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We present and investigate an extension of the classical random graph to a general class of
inhomogeneous random graph models, where vertices come in different types, and the probability
of realizing an edge depends on the types of its terminal vertices. This approach provides a
general framework for the analysis of a large class of models. The generic phase structure is
derived using generating function techniques, and relations to other classes of models are pointed out.
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I. INTRODUCTION

The concept of random graphs (RG) has recently be-
come the target of an increasing interest, as a tool
for modeling various kinds of networks, arising e.g. in
physics, biology and biophysics as well as in social and
information-technological structures.

The classical RG model [1–3] describes a homogeneous,
sparse random graph of order N , where each edge is ran-
domly and independently realized with a fixed probabil-
ity p = c/N . For large orders, there is a critical value of
c = 1, above which almost every graph contains a single
giant connected component being of order O(N), with
the remaining components being small compared to N .
This model yields an asymptotic degree distribution that
is Poissonian with the average degree given by c.

Many real-life networks, such as the internet, have been
shown to possess other types of degree distribution, some-
times displaying a power law behavior over many orders
of magnitude, ruling out the classical RG as the relevant
model. A number of alternative RG models have been
suggested in an attempt to yield random graphs with
more general types of degree distribution, such as the
desired power behavior. Some of these models describe
dynamical random graphs, where the graphs arise as the
result of a stochastic growth process, such as randomly
grown networks [4, 5], or scale-free networks based on
preferential attachment[6]. Others focus on describing
ensembles of random graphs with certain given proper-
ties, without bothering about how they came about; a
particularly interesting approach of this type, possessing
a high degree of generality, is based on considering ran-
dom graphs of fixed order with a given arbitrary degree
distribution [7–10].

In this article, we will investigate a general class of
sparse inhomogeneous RG models, by means of a straight-
forward generalization of the classical model to a situa-
tion where vertices may come in different types, such that
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the probability for an edge depends on the types of its
pair of terminal vertices. While this class of models inher-
its certain features from the homogeneous model – such
as the existence of a critical hypersurface in parameter
space, beyond which asymptotically almost every graph
has a giant component –, it is capable of producing a wide
class of asymptotic degree distributions, among these dis-
tributions with power law behavior.

This general class of models is shown to contain a num-
ber of existing models as special cases, and can be used
as a general framework for the analysis of various RG
models.

The structure of this article is as follows. In Sec. 2,
some of the more salient features of the classical model
are briefly reviewed, while our generalization is presented
and analysed in Sec. 3. In Sec. 4, a number of special
cases are discussed, while Sec. 5 contains our conclusions.

II. THE CLASSICAL MODEL

Here will briefly review some of the more prominent
properties of the classical random graph in the large N
limit, to pave the ground for the subsequent analysis of
its generalization.

Definition 1 Let G(N, c), with c a real positive number,
denote the ensemble of graphs of order N > c, where each
edge is independently realized with probability p = c/N .

This ensemble has a critical value of c = 1, above which
almost all graphs for large N have a single large con-
nected component – the giant component – with a finite
fraction of the vertices, while the remaining components
are small.

A. Exposing Connected Components

The standard method to reveal the size distribution of
the orders of components is to expose these as follows.
Start with a single (random) vertex, reveal its neighbors
by following edges, then their neighbors, etc. Let nk be
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the number of vertices exposed for the first time in step k
of this process. The distribution of nk, given the previous
numbers n0 = 1, n1, . . . nk−1, becomes

P (nk) =
(

N −∑k−1
l=0 nl

nk

)
(1− qnk−1)nk (qnk−1)N−Pk

l=0 nl ,

(1)
where q = 1− c/N .

In the large N limit with a fixed c, P (nk) tends to
e−nk−1c(nk−1c)nk/nk!, and the process reduces to a Pois-
sonian branching tree model B(c), with each vertex inde-
pendently branching to a number of new vertices, where
this number is a Poissonian random variable with average
c. The distribution pn over the order n of the resulting
tree is conveniently analyzed in terms of the generating
function F (z) =

∑
n pnzn, which must satisfy

F (z) = z exp(c(F (z)− 1)). (2)

This can be solved iteratively for each z, and F (z) must
be a stable fixed point of the corresponding iterated map;
it is easy to see that this implies |F (z)| < 1/|c|. For
|z| ≤ 1, there is a unique solution for F (z), reachable
from the starting point 0, given by F (z) = Ĉ(z)/c, where
Ĉ(z) is the unique solution to xe−x = zce−c in the unit
disk. Expanding the corresponding inverse of xe−x yields
the exact result pn = nn−1cn−1e−nc/n!.

