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Abstract

A novel artificial neural network heuristic (INN) for general constraint satisfaction prob-
lems is presented, extending a recently suggested method restricted to boolean variables.
In contrast to conventional ANN methods, it employs a particular type of non-polynomial
cost function, based on the information balance between variables and constraints in a
mean-field setting. Implemented as an annealing algorithm, the method is numerically
explored on a testbed of Graph Coloring problems. The performance is comparable
to that of dedicated heuristics, and clearly superior to that of conventional mean-field
annealing.
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1 Introduction

Artificial Neural Networks (ANN) have provided a versatile heuristic approach to com-
binatorial optimization and constraint satisfaction [10, 19, 7, 1, 5]. In a conventional
ANN approach, a constraint satisfaction problem (CSP) is attacked by converting it to
an optimization problem, attempting to minimize a non-negative cost function vanishing
only for solutions.

In a recent paper [13] an improved ANN approach (INN), directly aimed at boolean
CSP, was presented. Based on information-theoretical considerations, it utilized a very
specific, strongly non-linear cost function. Numerical explorations on a testbed of K-
SAT instances yielded a performance substantially better than that of a conventional
ANN approach, and comparable to that of a dedicated heuristic – gsat+walk [20]. This
improvement can be understood, at least partly, as being due to a progressively increased
sensitivity to the breaking of constraints, stemming from the nonlinearity of the INN cost
function.

In this paper we provide an extension of the boolean INN approach to more general
constraint satisfaction by utilizing an encoding in terms of Potts spins, and present an
annealing algorithm based on this approach. Like in the boolean case, it is derived from
an analysis of the information balance between mean-field variables and constraints, in
a mean-field (MF) approximation. The result is a general-purpose CSP heuristic.

As a specific application example we have chosen Graph Coloring (GC) [17], and we
provide a detailed discussion of the implementation of INN for this problem type.

The method is numerically explored for GC with three colors on a large testbed of
random graphs with varying edge densities. Also the performance on a small set of
more dense graphs, available from DIMACS3, are investigated. Like for the boolean
K-SAT problems, a substantially improved performance is observed, as compared to a
conventional ANN approach. To gauge the performance, we have applied two dedicated
heuristics to the testbed; a biased simulated annealing approach, SAU [3, 11], and a
simple search heuristic, DSATUR [2, 4]. A well known SAT solver, gsat+walk [20], is
also used for comparison.

The structure of the paper is as follows: In Section 2, we present a general derivation of
the method for a generic CSP, based on information analysis. In Section 3, we describe
the specific application of the method to GC, and discuss algorithmic details. Section
4 contains a description of the numerical explorations and the testbeds, as well as a
presentation and a discussion of the results. Finally, Section 5 contains a brief summary
and our conclusions.

3ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
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2 INN for Non-boolean (Potts) Systems - General Derivation

In this section we will, in the context of general CSP, explain the ideas behind the INN
method, which are based on analyzing the information content in the constraints to be
satisfied.

2.1 General CSP: notation

In a CSP instance a set X of N discrete variables, X = {x1 . . . xN}, is considered. We
assume the domain Di = D of each variable xi to have C possible states, D = {1 . . . C}.
Further, a set of M constraints,

fm(X) = 0, m = 1 . . . M, (1)

is given; each constraint is assumed to involve a subset of size K of the N variables. The
constraints define a (possibly empty) subset S of the state space DN consisting of the
solutions: S = {X ∈ DN |f1(X) = . . . = fM(X) = 0}.

The question is whether such a CSP instance is solvable, i.e. whether S is non-empty.
Finding a solution suffices to prove solvability; proving non-solvability is in general
harder.

We limit the discussion to fixed C and K for simplicity only – the method can easily be
adapted to problem types with varying C as well as K.

2.2 Conventional MF ANN Approach

For ANN and INN we will adopt a slightly different encoding, and map the variables
onto RC by associating with each variable xi a Potts spin [21], a C-dimensional vector
si = (si1, si2, . . . , siC), such that the assignment xi = c is represented by si = ec, where ec

is the principal vector in the c-direction, defined to have a unit cth component, while the
other components vanish.4 Defining e as the uniform C-dimensional vector (1, 1, . . . 1),

the domain of each Potts spin is given by D̂ = {si ∈ {0, 1}C |e · si = 1}.

