LU TP 03-17

A Fuzzy Matching Approach to
Multiple Structure Alignment of Proteins

Henrik Haraldsson and Mattias Ohlsson*

Complex Systems Division, Department of Theoretical Physics,
University of Lund, Sélvegatan 14A, SE-223 62 Lund, Sweden
http://www.thep.lu.se/tf2/complex/

Submitted to Bioinformatics

Abstract

Motivation: Comparing protein structures is important for understanding the relationships be-
tween sequence, structure and function. With the increasing number of experimentally determined
protein structures, an automated algorithm that can perform structure alignment of many proteins
is therefore highly advantageous.

Results: We present a novel approach for multiple structure alignment of proteins based on fuzzy
pairwise alignments of each protein to a virtual consensus chain. These alignments are alternated
with translations and rotations of the proteins onto the consensus structure, and with updating
each consensus atom by moving it to the middle of the protein atoms aligned to it. The pairwise
alignments use mean-field annealing optimization of fuzzy alignment variables, based on a cost
expressed in terms of distances between aligned atoms and of gaps. No initialization in terms of
all-to-all protein alignments is needed, and the only information required is the 3-D coordinates of
the C atoms. The CPU consumption is modest, and scales approximately linearly with the number
of proteins to align. Our approach is tested against a set of protein families from the HOMSTRAD
database, and against a multiple structure alignment algorithm based on Monte Carlo techniques,
with good results.
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1 Introduction

Comparative analysis of protein structures is a subject of utmost relevance. It enables the study of
functional relationships between proteins and is very important for homology and threading methods
in structure prediction. Multiple structure alignment of proteins is needed in order to group proteins
into families, which enables a subsequent analysis of evolutionary issues. It is also important in order to
build a consensus structure that encapsulates common re-occurring substructures among the structures.
However, multiple structure alignment is not an easy task.

There exists many methods for pairwise structure alignment (see e.g. Gerstein and Levitt, 1996; Holm
and Sander, 1993; Shindyalov and Bourne, 1998; Szustakowski and Weng, 2000). Few of these have
been further developed for the alignment of multiple structures. The ones that exist fall into two broad
groups. Methods in the first group perform all pairwise structure alignments and define the structure
most similar to the others. Multiple structure alignment is then achieved by starting with an initial
alignment of all structures to this selected one. Methods in the second group do not rely on all-to-all
pairwise alignments as a starting point, instead they try to solve the multiple alignment problem in a
more direct fashion.

Methods that fall within the first group can be found in the work of Gerstein and Levitt (1996) and
Guda et al. (2001). The latter uses Monte Carlo optimization techniques to refine the initial alignment
found by pairwise structure alignment using the Combinatorial Extension algorithm (Shindyalov and
Bourne, 1998). Orengo and Taylor (1996) use double dynamic programming in their SsApM algorithm,
where they form an initial consensus structure from the two protein structures found to match each
other the closest. Then they tentatively align all remaining structures to this consensus, select the one
with the closest match and merge it into the consensus. This matching and merging is repeated until all
protein structures have been merged into the consensus structure. The COMPARER algorithm developed
by Sali and Blundell (1990) also performs an all-to-all pairwise alignment of all proteins as a first step
in their multiple alignment procedure.

A method that does not rely on an initial all-to-all pairwise alignment is used in Leibowitz et al.
(2001). This algorithm finds geometric substructures common for all structures to be aligned. Structural
alignment of these cores then induces alignments of the full molecules. The starting point for their
algorithm is only the 3-D coordinates for the Cy-atoms defining the structures to be aligned.

In this paper we have developed an approach for multiple structure alignment, that falls within the
second group, with two main ingredients: (i) the construction of a wvirtual consensus chain that each
individual protein is aligned to, and (ii) the use of an efficient fuzzy pairwise structure alignment method.
The alignment is carried out in an iterative procedure. In each iteration step, the proteins are rotated
and translated towards the consensus chain, guided by the fuzzy pairwise alignment method. Also, in
each step a new consensus chain is computed from the alignments of the individual proteins.