Particularly interesting is the result for z = 1, defin-
ing f ≡ F (1), which represents the total probability and
might be expected to be 1, which is an obvious solution to
Eq. (2) for z = 1. Indeed, for c < 1, this solution is sta-
ble, but for c > 1, it becomes unstable, and another fixed
point becomes the attractor, given by f = ĉ/c, where ĉ is
the unique solution to ĉe−ĉ = ce−c in the interval [0, 1].

Thus, for c < 1 the branching model is subcritical, and
always terminates after a finite number of steps, while for
c > 1 it is supercritical – the deficit in total probability
is due to a finite probability 1−f that the order n of the
generated tree becomes infinite, i.e. that the branching
process never terminates.

For a large but finite N , this corresponds to all com-
ponents being small, i.e. o(N), for c < 1, while for c > 1
there exists a single giant component of order ∼ N(1−f)
with the remaining components being small, having an

order distribution similar to that obtained for the com-
plementary c-value ĉ.

III. GENERALIZATION TO
INHOMOGENEOUS RANDOM GRAPHS

The classical RG model can be generalized in a
straight-forward way to inhomogeneous graphs by as-
suming that vertices can come in different types i ∈
{1, . . . ,K}. This enables us to consider a very general
class of inhomogeneous RG models, to be referred to as
IRG:
Definition 2 Given a positive integer K, a K-
dimensional vector r = {r1 . . . rK} of positive probabil-
ities summing to 1, and a symmetric K × K matrix c
with non-negative elements cij, let G(N, K, r, c) denote
the ensemble of graphs G of order N , defined as follows:
i) Each vertex is independently assigned a type i ∈
{1 . . . K} with probability ri.
ii) Independently for each unordered pair of vertices, the
corresponding undirected edge is realized with probability
pij = cij/N , where (i, j) is the corresponding pair of ver-
tex types.

Remark 1 An asymptotically equivalent alternative is
to fix the number of vertices of each type to certain
values Ni ≈ Nri, and possibly also the number of
edges between vertices of types i, j to fixed values Eij ≈
(1− δij/2) cijNiNj/N .

A. Revelation of a Connected Component

In analogy to the classical G(N, c) model, the model
G(N, K, r, c) can be analyzed by recursively revealing a
connected component by exploring neighbors, starting
from a single vertex. Let ni,k be the number of new ver-
tices of type i revealed in the kth stage of the revelation
(so ni,0 = δi,i0 , with i0 the type of the starting vertex).
Given the number of revealed vertices of different types
in the previous stages, ni,k obeys the conditional distri-
bution

P (ni,k) =
(

Ni −
∑k−1

l=0 ni,l

ni,k

) 
1−

∏

j

q
nj,k−1
ij




ni,k

∏

j

q
nj,k−1
ij




Ni−
Pk

l=0 ni,l

, (3)

where qij = 1 − pij = 1 − cij/N ≈ exp(−cij/N). This
expression can be simplified in different domains.

B. Small Components and the Branching Process
Approximation

As long as the order of the revealed part is small as
compared to N , we can approximate Eq. (3) by the Pois-
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son distribution

P (ni,k) ≈ e−
P

j ricijnj,k−1

(∑
j ricijnj,k−1

)ni,k

ni,k!
. (4)

This corresponds to approximating the revelation process
by a Poissonian random branching process.

For the distribution P (n) of the total number n of gen-
erated vertices stating from a random vertex, we can de-
fine a generating function F (z) =

∑
n P (n)zn. Since the

distribution will depend on the type of the initial vertex,
F must be written as the weighted average of the corre-
sponding generating functions Fi(z) for the distributions
Pi(n) conditional on the initial type i, i.e.

F (z) =
∑

i

riFi(z), with Fi(z) =
∑

n

Pi(n)zn. (5)

The vector F having the different Fi as components sat-
isfies the coupled set of equations

Fi(z) = z exp


∑

j

cijrj (Fj(z)− 1)


 , (6)

which is the inhomogeneous version of Eq. (2).

