XaTJA.
The quantities needed are [18]

u = exp

(

i√
2F

πaXa

)

→ guh†

uµ = i
(

u†(∂µ − iV̂µ)u− u(∂µ + iJAV̂
T
µ J

T
A )u

†
)

,

χ = 2B0M̂
χ± = u†χJT

Au
† ± uJAχ

†u

V̂µν = ∂µV̂ν − ∂νV̂µ − i
(

V̂µV̂ν − V̂νV̂µ
)

f±µν = JAuV̂µνu
†JT

A ± uV̂µνu
† (17)

The first line defines h by requiring that guh† is of the form exp(iπaXa/(
√
2F )). Note that

the derivation used JAu = uTJA.

147



3.3 Majorana fermions in a real representation

The vacuum in this case is characterized by the condensate

1

2
〈q̂Ti Cq̂j〉 =

1

2
〈qq〉δij . (18)

Under the symmetry group g ∈ SU(NF ) this moves around as

δij →
(

gT g
)

ij
. (19)

The unbroken part of the group is given by the generators Q̃a and the broken part by the
generators X̃a which satisfy

Q̃a = −Q̃aT , X̃a = X̃aT . (20)

Just as in the cases discussed in [18] we can construct a rotated vacuum in general by using
the broken part of the symmetry group on the vacuum. This leads to a matrix

U = uuT → gUgT with u = exp

(

i√
2F

πaXa

)

. (21)

The matrix u transforms as in the general CCWZ case as

u→ guh† . (22)

Some earlier work used the matrix U to describe the Lagrangian [15]. Here we will, as
in [18] use the CCWZ scheme to obtain a notation that is formally identical to the QCD
case. We add NF ×NF matrices of external fields V̂µ and M̂. We need to obtain the uµ, or
broken generator, parts of u† (∂µ − iVµ) u. Eq. (20) have as a consequence that u satisfies

u = uT . (23)

This leads using the same method as in [18] to

uµ = i
(

u†(∂µ − iV̂µ)u− u(∂µ + iV̂ T
µ )u†

)

. (24)

With this we can construct Lagrangians. The equivalent quantities to the field strengths
are

f±µν = uV̂µνu
† ± uV̂µνu

† (25)

with V̂µν = ∂µV̂ν − ∂νV̂µ − i
(

V̂µV̂ν − V̂νV̂µ
)

and for the mass matrix

χ± = u†χu†T ± uTχ†u (26)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form as given
in (13) and (14) with uµ, χ± and f±µν as defined in (24), (25) and (26).
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4 Relation Dirac and Majorana for the adjoint case

As discussed below, we have calculated the adjoint case using two methods. They were
appropriate for the Dirac and the Majorana case respectively. After doing the trivial
2NF → NF change the results agreed exactly. If we compare the two cases, we see that
the main difference is really the choice of vacuum.

The Dirac and Majorana cases lead to a choice of vacuum

〈q̂Ti Cq̂j〉D ∝ JSij , 〈q̂Ti Cq̂j〉D ∝ Iij . (27)

Is it possible to relate the two cases in a simple way? Under a global symmetry transfor-
mation the first one transforms as JS → gJSg

T . If we could find a global transformation
gR that lead to gRJSg

T
R = I the two cases would be obviously the same.

It is not possible in general with a SU(2NF ) rotation to accomplish this since det JS =
±1 (−1 for the 2NF = 2) while det I = 1. However it is possible with a U(2N) transfor-
mation. An explicit choice for gR, with a free phase α is

gR =
1√
2

(

∓ieiαI ±ie−iαI
eiαI e−iαI

)

. (28)

It can be checked that this transforms a Dirac mass term for NF Dirac fermions into a
Majorana mass term for 2NF Majorana fermions.

Inspections of the effective Lagrangians needed lead to the immediate conclusion that
the mass independent terms really are U(2NF ) invariant, and the mass dependent terms
for the two cases are turned into each other.

gR can also be used to relate the two different embeddings of SO(2NF ) in SU(2NF ) to
each other. For the Dirac case the SO(2N) generators satisfied QaTJS = −JSQa while for
the Majorana case they satisfied Q̃aT = −Q̃a. The two sets of generators are related by

Q̃a = gRQ
ag†R , X̃a = gRX

ag†R . (29)

5 Partially quenching and the quark flow technique

A thorough discussion of PQChPT and in particular the derivation of the propagator used
there is [43]. That discussion uses the supersymmetric method. Alternative methods of
calculation are the replica trick [44] and the quark flow method [24]. The earliest partially
quenched work for QCDlike theories used the supersymmetric method [17]. The replica
trick has been used in [45]. We use the quark-flow method.