The method, which requires no initial alignment from e.g. multiple sequence alignment, uses only 3-D
coordinates of the C,-atoms along the backbone and optionally secondary structure information for
each amino acid. The proposed method, which is very general, has some appealing properties:

e Scaling. The method works by aligning each of the proteins to a common consensus chain and
no initial alignment taken from an all-to-all pairwise alignment is needed. Hence, the CPU time
needed grows only (approximately) linearly with the number of structures to align.

e Generality of formulation. Almost arbitrary additional constraints are easily incorporated
into the formalism including, for example, different functional forms of gap penalties and sequence
matching preferences.



The proposed method was tested on structures taken from the HOMSTRAD database (Mizuguchi et al.,
1998) of protein structure alignments for homologous families. Furthermore the results of our method
were compared to those produced by the Monte Carlo method of Guda et al. (2001). The selected
datasets were chosen to contain sets of proteins of various lengths, different structural classes and
different average percentages of identities. For most cases our algorithm produced alignments in good
agreement with the HOMSTRAD database and comparable to results obtained by the algorithm of Guda
et al. (2001).

2 Methods

2.1 Multiple Alignment procedure

Consider K proteins that are to be structurally aligned to each other. In our approach this will be
accomplished by aligning each of the K structures to a common consensus chain. Thus, the multiple
alignment problem has been reduced to the construction of the common consensus chain and to perform
K pairwise structure alignments. These two steps are not performed independently of each other; rather,
we use an iterative 3-step procedure as follows:

e Fuzzy pairwise structure alignment of each of the K chains to the common consensus chain.
e Weighted rigid body rotations and translations for each of the K chains.

e Calculation of a new consensus chain.

The first two steps are based on the work by Blankenbecler et al. (2003) and will only be reviewed
briefly.

In what follows we denote by xz(-k) (i = 1,..., Ni) the atom coordinates of protein k, with length Ng. The
phrase “atom” is here used in a generic sense — it could represent individual atoms but also groups of
atoms. In this paper it will mean C,-atoms along the backbone. Let y; (j = 1,..., M) denote the atoms
(hypothetical C, positions) of the consensus chain (of length M). We use a square distance metric

between the atoms in the proteins and atoms in the consensus chain,
(k k) 2
di) = <"~y (1)

but the formalism is not confined to this choice.

2.2 Weighted rigid body rotations and translations

The objective of the rigid body rotation and translation of the proteins is to minimize the distance
between the matched atoms for each of the K proteins and the consensus chain. Let igk) be the

coordinates of the translated and rotated protein k, i.e., igk) =alk) 4 R(k)xgk). Based on the fuzzy
assignment matrix W) we determine the translation vector a*) and the rotation matrix R*), by

minimizing the following chain error function,
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Matched atoms for protein k and the consensus chain are given by the elements V\/(k)7 of the fuzzy
assignment matrix. These elements are not restricted to be integers, leading to an mterpretatlon of
fuzzy assignments between atoms. The minimization of Eéh;m can be solved exactly (Neumann, 1937),
with closed-form expressions for R*) and a*). It should be noted that this solution is rotationally
invariant (independent of R(¥)) for the special case when the atoms in the two chains match each other

with the same weight, i.e. when WZ(’;) is constant for all ¢ and j.

2.3 Fuzzy pairwise structure alignment

Our approach for multiple structure alignment is an iterative procedure involving pairwise alignments
to a common consensus chain. Each pairwise alignment is obtained using the fuzzy alignment method
developed by Blankenbecler et al. (2003). This method is similar to the dynamical programming method
for global sequence alignment (Needleman and Wunsch, 1970), but with two important differences.
First, instead of using a score between aligned atoms, a cost formulation is used. This cost, which
depends on the distances between the atoms and on the number of gaps and their locations, is changing
throughout the alignment procedure. Second, in the original Needleman—Wunsch algorithm (Needleman
and Wunsch, 1970) an optimal alignment path is calculated, whereas fuzzy alignment paths are computed
in the method by Blankenbecler et al. (2003). The rest of this section gives a small review of the fuzzy
alignment method. For readability we have dropped the (k) superscript that indicates one of the k
proteins to align.

