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Abstract
We present a simple model for the arterial part of the cardiovascular system, based on
Poiseuille flow constrained by the power dissipated into the cells lining the vessels.
This, together with the assumption of a volume-filling network, leads to correct
predictions for the evolution of vessel radii, vessel lengths and blood pressure in the
human arterial system. The model can also be used to find exponents for allometric
scaling, and gives good agreement with data on mammals.
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Introduction

In all but miniscule living organisms, branching networks are responsible for the
transport of gases and nutrition. Extra interest in nutrition networks emerged from
the suggestion (Dawson, 1991; West et al., 1997) that the quasi-fractal structure
could be the key to understanding allometric scaling, i.e., the observation that a
biological quantity Q of an organism scales as the body mass M to some power b,
Q ∝ M b. As the mass is related to volume, all quantities related to length, area or
volume are expected to scale as the mass to an integer number of thirds. Frequently,
however, data exhibit significant deviations from these exponents (Calder, 1984;
Schmidt-Nielsen, 1984; Peters, 1983). For example, capillary density scales with
an exponent between −0.2 and 0 (Schmidt-Nielsen & Pennycuick, 1961; Hoppeler
et al., 1981), and though the question is not fully settled (Dodds et al., 2001), it
appears that rest metabolism scales with an exponent close to 3/4, rather than the
expected 2/3.

Though Dodds et al. (2001) present severe criticism of the West et al. model,
which they find to rely on partly incorrect math, the central hypothesis - that fractal
nutrition transport networks affect allometric scaling exponents - remains intriguing
and worth further investigation. Inspired by the approach of West et al. (1997), we
present a simple model which correctly predicts the development of radii, lengths
and pressure in the human arterial system. Related allometric scalings for aorta
properties are in agreement with data, as is the scaling of capillary density.

The Model

The Network

The arterial network begins with one vessel (the aorta) and splits into many smaller
vessels through subsequent branchings. We say that a vessel belongs to level k if
there are k branches between the vessel and aorta. (Thus, aorta itself is the only
vessel at level 0.)

In our model, each vessel is characterized by four relevant parameters: a radius
R, a length L, an average speed of flow U , and a pressure difference ∆P between its
ends. The pulsatile nature of the flow necessarily implies that U , ∆P and to some
extent R, vary with time. However, as will be seen later, our results do not depend
on the detailed properties of the oscillations. In the following, we will therefore let
U , ∆P and R refer to time-averaged quantities.

The distributions of vessel radii, vessel lengths, etc., at different levels k and in
the arterial system as a whole, is a field of research in its own right (Zamir, 2001),
which can be approached using computer simulations of stochastic processes with
physiological constraints (Schreiner & Buxbaum, 1996). In this paper we focus,
however, on average properties of the network, and for our purposes, a simple and
more transparent model will suffice. We therefore assume that each level k is char-
acterized by a typical radius Rk, a typical length Lk, a typical speed of flow Uk, and
a typical pressure fall ∆Pk, and assign these values to all vessels at level k. The four
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typical values, together with Nk, the number of vessels at level k, fully characterize
the level. Finally, we assume that there is a typical number of branches, c, from the
aorta to a capillary, and assign all capillaries to a terminal level c.

For the calculations below, it is convenient to introduce the branching ratio

nk =
Nk

Nk−1

, (1)

and the branchings parameters

uk =
Uk

Uk−1

, rk =
Rk

Rk−1

, lk =
Lk

Lk−1

, δk =
∆Pk

∆Pk−1

. (2)

It is not uncommon to set all nk = 2, i.e., to assume all branchings to be bifurcations
(Zamir, 2001; Schreiner & Buxbaum, 1996), and let trifurcations be represented by
two bifurcations with a very short connecting segment. We present our model with
general numbers nk, as this will demonstrate that few of the results depend on their
value.

Branching Parameter Relations

Making four assumptions, we can express the branching parameters in terms of the
branching ratio. The first three assumptions deal exclusively with the flow itself,
and are independent of the actual structure of the network; furthermore, they are
all local assumptions. Only the forth assumption addresses the structure of the
network, a global assumption.

Assumption one is that the total volume flow is conserved, i.e., the same on any
level;

Nk ·πR2
kUk = constant, (3)

or
nkr

2
kuk = 1. (4)

In other words, we consider the body under reasonably invariant conditions, during
wich no part of the cardiovascular network systematically accumulates blood for a
long time. Thus, we consider time-scales such that oscillations of blood volumes are
irrelevant.