Remark 2 A more elaborate set of generating functions
F̃i(z1 . . . zK) =

∑
n Pi(n)

∏
j z

nj

j could be defined, using
a distinct variable zi for each type i, with ni the total
number of revealed vertices of type i. These would obey
equations obtained by replacing the “z” after the equal
sign in Eq. (6) by “zi”. Here we do not care about the
detailed type content, and the simpler version, Fi(z) =
F̃i(z, . . . , z), will suffice.

Interpreting Eq. (6) as a K-dimensional iterated map
(replace “=” by “:=”), the proper solution is the sta-
ble fixed point reached from the starting point F = 0.
Particularly interesting is the result for z = 1, so let
fi = Fi(1), expressing the probability that the branch-
ing process will terminate, conditional on the type of the
starting vertex, and let the unconditional counterpart be
denoted by f =

∑
j rjfj = F (1). The fi satisfy the

coupled set of equations

fi = exp


∑

j

cijrj (fj − 1)


 , (7)

with a naive solution f = 1, the stability of which can
be analyzed by means of linearization of Eq. (7) around
f = 1, yielding {cijrj} as the relevant matrix. This is all
we need in order to pin down the appearance of the giant,
as well as its asymptotic size, and we state the result
without proof (it follows by analogy to the corresponding
result for the classical model):

Theorem 1 A) The model G(N,K, r, c) is subcritical if
the eigenvalues of the matrix {cijrj} are all less than one

in absolute value; the graphs then a.a.s. possess no giant
component.
B) When some eigenvalue is larger than one, the model is
supercritical, and the graphs a.a.s. possess a giant com-
ponent; its number ni of vertices of type i asymptotically
satisfies ni/N ∼ ri(1− fi), where the fi correspond to a
stable solution of Eq. (7).

Remark 3 It appears natural to require in addition that
c cannot be block-diagonalized; otherwise ergodicity would
be broken, and the graph would trivially decompose into
distinct subgraphs, which could be treated separately.

In the supercritical case, the generating functions Fi(z)
can be renormalized with fi, to yield generating functions
for the finite (non-giant) component part. Let F̂i(z) =
Fi(z)/fi. Then F̂ is a stable solution of

F̂i(z) = z exp


∑

j

cijrjfj(F̂j − 1)


 , (8)

with F̂(1) = 1. This describes a subcritical branching
process with renormalized parameters r̂i = rifi/r · f and
ĉij = cij r · f . For a finite N , we must have N̂ ∼ N r · f ,
and we see that this conserves p̂ij = ĉij/N̂ = pij ; thus,
the renormalized model is simply the naive restriction of
the original one to the subset of vertices outside the giant
component.

C. Large Components and the Deterministic
Approximation

When the giant component is revealed, another ap-
proximation can be made to Eq. (3). Once the number
of revealed vertices become of O(N), the distribution of
ni,k becomes sharply peaked around its average, due to
a factor of N appearing in the exponent. As a result, the
fluctuations become negligible, yielding a deterministic
iterative equation for the consecutive revealed numbers.
In terms of the fraction gi,k = 1−∑k

l=0 ni,l/(Nri) of all
vertices of type i not yet revealed after step k, this yields

gi,k = gi,k−1 exp


∑

j

cijrj(gj,k−1 − gj,k−2)


 , (9)

revealing the conserved quantities

µi ≡ gi,k exp


∑

j

cijrj (1− gj,k−1)


 . (10)

The values of µi must be ∼ 1, since their values can only
change in an earlier stage when the number of revealed
vertices is still small, but then g ∼ 1; thus, in the large N
limit we can safely assume µi = 1. The two-step recur-
sion (9) reduces to a one-step recursion, taking the form
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gi,k = e
P

j cijrj(gj,k−1−1), which can be seen as iterating
the map

gi → exp


∑

j

cijrj (gj − 1)


 (11)

until a stable fixed point is reached. If the model is sub-
critical, this is given by the trivial fixed point gi = 1,
whereas for a supercritical model a non-trivial fixed point
with gi < 1 results, signalling the existence of a giant
component containing a fraction 1− gi of the vertices of
type i.

Eq. (11) is identical to Eq. (7), which was derived in
the limit of small numbers of revealed vertices; thus, we
have established the same set of equations in two different
limits.