The structure alignment of two proteins is carried out in an annealing procedure, controlled by a
temperature parameter T'. Let D; ; denote a fuzzy generalization of the optimal alignment cost at node
(i,7) in the dot-matriz (cf. (Blankenbecler et al., 2003)), used to represent all possible alignments of

two proteins. We have
3

Dij=> vijiiDiji, (3)
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where 5,»7]»; ; is the corresponding generalized fuzzy alignment cost if the alignment path is forced to
pass through the preceeding node given by [. In the Needleman—Wunsch algorithm only the optimal
direction [ is used, which implies that v; j; ; are integers and ), v; ;; ; = 1. This restriction is relaxed in
the fuzzy alignment method where v; ;, ; € [0, 1], but still sum up to unity. These so called mean field
variables are calculated according to,

e‘ﬁi 5 1/T
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The generalized fuzzy alignment costs 251-5]-; ; are calculated using the following recursive relation,

751‘,]‘; 1 =D;j1+ /\5-2)(1 — Vij—1; 1) + AextVij—1; 1 »
Diji2 = Di—1j1+dij , (5)
Dijis = Dic1y + A (1= vim1j; 3) + AextVic1; 3 -

Here, )\((1") is the penalty for matching atom « in chain n to a gap and ey is the gap extension penalty.

At each iteration in the annealing procedure of lowering 7', a fuzzy assignment matrix W; ; is calculated
as
Wij = Pijvij 2 (6)



where P, ; is the probability that node (¢, j) is part of the optimal path and v; j, 2 is the probability
that atoms ¢ and j are locally matched. P;; can be calculated with a similar recursive relation as for
D; ;. With the obvious initial value Py; n = 1, one has

Pij = vijy;10 54
+  Vig1j+1; 2Pit1,541 (7)
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The fuzzy assignment matrix W, ; is used when moving one of the proteins onto the consensus chain
according to the minimum of Eq. 2.

2.4 Calculation of the consensus chain

The coordinates y; for the consensus chain are calculated using the coordinates of all the K proteins and
the K fuzzy assignment matrices from each of the pairwise alignments. In our approach we construct
y; according to

yi = Za(k) (k), where (8)

g = ZWU“) 9)

The last expression (Eq. 9) computes the (weighted) average position of the atoms in protein k that
are matched to atom j in the consensus chain. The weights Wflj) are normalized columns of the fuzzy

assignment matrix WZ(’;)
5 wk)
wk — i (10)
i, Ny, k
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The final position of consensus atom j is given in Eq. 8, which is a weighted sum of all Sf;-k); chains with

a large a§ )

weights are given by

contribute more to the final consensus atom y;, compared to chains with a low ozg-k). These
(k) B
aj = (k") ) (11)
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where 1) is a parameter and ﬁ](-k) is the distance from the center of mass of the positions jf;k,), (k' =
1,..,K) to S/;-k) itself. This expression (Eq. 11) gives approximately equal weights to positions Sfj(-k/)
that are within the characteristic distance v from the center of mass, whereas positions Sfﬁ-kl) that are
much further away receive a negligible weight. When calculating the center of mass of the positions
Sf§k ), only proteins where the total matching ZN" W( ) to consensus atom j is larger than 104, are
considered.

2.5 Initialization of the consensus chain

The multiple alignment procedure starts with the definition of an initial consensus chain of length M,
where M is a parameter for the algorithm, chosen to be M = x maxy{Nj}, where x > 1. The consensus



chain is then initiated as the longest of the K proteins to align, with random coordinates for the left-over
tails (if k > 1).

