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Abstract

A novel type of approximation scheme to the maximum likelihood (ML) approach is pre-
sented and discussed in the context of phylogenetic tree reconstruction from aligned DNA
sequences. It is based on a parameterized approximation to the conditional distribution
of hidden variables (related e.g. to the sequences of unobserved branch point ancestors)
given the observed data. A modified likelihood, based on the extended data, is then
maximized with respect to the parameters of the model as well as to those involved in
the approximation. With a suitable form of the approximation the proposed method al-
lows for simpler updating of the parameters, at the cost of an increased parameter count
and a slight decrease in performance. The method is tested on phylogenetic tree recon-
struction from artificially generated sequences, and its performance is compared to that
of ML, showing that the approach is competitive for reasonably similar sequences. The
method is also applied to real DNA-sequences from primates, yielding a result consistent
with those obtained by other standard algorithms.
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1 Introduction

Several different types of algorithms have been proposed for inferring phylogenetic trees
from sequence data of species (see e.g. Swafford and Olsen 1996; Nei 1996). The theo-
retically most appealing of these are based on the maximum likelihood (ML) approach,
introduced in this context by Felsenstein (1981), and implemented into standard com-
puter packages (Felsenstein 1993; Yang 1997). In ML, a more or less simple, stochastic
model is assumed for sequence branching and independent site evolution, resulting in a
tree graph expressing the phylogenetic relationship between the observed species. The
topology (structure) and geometry (arc lengths) of the tree, and possible additional model
parameters, are to be chosen so as to maximize the likelihood, defined to be proportional
to the probability of the model to produce the observed sequences.

In practice, the maximization of likelihood with respect to the model parameters is a
complicated task. Typically, it is done by optimizing one parameter at a time while
keeping the others fixed. This is repeated until some criterion for convergence is met.
However, even with the simplest evolution models, each single-parameter optimization
step requires an iterative procedure, and the method can be quite time-consuming.

In this article, an alternative approach is proposed, where the observed data is ex-
tended by means of optimizing a simple parameterized approximation to the conditional
probability distributions of the unobserved branch-node sequences. The conventional
likelihood L is replaced by an alternative likelihood L̂ < L, associated with the extended
data. The maximization of L with respect to the model parameters is then replaced
by the maximization of L̂ with respect to these as well as to the parameters of the
approximation.

Depending on the complexity of the form of the approximation, this method will decrease
performance to some degree, as measured by the achieved value of L, and introduce addi-
tional parameters to optimize. This is compensated for by allowing for a simpler updating
of model parameters. With a suitable form for the parameterized approximation, also
its parameters allow for a simple updating scheme.

The method contains elements both from ML and from the variational approach (Feyn-
man 1972), as used in statistical physics, and will be referred to as a variational maximum
likelihood approach (VML).
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2 Background

Before presenting the VML approach in some detail in the nect section, we will here intro-
duce notation, and give some theoretical background. We will briefly discuss independent-
site Markov models for the evolution and the associated maximum likelihood approach.
We will also briefly review variational methods as used in statistical physics, in particular
the specific example given by the mean-field (MF) approximation (Parisi 1988).

2.1 Stochastic Independent-Site Mutation Models

We will consider a class of simple stochastic models for the evolution of DNA sequences,
where individual sites in the sequence mutate at random according to an identical model,
but independently from each other; deletions and insertions are neglected. Speciation is
assumed to occur in the form of branching events, where a species bifurcates in two,3

which continue to evolve independently.

In such a model, a specific set of observed species is assumed to have evolved from a
common ancestor, by means of successive bifurcations, and subsequent periods of inde-
pendent random mutations. Their phylogenetic relationship takes the form of a phyloge-
netic tree, with the observed species at the leaves, while each branch point corresponds
to an unobserved ancestor subject to a speciation event.

There is a priori no reason to assume that the mutation rate is the same in different
branches, nor constant in time on a single branch. If it were, one would expect constraints
between the evolutionary distances along the different branches in the tree. This also
makes the position in the tree of the common ancestor ambiguous, in particular if the
assumed model is invariant under time reversal.

