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Abstract

Motivation: The alignment of biological sequences obtained from an algorithm
will in general contain both correct and wrong parts. Hence, to allow for a valid
interpretation of the alignment, the local trustworthiness of the alignment has to
be quantified.
Results: We present a novel approach that attributes a reliability index to every
pair, including gapped regions, in the optimal alignment of two protein sequences.
The method is based on a fuzzy recast of the dynamic programming algorithm for
sequence alignment in terms of mean field annealing. An extensive evaluation with
structural reference alignments not only shows that the probability for a pair to be
correctly aligned grows consistently with increasing reliability index, but moreover
demonstrates that the value of the reliability index can directly be translated into
an estimate of the probability for a correct alignment.
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Introduction

Comparing protein sequences by means of an alignment algorithm has become an ubiqui-
tous task of modern molecular biology. From such an alignment, evolutionary, structural
and functional relationships between proteins can be delineated. Standard algorithms for
global (Needleman and Wunsch, 1970) and local (Smith and Waterman, 1981) sequence
alignment maximize a score function that favors matching of more similar residues over
the pairing of more dissimilar residues and the insertion of gaps. Measures of similarity
between residues are commonly derived from the observation of mutational probabilities;
insertion of gaps is typically penalized by a score linearly growing with the length of the
gap.

This implies that the optimal alignment obtained from such an algorithm is essentially
nothing but the product of an optimization procedure that in turn is based on a prede-
fined scoring scheme, namely similarity scores and gap penalties. The frequently subtle
relationships between proteins can, however, not always be detected by this method.
Alternative suboptimal alignments that score slightly lower than the optimal alignment
and are therefore disregarded by the algorithm might actually pinpoint conserved re-
gions between the proteins better. Furthermore, a change in the scoring parameters will
often result in drastic alterations of the resulting alignment, in particular in the case of
sequences of low similarity (Barton and Sternberg, 1987; Vingron and Waterman, 1994).

In general, we can therefore not expect the optimal alignment to be a mirror of biological
truth in all its parts. Hence, a method is desired that can assess the local reliability of
the alignment by attributing probabilities for a correct alignment to every region in the
alignment, down to individual pairs.

Starting with the pioneering work by Vingron and Argos (1990), local reliability has
been commonly deduced from an implicit or explicit study of suboptimal alignments
competing with the optimal solution. Vingron and Argos demonstrated that regions in
the optimal (global) alignment that remain unaltered among a large set of suboptimal
alignments exhibit stronger agreement with the structural reference than regions that
are represented only in a few close-to-optimal alignments.

An application of this idea also to local Smith–Waterman alignments has been described
by Zuker (1991). Saqi and Sternberg (1991) calculated explicitely a limited set of sub-
optimal alignments that differ non-trivially from each other and can be used to identify
larger parts of the correct alignment. A detailed study of suboptimal alignments was
performed by Naor and Brutlag (1994). Chao et al. (1993) introduced an algorithm that
allows to quantify the reliability of each individual residue pair in the optimal align-
ment; a modified and extensively evaluated version of this method has been described
by Mevissen and Vingron (1996). Alternative approaches have been proposed in the
context of a probabilistic interpretation of the alignment score (Kschischo and Lässing,
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2000; Miyazawa, 1995), from which probabilities for individual residue–residue pairings
are derived that can be interpreted as reliabilities.

The available methods so far, however, exhibit certain drawbacks. In many cases, the
reliability measure does not evolve naturally from the task of sequence alignment it-
self but entails more or less complicated additional algorithms (as in Chao et al., 1993;
Mevissen and Vingron, 1996). Moreover, translating the algorithmically obtained relia-
bility index into a probability for correct alignment may require the analysis of external
databases with reference alignments (Mevissen and Vingron, 1996). Among the pre-
sented methods, only the algorithm by Chao et al. (1993) is able to assign reliability
to gapped regions in the alignment, however at the price of involving an high degree of
algorithmical sophistication.

We present a novel approach for quantifying the local reliability of sequence alignments
that aims at a resolution of these problems. A ‘fuzzy’ implementation of the dynamic
programming algorithm for sequence alignment in terms of mean field annealing enables
us to study explicitely the local dynamics of the optimization task of sequence alignment.
Quantifying these dynamics provides a measure for the presence of locally alternative
solutions and can therefore be used to deduce a reliability index for each residue–residue
and residue–gap pair in the optimal alignment.

In what follows, we shall for the sake of simplicity restrict ourselves to global Needleman–
Wunsch alignments. Our method, however, possesses sufficient generality to be applied
to local Smith–Waterman alignments (Smith and Waterman, 1981) and the like as well.

