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We demonstrate how to generalize two of the most well-known random
graph models, the classic random graph, and random graphs with a given
degree distribution, by the introduction of hidden variables in the form of
extra degrees of freedom, color, applied to vertices or stubs (half-edges).
The color is assumed unobservable, but is allowed to affect edge probabil-
ities. This serves as a convenient method to define very general classes of
models within a common unifying formalism, and allows for a non-trivial
edge correlation structure.
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1. Introduction

The availability of data on real-world networks, e.g. from information
technology and molecular biology, has seen a dramatic increase in the last
decades. This has led to a correspondingly increased interest in the theo-
retical modelling of networks.

Typically the growth of a real-world network is not entirely deterministic
but contains stochastic elements, and statistical models are required that
are conveniently formulated in terms of ensembles of graphs. Typical real-
world networks are not static but change with time, and much of the focus
has been on dynamical models, where one attempts to describe the growth
and evolution of a network.

Here we will focus on static random graph models, describing a snapshot
of a network in terms of a fixed ensemble of graphs, without regard to how
the network was formed. By a random graph we will mean a member of such
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an ensemble. In particular, we will be mostly interested in sparse random
graphs, where the typical vertex degree does not grow with the size of the
graph.

There is a vast spectrum of such models around. Some of these are not
entirely random, in the sense that they are based on an underlying regular
network – i.e. a lattice – which is then modified in a random fashion.

Our focus will be on purely random graphs, where such an underlying
regularity is absent. A number of more or less unrelated models of this type
have been investigated, and it would obviously be desirable to devise a uni-
fied description in terms of a general class of ensembles, where more special-
ized models appear as special cases of one and the same general formalism,
while maintaining the computability of local and global graph characteris-
tics of interest, such as degree distributions, small subgraph abundancies,
component size distributions, and global connectivity properties.

The most well-known purely random model is the classic Random Graph
of Erdős and Rényi [1], to be referred to as RG. In its sparse version it
is defined as follows. For a given set of N nodes, every pair of nodes is
connected by an edge independently with probability p = c/N in terms of
a given parameter c that asymptotically defines the average degree. This
model has many interesting properties, such as an asymptotically Poissonian
degree distribution, and a phase transition at c = 1, above which a giant
connected component is formed. However, it fails to describe most real-
world networks.

A more general model that has been much studied is Random Graphs
with a given Degree Distribution [2, 3, 4, 5], or Degree-driven Random
Graphs (DRG), where an asymptotic degree distribution is given, suitably
transformed into a definite degree sequence for a given graph size. In terms
of this a random graph is defined as a uniformly random member drawn
from the set of graphs having the given degree sequence, possibly subject
to additional constraints (e.g. by demanding the graph to be simple, i.e.
non-degenerate). DRG models suffer from an intrinsic lack of edge correla-
tions, atypical of real-world networks; as a result, they are often referred to
as uncorrelated random graphs.

In a sequence of papers [6, 7, 8], I have explored the use of hidden
coloring, either of vertices or of stubs, to define more general random graph
models. The resulting models can be seen as colored extensions of RG and
DRG. As will be shown in this paper, the hidden color provides a convenient
means for defining very general classes of random graph models, where much
of the limitations of the uncolored models can be done away with, while the
computability of interesting properties is maintained.

The considered classes of models will be compared with respect to a
few basic properties: The degree distribution, the abundancy of arbitrarily
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given small subgraphs, the size distribution of connected components, and
the phase transition where a giant component appears.

The plan of the paper is as follows. In section 2, we will discuss a few
fundamental concepts needed in the subsequent sections. In section 3, we
will review the definitions of the models to be considered. A comparative
analysis of a selected set of characteristics, as derived in the different model
classes, is presented in section 4. Section 5, finally, contains a concluding
discussion.

2. Basic Concepts and Methods

All models to be considered in this paper will be of sparse random
graphs, where the degrees (connectivities) of vertices stay finite as the size
N of the graph grows to infinity. In particular, this means that the total
number of edges will scale as N , and that the probability of a connection
between an arbitrary pair of nodes will scale as 1/N .