Thus, one is led to consider unrooted trees without a definite temporal ordering along
branches. Assuming interior nodes of order three, a tree with N leaves will have N − 2
internal nodes and 2N−3 links, and allow for (2N−5)!! = (2N−5)×(2N−7)×. . .×3×1
distinct leaf-labeled topologies. The set of nodes (vertices) will be denoted by V =
V1∪V3, decomposing into the set of leaves, V1, and the set of branch points, V3; the set
of links (edges) will be denoted by E. Figure 1 shows a schematic phylogenetic tree for
five observed species, connected via three unobservable ancestors.

Consider a set of N aligned homologous DNA sequences, corresponding to a set of N
species. Then at each site in the sequences, a combination S = (s1, . . . , sN) is observed,
where each si is a symbol in the alphabet A = {A,C,G, T} of size K = 4. For a

3Multifurcations can be seen as sequences of several bifurcations
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Figure 1: A phylogenetic tree.

given tree topology, the set of N − 2 branch point species corresponds to an unknown
combination I = (sN+1, . . . , s2N−2) ∈ AN−2 at the same site. In what follows, sums or
products over S will be understood as running over S ∈ AN ; likewise, those over I will
be understood to run over I ∈ AN−2.

In a model of the above described type, the probability for a definite aggregate symbol
combination SI = (s1, . . . , s2N−2) ∈ A2N−2 is given by a product of single link factors,

PSI =
∏

{k,l}∈E
T {k,l}

sk,sl
, (1)

where {k, l} denotes an edge connecting nodes k and l. The entries in a specific link factor
T {k,l} depend on the specific mutation model, as well as on the link-specific parameters,
such as evolutionary distance. Different models put more or less severe constraints on
the link factors.

With a given topology, and with given link factors defining PSI , the probability of the
observed single-site combination S becomes

PS =
∑

I

PSI . (2)

2.2 Maximum Likelihood

In a situation where aligned homologous sequences from a set of N species are given,
each individual site can be viewed as an independent experiment, the outcome of which
is the ordered set S of observed symbols of the considered species at that particular
site. The observation of the full sequences, assumed to have a common length M , thus
corresponds to repeating the same experiment M times and gathering statistics of the
outcome. The statistical information can be collected into an observed distribution Q
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over the single-site observations S,

QS =
MS

M
, (3)

where MS is the number of sites where the single-site combination S appears. Obviously,
we have

∑
S QS = 1.

To these experimental data, the parameters of a model is to be fitted. Assuming the
model to yield the probability PS for a single-site combination S, the probability that
the model produce the observed multiplicities MS is given by the product

∏
S PMS

S

over all single-site combinations S ∈ AN , multiplied by the proper combinatorial factor
M !/

∏
S MS!, that takes into account the number of distinct ways to realize the observed

multiplicities (by permuting sites). In the limit of very long sequences the combinatorial
factor is dominated by

∏
S Q−MS

S , which we use to define a suitably normalized likelihood
as

L =
∏
S

(
PS

QS

)MQS

, (4)

associated with a model yielding the probabilities P , given the observed distribution Q.

Note that the approximation of the combinatorial factor only affects the normalization of
the likelihood in a way that is independent of P , and so is harmless. Although somewhat
unconventional, this normalization is very natural since it gives a unit likelihood for a
perfect fit, i.e. for P = Q.

Maximizing L corresponds to minimizing its negative logarithm divided by the sequence
length M , to be referred to as the free energy per site, F ,

F =
∑

S

QS log

(
QS

PS

)
≥ 0. (5)

In terms of F , the likelihood is given by L = exp(−MF ). The free energy is related to
the mutual entropy between Q and P ; it is a strictly convex, non-negative function of the
probabilities PS, and hence of PSI , vanishing only if P and Q are identical. For the case
of a parameterized model for P , the convexity of F is no guarantee for a unique global
likelihood maximum (Chor et al. 2000). Thus, if a model is capable of producing a P
that exactly matches Q it will yield a vanishing F ; otherwise a strictly positive F will
result.