Methods

Review of global sequence alignment

As our method is based on a reformulation of the Needleman–Wunsch algorithm for
global sequence alignment (Needleman and Wunsch, 1970), we shall briefly review this
algorithm in an implementation that will allow for a straightforward introduction of our
algorithm.

Let A = (A1A2 . . . AM) and B = (B1B2 . . . BN) denote the two sequence strings contain-
ing M and N residues, respectively. We introduce a (M +1)× (N +1) alignment matrix
such that we can represent every possible alignment of the two sequences by a directed
path in this matrix (Figure 1). The matrix element, or node, (i, j) has (with obvious
restrictions at the left and top margin of the matrix) three possible predecessors along
the alignment path, specified by directions of propagation k = 1, 2, 3 (see Figure 2).

The score S(i, j) for the optimal alignment of the sequence prefix (A1A2 . . . Ai) of the
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Figure 1: The alignment matrix representation for an alignment of the two sequences
A = (A1A2 . . . AM) and B = (B1B2 . . . BN).
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Figure 2: The integer variable k specifies the possible predecessors to the node (i, j).

whole sequence A with the sequence prefix (B1B2 . . . Bj) of the whole sequence B is then

S(i, j) = max
k
{S̃(i, j; k)}. (1)

Here, S̃(i, j; k) is the (optimal) score in (i, j) when the alignment path is forced to pass
through the preceding node specified by the direction k, and it is recursively given by

S̃(i, j; k = 1) = max
0≤b<j

{S(i, b)− g(j − b)},

S̃(i, j; k = 2) = S(i− 1, j − 1) + σ(Ai, Bj), (2)

S̃(i, j; k = 3) = max
0≤a<i

{S(a, j)− g(i− a)},

where σ(Ai, Bj) is the similarity score for aligning Ai with Bj and g(l) the penalty for a
gap of length l.
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A directed sweep through the alignment matrix to recursively calculate S(i, j) for each
(i, j) will finally yield S(M, N), the score for the optimal alignment of A with B. To
actually retrace the optimal alignment, we record, for each node (i, j), which of the three

S̃(i, j; k) in Eq. (1) has yielded the optimal score by introducing binary variables sij,k as

sij,k =

{
1 if S̃(i, j; k) = maxk′{S̃(i, j; k′)},
0 otherwise.

(3)

Then, we can replace the ‘max’ function in Eq. (1) by the sum

S(i, j) =
∑

k

sij,k S̃(i, j; k). (4)

Since for nodes in the first column or row of the alignment matrix only at most one
directly preceding node exists, we can initialize as constants

s00,k = 0, k = 1, 2, 3,

si0,1 = si0,2 = 0, si0,3 = 1, i = 1, . . . , M, (5)

s0j,2 = s0j,3 = 0, s0j,1 = 1, j = 1, . . . , N,

and

S(i, 0) = g(i), i = 0, . . . , M,

S(0, j) = g(j), j = 0, . . . , N.
(6)

For a linear gap penalty g(l) = gopen + (l− 1)gext (to which we shall restrict ourselves in
the following), Eqs. (2) simplify to

S̃(i, j; k = 1) = S(i, j − 1)− gopen (1− si,j−1,1)

−gext si,j−1,1,

S̃(i, j; k = 2) = S(i− 1, j − 1) + σ(Ai, Bj), (7)

S̃(i, j; k = 3) = S(i− 1, j)− gopen (1− si−1,j,3)

−gext si−1,j,3.

Introducing fuzzy alignment paths

The sij,k as introduced above for the original Needleman–Wunsch algorithm are strictly
binary “winner-takes-all” variables. As such, they encode only a single alignment, namely
the optimal alignment. To account for suboptimal deviations from this rigid alignment
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path, we propose a fuzzy recast of the Needleman–Wunsch algorithm by replacing the
sij,k by continuous “winner-takes-most” variables vij,k (Häkkinen et al., 1998),

sij,k → vij,k =
e
eS(i,j;k)/T

∑
k′ e

eS(i,j;k′)/T
. (8)

For T > 0, this can be viewed as a soft implementation of the ‘max’ function occurring
in Eqs. (1) and (3); in the limit T → 0, vij,k → sij,k and proper Needleman–Wunsch is
recovered.

Accordingly, Eqs. (4) and (7) must now be expressed in terms of the vij,k instead of
the sij,k. Since by construction

∑
k vij,k = 1, the value of vij,k can be interpreted as a

probability that an optimal alignment path that passes through (i, j) contains the node
specified by the direction k.