Remark 4 A third, heuristic way of estimating the size
of the giant component is as follows. Suppose the giant
contains a fraction ni of the vertices of type i. Then we
can estimate its neighborhood, i.e. the set of vertices con-
nected to at least one vertex in the giant (which of course
must be the giant itself), as follows, based on the rather
bold assumption that the edge probabilities do not depend
on whether any or both of its terminal vertices are in the
giant: The total number of vertices of type i is Nri. For
each of these, the probability of not being connected to any
of the vertices in the giant is exp(−∑

j cijnj/N). Thus

we can expect a number Nri

(
1− exp(−∑

j cijnj/N)
)

of
vertices of type i in the neighborhood, i.e. in the giant.
Writing ni as Nri(1− gi), we recover Eq. (11), in spite
of the bold assumptions involved.

D. Extended Type Spaces

While we have assumed a finite number of types K,
defining the type space T = ZK , the above results should
be more or less directly extendable to models where the
type space T is a denumerable infinite set, or even a
continuous manifold, under some general conditions yet
to be precisely determined.

Definition 3 For a given type space T , with a normal-
ized measure r on T , and a given non-negative symmetric
function c(x, y) on T 2, define G(N, T , r, c) as the ensem-
ble of RGs of order N , where each vertex is independently
assigned a type x ∈ T according to r(x), and for each ver-
tex pair the corresponding edge is independently chosen
with probability c(x, y)/N , with (x, y) the corresponding
pair of types.

For the denumerable case, T = Z+, it appears natural to
require the asymptotic degree averages cij , or at least the
total averages Ci =

∑∞
j=1 cijrj , to be uniformly bounded.

For cases where the elements of c are unbounded, an
alternative is to regularize pij for finite N by using pij =
1− exp(−cij/N) instead of the unbounded cij/N .

Also, reasonable care may have to be taken that c is
sufficiently ergodic. Let σij be 0 if cij = 0, 1 other-
wise. The matrix t then describes a graph in type space,
with tij = 1 corresponding to the existence of the edge
(i, j). Then, sufficient ergodicity could e.g. mean that
this graph should have a finite diameter, i.e. a uniformly
bounded distance between vertex pairs.

For the case of a continuous type space T , similar care
must be taken. In addition, some kind of continuity con-
straint seems appropriate, both on c and r.

Note that a continuous T allows for a continuous repa-
rameterization invariance. Thus, for the case of T = R,
assume f to be a strictly increasing, continuously differ-
entiable mapping of R to itself. Then the model defined
by ĉ(x, y) = c(f(x), f(y)) and r̂(x) = r(f(x))f ′(x) is
completely equivalent to the one with c(x, y) and r(x).
Thus, r(x) could be transformed to any desirable normal-
ized distribution on R. In particular, it could be trans-
formed to the uniform distribution on the unit interval,
yielding a kind of standard representation of the model.
For higher-dimensional manifolds, things are more com-
plicated, and it appears difficult to devise a universal
standardization procedure.

A precise determination of feasibility conditions for ex-
tended type spaces will be the subject of future work.

E. Degree Distributions

Many properties (but not all!) of a graph ensemble are
reflected in its asymptotic degree distribution. In IRG,
the asymptotic degree distribution pm is determined by
r and c, and given simply as the weighted average of the
type-specific degree distributions pm|i, being Poissonian
with an average Ci defined by Ci =

∑
j cijrj . The result

is

pm =
∑

i

ri exp (−Ci)
Cm

i

m!
(12)

with the associated generating function

H(z) ≡
∑
m

pmzm =
∑

i

ri exp (Ci(z − 1)) . (13)

This puts a limitation on the possible degree distribu-
tions that can be obtained within IRG: It must be pos-
sible to write the distribution as a positive linear combi-
nation of Poissonians, i.e.

pm =
1
m!

∫ ∞

0

cme−cp(c)dc, (14)

where p(c) ≥ 0 describes an, a priori arbitrary, distribu-
tion of type-specific Poissonian degree averages c = Ci,
assuming the possibility of a continuum of types. This is
a kind of smoothness constraint. In particular, it implies

p2
m ≤ m + 1

m
pm+1pm−1 (15)
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for each m > 0. While this excludes e.g. random regular
graphs where the degree is fixed, it does allow for a wide
class of degree distributions, such as distributions with a
power tail, pm ∝ m−α for large m, by letting p(c) having
a similar power tail, p(c) ∝ c−α for large c.