2.3 Variational Method - General Principles

Consider a situation where a complicated theoretical probability distribution P over a
set of variables S is given, and for simplicity one wishes to approximate it in an optimal
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way by a simpler parameterized expression V of a certain form.

In the variational approach (Feynman 1972), one considers an associated variational free
energy G, defined by

G =
∑

S

VS log

(
VS

PS

)
, (6)

which is to be minimized with respect to the parameters in V . Note that G is a non-
negative convex function of V , with a unique vanishing minimum for V = P .

G has a very similar appearance to the free energy F of the ML approach, eq. (5).
Note however the changed role of P : In eq. (5), P represents a parameterized model
to be fitted to Q, while in eq. (6), P defines a given target distribution to which the
parameterized approximation V is to be fitted.

2.4 The Mean-Field Approximation

The distribution over symbols considered in the reconstruction of phylogenetic trees is
highly analogous to the thermal distributions encountered in the statistical physics of
spin systems.

In the context of spin systems, a common application of the variational approach is
the Mean-Field (MF) approximation (Parisi 1988), where a given spin distribution is
approximated by one that is factorized over the distinct spin variables. Thus, for a set of
K-state spins, S = (s1 . . . sN) ∈ AN , a given distribution PS is to be approximated in an

optimal way by a factorized distribution VS =
∏N

k=1 v
(k)
sk , as defined by the minimization

of the free energy

G(v) =
N∑

k=1

∑
s∈A

v(k)
s log v(k)

s −
∑

S

log PS

N∏

k=1

v(k)
sk

. (7)

The expression − log PS can be interpreted as a cost function (or Hamiltonian) HS, in
terms of which G can be written as

G(v) =
N∑

k=1

∑
s∈A

v(k)
s log v(k)

s + 〈HS〉v , (8)

where the first term is the negative of the entropy, while the second expresses the average
cost. Minimization of G with respect to each single-spin distribution v(k) yields the MF
equations,

v(k)
s ∝ exp

(−∂〈H〉v/∂v(k)
s

)
, (9)
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where the constant of proportionality is fixed by the normalization,
∑

s∈A v
(k)
s = 1.

(Locally) optimal distributions can be found by an iterative updating scheme based on
eq. (9).

3 Variational Maximum Likelihood

We are now prepared to formulate the hybrid approach VML, where an approximation
to the likelihood is maximized, in the context of phylogenetic tree reconstruction. It
contains elements both of ML and of the variational approach.

3.1 General Idea

When applying ML to a stochastic mutation model as described in section 2.1, the
factorization in PSI cannot be fully exploited, since it is lost in PS due to the summation
over the hidden symbols I.

If, in addition to the observed sequences at the leaves of the tree, also the corresponding
sequences of the unknown ancestors at branchpoints were known (Friedman et al. 2002),
one could apply ML to the extended distribution QSI , corresponding to minimizing a
modified free energy F̂ ,

F̂ =
∑
SI

QSI log

(
QSI

PSI

)
. (10)

This would simplify the maximization of likelihood considerably due to the factorization
of P , corresponding to a decomposition of F̂ as the sum of terms, each associated with
a single link. As a result, the parameters for a single link would be determined by the
minimization of an expression like

∑
i,j∈A

qij log
qij

pij

, (11)

where i, j correspond to the respective symbols at the two nodes connected by the link,
while q and p denote their joint marginal distribution as derived from QSI and PSI

respectively.

To take advantage of the factorization property of PSI , we now propose an approximative
approach, generically described as follows.

The generic VML method:
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• Choose a parameterized expression for the conditional distribution VI|S of hidden
symbols, given the observed ones.

• QSI is now determined as QSVI|S. Consider the corresponding free energy F̂ , as
given by eq. (10).

• The minimization of F̂ with respect to the model parameters in P is straightforward,
yielding an optimal value of F̂ , associated with this particular VI|S.

• The resulting free energy should then be minimized also with respect to the param-
eters of VI|S.