A pre-alignment step is then performed where all structures are moved towards the consensus chain
using fuzzy assignment matrices Wi(’];), with a band diagonal structure. The consensus chain is then
updated once using Eq. 8. It should be noted that the performance of the algorithm does not depend
on the details of the initialization of the consensus chain. This is due to the fact that the fuzzy pairwise
alignment procedure starts with a large value for the T-parameter (see Eq. 4), making the initial 3-D
coordinates for the consensus chain less important.

2.6 Summary of the method

As stated in the beginning, the multiple alignment of K protein structures is accomplished by iteratively
aligning each of the K proteins to a consensus chain using fuzzy assignment matrices, followed by re-
computation of the consensus chain. The T-parameter that controls the degree of fuzziness of the
assignment matrices is annealed during the iterative procedure from a large value to a small value. This
ensures the necessary transition from fuzzy assignment matrices to binary ones, where uniquely matched
atoms to the consensus chain are identified. The major algorithmic steps are summarized in Figure 1.

The final multiple alignment of the K proteins is defined entirely by what is matched to the virtual
consensus atoms in the K pairwise alignments, but the consensus atoms themselves are not considered
part of the final alignment. Protein atoms that are matched to one and the same consensus atom, are
considered to be matched to each other and form an alignment column. If a consensus atom is matched
to a gap in one of the pairwise alignments, this protein will naturally have a gap at this position in the
multiple alignment as well. Any protein atom matched to a gap in the consensus chain, and any protein
atom that is matched to a consensus atom without any other protein atoms matched to it, is considered
to be unaligned. Consensus atoms that are entirely unmatched do not contribute to the final multiple
alignment.

3 Results and Discussion

3.1 Data sets used

To test the quality of our alignment algorithm, we have compared alignments on a set of protein families
from the HOMSTRAD database (Mizuguchi et al., 1998). Here, the goal was not a full investigation of
all families, but rather to explore a limited set with representative variation. Table 1 lists the protein
families from HOMSTRAD used in our comparison. We denote proteins by their PDB (Berman et al.,
2000) identifier. '

3.2 Heuristic post-processing

The atoms in the different protein chains are matched through the mediation of the virtual consensus
atoms. If there are too few consensus atoms at a given position, protein atoms will be unaligned
there. Conversely, if there are many consensus atoms close to a given position, protein atoms which
really should be aligned will split up between the consensus atoms, leading to unnecessary gaps in the
assignment.

tPDB, Protein Data Bank, located at http://www.rcsb.org/pdb/ .



1. Initialization.

(a) Move all proteins to their common center of mass and rescale coordinates such that the
largest distance between atoms within the chains is unity.
(b) Initiate the consensus chain.

(c) Initiate the temperature, T = 10.

2. Alignment procedure.

(a) For each protein k, proceed row by row ¢ — i+1,4i=1,..., M, and in each row column
by column, j — 5+ 1, j=1,..., Ng, and calculate in the given order:
i vl(];)’ , from Eq. 4.

il. 51(]?)7 ; from Eq. 5.
iii. Dg’kj) from Eq. 3.
(b) Compute the fuzzy matching matrices from Eq. 6.

(¢) For each protein k, minimize Eq. 2 by rotation and translation of the protein to the
consensus chain.

epeat items 2(a)-2(c) 3 times, or until max; ;(|v; j; 2 —v; ;. 5|) < 0.05, whichever comes
(4) Repeat items 2()-2(c) 3 times, or wntil masx; (v ; 2 = 0i5]) < 0.05, which
first. vi(’(}l;d )2 are variables from the previous iteration step.

(e) Update the consensus chain according to Eq. 8

—~
Lz}
~

Lower the T-parameter, e.g. T — ex T

(g) Repeat items 2(a)-2(f) until (1/K) Y, (Zi, R w"“)) <1-10"10,

J ]

3. Extract the multiple structure alignment by examining the alignment of each protein to the
consensus chain.

Figure 1: The essential algorithmic steps in the multiple structure alignment algorithm.