Relation to Mean Field Annealing

We note the similarity of Eq. (8) to a Boltzmann probability when interpreting S̃(i, j; k)
as a negative energy and T as a fictitious temperature. In fact, it can be shown that
the vij,k are mean field (MF) approximations (Peterson and Söderberg, 1989) of the
thermal averages 〈sij,k〉T of the original binary sij,k for a suitably chosen energy function
whose minimization corresponds to our optimization goal of finding the maximum-score
alignment. Such mean field approximations together with a stepwise lowering of T
(simulated annealing ; Kirkpatrick, 1983) have in the past successfully been used to solve
various combinatorial optimization problems (mean field annealing ; for a review see
e.g. Peterson and Söderberg, 1998).

Applied to our optimization problem of sequence alignment, solving the MF equations (8)
iteratively under annealing T will yield a solution to the alignment problem which, due
to the relative simplicity of this optimization task, is likely to coincide with the optimal
alignment obtained from the Needleman–Wunsch algorithm. Therefore, we may use this
MF annealing algorithm as an alternative method to solve the alignment problem.

The motivation for this alleged detour lies in the fact that it allows for an explicit study
of the dynamics of the optimization procedure, represented by the evolution of the MF
variables vij,k, Eq. (8), under annealing T . Typically, variables vij,k that exhibit only a
late (i.e. low-T when T → 0) onset of ‘decision’ towards their limiting values of one or
zero, possibly accompanied by oscillatory fluctuations, indicate the presence of a local
multiplicity of possible solutions represented by these vij,k that makes fast convergence
to a unique solution difficult (see Figure 3).
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Figure 3: A typical evolution of MF variables v(m) ≡ vij,k, Eq. (8), corresponding to
the m-th pair in the optimal alignment (thus all v(m) → 1 as T → 0), under annealing
T . Some v(m) exhibit a fast and smooth decision towards the limiting value of one (1),
representing a dominating, non-ambiguous local solution to the optimization problem.
Others show only late convergence at low T (2), sometimes with additional oscillations
(3), which indicates the presence of competing alternative solutions.

Obtaining a reliability index

With every vij,k on the alignment path representing the alignment of a single pair, we can
therefore monitor the evolution of the vij,k under annealing T to estimate the presence
of suboptimal alternatives to this aligned pair and thus to quantify its reliability. As it
can be seen from Figure 3, the area that the curve vij,k encloses with the T axis can be
used to measure how fast and smoothly convergence is achieved.

We shall therefore define the local reliability r(m) of the m-th pair in the optimal align-
ment as

r(m) =
1

T0

∫ T0

0

v(m) dT, (9)

where v(m) denotes the vij,k corresponding to the m-th pair in the optimal alignment
and T0 the initial ‘temperature’ for the annealing process T → 0. Thus, r(m) measures
the ratio between the area that the curve v(m) encloses with the T axis and the largest
possible area that can be enclosed (namely, by a curve with a constant value of one).
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We shall report r(m) as a reliability index taking values between 0 (corresponding to
0 ≤ r(m) < 0.1) and 9 (corresponding to 0.9 ≤ r(m) ≤ 1.0).

Note that since all v0j,k and vi0,k are required to retain their initial values, Eqs. (5), no
meaningful reliability index can be assigned to initial end gaps. Since an attribution of
reliability to end gaps is, however, of anyhow doubtful biological interpretation, this is
no drawback; instead, we shall consistently refrain from assigning reliability indices both
to initial and to terminal end gaps.

Implementation

Since the alignment obtained from the (approximative) MF annealing algorithm may
occasionally differ from the exact Needleman–Wunsch alignment, we first calculate the
optimal alignment with binary sij,k, Eq. (3), corresponding to the zero-T limit and thus
recovering the exact Needleman–Wunsch algorithm.

Consistency between the exact and the MF solution is then achieved by taking the
resulting set of sij,k and scores S(i, j) as the initial T = 0 configuration for an iteration
of the MF equations (8) under now increasing T (inverse annealing), T → εT with
ε > 1 (we used ε = 1.1); the evolution of the v(m) is recorded by a series of discretized
integration steps to compute the reliability index, Eq. (9), for each aligned pair. This
approach is justified by the observation that relevant features in the evolution of the vij,k

are present in both directions of changing T .

Instead of using a fixed value for T0, cf. Eq. (9), the procedure of inverse annealing is
dynamically terminated when the v(m) have attained a certain average value v = v0 that
ensures sufficient convergence towards the infinite-T value of 1/3 (we used v0 = 0.55).
All computations were performed with a modified PAM-250 matrix (Gonnet et al., 1992)
and a linear gap penalty g(l) = 10 + l with free end gaps.