Thus, in VML, F̂ is to be minimized both with respect to the model parameters defining
PSI , and the extra parameters defining VI|S.

Note that F̂ approximates F from above, which can be seen by rewriting it as

F̂ = F +
∑

S

QS

[∑
I

VI|S log

(
VI|S
PI|S

)]
≥ F. (12)

It has the obvious form
F̂ = F +

∑
S

QSGS, (13)

where for each S, GS can be interpreted as a variational free energy for the approximation
of PI|S by VI|S.

With a sufficiently general form for VI|S, it would match PI|S at optimality, making the

second term above vanish. Thus, in such a case, min F̂ = min F . The resulting approach
would be an exact reformulation of conventional ML.

3.2 Factorized VML

Here we will consider a particularly simple implementation of VML, by employing a
particular form for the extension VI|S, constrained to be factorized over the internal
nodes,

VI|S =
∏

k∈V3

v
(k)
ik|S. (14)

Then, the modified free energy F̂ can be simplified to read

F̂ =
∑

S

QS log QS +
∑

S

QS

∑

k∈V3

∑
i∈A

v
(k)
i|S log v

(k)
i|S −

∑
S

QS

∑

{k,l}∈E

∑
i,j∈A

v
(k)
i|S v

(l)
j|S log T

{k,l}
ij ,

(15)
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where {k, l} labels a link connecting two nodes k, l, while T {k,l} is the corresponding link

factor. If k (or l) refers to an external node, v
(k)
i|S is to be interpreted as δi,sk

.

For each S, the associated internal node distributions {v(k)
i|S} minimize

∑

k∈V3

∑
i∈A

v
(k)
i log v

(k)
i −

∑

{k,l}∈E

∑
i,j∈A

v
(k)
i v

(l)
j log T

{k,l}
ij , (16)

where the “|S” has been stripped off for clarity. This has the precise form of a variational
free energy for the MF approximation, cf. eq. (8). The condition for a local minimum

of F̂ with respect to v(k) yields the MF equations (9), which in this case can be written
as

v
(k)
i|S ∝

∏

l∈Nk

∏
j∈A

(
T
{k,l}
ij

)v
(l)
j|S

, (17)

normalized such that
∑

i∈A v
(k)
i = 1. Here, Nk stands for the set of nodes that are

neighbors to k. Eq. (17) can be used for iteratively updating v.

There is an obvious ambiguity in the link factors, associated with factors depending
on a single internal symbol – such factors can be exchanged between the link factors
associated with the three links surrounding it, without affecting their product. For a
fixed link {k, l}, we can use this freedom to force the corresponding link factor T {k,l} to
equal the marginal two-symbol distribution p{k,l}, derived from PIS by summing over the
remaining nodes.

Then the part of F̂ relevant for a link factor p{k,l} can be written in the form of eq.
(11). This means that p{k,l} should be chosen to optimally fit (in the ML sense) the
corresponding marginal two-symbol distribution q{k,l}, as determined by QIS. For a
parameter a in p{k,l}, optimality thus implies

∂F̂

∂a
≡

∑
i,j∈A

q
{k,l}
ij ∂p

{k,l}
ij /∂a

p
{k,l}
ij

= 0, (18)

if the optimal value of a is in the interior of its allowed interval.

One might fear that the optimization of the link factors in the form of pair-distributions
might yield inconsistent results for two neighboring links, since both pair-distributions
determine the marginal distribution p(k) for their common node k. This is no problem –
both are consistent with an identical p(k), minimizing (if not fixed by the model) its own

relevant part of F̂ , given by
∑
i∈A

q
(k)
i log

(
q
(k)
i

p
(k)
i

)
. (19)
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4 Application to the JC model

While the above considerations are somewhat abstract, we will in this section be very
concrete and give a detailed description for one of the simplest mutation models, the
Jukes-Cantor JC model (Jukes and Cantor 1969). It is highly constrained: For an
arbitrary alphabet size K, a link factor (as above taken as the corresponding marginal
pair probability) must take the form

pij =
1

K2
(1− a + Kaδij) , (20)

with a single free parameter a ∈ [0, 1] per link, given by a = exp(−t), with t an associated
evolutionary distance. For each single node k, this yields a uniform marginal single-

symbol distribution, p
(k)
i = 1/K. For a given topology, the full PSI becomes

PSI =
1

K

∏

{k,l}∈E

(
(1− a{k,l})