At high temperatures, the consensus atoms move to their approximate positions, but as the temperature
decreases, there is a tendency that some positions end up with too few or to many consensus atoms. For
this situation to be remedied, a whole range of consensus atoms has to be moved one or more steps along
the chain, in order to shift extra consensus atoms into or out of the interior of the alignment. There is
no force in the alignment procedure that makes this happen. The pairwise protein-consensus alignments
are optimized with respect to the current position of the consensus atoms, and the consensus atoms are
likewise moved to currently matched protein atoms. These two steps happen sequentially rather than
simultaneously. Therefore, the algorithm does not “know” that a globally superior alignment would be
achieved if the consensus atoms were shifted along the sequence.

The above situation is taken care of by a series of heuristic procedures, that insert or delete consensus
atoms near the end of the annealing process. The following criteria are checked for:

1. Consider two consecutive consensus atoms. If these are matched to at least one gap in each of the
K proteins, then the two consensus atoms are merged by translating one of them to the midpoint



Table 1: Protein families from the HOMSTRAD database used in our comparison.

Family PDB entries for the proteins  Class No. of  Average Average
proteins  length  identity (%)

ghf7 1cel, legl, 2ovw, 2a39 all 8 4 399 47

tim lamk, 5timA, 1htiA, 1timA, a/ 3 barrel 10 249 47

1ypiA, 1treA, lydvA, law2A,
2btmA, 1tcdA

cyt3 2cdv, 2cym, 1wad, 3cyr, all « 6 110 40
2cy3, lage
cyte lyea, lycc, 2pcbB, 5bcytR, all 11 111 44

lccr, lery, 1hroA, lexc,
1c2rA, 155¢, 2c2c

intb lafcA, 2afgA, 2fgf, 2mib, all g 6 137 30
1ilb, liraX

ricin lapa, 1qciA, labrA, 1fmp, « plus 8 7 254 38
1mrj, lmrg, 1cf5A

asprs laszA, 1lylA, 1b8aA multi domain 3 470 28

between the original consensus atom positions, and deleting the other one. (Only consensus atoms
actually matched to something are considered here. There is often a pool of unmatched consensus
atoms, but these are excluded in this analysis.)

2. If an atom in one of the proteins is unaligned, a consensus atom is inserted at this position, unless
there is another consensus atom within the distance 1.5 A.

3. If two consensus atoms are within the distance 1.0 A from each other, one of them is removed.
This deletion is performed so as to make the average distance between the remaining consensus
atoms as close to 3.8 A as possible.

The above heuristics are performed every fifth iteration when ¥ > 0.99, and before the final iteration.
The saturation ¥ is a measure of how close to zero or unity the elements in the assignment matrices

wk) are, and is defined as
iy <w<’f>>2>

,J
o 1 1,7 1,7
T K Xk: (k)

(12)
Zi,j Wi,j

3.3 Comparing with HOMSTRAD alignments

Besides HOMSTRAD (Mizuguchi et al., 1998), we have compared our result with the Monte Carlo method
of Guda et al. (2001) which is available through a WWW-server.¥ When comparing either of the two
methods against HOMSTRAD, we have counted the number of aligned columns that exactly matched that
of the manual alignment; here the columns with only one atom are also counted. For each method we also
present the number of aligned columns with two atoms or more, and the average column distance in the
final geometrical configuration. The column distance is defined as the average of all pairwise geometric

Thttp://cl.sdsc.edu/mc/mc.html



distances between atoms in a column. Columns with only one atom obviously have no column distance,
and are not included in the average.

Table 2: Summary of the results from the comparison.

Our method Guda et al.
Family No. aligned Ave. column No. correct No. aligned Ave. column No. correct
columns distance (A) columns columns distance (A) columns
ght7 403 1.30 402 402 1.30 406
tim 261 1.08 236 249 1.04 229
cyt3 118 1.81 98 111 1.69 89
cyte 132 1.41 102 124 1.20 94
intb 158 1.63 126 155 1.83 121
ricin 279 1.29 238 251 1.20 221
asprs 457 2.22 400 446 2.24 377

Table 2 shows the result obtained for the families listed in Table 1. Our method produces alignments
in good agreement with the manual alignment from HOMSTRAD as can be seen from the number of
matched columns or by visual inspection of the alignments. Compared to the Monte Carlo method by
Guda et al. we usually have more correctly aligned columns. The average column distance for the final
geometric configuration is, on the average, somewhat higher for our method. This can be explained by
the fact that our method generally aligns more columns. As more columns are included in the alignment,
some of these are likely to be hard-to-align ones with a higher column distance, compared to the case
when the method aligns fewer columns and then presumably chooses regions that match each other
more closely.