Note that a particular model in IRG is not determined
solely by the degree sequence, which depends on cij only
through the average Ci =

∑
j cijrj . This is in contrast to

a class of recently considered models [7–10]; such models
define a particular subclass of IRG, however, as will be
shown below.

IV. SPECIAL CASES OF INTEREST

For K = 1, of course the known properties of the clas-
sical RG model is recovered. Below we will consider a
few less trivial examples.

A. Random Bipartite Graph

Assuming two distinct vertex types, i.e. K = 2, a
simple ensemble of random bipartite graphs results from
the choice

c =
(

0 a
a 0

)
. (16)

With an arbitrary choice of type distribution r = (r1, r2),
this yields for the asymptotic generating function F(z) =
(F1, F2) the equations

F1(z) = z exp (ar2 (F2(z)− 1)) , (17a)
F2(z) = z exp (ar1 (F1(z)− 1)) . (17b)

For z = 1, this yields

f1 = exp (ar2 (f2 − 1)) , f2 = exp (ar1 (f1 − 1)) ,
(18)

yielding the critical value of a as ac = 1/
√

r1r2. In the
symmetric case of r1 = r2 = 1/2, we have ac = 2, and
f1 = f2 = f satisfying f = exp (a/2 (f − 1)).

In a similar way, ensembles of random K-partite
graphs can be defined, which can be seen as generated by
the complete graph KK . Similarly, ensembles of random
graphs based on an arbitrary generating graph can be
defined, with c proportional to the incidence matrix for
the generating graph. A nice twist results from using a
random graph as a generator.

B. Rank-1 c Matrix

A particularly interesting special case results when c
has the factorized form cij = CiCj/C̄, where Ci > 0 can
be interpreted as a connection tendency for vertices of
type i, while C̄ =

∑
i riCi.

Writing the asymptotic generating function as F (z) =∑
i riFi(z), we get for Fi(z) in this case

Fi(z) = z exp
(

Ci

∑
j rjCj (Fj(z)− 1)

C̄

)
, (19)

which can be reduced to a single equation for the function
G(z) =

∑
i riCiFi(z)/C̄, reading

G(z) = z
∑

i

riCi exp (Ci(G(z)− 1)) /C̄. (20)

In terms of the generating function H(z) for the asymp-
totic degree distribution, Eq. (13), this can be written
as

G(z) = z
H
′
(G(z))

H ′(1)
, (21)

and in terms of G(z) we have

F (z) = zH(G(z)). (22)

For z = 1 in particular, we get for g = G(1) the equation

g =
H
′
(g)

H ′(1)
, (23)

and linearization around the trivial solution g = 1 yields
stability for H

′′
(1)/H

′
(1) < 1, corresponding to the

model being subcritical for 〈C2〉 < 〈C〉, which is equiva-
lent to 〈m2〉 < 〈2m〉 in terms of moments of the degree
distribution.

With c restricted to have rank 1, the resulting models
are asymptotically equivalent to models from a superfi-
cially very different class of random graphs that has re-
cently attracted some attention [7–10]. There, a random
graph ensemble based on an arbitrary asymptotic degree
distribution pm is defined for a finite order N by ran-
domly selecting a member from the set of graphs with a
given degree sequence, such that the number of vertices
with degree m is approximately Npm.

Also for such a model, the recursive exposition of a con-
nected component asymptotically yields a well-defined
branching process, apparently very different from the
Poissonian ones obtained for IRG. Here, the inital ver-
tex is assigned a random degree m according to pm, and
subsequently branches to m daughter vertices. Each new
vertex is independently assigned a degree n > 0, dis-
tributed according to npn/

∑
m mpm (consistent with the

assumption that the asymptotic probability of connect-
ing to a particular vertex is proportional to its degree),
and then branches to n − 1 daughters (since one of its
edges is already used).

The asymptotic generating function F (z) =
∑

k Pkzk

for the resulting order distribution Pk then satisfies the
equation

F (z) = z
∑
m

pmG(z)m, (24)
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expressing the choice of the initial degree m. Here, G(z)
is the edge generating function, which satisfies

G(z) = z

∑
m mpmG(z)m−1

∑
m mpm

, (25)

expressing the choice of the daughter’s degree m, and its
branching to m− 1 edges.