Obviously, every function f(X) of the original variables can be written as an equivalent
function F (s) of the set of spins s = {s1 . . . sN}. As an example, an arbitrary real unary
function f(xi) is mapped to the linear function F (si) = f ·si, where f = (f(1), . . . , f(C)).

4This in order to enable the MF approximation, requiring variables to reside in a linear space.
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In the conventional ANN approach, a CSP instance is transformed into an optimization
problem, encoded in terms of a non-negative cost function E over the state space D̂N ,
such that E(s) vanishes iff s corresponds to a solution. E is typically chosen as a
polynomial in s, and written such that each term is the product of components from
distinct Potts spins (multilinearity). The mth constraint is defined above (equation (1))
as the vanishing of a distinct function fm(X), depending on a subset {xi|i ∈ Ωm} of size
K of the variables. Then, a suitable associated cost, Em, can be defined as a polynomial
of degree K in the associated spins {si, i ∈ Ωm}. Specifically, Em can be chosen as

Em(s) =
∑

c1,...,cK

si1,c1 . . . siK ,cK
Θc1...cK

, (2)

where Θ is zero if the value combination (c1, . . . , cK) for the K variables (xi1 , . . . , xiK )
involved solves the constraint, and unity otherwise. Then the total cost function E(s)
is defined by summing the contributions from the individual constraints, i.e. E(s) =∑M

m=1 Em(s).

2.2.1 The Mean Field Approximation

A simple ANN heuristic is given by minimizing the cost function with respect to one
Potts neuron at a time when searching for the global minimum. The derivative ∂E/∂sic

yields a measure of the number of constraints broken if the variable xi would be assigned
the value c. A problem with such an algorithm is that the state very easily gets stuck in
a suboptimal local minimum.

One way to avoid suboptimal local minima is to use a simulated annealing scheme [14],
where the system is placed in a virtual heat bath represented by the simulation of a
Boltzmann distribution over the state space D̂N , such that the probability of a state
s is proportional to exp(−E(s)/T ), where T is an artificial temperature to be slowly
lowered. At high T all states are about equally probable, while as T → 0, the support
of the distribution shrinks to contain only the states with the lowest cost (the solutions
for a solvable problem), all equally probable.

In an ANN annealing approach one instead adopts the mean field (MF) approximation
[18], where the thermal averages 〈si〉 of the spins si are approximated by estimates vi

(MF Potts neurons), obeying a self-consistent set of equations, the MF equations, given
by

vic =
exp (uic)∑
d exp (uid)

, (3)

uic = − 1

T
∂E(v)/∂vic. (4)
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where the cost function E appears with argument v rather than s, representing the
thermal average 〈E(s)〉.

Note that a MF neuron vi is constrained to the convex hull in RC of the domain D̂ of
the corresponding Potts spin si, and can be seen as fuzzy version of si. In particular,
vic ≥ 0 and

∑
c vic = 1, and vic can be interpreted as a probability of the assignment

xi = c.

2.2.2 ANN MF Annealing

In conventional MF annealing [19, 7], the MF equations (3,4) are solved iteratively
(thus defining a deterministic dynamics), updating one MF neuron at a time, while the
temperature is slowly decreased from an initial high value where roughly uniform neurons
result, vic ≈ 1/C.

As T → 0, the neurons are gradually pushed “on shell”, with components approaching
0 or 1, representing a set of definite assignments - the output of the algorithm; if this
defines a solution, the CSP instance is proven solvable. A typical MF annealing algorithm
is presented in figure 1.

1. Set the temperature,T , to a high value and initialize v close to the high-T fixed point,
vic = 1/C, with small random deviations (a few %).

2. For each node i in turn:

(a) Compute ui using equation (4).

(b) Update vi according to equation (3).

3. If any of the stop criteria is met, go to 5.

4. Lower T by a fixed annealing factor, and go to 2.

5. Extract a candidate solution by for each node i choosing a color corresponding to the largest
component of vi.

A typical stop criteria is if the saturation is close to one; 1
N

∑
ic v2

ic > 1 − ε, where ε is a small
number.