For this method we look at the matrix

Φ = πaXa (30)

for each of the cases.
For the QCD case, Φ is a traceless Hermitian matrix. We actually keep Φ in the flavour

basis with elements φij and i, j are flavour indices. The tracelessness condition is enforced
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by the propagator. The indices are kept explicitly and the propagator connecting a field
φij to φkl is [43]

Gijkl(k) = Gc
ij(k)δilδjk − δijδklG

q
ik(k)/nsea . (31)

The number of sea quarks nsea is what we call NF . with Gc
ij = i/(p2 − χij). The neutral

part of the propagator, Gq
ik, can contain double poles. In particular for the mass cases we

consider:

Gq
vv′ = i(χ1 − χ4)/(p

2 − χ1)
2 + i/(p2 − χ1) ,

Gq
vs = i/(p2 − χ1) ,

Gq
ss′ = i/(p2 − χ4) . (32)

v, s denote valence or sea quarks. The extra parts come from integrating out the Φ0 [43] and
enforec the condition that Φ must be traceless. When constructing the Feynman diagrams,
we keep all flavour indices free. Those that connect to external states get replaced by the
value of the external valence flavour index and the remaining ones are summed over the
sea quark flavours. In the present calculation, with all sea quarks the same mass, that
corresponds to a factor of NF for each free flavour index.

For the Majorana, SU(NF ) → SO(NF ), case we have that Φ = πaXa with Φ Hermitian,
traceless and symmetric. Hermitian and traceless follow from SU(NF ) and symmetric from
(20). Going to the flavour basis for the diagonal elements of Φ there is no change w.r.t. the
QCD case, but the flavour charged or off-diagonal elements must be correctly symmetrized.
This has to be done both for the propagator and the connection to the external states,
keeping track of the needed normalization. Afterwards we set the flavour indices connected
to external states to their valence values and sum ov the flavours for the free indices.

For the Dirac adjoint case, SU(2NF ) → SO(2NF ), case we have that Φ = πaXa with
Φ Hermitian, traceless and satisfying XaJS = JSX

aT and the matrix Φ is 2NF × 2NF .
Rewriting Φ with NF ×NF matrices leads to the form

Φ =

(

ΦA Φ†
C

ΦC ΦT
A

)

, with 〈A〉 = 0 , φC = φT
C . (33)

ΦA is Hermitian. The elements in ΦA correspond to quark-antiquark states, those in ΦC to
diquark states. ΦA can be treated exactly as in the QCD case, both the diagonal and flavour
charged or offdiagonal elements, since 〈ΦA〉 = 0 replaces 〈Φ〉 = 0 in the QCD case. ΦC

can be treated as offdiagonal or flavour charged propagators but the needed symmetrizing
should be taken care of both for external states and propagators. The normalization of
all states must be done correctly as well. After constructing Feynman diagrams with both
ΦA and ΦC degrees of freedom taken into account we sum free index lines over the NF

degrees of freedom, not 2NF . The results always agree with the calculations done with the
previous, Majorana, method.

For the last case, SU(2NF ) → Sp(2NF ), pseudo-real, we have that Φ = πaXa with
Φ Hermitian, traceless and satisfying XaJA = JAX

aT and the matrix Φ is 2NF × 2NF .
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Rewriting Φ with NF ×NF matrices leads to the form

Φ =

(

ΦA Φ†
C

ΦC ΦT
A

)

, with 〈A〉 = 0 , φC = −φT
C . (34)

ΦA is Hermitian. The elements in ΦA correspond to quark-antiquark states, those in ΦC

to diquark states. ΦA can be treated exactly as in the QCD case, both the diagonal and
flavour charged or offdiagonal elements, since 〈ΦA〉 = 0 replaces 〈Φ〉 = 0 in the QCD
case. ΦC can be treated as offdiagonal or flavour charged propagators but the needed
antisymmetrizing should be taken care of. The normalization of all states must be done
correctly as well. After constructing Feynman diagrams with both ΦA and ΦC degrees
of freedom taken into account we sum free index lines over the NF degrees of freedom,
not 2NF . In this case and the previous we can also compare calculations with ΦA or ΦC

external states providing a check on our results.