These are nothing but Eqs. (22) and (21) in disguise,
showing the complete asymptotic equivalence of the two
models, despite the superficial differences; indeed, the
criteria 〈m(m − 2)〉 < 0 for subcriticality derived above
are in complete accordance with the results of Ref. [8].

C. Dynamical Random Graph with Finite Memory

The last example is given by a recently proposed class
of dynamical random graphs [5] with memory, where a
graph is produced starting from a single node according
to the combination of three random processes in contin-
uous time, all Poissonian:

1. For each existing vertex, new, initially isolated, ver-
tices are added at a rate γ.

2. For each existing vertex, new random edges are
added at a rate λ, connecting it to random existing
vertices.

3. Each existing edge is deleted at a rate µ.

It is easy to see that the expected order of the graph
grows with time t as eγt, and after an initial transient,
vertices are only distinguished by their age, and we are
led to consider a inhomogeneous model with a continuum
of vertex types, T = [0,∞[, given by vertex age.

1. Asymptotic properties

The probability density for ages x is asymptotically
given by

r(x) = γe−γx. (26)

For each pair of vertices, the probability of a connection
is independent of the existence of other connections, and
depends on the age x of the youngest vertex involved, and
amounts to, at time t, p(x) = 2λ

γ−µ

(
e(γ−µ)x − 1

)
e−γt.

We obtain

c(x, y) =
2λ

γ − µ

(
e(γ−µ) min(x,y) − 1

)
, (27)

which seems feasible enough: c is ergodic, continuous and
although c(x, y) is not uniformly bounded, the average
C(x) ≡ ∫

c(x, y)r(y)dy = 2λ
µ (1 − e−µx) is (at least for

µ > 0). Thus, we are lead to consider the spectrum of
the integral kernel

G(x, y) =
2γλ

µ− γ

(
1− e−(µ−γ) min(x,y)

)
e−γy, (28)

which is recognized as being proportional to the Green’s
function (i.e. a kernel representation of the formal op-
erator inverse) for a particular differential operator L on
R+, given by

L = − 1
2γλ

eµx ∂

∂x

(
∂

∂x
+ µ− γ

)
, (29)

with boundary conditions f(0) = 0, and f(x)e(µ−γ)x/2

growing at most as a power of x as x → ∞. Criticality
results when the ground state of L has eigenvalue 1.

With a finite memory, µ > 0, the eigenvalue equation
for L is a disguised version of Bessel’s equation of order
γ/µ−1 in the variable y =

√
8λγe−µx/2/µ, and criticality

results when the first positive zero Xγ/µ−1 of Jγ/µ−1 is
given by

√
8λγ/µ, i.e. for λ = µ2X2

γ/µ−1/8γ.
In the special case of infinite memory, µ = 0, the model

reduces to a randomly grown network [4], and yields

L = − 1
2γλ

∂

∂x

(
∂

∂x
− γ

)
, (30)

with eigenfunctions of the form eγx/2sin(ωx) with eigen-
value γ2+4ω2

8γλ , yielding the ground state value γ
8λ for

ω = 0, and criticality for λ = γ/8.
The above results are all consistent with those obtained

in Refs. [4, 5] on the phase structure for these models.

V. CONCLUSION

We have investigated a generalization of the classical
homogeneous model of sparse random graphs, obtained
by imposing a type structure on the vertices. This yields
a very general class of inhomogeneous random graph
models, and the asymptotic degree distributions are not
restricted to Poissonians, but allow for various types of
behaviour, within certain limitations. Thus, e.g., power
behavior is possible, while a fixed degree (regular graph)
is ruled out.

The models in this class are not determined by the de-
gree distribution alone, but contains an infinity of models
for each possible distribution, in contrast to a recently
considered class of models based on a given degree distri-
bution. Interestingly enough, a relation does exist, since
such models are shown to result in a special case of the
present approach.

In other special cases it describes the asymptotic static
properties of certain models of evolving random graphs,
such as randomly grown networks, and dynamical graphs
with memory.

Only certain aspects of the approach have been covered
in this paper, and a more detailed analysis, e.g. of the
feasibility conditions for extended type spaces, will be
the subject of forthcoming work, as will investigations
on further extensions of the approach e.g. to directed
graphs.
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