A simple local characteristic of a graph ensemble is its degree distribu-
tion, {pm}. This is often conveniently described in terms of its generating
function,

H(x) ≡
∑
m

pmxm. (1)

It obviously satisfies H(1) = 1, and yields upon repeated differentiation at
x = 1 successive combinatorial moments of the degree,

H ′(1) = 〈m〉 , H ′′(1) = 〈m(m− 1)〉 , H ′′′(1) = 〈m(m− 1)(m− 2)〉 , (2)

etc., while the individual pm can be obtained by repeated differentiation at
x = 0.

Generating functions of this type are convenient when analyzing a prob-
ability distribution Pk of an integer variable k that is the sum of several
independent contributions, k =

∑
i ki, in which case the generating func-

tion f(z) =
∑

k Pkz
k for the distribution of k is simply the product of the

corresponding generating functions for the distribution of each contribution.

3. The Models

Here follows a brief introduction to the models to be considered.

3.1. The Classic Model – RG

The classic random graph (RG) [1] has been thoroughly analyzed over
the years [9, 10]. It is a model of simple (non-degenerate) labelled graphs
with a given set of N nodes, although it can be easily extended to include



4 SoderbergKrakow printed on August 19, 2003

also non-simple graphs [11]. We will consider its sparse version. It comes
in two essentially equivalent versions, one with a fixed number of edges, the
other with a fixed probability for each possible edge; we will stick to the
latter.

Sparse RG has a single real parameter c > 0 controlling the abundance
of edges. For a given graph size N and a given value of c, an ensemble
of graphs is defined as follows. Each of the N(N − 1)/2 pairs of distinct
nodes independently is connected by an undirected edge with a common
probability p = c/N (assuming N > c).

3.2. Inhomogeneous Random Graphs – IRG

The classic RG model as described above can by generalized in a straight-
forward way by assigning color to vertices and allowing edge probabilities to
be color-sensitive; the resulting class of models will be referred to as IRG,
for inhomogeneous random graphs [6].

A definite IRG model is specified in terms of

• a color space, taken as [1, . . . , K];

• a color distribution {ra > 0, a = 1, . . . , K}, with
∑

a ra = 1;

• a real, symmetric color preference matrix c = {cab ≥ 0}.

For a given graph size N , such a model is implemented as follows.

1. Assign to each node independently a random color a, drawn from the
given distribution {ra}.

2. Connect each pair of distinct nodes independently with probability
cab/N , where a and b are the respective colors of the two nodes.

By considering the color as unobservable or hidden, the resulting ensemble
of colored graphs yields a specific ensemble of plain graphs, distinct from
an RG ensemble, as will be shown below. The role of the hidden color is to
enable non-trivial edge correlations. IRG defines a class of graph ensembles
much more general than RG.

3.3. Random graphs with a given degree distribution – DRG

The classic RG model is limited to a Poissonian degree distribution.
A more general class of models that has recently attracted the attention of
several workers in the statistical physics community is random graphs with a
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given degree distribution [2, 4, 5], to be referred to as DRG (for degree-driven
random graphs).1 This approach allows for an arbitrary degree distribution.

There are two common variants of DRG. One is given by restricting
the ensemble to simple (non-degenerate) graphs, where self-couplings and
multiple connections are banned. In the other (the configuration model)
one allows for degenerate graphs. For ease of analysis, we will focus on the
latter version where degeneracies are allowed.

Some notation: A node with degree m is considered to possess m stubs,
each of which defines a point of attachment for an edge endpoint. The total
number of stubs M =

∑
i mi in a graph obviously must be even, being equal

to the total number of edge endpoints, i.e. twice the number of edges.
A specific DRG model is defined by specifying an arbitrary degree dis-

tribution {pm}. For a fixed graph size N , the corresponding ensemble is
implemented as follows: 2

1. For each node, draw its degree independently from the given distribu-
tion. Redo until the total sum of the degrees is even.