6 Analytical results

We have calculated the masses, decay constants and vacuum expectation values to NNLO
for the QCD-like theories with the symmetry breaking patterns discussed above. A number
of checks have been performed on the analytical formulas. The infinite volume unquenched
results were obtained earlier in [18] and we have reproduced those. The partially quenched
and finite volume results in the QCD case are finite. The partially quenched expressions
reduce to the unquenched results whenever we set the sea mass equal to the valence mass.
In addition we reproduce the known results at NLO for the condensate [17] also for the
partially quenched case. The finite volume expressions have been checked against the
known NLO results and numerically with the earlier known NNLO results, as discussed in
Sect. 7.

For the real and pseudo-real case we have the additional check that calculating the
mass or decay constant of a quark-anti-quark or a diquark meson gives the same results.
This corresponds to using a field from the A or the C sector in the matrices (33,34). For
the real case we have the additional check that the results using the Dirac case and the
Majorana case coincide.

The finite volume case is always done for three spatial dimensions of size L and an
infinite temporal volume. In addition we work in the center of mass system, the momenta
are such that the external states have zero spatial momentum.

The masses are the physical masses as defined as the pole of the full propagator. We
consider here the case where all valence quarks have the same quark mass m1 = m̂ and the
sea quarks all have the same mass m4 = mS. For the unquenced case obviously m4 = m1.
The labeling is similar to those used in three flavour PQChPT [25, 26, 27, 36]. In the
formulas we use instead the quantities

χ1 = 2B0m1, χ4 = 2B0χ4, χ14 =
1

2
(χ1 + χ4) . (35)
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These quantities are referred to in [37] as m11, m44 and m14 respectively.
The formulas are given for the cases SU(NF ) × SU(NF ) → SU(NF ), SU(NF ) →

SO(NF ) and SU(2NF ) → Sp(2NF ). Note the difference in convention for the second case
compared to [18]. The three cases are referred to in the formulas with SUN, SON and SPN
for the unquenced case and PQSUN,PQSON and PQSPN for the partially quenched case.
In the latter case NF referes to the number of sea quarks.

For the mass we consider a meson made of a different quark and anti-quark or a diquark
state with two different quarks. These are always valence quarks. The physical mass at
finite volume is given by

m2
phys = χ1 +m(4)2 +∆Vm(4)2 +m(6)2 +∆Vm(6)2 . (36)

The superscript (n) labels the order pn correction and ∆V indicates the finite volume
corrections. In all cases the lowest order mass squared is given by χ1. A further break up
is done for the LEC dependent parts via the Lr

i (NLO) and Kr
i (NNLO) and the remainder

via

m(4)2 = mL(4)2 +mR(4)2

m(6)2 = mK(6)2 +mL(6)2 +mR(6)2

∆Vm(6)2 = ∆VmL(6)2 +∆VmR(6)2 (37)

All quantities are given explicitly in [37].
The decay constant Fphys for the same mesons as above is expanded w.r.t. the lowest

order as
Fphys = FLO

(

1 + F (4) +∆V F (4) + F (6)2 +∆V F (6)
)

, (38)

with a similar split

F (4) = FL(4) + FR(4)

F (6) = FK(6) + FL(6) + FR(6)

∆V F (6) = ∆V FL(6) +∆V FR(6) (39)

All quantities are given explicitly in [37].
The vacuum expectation value is expanded in exactly the same way

vphys = vLO
(

1 + v(4) +∆V v(4) + v(6)2 +∆V v(6)
)

, (40)

with a similar split

v(4) = vL(4) + vR(4)

v(6) = vK(6) + vL(4) + vR(4)

∆V v(6) = ∆V vL(6) +∆V vR(6) (41)

All quantities are given explicitly in [37].
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The quantities with K for the SON and SPN case have been set to zero. They are
polynomials up to the needed degree in χ1 and χ4, with an overall factor of χ1 for the
mass.

The decay constant and the vacuum expectation value were defined implicitly in [18]
using a generator Xa in the axial current normalized to one and an element in M̂ normal-
ized to one. The consequence was that in [18] FLO = F and vLO = −B0F

2 for all cases.
This is not exactly what was done in earlier work leading to differences in factors of 2 and√
2. Below we explicitly specify all definitions in terms of the quark fields.