Figure 1: The MF annealing algorithm.
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2.2.3 Variational MF Derivation

The MF approximation can be derived from a variational principle, where the true Boltz-
mann distribution ∝ exp(−E(s)/T ) is approximated by one with independent prob-
abilities for each variable, defined by the components of vi. These are optimized by
minimizing a free energy, given by

F (v) = T
∑

ic

vic log (vic) + E(v), (5)

with the restriction that vic ≥ 0 and
∑

c vic = 1. The first term amounts to −TS(v),
where S is the entropy associated with v. At an extremal value we must have ∂F/∂vic =
λi, where λi is a Lagrange multiplier for the unit-sum constraint on vi. This yields

T log(vic) + T + ∂E(v)/∂vic = λi, (6)

which leads to the MF equations (3,4).

2.3 INN Approach

We will now define INN by means of an information-based modification of ANN, where
the polynomial cost function E(v) is replaced by a specific non-polynomial one, based on
an information-theoretical analysis of the constraints. For each constraint this typically
leads to the negative logarithm of a polynomial function yielding unity if the constraint
is satisfied, and zero if broken. This yields a divergent cost for a non-solution, which in a
MF setting leads to a sensitivity to softly broken constraints that progressively increases
with the severity.

2.3.1 INN cost function

To construct such a cost function, we rely on the approximating assumption (inherent in
the MF approximation) that the Boltzmann distribution at each temperature factorizes
into a product of single-variable distributions,

P (X) =
∏

i

pi(xi). (7)

Each single-variable distribution pi is completely defined by an MF neuron vi, with the
probability for xi = c given by vic. Thus, v can be seen as a parameterization of P .

Now, assume the mth constraint to be defined by a function fm of a subset of the
variables as in equation (1). Then, the probability distribution P , as parameterized by
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v, gives a well-defined probability that the constraint be unsatisfied, given by 〈Em(s)〉,
which reduces to Em(v) with the multilinear Em of equation (2).

The amount of information required to force a constraint to be satisfied can be estimated
as − log(1 − Em(v)), and as a cost function we take the sum of this over the set of
constraints, i.e.

I(v) =
∑
m

− log(1− Em(v)), (8)

which is thus an estimate of the total amount of information required for solving the
problem.

As a comparison, the polynomial ANN cost function E(v) =
∑

m Em(v), corresponds
to a Boltzmann distribution over the state space given by PE(s) ∝ ∏

m exp(−Em(s)/T )
with a penalty factor of exp(−1/T ) for each broken constraint.

The INN cost function I formally corresponds to the more radical Boltzmann distribution

PI(s) ∝
∏
m

(1− Em(s))
1
T , (9)

which, since 1 − Em(s) yields 1 for a solution and 0 for a non-solution, vanishes for all
non-solutions and yields a uniform non-zero weight for all solutions, independently of T
(the T dependence appears only in the MF equations).

2.3.2 Variational Interpretation

Formally, the modified MF approximation employed in INN can be seen as the result of
the minimization of a variational free energy,

F (v) = −TS(v) + I(v), (10)

where the first term can be interpreted as a measure of the unused information resources
associated with the MF neurons. At high T , all states are about equally probable, and
vic ≈ 1/C. The information content −S is then high, amounting to log(C) per neuron
(one bit for C = 2). As T is lowered, a specific state is chosen for each variable, and the
information resources are used up, −S → 0.

Thus, in the INN approach, the variables can be seen as information resources, that are
gradually used to satisfy the constraints, seen as information consumers. 5 At high T
(typically above a well-defined critical temperature, Tc), the resources are intact, but as
T is decreased, an increasing pressure is applied towards spending them.

5This might seem as an abuse of the information concept; an alternative is to view the spins as resources for storage of
the information produced by the constraints.
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2.3.3 INN MF Annealing

When using the INN cost function in place of the conventional ANN one in the MF
equations (3,4), a slight modification of the iterative dynamics is needed due to the non-
polynomial nature of the former, in order to avoid instabilities [16, 13]. Equation (4),
which is relevant for a multilinear polynomial cost function, is replaced by

uic = − I(v)|vi=ec

T
, (11)

where ec as before represents the sharp c-state, with a unit cth component and the rest
zero. This modification amounts to using cost differences, rather than derivatives as in
equation (4); for a multilinear cost function the results coincide.