2. Define random edges by performing a completely random pairing within
the resulting even-numbered set of M stubs.

This leads to an ensemble of pseudographs, where degeneracies may appear,
in the form of self-connections (tadpoles) or multiple edges between the same
pair of nodes.

The random stub pairing is reminiscent of the combinatorics associated
with Gaussian integrals; indeed, a relation exists between DRG models and
certain miniature field theories [12, 13].

3.4. DRG plus color – CDRG

Also the DRG class of models can be generalized, by utilizing a coloring
of stubs, which turns out to be the most natural choice, and then allowing
the stub pairing to be color-sensitive [7, 8]. The resulting very general class
of models will be referred to as CDRG, for Colored DRG.

With colored stubs, it is natural to consider the color-specific stub
content of a node, its colored degree. With K colors to choose between,
the colored degree is conveniently represented by an integer vector m =
(m1, . . . , mK), with the individual elements ma counting the number of
stubs with color a. Obviously the plain degree m is obtained by summing

1 Variants of this approach have been referred under various names, such as equilibrium
random graphs and uncorrelated random graphs.

2 We disregard impossible cases of an odd N with a degree distribution supporting
only odd degrees.
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up the elements of the colored degree, m =
∑

a ma = 1 ·m, in terms of the
uniform vector 1 = (1, . . . , 1).

Then it is also natural to consider the probability distribution of such
colored degrees, a colored degree distribution {pm}. Such a distribution can
be represented by a multivariate generating function, H(x) =

∑
m pmxm,

where xm =
∏

a xma
a , satisfying the normalizing condition H(1) = 1. From

this, multivariate combinatorial moments can be derived by repeated dif-
ferentiation at x = 1, e.g. ∂aH(x = 1) = 〈ma〉, ∂a∂bH(x = 1) =
〈mamb −maδab〉, etc. A specific CDRG model is defined by specifying

• A color space, taken as [1, . . . ,K];

• A colored degree distribution {pm};
• A real, symmetric color preference matrix T = {Tab ≥ 0}, such that

T 〈m〉 = 1.

We will for simplicity assume that the colored degree distribution is such
that all moments are defined.

For a given graph size N , such a model is implemented as follows.

1. For each node, draw its colored degree independently from the given
distribution. Redo until the total sum of the (plain) degrees is even.

2. Define random edges by performing a weighted random pairing within
the resulting even-numbered set of M stubs, such that the probability
for each of the (M − 1)!! possible pairings has a statistical weight
proportional to the product over all edges of a factor given by Tab,
where a, b are the colors of the stubs it connects.

This class of models obviously collapses to DRG for the case of a single
color, in which case the matrix T collapses to a single number, given by
1/ 〈m〉 by virtue of the constraint T 〈m〉 = 1.

The constraint on T is convenient for the forthcoming analysis, and en-
sures that the total number of ab-edges asymptotically approaches the value
N 〈ma〉Tab 〈mb〉, which upon summing over b yields the correct asymptotic
number of a-stubs as N 〈ma〉.

The combinatorics of the weighted random pairing yields the following
asymptotic results. The probability that two arbitrary stubs with known
colors a, b will be paired with each other is Tab/N . This implies that the the
probability for two random nodes with respective colored degrees m,m′ will
be connected is

∑
ab maTabm

′
b/N , which reduces (as it must!) to 〈m〉 /N if

the degrees are not known.
A less general class of models, similar in spirit to CDRG but restricted

to homogeneously colored vertices (i.e. with vertex coloring rather than
stub coloring), has also been investigated [14].
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4. Analysis

Below follows a comparative analysis, where we review a selected set of
local and global characteristics for random graphs as drawn from models of
the different types, with a focus on the asymptotic limit N → ∞. For a
more detailed analysis, we refer to the paper [8] and references therein.