QCD or complex representation If we label the first Dirac (valence) quark by 1 and
the second by 2 the decay constant and vacuum expectation value are defined as

〈0|q1γµγ5q2|M(p)〉 = i
√
2Fphyspµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (42)

M denotes a meson of that quark content with momentum p.
The resulting lowest orders are

FLO = F vLO = −B0F
2 . (43)

Adjoint or real representation Here we have to be careful how we define the physical
decay constant. We can choose to do using generators normalized to one using Dirac
Fermions or generators normalized to one using the q̂i elements.

With a Dirac fermion definition, the first Dirac (valence) quark labeled by 1 and the
second by 2, the definitions are

〈0|q1γµγ5q2|M(p)〉 = i
√
2Fphyspµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (44)

M denotes a meson of that quark content with momentum p. The resulting lowest orders
are

FLO =
√
2F vLO = −2B0F

2 . (45)

If we instead choose to use the Majorana case, the natural definition of the decay
constant and vacuum expectation value with the first (valence) Majorana fermion labeled
as 1 and the second as 2 via

1

2
√
2
〈0|q̂∗1σµq̂2 + q̂∗2σµq̂1|M(p)〉 = i

√
2Fphyspµ

1

2
〈q̂1σ2q̂1 + q̂∗1σ

2q̂∗1〉 = vphys (46)

The resulting lowest orders are

FLO = F vLO = −B0F
2 . (47)
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Nc = 2 or pseudo-real representation Here we again need to be careful how we define
the physical decay constant. We can choose to do using generators normalized to one using
the original Dirac Fermions or generators normalized to one using the q̂i elements.

With a Dirac fermion definition, the first Dirac (valence) quark labeled by 1 and the
second by 2, the definitions are

〈0|q1γµγ5q2|M(p)〉 = i
√
2Fphyspµ

〈q1q1〉 = 〈qL1qR1 + qR1qL1〉 = vphys (48)

M denotes a meson of that quark content with momentum p. The resulting lowest orders
are

FLO =
√
2F vLO = −2B0F

2 . (49)

In terms of the q̂i the definitions are

〈0|q̂1γµq̂2 + q̂1+NF
γµq̂2+NF

|M(p)〉 = i
√
2Fphyspµ

1

2
〈q̂1+NF ,aǫabCq̂1,b − q̂1,aǫabCq̂1+NF ,b − q̂1+NF ,aǫabCq̂1,b + q̂1,aǫabCq̂1+NF ,b = vphys . (50)

7 Numerical examples and checks

The main aim of this work is to provide the lattice work with the formulas and programs
needed to do the extrapolation to zero mass. We therefore only present some representative
numerical results. The numerical programs are included in the latest version of CHIRON,
[38, 39].

For the numbers presented we always use χ1 = 0.142 GeV2, if not varied explicitly, and
F = 0.0877 GeV as well as a subtraction scale µ = 0.77 GeV. The length L for the finite
volume has been chosen such that L× 0.14 GeV=3 or L ≈ 4.2 fm.

The LECs at NLO we choose to be those of the recent determination of [46] with the
extra LEC Lr

0 = 0. The NNLO constants we have always put to zero.
A number of numerical checks for the QCD case have been done. The unquenched

infinite volume results for three flavours agree with the three flavour results of [47, 48].
The partially quenched results for masses and decay constants at infinite volume agree
with the case dsea = 1, dval = 1 of [25, 26, 27]. The unquenched results for masses and
decay constants at finite volume agree with [35]. The partially quenched results for masses
and decay constants at finite volume agree with the case dsea = 1, dval = 1 of [36] and
finially the unquenched finite volume results for the vacuum expectation value agree with
the results of [32].

In Fig. 1 we show the mass squared for the infinite volume for all cases we have
considered for three values of NF . In general, as was already noticed in [18] the cor-
rections are larger for the larger values of NF . The corrections are also larger for the
SU(2NF ) → Sp(2NF ) case since this correspond to a twice as large number of fermions as
the other cases. The partially quenched results shown in the right column are at a fixed
value of χ1. That explains why the corrections do not vanish for χ4 = 0.
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The same types of results are shown for the decay constant in Fig. 2. The corrections
are somewhat larger than for the masses but the convergence is typically somewhat better.
The corrections for the vacuum expectation value shown in Fig. 3 are typically larger but
with again a reasonable convergence from NLO to NNLO.

We can now make similar plots for the finite volume corrections. The overall size of
them is as expected. The smallest mL is about two for the left hand sides of all plots. In
the unquenched case the exponential falloff with the mass is clearly visible. The partially
quenched cases contain a fixed mass scale χ1 which is why the correction is more constant
there, the stays at the mL = 3 point for the plots. The dips are caused by the finite volume
corrections going through zero. The corrections to the mass are shown in Fig. 4, the decay
constant in Fig. 5 and the vacuum expectation value in Fig 6.