The complete algorithm for computing the optimal alignment with reliability indices
assigned to each pair is summarized in Figure 4.

Results

Test database

To demonstrate that our reliability index, Eq. (9), serves in fact as a meaningful measure
for the local trustworthiness of the optimal alignment, we need to evaluate whether pairs
that receive high reliability indices are in fact more likely to be correctly aligned than
pairs with lower reliability indices.
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1. Perform a global (exact) Needleman–Wunsch alignment of the two given sequences:

(a) For i = 0, . . . ,M and j = 0, . . . , N , initialize si0,k and s0j,k according to Eqs. (5),
and S(i, 0) and S(0, j) according to Eq. (6).

(b) By proceeding row by row i → i + 1, i = 1, . . . ,M , and in each row column by
column, j → j + 1, j = 1, . . . , N , calculate recursively for each node (i, j) in the
given order:

i. S̃(i, j; k) from Eqs. (7);
ii. (binary) sij,k from Eq. (3);
iii. S(i, j) from Eq. (4).

(c) When finished, retrace the optimal alignment by starting from node (M, N) and
following the directions encoded in the sij,k until the initial node (0, 0) is reached.

2. Compute a reliability index for every pair in the optimal alignment using MF annealing:

(a) Take the sij,k and S(i, j) calculated from the Needleman–Wunsch algorithm in step
1 as initial configuration, with the binary sij,k, Eq. (3), replaced throughout by
continuous MF vij,k, Eq. (8). Initialize T close to zero, and all reliability indices as
r(m) = 0.

(b) Compute iteratively for each node (i, j) until convergence:

i. S̃(i, j; k) from Eqs. (7) (with binary sij,k replaced by MF vij,k);
ii. (fuzzy) vij,k from Eq. (8);
iii. S(i, j) from Eq. (4) (with binary sij,k replaced by MF vij,k).

(c) Using the values of the variables v(m) on the optimal path (excluding end gaps),

i. perform a single (discrete) integration step, e.g. via r(m) → r(m) + (ε −
1)T v(m), cf. Eq. (9);

ii. calculate the arithmetic average v of the v(m).

(d) If v > v0, increase T → εT and go back to step 2b.

(e) Normalize r(m) → r(m)/T .

3. Output the optimal alignment together with the r(m) (binned into reliability indices)
for each aligned pair.

Figure 4: Summary of the algorithm for the computation of the optimal alignment with
reliability indices assigned to every aligned pair.
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This requires the availability of a sufficiently large set of alignments that can be taken as
a reference for the evaluation of the correctness of the Needleman–Wunsch alignments.
As such a “standard of truth”, we used the 3D-ali database (Pascarella and Argos, 1992)
which provides a broad collection of multiple sequence alignments, organized into protein
families, that have been obtained from thoroughly checked structural superpositions and
sequence alignments. From this database, pairwise alignments and the corresponding
sequences were extracted to be used as a test set for our algorithm.

To elucidate differences in the performance of our algorithm that are due to the degree
of similarity between the two sequences, we divided the data set into three similarity
classes (as in Mevissen and Vingron, 1996) of 25–30%, 30–40% and 40–50% sequence
identity of residue pairs in the optimal Needleman–Wunsch alignment. Sequence pairs
of lower similarity do usually not share relevant structural similarities, and algorithms
normally fail to detect any possible relations. On the other hand, algorithms align in
general sequences above 50% similarity correctly in most of the residues. Accordingly,
sequence pairs with similarity below 25% or above 50% were excluded from our analysis.

The number of contained sequences varies strongly among different families in the 3D-ali
database. However, many alignments within one family are usually very similar. Hence,
to avoid biasing the results towards more highly populated families, the results obtained
from the evaluation of one family were normalized by the number of sequence pairs taken
into account. Furthermore, we evaluated at most 40 alignments from each family and
similarity class to limit computation time.

A total number of 5234 3D-ali alignments was analyzed, namely, 1193 alignments from 55
families in the 25–30% similarity class, 1873 alignments from 78 families in the 30–40%
similarity class and 2168 alignments from 95 families in the 40–50% similarity class.

Reliability index and correct alignment

The statistics acquired from the analysis of the 3D-ali alignments are shown in Figure 5.
The histograms depict, separately for the three similarity classes, the relationship be-
tween the percentage of correctly aligned residue–residue and residue–gap pairs and the
assigned reliability index.