Due to the singular behavior of the logarithm in equation (8) and thus in equation (11)
for small arguments, it may happen that one or more components of ui become divergent
(−∞) within the numerical resolution, which is the case when a constraint is close to
becoming fully broken for a particular choice of state ec, which typically happens at a
low T .

If not all choices yield a divergence, there is no problem: The corresponding components
of vi will become zero. However, in cases where a divergence is inevitable, a regularization
method has to be devised.

To that end, a counter nic is assigned to each state c of the variable xi, initialized
to zero, and incremented for each constraint that would make a singular contribution
(which is disregarded) to uic. In cases where all the counters for a fixed i are non-zero,
only the states c with the lowest count are considered, and one possibility (deterministic
method) is to set the corresponding components of vi to equal values summing up to
one, while the others are set to zero, thus ignoring the finite contributions to ui. In [13]
an alternative, stochastic method was used, where a random state c is selected among
those with the lowest count, and the corresponding component of vi set to unity, the
rest to zero. This version leads to a stochastic search in the low temperature region,
resulting in an improvement in performance, but an increase in time consumption.

In the low temperature limit where all non-zero contributions are infinite, the stochastic
regularization method yields a dynamics resembling a class of non-annealing ANN algo-
rithms used on constraint satisfaction problems [1, 5], while the deterministic method
yields a low T behavior closer to that of conventional MF annealing.

In practice, when evaluating the INN cost function in equation (11) it is faster to take
the logarithm of a product than to sum the logarithms. It may happen that the product
vanishes numerically, yielding a divergent logarithm; this is treated as an extra divergent
contribution, and the corresponding counter is incremented.
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With these modifications, INN annealing proceeds just like conventional ANN annealing:
The modified MF equations are solved iteratively in a serial manner, with annealing in T ,
etc. However, due to the nonlinearity of the logarithm in the INN cost function, equation
(8), constraints on their way to becoming unsatisfied are detected on an earlier stage,
leading to a better revision capability for INN as compared to ANN, and a substantially
improved performance.

3 Application to Graph Coloring

Now we leave the general discussion in favor of an application to a specific problem type,
for which we have chosen Graph Coloring (GC) [17].

In GC, a graph of N nodes and M edges is given, and C distinct colors. Each node is to
be assigned a color, such that each edge connects nodes of distinct colors. Thus, there
is one constraint for each edge, involving K = 2 variables.

3.1 INN for Graph Coloring

We assign a Potts spin si to encode the coloring of each node i, i = 1, . . . , N , and employ
the (modified) MF approximation, yielding MF neurons vi.

The scalar product si · sj yields unity if the nodes i, j are in the same state, and zero if
not. The analogous expression with MF neurons, vi · vj, measures the probability that
the nodes are in the same state, which is precisely what we need for Em, so let

Em(v) = vim · vjm , (12)

where im, jm label the two nodes connected by the edge m.

Let J denote the connection matrix for the graph, i.e. Jij = 1 if nodes i, j are connected,
zero otherwise. Then the INN cost function I = −∑

m log(1−Em) can be expressed as

I = −1

2

∑
i,j

Jij log (1− vi · vj) . (13)

The INN MF equations become vic = exp(uic)/
∑

d exp(uid), with

uic =
1

T

∑
j

Jij log (1− vjc) , (14)
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where care must be taken to regularize singular contributions, as discussed in Section
2.3.3. Note that a component of ui gets a singular contribution from an edge only in the
limit of the corresponding component of vj being unity (within the numerical resolution),
which is more likely to happen at low T .

3.1.1 Critical T Discussion

Due to the symmetry with respect to the permutation of colors, the MF equations will
always have a symmetric solution

vic =
1

C
, (15)

defining a trivial fixed point of the dynamics. By means of a linearization around this
fixed point, the dynamics for infinitesimal deviations εic = vic − 1/C becomes

εic = − 1

T (C − 1)

∑
j

Jij

(
εjc − 1

C

∑

d

εjd

)
. (16)

A simple analysis yields that the trivial fixed point is stable for high enough T , but
suffers a destabilizing bifurcation at a critical temperature Tc, given by − λ

C−1
where λ

is the largest (in absolute value) negative eigenvalue of J. Tc serves as a suitable initial
temperature in the annealing algorithm, and can easily be estimated. For a graph with
at least one edge, 1/(C − 1) is a strict lower bound for Tc.