8 Conclusions

We have calculated in the effective field theory for the three possible symmetry breaking
patterns the NNLO order finite volume and partial quenching effects to NNLO in the ex-
pansion. The results satisfy a large number of checks agreeing analytically and numerically
with earlier work that our results reduce to for some cases. The analytical part of this work
relied heavily on FORM [49].

The analytical results are of reasonable length but given the total number of results we
have included them as FORM output in a supplementary file. They can also be downloaded
from [50].

The numerical programs have been included in CHIRON [38] version 0.54 which can
downloaded from [39]. We have presented results in a number of cases with typical QCD
values of the parameters. The results are of the expected sizes from earlier work in three
flavour ChPT. We hope these results will be useful for lattice studies of these alternative
symmetry breaking patterns.
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Figure 1: The physical mass squared divided by the lowest order mass squared for the
unquenched (left) as a function of χ1 and the partially quenched case (right) as a function
of χ4 with χ1 = 0.142 GeV2. Other input as in the text. Shown are the NLO (p4) and
NNLO (p4 + p6) results for three values of NF . Top line: SU(NF )× SU(NF ) → SU(NF ).
Middle line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) → Sp(2NF ).
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Figure 2: The decay constant divided by the lowest order value F0 = FLO for the un-
quenched (left) as a function of χ1 and the partially quenched case (right) as a function of
χ4 with χ1 = 0.142 GeV2. Other input as in the text. Shown are the NLO (p4) and NNLO
(p4 + p6) results for three values of NF . Top line: SU(NF )× SU(NF ) → SU(NF ). Middle
line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) → Sp(2NF ).
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Figure 3: The vacuum expectation value divided by the lowest order value v0 = vLO for the
unquenched (left) as a function of χ1 and the partially quenched case (right) as a function
of χ4 with χ1 = 0.142 GeV2. Other input as in the text. Shown are the NLO (p4) and
NNLO (p4 + p6) results for three values of NF . Top line: SU(NF )× SU(NF ) → SU(NF ).
Middle line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) → Sp(2NF ).
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Figure 4: The absolute value of the finite volume correction to the physical mass squared
divided by the lowest order mass squared for the unquenched (left) as a function of χ1 and
the partially quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown are
the NLO (p4) and NNLO (p4 + p6) results for three values of NF . Top line: SU(NF ) ×
SU(NF ) → SU(NF ). Middle line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) →
Sp(2NF ).
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Figure 5: The absolute value of the finite volume correction to the decay constant divided
by the lowest order value F0 = FLO for the unquenched (left) as a function of χ1 and
the partially quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown are
the NLO (p4) and NNLO (p4 + p6) results for three values of NF . Top line: SU(NF ) ×
SU(NF ) → SU(NF ). Middle line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) →
Sp(2NF ).
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Figure 6: The absolute value of the finite volume correction to the vacuum expectation
value divided by the lowest order value v0 = vLO for the unquenched (left) as a function of
χ1 and the partially quenched case (right) as a function of χ4 with χ1 = 0.142 GeV2. Shown
are the NLO (p4) and NNLO (p4 + p6) results for three values of NF . Top line: SU(NF )×
SU(NF ) → SU(NF ). Middle line: SU(NF ) → SO(NF ). Bottom line: SU(2NF ) →
Sp(2NF ).
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Der Schmetterling

Zum Fest des Lebens feierlich geschmückt,

für einen Atemzug nur auf der Welt,

vom wilden Freudentaumel ganz verrückt,

ruht kurz ein Schmetterling im Rübenfeld.

Im Flammenkleid auf einem grünen Blatt,

mit allen Farben himmlischer Paletten,

zeigt hier ein Reicher alles, was er hat

und will’s vergeuden, ganz und gar verwetten.

Für dieses Nu, das Gegenteil von Dauer,

hat er immense Schätze aufgeboten.

Ein Vogel steht vielleicht schon auf der Lauer,

ihn zu begleiten in das Reich der Toten.

Und wenn er dann im ahnungslosen Raum

weit über nie gekannten Grenzen schwebt,

dort wo kein Strauch, kein Hauch, kein Apfelbaum...

so weiss er doch, einmal hat er gelebt.

Leonard Ostendorf Terfloth
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