K
+ a{k,l}δij

)
. (21)

4.1 ML approach for JC

In the ML approach one would for the JC model consider the free energy F of eq. (5),
with PS as given by summing PSI in eq. (21) over I. F is to be minimized both with
respect to the topology, as given by the structure of the tree, and with respect to its
geometry, as defined by the link parameters a.

Thus, for a fixed topology, the link parameters {a} are to be chosen so as to minimize

F =
∑

S

QS log(QS)−
∑

S

QS log

(∑
I

PSI({a})
)

. (22)

For the update of a single link parameter a = a{k,l}, it is advantageous to write F as

F = const.−
∑

S

QS log

( ∑
i,j∈A

u
(S)
i

(
1− a

K
+ aδij

)
w

(S)
j

)
(23)

= const.−
∑

S

QS log

(
1− a

K

∑
i∈A

u
(S)
i

∑
j∈A

w
(S)
j + a

∑
i∈A

u
(S)
i w

(S)
i

)
, (24)

where u
(S)
i and w

(S)
j represent probabilities associated with the observed symbols S in the

two subtrees joined by the link {k, l}, conditional upon fixed symbols i, j at the nodes
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k, l attached to the link. They do not depend on a, and differentiation of F with respect
to a yields

∂F

∂a
= −

∑
S

QS

a− zS

, (25)

which should vanish at minimum. This expression has singularities (simple poles) at
S-dependent positions zS, given by

zS = −
∑

i∈A u
(S)
i

∑
j∈A w

(S)
j

K
∑

i∈A u
(S)
i w

(S)
i −∑

i∈A u
(S)
i

∑
j∈A w

(S)
j

, (26)

guaranteed to lie outside the interval [−1/(K − 1), 1].

Thus, for a in the physical interval [0, 1], ∂F/∂a is strictly increasing; if it has a zero in
this interval, this defines the optimal value of a (for fixed values of the other parameters);
otherwise it is positive on the whole interval [0, 1], in which case a = 0 is the optimal
value, or negative, in which case a = 1 is optimal. An optimum in the interior of [0, 1]
has to be found by some iterative method, such as Newton-Raphson, or binary search.

In this way, one parameter at a time can be locally optimized for fixed values of the
others, eventually leading to a (local) minimum of F for the chosen topology; this value
is taken as a measure of F for that topology.

The optimization with respect to tree topology can be done in different ways. To strictly
ensure that the best topology is found, a search of all possible topologies must be per-
formed. Often, though, one settles for a neighborhood search, where an initial topology
is chosen at random, or better, by means of some heuristic, and an optimization if per-
formed with respect to link parameters, yielding a value of F for the chosen topology.
Then, neighboring topologies, obtained e.g. by rearranging the tree around one of the
shorter links (i.e. one with a large a), are investigated. If one of these yields a lower
F , it is chosen as the new present topology, and its neighbours are checked. When no
more improvements can be made in this way, the present topology is considered optimal.
For a more detailed discussion of heuristic topology optimization, see e.g. (Swafford and
Olsen 1996).

4.2 Factorized VML approach for JC

For the JC model, the VML method with a factorized V becomes particularly simple.
The extended free energy F̂ of eq.(15) simplifies to

F̂ =
∑

S

QS log QS +
∑

S

QS

∑

k∈V3

∑
i∈A

v
(k)
i|S log v

(k)
i|S + log(K)− (27)
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−
∑

{k,l}∈E

{
log

(
1− a{k,l}

K

)
+ log

(
1 + (K − 1)a{k,l}

1− a{k,l}

) ∑
S

QS

∑
i∈A

v
(k)
i|S v

(l)
i|S

}
.