4 Numerical Explorations

2-coloring (C = 2) is known to be of polynomial complexity, and we will focus on 3-
coloring (C = 3), which is NP-complete [17].

Problem difficulty depends on the edge density γ = 2M/N . For 3-coloring, there exists a
critical edge density γc ≈ 4.6 [9], such that in the large-N limit all problems are solvable
below γc, and unsolvable above. (Such phase transitions are known to exist in many
classes of CSP [8, 15].)

Although the problem of finding a solution becomes increasingly difficult with increasing
γ, the decidability problem is most difficult around γc; at lower γ a solution is easy to
find, while at higher γ unsolvability is more likely to be easily provable.

In addition to 3-coloring we have also applied the algorithms to a limited set of problems
on more dense graphs, widely studied in the literature (see e.g. [12, 11, 5]). The problem
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instances studied are labeled g125-17, g125-18, g250-15 and g250-29, where the first two
actually correspond to the same 125-node graph, to be colored with respectively 17 and
18 colors.

4.1 3-Coloring Testbeds

To probe the performance of INN annealing as applied to 3-coloring, we have chosen a
testbed of random graphs, with edge densities in the neighborhood of γc. To be specific,
we have used γ values between 3.4 and 4.6 in steps of 0.2, and in addition 4.1 and 4.3.
Problem sizes probed are N = 250, 500, 1000, 2000. For a given edge density and problem
size, the edge count is given as M = γN/2, and a set of 200 random problem instances
is generated by, for each instance, choosing at random M of the N(N − 1)/2 possible
edges.

4.2 Preprocessing

A simple preprocessing is made on the graphs before they are handed to the algorithms.
Nodes with less than C = 3 neighbors are removed from the graph, since they can
be trivially colored. This is done recursively until the remaining nodes have at least
C neighbors. In table 1 the average sizes of the graphs after preprocessing is shown
for some original values of N and γ. The preprocessing can be expected to improve

γ = 3.6 γ = 4.2 γ = 4.6
N M N ′ M ′ M N ′ M ′ M N ′ M ′

250 450 130 259 525 181 414 575 201 496
500 900 253 506 1050 361 827 1150 401 990

1000 1800 509 1020 2100 720 1649 2300 799 1973
2000 3600 1025 2055 4200 1437 3293 4600 1596 3943

Table 1: Average problem size reduction due to preprocessing. N , M and γ are the original problem
parameters, while N ′ and M ′ denote the reduced node and edge counts.

speed about equally much for the different algorithms, which is confirmed by empirical
test runs. These also indicate a comparable performance improvement in the form of a
small change (slightly larger for ANN) in the position in γ of the (algorithm-dependent)
apparent phase transition.
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4.3 Algorithmic Details for INN

The temperature is initially set close to an estimate of the critical temperature Tc =
− λ

1−C
, where λ is obtained by iterating x → (const × 1 − J)x a few dozen times,

with a suitable random initial vector x. A schematic description of the algorithm is
given in figure 2. The deterministic version (as discussed in Section 2.3.3) is used for

1. Set T ≈ Tc, and initialize v close to the high-T fixed point, vic = 1/C, with small random
deviations (a few %).

2. For each node i in turn:

(a) Compute ui using equation (11).

(b) Update vi according to equation (3). (In case of singular components in ui, this pair of
steps is modified as discussed in Section 2.3.3).

3. If any of the stop criteria is met, go to 5.

4. Lower T by a fixed annealing factor, and go to 2.

5. Extract a candidate solution by for each node i choosing a color corresponding to the largest
component of vi.

Figure 2: The INN annealing algorithm for GC.

3-coloring. For the annealing factor we have experimented with a few different values.
Slower annealing tends to improve the quality for large and difficult problems, but at
the cost of more CPU time used. There is also a limit where slower annealing does
not improve the quality anymore, and a restart of the algorithm gives a better payoff.
The presented results are consistently based on an annealing rate of 0.99, and we have
allowed for a maximum of ten updates of all neurons per temperature, to allow the state
to converge (maxic |∆vic| < 0.1).