Columns with large column distances may also be a result of the heuristic post-processing (cf. sec-
tion 3.2). Often there are too few consensus atoms at various places; therefore unaligned protein atoms
are given a consensus atom in the heuristic post-processing, unless there is a consensus atom close by
already. This, however, has an unfortunate side effect: some protein atoms that really should be un-
aligned get a consensus atom that then aligns itself to some other unaligned atom within a distance
of a few Angstroms. This causes a false alignment between the two proteins. These false alignments
mainly occur in loop regions and do not disrupt the overall alignment, but they can imply a high column
distance for some columns. Thus, there appears to be room for improvement in terms of finding better
heuristic post-processing methods; such refinements might lead to fewer false alignments, and to a lower
average column distance.

The result of the multiple alignment of the triosephosphate isomerase (tim) family (Lolis et al., 1990)
is shown in Figure 2. This family consists of 10 proteins belonging to the a/B-barrel structure class.
Comparing to the manual alignment from HOMSTRAD, we align 236 of the total 260 columns correctly. A
detailed investigation shows that all a-helix and (-sheet structures are correctly aligned. Misalignments
occurs in loop regions between a-helix and J-sheets.

Our multiple alignment algorithm depends on a number of parameters for its operation. Table 3 shows
the values, used in this paper, for important parameters. We have used the same set of parameters for
all the families tested.



Figure 2: Alignment of the 10 proteins in the triose phosphate isomerase (tim) family from HOMSTRAD
using our method. Each protein is optimally aligned to the consensus chain (which is not shown). The
proteins are: lamk, 5timA, 1htiA, 1timA,1ypiA, 1treA, 1ydvA, law2A, 2btmA and 1tcdA.

Table 3: Parameters used in our multiple alignment method.

Parameter Value

Legend

A 7.0
Aext 0.7
K 1.1
€ 0.7
P 0.9

The gap cost in the pairwise alignment.

The gap extension cost in the pairwise alignment.
The multiplicative factor used when defining the
length of the consensus chain (cf. section 2.5).

The annealing rate of T’ (see Figure 1).

The width used in the weighting of the different
chains when updating consensus atoms (see Eq. 11).

3.4 Scaling properties

Our algorithm for multiple alignment of protein structures was implemented in C++ on a PC running
the Linux operating system. The running times ranged from 11 seconds for the cytochrome-c3 (cyt3)



family to 140 seconds for the glycosyl hydrolase family 7 (ghf7) on a 2.4 GHz processor (Intel). The
required CPU time depends on the lengths of the proteins and the number of structures to align. The
pairwise alignment algorithm scales like N x M for two structures of length N and M. However, for
proteins structures with equal lengths, the required CPU time for the multiple alignment algorithm
grows approximately linearly with the number of structures to align. This is due to the consensus chain
that all structures are aligned to, and that no initial all-to-all pairwise alignment is required.

4 Conclusions

In summary, we have presented a novel method for multiple alignment of proteins structures. It has
been tested on several protein families with encouraging results. Our approach has appealing properties,
such as:

e It is fully automatic, requiring (in principle) only the 3-D coordinates of the C,-atoms as input
and no initialization using all-to-all pairwise alignments.

e With the definition of a consensus chain to which all structures are aligned, it gives rise to a
scaling property, where the CPU consumption grows (approximately) linearly with the number of
structures to align.

e With the underlying fuzzy pairwise alignment, the method can easily be extended to handle more
detailed chain representations (e.g. side chain orientation) and additional user-provided constraints
of almost any kind.
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