4.1. Asymptotic Degree Distributions

First we will derive the resulting asymptotic degree distributions, where
not defined in the model specifications.

4.1.1. RG degree distributions

In a graph drawn from an RG model as described above, each node has
N − 1 possible connections, each independently realized with probability
c/N . Thus, the degree m of a random node will obey a binomial distribu-

tion,
(

N − 1
m

)
(c/N)m(1 − c/N)N−1−m. As N → ∞ with fixed c, this

approaches an asymptotic distribution {pm}, given by a Poissonian with
average c,

pm = e−c cm

m!
, (3)

with the corresponding generating function H(x) = ec(x−1).

4.1.2. IRG degree distributions

Choose a random node in a large graph from an IRG ensemble. It has the
color a with probability ra. For large N there are ∼ Nrb other nodes with
color b; each of these is connected to the chosen node independently with
probability cab/N . Thus, for a node of given color a, we asymptotically
expect its number of b-neighbors to follow a Poissonian distribution with
average cabrb, and its total degree to follow a Poissonian with average Ca ≡∑

b cabrb. Averaging over a yields the asymptotic degree distribution

pm =
∑
a

rae
−Ca

Cm
a

m!
, (4)

with the generating function

H(x) =
∑
a

rae
Ca(x−1), (5)

which describes a Poissonian mix. This implies the following convexity
constraint on the possible degree distributions:

p2
m ≤ m + 1

m
pm−1pm+1, (6)
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for m > 0. Conversely, any degree distribution obeying this constraint can,
at least in principle, be realized with a suitable IRG model, possibly with
infinitely many colors.

4.1.3. DRG degree distributions

The degree distribution is considered given in a DRG model, and so is
in principle free to choose. For ease of analysis, we shall restrict our con-
siderations to cases where all moments 〈mn〉 exist, barring power-behaved
distributions, which otherwise are interesting in their own right.

4.1.4. CDRG degree distributions

In a CDRG model, a colored degree distribution is given, from which the
plain degree distribution can be extracted directly. Its generating function
H(x) is obtained simply by evaluating the multivariate generating function
(with the same name) for the colored degree distribution with a homoge-
neous argument, H(x) = H(x1) ≡ H(x, . . . , x).

Since the colored degree distribution is free to choose, so is the plain
one, and there are obviously many CDRG models with a given degree dis-
tribution.

4.2. Small Subgraph Statistics

The combinatorial moments of the degree distribution are simply related
to the expected numbers of subgraphs in the form av stars. More general
local characteristics can be expressed in terms of the number of copies of
an arbitrary small graph γ found as subgraphs of a large random graph G.
We will be interested in the expected number of copies in the asymptotic
limit N →∞.

The clustering properties of a graph are often analyzed in terms of the
probability of two neighbors of a node to be connected; this is seen to be
related to the number of simple triangles, i.e. the number of subgraphs γ
in the form of a mutually connected triple of nodes.

Thus, assume an arbitrary small connected graph γ to be given, having
v ¿ N vertices and e ¿ N edges. We can estimate its expected number
〈nγ〉 of distinct occurrencies as a subgraph in a random graph G of size N
as follows.

A particular possible embedding of γ in G is defined by mapping the
ordered set of v nodes in γ onto a target set given by an ordered v-subset
of the N vertices in G. There are N !/(N − v)! ≈ Nv such sets. However,
for a target set to define a valid subgraph position, each edge in γ must be
mapped onto an existing edge in the target set.
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For the models considered, the expected count 〈nγ〉 can be derived from
Feynman-like rules, with model-specific vertex and node factors as well as
the usual symmetry factors.

4.2.1. Small subgraphs in RG

The RG model describes simple random graphs, which can have only
simple subgraphs. For each of the ∼ Nv possible embeddings of a simple γ,
the probability for the corresponding set of e target edges to exist is (c/N)e.