Assumption two is that the flow through a vessel on any level is given by Hagen–
Poiseuille’s law,

πR2
kUk ∝ ∆PkR

4
k

Lk

, (5)

or
δkr

2
k

lkuk

= 1. (6)

This assumption is based on treating blood as a simple, incompressible fluid. Fur-
thermore, we expect possible local turbulence, in the vicinity of branchings, to have
negligible effect on the pressure fall over a whole vessel, and we neglect possible vari-
ations in viscosity. We note that, for time-averaged quantities Uk and ∆Pk, Hagen–
Poiseuille’s law applies, also when the full flow is pulsatile (Womersley, 1955a,b).
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Assumption three is that the power dissipated per unit mantle area is a constant,

Nk ·πR2
kUk∆Pk

Nk ·2πRkLk

= constant, (7)

or
δkrkuk

lk
= 1. (8)

A quick order-of-magnitude estimate shows why the power dissipated per unit
mantle area is an important quantity. The human rest metabolism of 100 W cor-
responds to a specific power of roughly 1 W/kg. Assuming this specific power not
to be drastically different in the body cells and the body fluids, we find, using a
typical cell size of 10−5 m and a typical density of 103 kg/m3, a load of 10−12 W or
1 pW per cell, which can be taken as a typical value. A flow causing a considerably
higher load on the cells lining the mantle is presumably not very well adapted to the
workings of the body. (Of course, during strenuous exercise, the power, and thus
the load, can increase by a factor 10 or so.) On the other hand, there is no reason
for the flow to be restricted in order to give a load appreciably lower than this.

Now, the number of capillaries in the human body is of the order of 1010, the
average speed of flow through the capillaries is of the order of 10−3 m/s and the
radius of the capillaries is of the order of 10−5 m. The pressure drop over the
capillaries is roughly 20 mm Hg or 3·103 N/m2, giving a power of the order of 10 W.
The length of a capillary being of the order of 10−3 m, this power is dissipated over
a mantle area of the order of 103 m2, representing in all approximately 1013 cells;
thus the power dissipated per unit mantle area translates into a load on each cell of
the order of 1 pW, the typical value of the load.

From the above three assumptions we immediately find

uk = n
−1/5
k , (9)

rk = n
−2/5
k , (10)

and

δk

lk
= n

3/5
k , (11)

irrespective of the structure of the network.
Assumption four, pertaining to the overall structure of the network, allows some

leeway. A common and reasonable assumption is that the network is volume-filling,
i.e., Nk ·L3

k = constant. This assumption gives lk = n
−1/3
k and δk = n

4/15
k . On

the other hand, our discussion above of power per cell as a limiting factor shows
the mantle area to be of importance; an alternative assumption might then be
conservation of mantle area, i.e., Nk ·2πRkLk = constant, leading to lk = n

−3/5
k and

δk = 1. Obviously, neither alternative is true for the first few levels; however, both
of them are a priori reasonable descriptions of possible network structures on the
deeper levels, i.e., for large k.
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In the following, we will actually assume a more general network structure defined
by

Nk ·RDR
k LDL

k = constant, (12)

or
nkr

DR
k lDL

k = 1, (13)

giving

lk = n
− 1− 2

5 DR
DL

k ≡ n−Γ
k (14)

and
δk = n

3
5
−Γ

k , (15)

and express our results in terms of the parameter Γ.∗

Metabolism Preview

Before we continue, let us have a quick look at the consequences for the metabolism
assuming a self-similar network, i.e., constant branching ratio and branching pa-
rameters. The total arterial blood volume V is given by

V =
c∑

k=0

nk ·πR2
kLk = πR2

0L0 ·
c∑

k=0

(nr2l)k = (r2l)−c ·πR2
cLc · 1− (nr2l)c+1

1− nr2l
. (16)

Now, from the calculated scaling properties of the network, nr2l = n
1
5
−Γ, which

means that for Γ > 1/5, the term (nr2l)c+1 disappears in the large c limit. Making
the further assumption that properties on the deepest (capillary) level, c, are inde-
pendent of body mass M , and using the observation that total blood volume V is
proportional to body mass, we find

M ∝ V ∝ 1

1− n
1
5
−Γ

nc( 4
5
+Γ), (17)

or

Nc = nc ∝ M
1

4
5+Γ . (18)

Finally, the assumption that metabolic rate B is proportional to the volume flow
(which is constant on all levels) yields

B ∝ πR2
0U0 = Nc ·πR2

cUc ∝ M
1

4
5+Γ . (19)