It can readily be seen that over the full range of reliability indices the percentage of
correctly aligned pairs grows consistently with increasing reliability index. Since we
have evaluated a large set of alignments, we can interpret this percentage as a probability
for a correct alignment of the respective pair, which justifies our reliability index as a
meaningful indicator of the local trustworthiness of the optimal alignment for all three
similarity classes.

Moreover, the growth of the percentage of correctly aligned pairs with reliability index
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Figure 5: Percentage of correctly aligned pairs with standard errors versus assigned
reliability index for the three different similarity classes.
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is observed to proceed roughly linearly (with some flattening out towards low and high
reliability indices). This allows for a direct and intuitive translation of the value of the
reliability index into an estimate of the probability for a correct alignment of the corre-
sponding pair. For sequences with similarities above approximately 30%, the histograms
demonstrate that the numerical value of r(m), Eq. (9), provides a good estimate of the
probability for a correct alignment, particularly in the region of higher reliability indices.
Only in the lowest similarity class, this direct numerical correspondence is not fully re-
tained as even pairs with a reliability index of 9 are correctly aligned with only 70%
probability.

To quantify the trustworthiness of our results, we estimated the standard errors of the
percentages of correctly aligned pairs with bootstrap point estimates, shown as error
bars in Figure 5. The standard errors are seen to be consistently small regardless of
reliability index and similarity class. This ensures that the translation of our reliability
index into a probability for a correct alignment is in fact a meaningful and trustworthy
procedure.

Computational effort

The computational effort scales as O(N2 · `), where N is the sequence length and ` the
number of annealing steps required to attain the average convergence v = v0. However,
shorter sequences are in general easier to align, and therefore v will for these sequences
decrease more slowly to v0 under increasing T than in the case of longer sequences
(cf. Figure 3). This implies that ` increases with decreasing sequence lengths. In the
range of typical sequence lengths up to N = 1, 000 residues, these two opposite trends
are found to lead to an effective scaling of O(Nγ) with γ ≈ 1.3 (see Figure 6). For
longer sequences, ` has attained its possible minimum and will therefore remain roughly
constant at this value, which yields an O(N2) scaling.

Discussion and Conclusion

A novel method for assigning reliability indices to both residue–residue and residue–
gap pairs (excluding end gaps) in the optimal alignment of two protein sequences has
been presented and evaluated. A fuzzy recast of the Needleman–Wunsch algorithm for
sequence alignment together with simulated annealing allows for a natural estimate of
the presence of suboptimal alternatives to each aligned pair which in turn provides a
measure for the local reliability of the pair.

A thorough evaluation of our algorithm has shown that our reliability index in fact de-
serves its name. Furthermore, we could demonstrate that the value of the reliability index
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Figure 6: Scaling of the computational effort for the calculation of the optimal alignment
with assigned reliability indices as a function of sequence lengths, with a fitting curve
representing an O(Nγ) scaling where γ ≈ 1.3. (Computational times measured on an
800 MHz Pentium III.)

can directly be interpreted as an estimator of the probability for a correct alignment,
at least for sequence pairs with similarities above the twilight zone of 25–30% identity.
This is superior to previous approaches (e.g. Mevissen and Vingron, 1996) where a lack
of distinction in the probabilities among different reliability indices requires external ref-
erence data to translate the value of the reliability index into a probability for correct
alignment.

The overall decreased percentages of correctly aligned pairs for sequences of very low
similarity (below 30% identity), in particular in the range of higher reliability indices,
can be attributed to the fact that here the alignment obtained from a simple score opti-
mization (as implemented by the alignment algorithm) frequently disagrees widely with
the structural reference, especially in gapped regions; moreover, in this similarity class
even the structural alignment itself is of sometimes doubtful validity. Such systematic
disagreements between the optimal and the structural alignment can obviously not al-
ways be reflected in the dynamics of the optimization process, which may result in a small
number of pairs that receive higher reliability indices but are predominantly misaligned
with respect to the structural reference.
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It should be stressed that our method does not require the introduction of an algorithm
distinct from the procedure of sequence alignment itself. Instead, we study directly the
dynamics of the optimization problem of finding the optimal alignment to deduce our reli-
ability measure. This allows also for a natural assignment of reliability indices to gapped
regions, since both residue–gap and residue–residue pairs in the optimal alignment are
the result of a common optimization procedure.

Despite its independence of additional external data, our method is not fully parameter-
free. In particular, the normalization factor in front of the integral in Eq. (9) will have
the most dominating influence on the obtained reliability index for a given pair. This
normalization is a natural choice that has been shown to yield very satisfying results; no
particular constraint, however, is imposed on the normalization, and small changes may
be found to further improve our results.
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