Thus, naively, the expected number of occurrencies should be Nv−ece.
If γ has a non-trivial isomorphism group, i.e. a symmetry under some
permutation of its vertices, the naive result has to be divided by the order
Sγ of the symmetry group. This leaves us with the following simple rules
for the asymptotically expected subgraph count 〈nγ〉.

• For each node in γ, associate a factor N .

• For each edge in γ, associate a factor c/N .

• Multiply the node and edge factors, and divide the result by the sym-
metry factor Sγ .

Since γ is assumed connected, we have e ≥ v − 1, and e − v + 1 counts its
number of loops. Thus, the expected count scales as O(N) for a tree, and
as O(1) for a one-loop γ, while it vanishes asymptotically for γ with several
loops. This is typical of a sparse random graph – loops are scarce.

As an example illustrating the lack of correlations in an RG ensemble,
consider subgraphs in the form of a v-chain, i.e. a set of v nodes connected
in an open chain; the expected counts show a simple geometric behaviour,
〈nγ〉 = Ncv−1/2.

4.2.2. Small subgraphs in IRG

Also in IRG, graphs are simple, so also here, we must assume γ to be
simple. Generalizing the arguments used for RG, we get the following rules
for the asymptotically expected number 〈nγ〉.

• Associate with each node in γ an independent color a, and a corre-
sponding factor Nra.

• Associate with each edge in γ a factor cab/N , where a, b are the node
colors at its endpoints.

• Multiply all node and edge factors, sum over the node colors, and
divide the result by the symmetry factor Sγ .
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Again, expected counts for tree subgraphs scale as O(N), and those for
connected one-loop subgraphs as O(1).

Non-trivial edge correlations are possible in IRG, as illustrated by v-
chain subgraphs, where the hidden color in an IRG ensemble enables the
expected counts to deviate from the simple geometric behavior found for a
plain RG ensemble; instead it takes the form of a mix of geometric sequences.

4.2.3. Small subgraphs in DRG

Since a DRG ensemble of the kind we are considering allows for degen-
eracies, we will have to consider also possibly degenerate subgraphs, with
loops of length one or two. Since subgraphs with loops are suppressed due
to the sparsity, just as in RG and IRG, degeneracies will turn out not to be
very important.

The expected number of copies of γ with a fixed set of target nodes can
be calulated as follows. Consider a node in the target set with actual degree
m, that defines the target for a node with degree k in γ. The corresponding
k target edges can be chosen among the m existing ones in mk ≡ m!/(m−k)!
distinct ways. This can be shown to yield the following rules for calculating
the asymptotic 〈nγ〉 for a DRG model.

• Associate with each node with k stubs in γ a factor N 〈mk〉.
• Associate with each edge in γ a factor 1/(N 〈m〉).
• Multiply the node and edge factors, and divide the result by the sym-

metry factor Sγ , including possible contributions from edge permuta-
tions and flips for the case of a non-simple γ.

Here, 〈mk〉 stands for the kth combinatorial moment, defined by ∂k
z H(z =

1) = 〈m(m− 1) . . . (m− k + 1)〉 (see eq. (2)).
For a v-chain, the expected count becomes N 〈m〉3−v 〈m(m− 1)〉v−2 /2,

displaying simple geometric behavior just as for the case of RG, illustrating
the lack of edge correlations in DRG.

4.2.4. Small subgraphs in CDRG

To analyze the subgraph statistics for a CDRG model, we will need the
colored generalizations of the combinatorial moments,

Eabc... ≡ ∂a∂b∂c . . .H(z = 1), (7)

with the lowest ones given by Ea ≡ 〈ma〉, Eab ≡ 〈mamb −maδab〉, etc.
Generalizing the argument used for DRG, one can derive the following rules
[8] for the asymptotically expected subgraph counts in a CDRG model.
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• Associate with each stub in γ an independent color label.

• Associate with each node in γ having k stubs a factor NEabc..., where
a, b, c . . . are the k associated color labels.

• Associate with each edge in γ a factor Tab/N , where a, b are the color
labels associated with the stubs at its endpoints.