∗One possibility to determine the parameter Γ would be to demand that the total impedance
for the network, ∝ ∑

k Lk/NkR4
k, be minimal, subject to the constraint of a fixed total arterial

blood volume, ∝ ∑
k NkR2

kLk (West et al., 1997). Substituting for Nk from equation (12) and
using the method of Lagrange multipliers, we are then to minimize the function F ({Rk}, {Lk}) =∑

k(R−4+DR

k L1+DL

k +λR2−DR

k L1−DL

k ). However, the set of equations 0 = ∂F/∂Rk and 0 = ∂F/∂Lk

have solutions only if DR + DL = 3. Thus, impedance minimization is not robust against even
small fluctuations of the total dimensionality, which are to be expected for a real, biological system.
We will therefore not add impedance minimization to our list of assumptions.
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Figure 1: Logarithm of radius and length, respectively, as a function of the logarithm
of number of vessels, at various levels in the human arterial system. The shaded
areas cover the regions between lower range values (filled boxes) and upper range
values (open boxes), as given in Schneck (2000). The straight lines represent model
predictions.

The case Γ = 1/3 (volume-filling network) gives a metabolism proportional to
M15/17; the case Γ = 3/5 (mantle area-preserving network) gives a metabolism
proportional to M5/7. The exponent 5/7 lies comfortably within the reported range
for rest metabolism; 15/17 is definitely on the high side. However, in the next sec-
tion we show that Γ = 1/3 is supported by data on the human arterial system.
Furthermore, 15/17 is a good exponent for the scaling of the number of capillaries,
Nc. The different scaling exponents for Nc and B are further discussed below.

Results

In our model for blood transport networks, each quantity Q has local, level-specific
values Qk and branching parameters qk = Qk/Qk−1 = nΥ

k , where nk is the branching
ratio at level k and Υ is an exponent specific for Q. In this section we confront the
model with data, both on the human arterial system and on allometric scaling.

Human Arterial System

The exponent Υ of the branching parameter is given by the slope of ln(Qk) as a
function of ln(Nk);

Υ =
ln(qk)

ln(nk)
=

ln(Qk)− ln(Qk−1)

ln(Nk)− ln(Nk−1)
. (20)

In Schneck (2000), the typical number of vessels are tabulated, together with ranges
of radii and lengths, for several levels of the human vascular system. The data on
the arterial system are illustrated in Fig. 1. Straight lines with slopes predicted by
our model are inserted, to guide the eye.
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The model prediction rk = n
−2/5
k agrees remarkably well with data, even close

to the heart. This suggests that our neglect of the dampening of pulsatile flow does
not introduce any appreciable errors. This is also supported by some simple phe-
nomenology. Over the human arterial system, the amplitude of pressure oscillations
drops from 20 mm Hg to almost nothing, while the average pressure drops from
100 mm Hg to 40 mm Hg, a considerably larger reduction.

The data on vessel lengths determine the parameter Γ. It should be noted that
data on aorta length (at k = 0) refer to total aortic length, not average uninterrupted
distance between branch origins, as is the case for the other levels. Thus, the
apparent fit to the slope −3/5 at early levels is just an artefact of mixing different
vessel length definitions, and we can conclude that the volume-filling network (slope
−1/3) is favoured by data on vessel lengths. Furthermore, as discussed below in

connection to allometric scaling, data on pressure fall support δk = n
4/15
k , related to

Γ = 1/3, and disfavour δk = 1, related to Γ = 3/5.

Allometric Scaling

To be able to make predictions on allometric scaling, we add the assumption that
capillary properties are fixed by cell properties, and hence are body mass indepen-
dent. This implies that all scalings can be parameterized in terms of the number of
capillaries, Nc.

The relation for quantity Q between level 0 (aorta) and level c (capillaries), is
simply

Qc =

[
c∏

k=1

qk

]
Q0 = NΥ

c Q0. (21)

For some quantities, e.g., pressure and total blood volume, the global, cumulative
quantity QΣ =

∑
k Qk is of interest. The expression for QΣ greatly simplifies if we

assume self-similarity, nk = n. We then get

QΣ = Q0

c∑

k=0

qk = Q0
1− qc+1

1− q
=

Q0 − qQc

1− q
. (22)

In general, there are enough levels c for q 6= 1 to imply that one of the terms Q0 or
qQc dominates. Thus, QΣ scales either as its aorta value or as its capillary value. (If
qk = 1, as for flow, we have QΣ = Q0(c + 1) = Qc(c + 1) and we can let convenience
govern our choice of associating QΣ with aorta or capillary level.)