At every tenth temperature we apply two stop criteria. First, a temporary sharp
configuration s is extracted from v, and if s is a solution the algorithm stops. The
second criterion applies if the neurons are saturated (

∑
i

∑
c v2

ic > 0.9N) and stable
(maxic |∆vic| < 0.01). In addition, if no solution has been found until T < 0.3 the
algorithm aborts.
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4.4 Comparison Algorithms

The performance of INN annealing has been compared to that of four other algorithms:
1) conventional ANN annealing, 2) a biased simulated annealing algorithm, SAU [3, 11],
3) a heuristic, DSATUR [2, 4], and 4) a SAT heuristic, gsat+walk[20], all applied to
the same testbed. Where not otherwise stated, the algorithms are implemented by the
authors.

Comparing different algorithms is quite difficult, as they have different time scales at
which they are most efficient. Also, each algorithm has different optimal parameter
settings for different N and γ. Despite this, we have for each algorithm for simplicity
used the same parameter settings on the entire testbed.

The parameters are chosen by means of testruns on a small distinct testset of instances,
drawn from the same ensemble as the production testbed. We have chosen a set of
suitable parameters (annealing parameter, number of updates per temperature) for the
INN algorithm first, and then attempted to optimize the parameter settings for the other
algorithms, given that they are allowed to use about the same time as INN. Note that our
testset contains solvable as well as unsolvable problems. Hence parameters are chosen
such that the algorithms are completed within a given maximal time, also for unsolvable
problems.

4.4.1 Conventional ANN annealing

A suitable ANN cost function based on equation (12) is

E(v) =
1

2

∑
i,j

Jijvi · vj, (17)

yielding the MF equations (3) with

uic = − 1

T

∑
j

Jijvjc. (18)

T is initialized close to the critical temperature, given by (C − 1)/C times that for INN.
We have used an annealing rate of 0.99, and the same stop criteria as in INN, except for
the stop temperature, which is set to 0.1 instead of 0.3 (lower than for INN, where the
non-linear cost function makes the neurons saturate faster).
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4.4.2 SAU

A number of simulated annealing (SA) [14] approaches have been devised for graph
coloring problems [11, 3]. For 3-coloring it is appropriate to use one with a fixed number
of colors where the goal is to minimize the number of broken edges. In [11], where a
set of SA algorithms were tested with graphs with varying edge densities, this was also
shown to be the best strategy for graphs with a low edge density. In such an approach
each node in the graph is assigned a variable, xi = 1, .., C representing the color of the
node. A cost analogous to equation 17, defined as

E =
1

2

∑
i,j

Jijδxixj
, (19)

can be used. Local moves are selected by choosing a node i and a random change in
value for xi. To guide the search into low cost states a virtual temperature parameter,
T , is introduced and moves are accepted with a probability p = min (exp (−∆E/T ) , 1),
where ∆E = Enew − Eold. If the temperature is high all moves are accepted, while at
low temperature uphill moves (increased cost) are rejected.

In [11, 3], an algorithm of this type is described, which we will refer to as SAU. There, a
restricted move class is used, where only nodes contributing to the cost (as opposed to
all nodes) are allowed as candidates for a color change; this is empirically more efficient.
A candidate move is given by 1) choosing a random broken constraint, 2) picking a
randomly chosen variable in the constraint, and 3) changing the value into a random
(different) color.

The move class is not symmetric, and this algorithm corresponds to a kind of biased
simulated annealing, which does not necessarily yield an emulation of a Boltzmann dis-
tribution. Also, ergodicity seems to be broken: All possible states cannot be reached
from any initial state; this does not have to be a disadvantage.

The algorithm starts in a random state and at a high temperature to allow for uphill
moves. A certain number (2N) of attempted moves (accepted or not) define an iteration;
between iterations the temperature is decreased by a fixed factor (0.97). This is repeated
until a solution is found, or the cost has not changed over a certain number (10) of itera-
tions. To optimize the algorithm (within the time used by INN) we have tested different
annealing factors and different numbers of attempted moves at each temperature.

4.4.3 DSATUR

The DSATUR algorithm is designed to answer the question how many colors are needed
to color a graph; it always succeeds, and returns the number of colors used. If this is
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less than or equal to C, a solution to C-coloring is implied.