The part relevant for the conditional distribution v
(k)
i|S of the symbol i at a specific branch

point k for a fixed observed symbol combination S then reads

∑
i∈A

v
(k)
i|S log v

(k)
i|S −

∑

l∈Nk

log

(
1 + (K − 1)a{k,l}

1− a{k,l}

) ∑
i∈A

v
(k)
i|S v

(l)
i|S, (28)

where, as before, v
(l)
j|S is to be interpreted as δj,sl

whenever l happens to be an external

node. The resulting optimality condition, eq. (17), hence becomes

v
(k)
i|S ∝

∏

l∈Nk

(
1 + (K − 1)a{k,l}

1− a{k,l}

)v
(l)
i|S

, (29)

with the constant of proportionality fixed by the normalization condition
∑

i∈A v
(k)
i|S = 1.

Eq. (29) can be used to iteratively update the parameters of the approximation VI|S.

As to the link parameters, their optimization becomes considerably simplified in VML
as compared to the case with ML. The part of F̂ that is relevant for a specific link
parameter a{k,l} comes entirely from the last term in eq. (27), and reads

− log

(
1− a{k,l}

K

)
− log

(
1 + (K − 1)a{k,l}

1− a{k,l}

) ∑
S

QS

∑
i∈A

v
(k)
i|S v

(l)
i|S, (30)

where the double sum in the last term can be interpreted as O{k,l} =
〈
v(k) · v(l)

〉
Q

in

obvious notation, i.e. as a weighted average of the overlap between the distributions
associated with the link’s endpoints. Demanding a vanishing derivative with respect to
a{k,l} directly yields the optimal value in explicit form as

a{k,l} =
K

〈
v(k) · v(l)

〉
Q
− 1

K − 1
, (31)

which is automatically in the interval [− 1
(K−1)

, 1], since the overlap must satisfy O{k,l} ∈
[0, 1]. This is very reasonable: A maximal overlap O = 1 yields a = 1, while an overlap
of O = 1/K, corresponding to complete lack of correlation, yields a = 0; the unphysical
case of a vanishing overlap, O = 0, corresponding to maximal anticorrelation, yields
a = −1/(K − 1). Eq. (31), with negative values adjusted to zero, can be used for
updating the parameters {a{k,l}} of the model distribution PSI .

In this way, one parameter at a time can be locally optimized for fixed values of the
others, guaranteeing the decrease of F̂ , and eventually leading to a (local) minimum of

F̂ for the chosen topology; this value is taken as a measure of F̂ for that topology. The
optimization with respect to topology can be performed in the same way as in ML.
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4.3 Note on more general models

The JC model is the simplest random independent site mutation model. It has been
extended by allowing for differentiation in transition rates, as well as for different single-
node probabilities (Kimura 1980; Tamura and Nei 1993; Felsenstein 1981; Hasegawa et al.
1985). Also more general models generated from arbitrary rate matrices (reversible or
not) have been studied (Yang 1994; Gu and Li 1996).

In analogy to the proper ML approach, VML (with a factorized or more general VI|S)
can be applied equally well to any of these models. The actual updating equations will
of course change, but will still be based on eqs. (17, 18).

5 Numerical Explorations

In this section we present the results of some simple computer experiments to gauge the
performance of VML by comparing it to standard ML. We have consistently used JC for
transition probabilities, both when generating sequences for the testbed problems and
as the underlying model in the algorithms used to infer the trees.

First, we have probed the method for a homogenous (all a equal) tree with infinite
sequence length, and varying a. In the next test we used randomly generated trees,
where we compared the achieved values for F obtained by the methods when given the
correct (generated) tree topology, and also checked whether the tree with correct topology
has the lowest F . Finally we used DNA-sequences from primates to check whether the
preferred topology from VML is the one achieved by standard methods.