Cumulative variables QΣ can be associated with aorta or capillary level even if
the self-similarity assumption is relaxed. If qk < 1 and nk = n̄ for sufficiently many
initial levels k ≤ k̄, we get QΣ = (Q0 − q̄Qk̄)/(1− q̄) ∼ Q0. Similarly, if qk > 1 and
sufficiently many final levels k ≥ k̃ have nk = ñ, we get QΣ ∼ Qc.

Applying the expressions for Q0 and QΣ to our model, together with the reason-
able constraint 1/5 < Γ < 3/5, implies

Aorta radius, R0 ∝ N2/5
c , (23)

Aorta length, L0 ∝ NΓ
c , (24)
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Arterial blood volume, V ∝ NΓ+4/5
c , (25)

Aorta mean pressure, P0 = constant, (26)

and

Volume flow, Φ ∝ Nc. (27)

Here we have omitted all factors of capillary properties Qc, assumed to be body
mass invariant. We have chosen to present results for observables that can be in-
dependently measured. The performance of the model on these observables can be
easily transferred to indirectly measured quantities, e.g., average circulation time,
∝ V/Φ, and aorta mean blood velocity, U0 ∝ Φ/R2

0. Some frequently discussed
observables, e.g., heart frequency and oxygen affinity, are beyond the scope of our
simple model.

We note that the time-averaged aorta pressure, P0, is predicted constant by any
model with δk ≥ 1. More discriminating is the relation between the total arterial
pressure fall, ∆PΣ, and the pressure fall over the capillaries, ∆Pc. For humans,
the average aorta pressure is about 100 mm Hg and the pressure in the capillary
ends are roughly 40 mm Hg and 20 mm Hg, respectively. Thus, ∆PΣ/∆Pc ≈
(80 mm Hg)/(20 mm Hg) = 4. This disfavours models where δk ≈ 1, since they
predict ∆PΣ/∆Pc ≈ c = ln(Nc)/ ln(c), which is ≈ 35 for n = 2 and ≈ 20 for n = 3.
Instead, we find support for self-similar networks with δ ≈ 4/3, since these models
give ∆PΣ/∆Pc ≈ δ/(δ− 1). Our model with δ = n4/15 gives δ ≈ 1.20 for n = 2, and
δ ≈ 1.34 for n = 3, resulting in the predictions ∆PΣ/∆Pc ≈ 6 and 4, respectively.
Both these numbers are in reasonbale agreement with data, considering the rough
estimates involved in the calculation. This is the only result here presented that
depends on the actual value of the branching number n.

Data show that the total blood volume is proportional to the body mass (Stahl,
1967; Prothero 1980). If this holds also for the arterial blood volume, our model
predicts allometric scaling exponents as in Table 1. These agree well with data,
except for cardiac output Φ. However, as pointed out by Dodds et al., in a resting
body, blood does not flow through all capillaries. The total number of capillaries
is probably better associated with maximal blood flow, which is indeed thought to
scale with an exponent closer to unity (Bishop, 1999).

Thus, blood flow in a resting body, and the rest metabolism, are beyond the scope
of simple models of this kind. However, we conclude that our model gives correct
answers to the questions it actually addresses. We find good agreement with data on
capillary density and with data on vessel radii, vessel lengths and blood pressure in
the human arterial system. The allometric scaling of corresponding aorta quantities
also agrees well with data, suggesting that the model is applicable to all mammals.
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Variable Model (Γ = 1
3
) Data

Blood volume V ≡ 1 1.02 (Stahl, 1967), 0.99 (Prothero 1980)

Capillary density − 2
17

=−0.12 −0.14 (Schmidt-N. & Pennycuick, 1961),
Nc/M −0.21 to −0.07 (Hoppeler et al., 1981)

Aorta radius R0
6
17

= 0.35 0.41 (Clark, 1927), 0.36 (Holt et al., 1981)

Aorta length L0
5
17

= 0.29 0.32 (Holt et al., 1981)

Aorta pressure P0 0 ≈ 0 (Schmidt-Nielsen, 1984; Calder, 1984)

Volume flow Φ 15
17

= 0.88 0.81 (Stahl, 1967), 0.79 (Holt et al., 1968),
0.75 (White et al., 1986)

Table 1: Comparison of model predictions and data on allometric scaling exponents.
The exponent for blood volume is fixed to 1, and the other exponents are model
predictions. Data are from the compilations in Calder (1984) and Schmidt-Nielsen
(1984).
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