DSATUR starts with all nodes uncolored, and selects nodes to color one by one. The
order in which nodes are selected is dynamically determined by the number of colors that
cannot be used because of already colored neighbor nodes. In each step the node with
the smallest number of available colors is selected to be colored; if several, a random
selection is made.

This algorithm was presented by D. Brélaz [2], and we have used a program made by
J. Culberson [4] available from the world-wide web 6. In [4] a set of similar algorithms
was presented, with varying rules for ordering the nodes. Our choice of DSATUR among
these was based on preliminary experiments on the class of problems used in our testbed,
indicating that DSATUR performed best. With the random choice of node at a degen-
eracy there is no parameter to optimize, and the algorithm is restarted until a solution
is found or the time limit is reached.

4.4.4 Gsat+walk

Gsat+walk is a heuristic designed for satisfiability (SAT) problems, but it can be used
also for graph coloring problems, as any GC instance can be transformed into a SAT
instance in polynomial time.

In a SAT problem [17, 6] there are N boolean variables, xi =True/False, i = 1, ..., N . In
conjugate normal form the constraints are given by clauses, (a1 ∨ a2 ∨ ... ∨ aK), where
each of the K literals, aj, is given by a variable xij or its negation ¬xij , and ∨ represents
the inclusive or. Then it is enough that one variable is in the correct state for the clause
to be satisfied. A problem instance is given by M clauses and the question is whether
there is a configuration of the variables that satisfies all clauses.

The transformation from a graph coloring instance to a SAT instance can be done using
boolean variables xic defined as True if node i is assigned color c and False otherwise.
Each edge i, j in the graph then yields a clause for each color c = 1, ..., C as (¬xic∨¬xjc).
Also, constraints are needed for assuring that at least one color is assigned to a node,
and it is given for node i as (xi1∨xi2∨ ...∨xiC). Note that this encoding allows for more
than one color being assigned to a node, so a solution of the SAT instance may yield
several solutions of the original graph coloring instance. The transformation into a SAT
instance yields an increase in the size of the state space from CN to 2NC .

The gsat+walk algorithm starts in a random state and uses two types of local moves
(variable flips) for updates. The first is a greedy move where the variable that results in

6http://web.cs.ualberta.ca/~joe/Coloring/
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the least number of broken constraint is flipped (ties are randomly broken). The second
is a constrained random walk move, where a randomly chosen variable appearing in at
least one broken clause is flipped.

We have used a program written by B. Selman and H. Kautz, that is available from
SATLIB7. Different values of the parameter for the fraction of moves that are random
walk moves, p, are tested to optimize the algorithm. If random move flips are included
(p 6= 0) we have found that a single run with more flips is more beneficial than restarts
with fewer flips. We have used a p-value of 0.5 and allowed for 60× CN flips.

4.5 Results

Here follows a discussion and evaluation of the testbed results for INN and the comparison
algorithms.

In figures 3 – 7 we present, for each algorithm, (A) the fraction unsolved problems, fU ,
as a function of edge density γ for different problem sizes, and (B) the average CPU time
used as a function of problem size N , for different edge densities.

The time presented is the total time used, including reruns, until a solution is found or
the maximum allowed number of reruns is done.

Parameter settings are as described above, and up to ten restarts are allowed for the
ANN, INN and SAU algorithms on a problem. For the faster DSATUR algorithm up
to 80 restarts are allowed, and for gsat+walk one run is used as discussed above. All
experiments have been made on a 800 MHz AMD Athlon computer running Linux.

4.5.1 Discussion

As can be seen in figures 3 – 7, each algorithm seems to show a more or less distinct
critical γ, above which it fails to find solutions. In all cases it is situated below the
established value of γc ≈ 4.6, and can be used as a measure of the performance. This
indicates that INN and SAU are the best algorithms for difficult problems (for lower γ,
where all problems are solved by either method, DSATUR wins on speed).