5.1 Infinite Sequence Test

If random sequences are generated, e.g. according to the JC model, for a tree with given
topology and geometry, the single-site distributions QS will approach the corresponding
model probabilities PS in the limit of infinitely long sequences. Thus, for each of the KN

possible S, the JC model yields

QS =
∑

I

1

K

∏

{k,l}∈E

(
1− a{k,l}

K
+ a{k,l}δik,il

)
. (32)

Given these data and the correct topology, we expect the ML algorithm to be able to
produce the correct link lengths and a vanishing F within numerical limitations. Being
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based on maximizing an approximation to the real likelihood, the VML algorithm can
be expected to perform slightly worse on such data.

We have probed VML and ML with infinite-sequence data for four species4, based on a
tree where the five link parameters were all set equal to a common value a0. Figure 2 A
shows the resulting values of F as a function of the input parameter a0. When applied to
the correct topology, ML clearly gives an essentially perfect fit as expected. VML is seen
to perform well for short links (a0 ≈ 1), and slightly worse for longer links (smaller a0),
though still not far from optimal. For an incorrect topology both algorithms produced
F values well above the ones achieved for the correct topology, showing that either
algorithm identifies the correct topology. The resulting individual link parameters were
essentially exactly a0 for the ML algorithm when probed on the correct topology. For
VML the resulting link parameters tend to deviate somewhat for cases with smaller a0

as shown in figure 2 B.
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Figure 2: Infinite sequence results for N=4. A) The free energy per site (F ) versus link lengths of
generated tree (a0) plotted for ML (correct topology (∗), wrong topology (¤)) and VML (correct topology
(+), wrong topology (×)). B) Link lengths resulting from the VML algorithm applied on the correct
topology (alink) versus link lengths of generated tree (a0). Links a and b connects one pair of species, c
and d the other pair, and e is the link between the internal nodes.

5.2 Tests with Artificial Sequences

We have used testbeds with artificial sequences generated according to the JC model on
random trees for varying numbers of species, N , and sequence lengths, M . The random
trees were defined by first generating a random topology, then setting link parameters

4For three species the mean-field approximation becomes exact.

13



according to a specific probability distribution. Finally, sequences were generated based
on JC on this tree.

A random tree topology is defined by starting with two nodes connected by a single link.
Then a new node is connected to an existing link chosen at random; this is repeated
until there are N external nodes. This results in an equal probability for each possible
leaf-labeled topology. Link parameters are independently generated as a := Rt0 , with
R a distinct uniform random number in [0, 1], while t0 is a common parameter, setting
the temporal scale of the generated links. The motivation for using this probability
distribution is that the time associated with a link will follow an exponential distribution,
corresponding to a constant branching rate. For t0 we have used values between 0.05
and 0.3, corresponding to an average a between 0.95 and 0.77. The a-distributions are
shown in figure 3. Finally, sequences are generated randomly according to the JC model.

0 0.2 0.4 0.6 0.8 1

p(
a)

a

t0=0.05
t0=0.30

Figure 3: Link parameter distributions (p(a)) for the studied test sets.

5.2.1 Inferring the Geometry

The ML and VML algorithms were used to infer the geometry of each tree given the
correct topology and the external sequences, and the free energy, F , was used as a
measure of the quality of the obtained geometry. We have probed different numbers of
species, N = {4, 8, 12, 16}, link distributions, t0 = {0.05, 0.1, 0.3}, and sequence lengths,
M = {250, 500, 1000}, and constantly used the alphabet size K = 4 for the sequences.

In figure 4 the achieved F values are plotted versus N for different values of M and t0.
As can be seen in the figure, the difference between ML and VML is hardly noticable.
However there is a small difference, as shown in figure 5.
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As in the case with infinite sequence lengths we can again see that the difference increases
for trees where longer links are used. A larger M results in lower values of F for both
algorithms, and the difference has a quite small M -dependence.
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Figure 4: Average of free energy per site < F > versus number of species N for ML and VML. Each
data point is the average of 100 randomly generated trees. K = 4 for all runs. The plots shows M = 250
(ML(×) and VML(+)), M = 500 (ML(¤),VML(∗)) and M = 1000 (ML(◦),VML(¥)). Link parameters
are generated using a := Rt0 where R is a uniform random number in [0,1]. A) t0 = 0.05, B) t0 = 0.1
and C) t0 = 0.3.
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Figure 5: The average of the difference in F versus N for the same data set as in figure 4. The plots
show the difference for M = 250 (+), M = 500 (×) and M = 1000 (∗). The errorbars indicate the
standard deviation. A) t0 = 0.05, B) t0 = 0.1 and C) t0 = 0.3.
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5.2.2 Topology Inference