A closer look at the INN and SAU results reveals a tendency for SAU to perform slightly
better in the lower γ range, while INN seems to have the upper hand for higher γ. To
some extent, this is an effect of the chosen amount of CPU time allowed, and a different

7http://www.satlib.org
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Figure 3: INN results from 200 instances for each N and γ. (A) Fraction unsolved problems (fU ) versus
γ, for N = 250 (+), 500 (×), 1000 (∗), 2000 (�). The statistical error in each point is less than 0.035.
(B) Average CPU time (in seconds) used versus N , for γ = 3.6 (+), 3.8 (×), 4.0 (∗), 4.2 (�), 4.4 (�)
and 4.6 (◦).
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Figure 4: Conventional ANN results. (A) Fraction unsolved problems (fU ) versus γ. (B) Average CPU
time (in seconds) used versus N . Notation as in figure 3.

choice might slightly change the outcome; SAU in particular, and to some extent INN,
would benefit from a slower annealing rate, requiring more time.

Gsat+walk seems to be outperformed on this testset by INN and SAU; this is probably
at least partly due to the disadvantageous transformation to a SAT problem. In [13] we
showed that gsat+walk and INN were comparable on a number of hard 3-SAT problems,
and a decrease in performance is probable also if the boolean version of INN is applied
to graph coloring problems transformed into SAT. Probably a problem-specific version
of gsat would perform better on this testset of graph coloring instances.

As for CPU time consumption, DSATUR seems to be very fast in solving the easier
problems for small N , although the differences in time may be somewhat overestimated
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Figure 5: SAU results. (A) Fraction unsolved problems (fU ) versus γ. (B) Average CPU time (in
seconds) used versus N . Notation as in figure 3.
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Figure 6: DSATUR results. (A) Fraction unsolved problems (fU ) versus γ. (B) Average CPU time (in
seconds) used versus N . Notation as in figure 3.

due to the finite time resolution. On the other hand, the DSATUR time rises faster with
increasing N , and for large N the time consumption is comparable to that of the other
algorithms.

Our overall conclusion is that INN and SAU have comparable performances and are the
overall winners on this testset. They are consistently superior to ANN and gsat+walk,
and beat DSATUR for the large/difficult problems, where it matters the most.

4.5.2 Dense Graphs

The INN algorithm was also applied to a small set of more dense graphs available from
DIMACS. The results for INN is shown in table 2. In this case we have used the stochastic
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Figure 7: Gsat+walk results. (A) Fraction unsolved problems (fU ) versus γ. (B) Average CPU time
(in seconds) used versus N . Notation as in figure 3.

Problem col Emin < E > Emax tmin < t > tmax

g125-17/18 17 2 3.5 5 7.39 13.42 18.88
g125-17/18 18 0 0.1 1 0.26 2.99 8.98
g250-15 15 0 0 0 0.42 0.53 0.57
g250-29 29 2 3.8 5 126.25 161.36 203.48
g250-29 30 0 0.8 2 7.36 80.73 137.62

Table 2: Results for INN on some dense graphs. E counts the number of broken constraints, and t is
the time measured in seconds.

version of the algorithm, and set the stop temperature to 0.1 instead of 0.3 (to allow for
a longer search in the low temperature region), but otherwise the parameters are exactly
the same as for the 3-coloring testbed. For the cases when a solution with optimal
number of colors is not found by the algorithm, also the problem with an additional
color is tried.

Both GSAT and SAU have been shown to solve these problems [11, 5], but the time used
for the problems not solved by INN is quite long. For the parameter values used in this
survey (with a limited maximal time) neither algorithm solved the problems that INN
did not solve.

5 Summary and Conclusions

We have presented a modified ANN annealing heuristic, INN, applicable to generic CSP
and generalizing a previously described method restricted to boolean CSP. It is based
on an analysis of the balance of information between constraints and variables in a mean
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field approximation, yielding a very specific non-polynomial cost function.

The method has been applied to a testbed of random graph 3-coloring problems, and
the performance was shown to be in parity with a good dedicated heuristic, SAU, and
much superior to that of a conventional ANN mean-field annealing approach based on a
polynomial cost function.

The improvement compared to traditional ANN can be attributed to the strong non-
linearity of the particular cost function used in INN, which boosts the ability to recognize
and avoid bad solutions on an early stage, and yields an improved revision capability.

The method shares with ANN the appealing feature of not being tailored for a specific
application, and can be applied to generic constraint satisfaction problems.

For constrained optimization problems, we suggest a hybrid method, where the con-
straints are handled by a non-linear information-based cost function, while the object
function per se is treated with a traditional polynomial ANN cost function. Work to
explore this avenue is in progress.
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