We also tested the ability to identify the correct topology, in the sense that it yields the
lowest free energy compared to other topologies. The tests were performed on trees with
four species, and link parameters were generated as above, using t0 between 0.05 and
0.3. Sequences of length M = {250, 500, 1000} and K = 4 were used.

The fraction, fu, of trees where the correct topology does not yield the lowest free energy
was measured for ML and VML, and the result is shown in table 1. For both algorithms,
longer sequences result in a lower fu, as expected. VML seems to perform slightly worse
than ML, and the tendency that the difference between the algorithms increase with link
length is again present.

M=250 M=500 M=1000
t0 fVML

u fML
u fVML

u fML
u fVML

u fML
u

0.05 0.09 0.09 0.05 0.04 0.03 0.03
0.075 0.07 0.07 0.04 0.04 0.03 0.02
0.1 0.06 0.06 0.05 0.05 0.03 0.03
0.15 0.07 0.07 0.03 0.02 0.03 0.03
0.2 0.09 0.08 0.06 0.04 0.04 0.03
0.25 0.12 0.10 0.09 0.04 0.07 0.04
0.3 0.11 0.07 0.09 0.07 0.07 0.04

Table 1: Fraction of trees where the correct (generated) tree does not have the lowest free energy (fu).
500 trees for each link parameter (t0) and sequence length (M) are tested and standard ML and VML
are compared. All tests are performed with N = 4 and K = 4.

5.3 Primate Sequence Test

VML was also applied to real DNA data, using five homologous primate sequences ob-
tained from the Silver Project5. The aligned sequences are from the aromatic L-amino
acid decarboxylase (AADC) gene, and 711 nucleotide positions are used from two hu-
mans, a chimpanzee, a gorilla and an orangutan.

As there are only five sequences, all possible (15) topologies have been investigated. VML
and ML both favor the tree shown in Figure 6 as the most likely tree. The topology
is identical to the one proposed along with the data, obtained with a neighbour-joining
method. Both ML and VML yielded a free energy per site of F = 0.04867, and the link
lengths inferred are those given in the figure. Also local search implementations of both
the ML and VML methods were tested. A local search implementation starts from a

5http://sayer.lab.nig.ac.jp/~silver/
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0.0042
0.0056

0.0155

Figure 6: Preferred topology for ML and VML. The inferred link lengths given as expected number of
substitutions per site, h = K−1

K (1− a), are the same for the two methods.

random topology, checks the two neighbouring topologies around the shortest internal
link, and changes topology if any of the new topologies result in a lower F . This is
continued until no improvement can be found. For each choice of an initial topology, the
local search variants of ML and VML found the topology shown in figure 6.

6 Summary and Conclusions

We have proposed and explored a novel hybrid approach, VML, combining the variational
method with the maximum likelihood principle for the reconstruction of phylogenetic
trees based on DNA sequences.

In its most general form, the VML method consists in considering a variationally ad-
justable parameterized extension of the observed statistics to include also hidden data,
such as unknown ancestor sequences. A modified likelihood based on the extended data
is then maximized with respect to model parameters as well as the parameters of the data
extension. The modified likelihood is shown to approximate the conventional likelihood
from below.

For phylogeny reconstruction, such an approach has the advantage that simplifications
due to the intrinsic factorization properties of the models can be explored. This enables
simpler update equations for the link parameters as compared to standard ML. This
is especially apparent with the Jukes-Cantor model, where the link parameters can be
directly updated, whereas in standard ML an iterative procedure has to be used.

The method was explored on artificial JC model data, with a simple factorized data
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extension. Results for cases with reasonably similar sequences were comparable to those
of a standard ML approach, and slightly worse for less similar sequences.
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