• Multiply the node and edge factors, sum over the associated colors,
and divide the result by the symmetry factor Sγ , including possible
contributions from edge permutations and flips for the case of a non-
simple γ.

Note how these reduce to the DRG rules for the case of a single color.
For the case of a v-chain, the expected count becomes a mix of geometric

sequences, showing how the coloring also for CDRG enables non-trivial edge
correlations, just as was the case for IRG.

4.3. Connected Component Sizes

Next we turn to an analysis of the global connectivity characteristics of
a random graph. These are simplest described in terms of the sizes of the
connected components of the graph.

Thus, we will be interested in the size distribution Pn of a connected
component of a random graph, as revealed from a randomly chosen initial
node by recursively exploring edges leading to new nodes until the entire
component is revealed. For sparse random graphs in the asymptotic limit
N → ∞, any finite component is almost surely a tree, since any extra
connections will be suppressed by factors of 1/N . Thus, the revelation of
such a component can be described as a branching process, with properties
depending on the specific model considered.

The asymptotic component size distribution is conveniently analyzed in
terms of its generating function,

g(z) ≡
∑
n

Pnzn. (8)

For the models considered, g(z) or a set of related functions will satisfy
recursive equations that determine the sought distribution.

4.3.1. Component sizes in RG

For an RG model, the component size distribution can be estimated as
follows, as long as the component remains small. For each revealed node
i, the number k of branches to new nodes obeys a Poissonian distribution
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asymptotically, pk ∼ e−cck/k!, since there are ∼ N remaining unrevealed
nodes, each of which connects to i with probability c/N .

This yields the recursive equation g(z) = ze−c ∑
k ckg(z)k/k!, to be un-

derstood as follows. The initial factor of z accounts for the initial node,
while each term in the sum describes the case where it has a distinct num-
ber k of neighbors. The factor e−cck/k! represents the probability for this
case, and the factor g(z)k encodes the fact that each of the k neighbors
defines a subtree statistically identical to the full tree.

The recursion can be simplified to read

g(z) = zec(g(z)−1), (9)

which should be interpreted as an iterated map for the value of g for a given
value of z, a stable fixed point of which defines the physical value.

As a curiosity, eq. (9) can be written as F (cg(z)) = zF (c), with
F (c) = ce−c, with the explicit solution g(z) = F−1(zF (c))/c, with the
inverse of F defined from the restriction F (c), |c| ≤ 1. Taylor-expanding the

inverse yields the exact solution Pn = (nce−c)n

cnn! for n ≥ 1 for the asymptotic

component size distribution, with the large-n behaviour Pn → (ce1−c)n√
2πcn3/2 ,

decaying exponentially for c 6= 1 ⇒ ce1−c < 1, but only as a power for
c = 1.

4.3.2. Component sizes in IRG

For an IRG model, the asymptotic component size distribution, and
thus its generating function g(z), will obviously be an average over the
result conditional upon a particular color of the initial node, and we can
write

g(z) =
∑
a

raga(z), (10)

where ga(z) is conditional upon initial color a; these satisfy the following
recursive relations.

ga(z) = z exp

[∑

b

cabrb (gb(z)− 1)

]
, (11)

an obvious generalization of the corresponding RG result, eq. (9). This
cannot in general be solved exactly, but can be analyzed using numerical
and/or series expansion methods.
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4.3.3. Component sizes in DRG

Next we wish to obtain the asymptotic size distribution {Pn} in a DRG
model. As before, the sparsity forces finite components to take the form of
tree.

The generating function H(x) for the degree distribution will turn out to
be convenient. Of interest is also the degree distribution of a node reached by
following a random edge. This yields a weighting of nodes by their degree,
resulting in the modified distribution qm = mpm/ 〈m〉. The generating
function for its remaining degree (disregarding the incoming stub) becomes
H ′(x)/H ′(1).

With g(z) as before the generating function for the size distribution of
the entire component, let h(z) be the analogous generating function for the
size distribution of a subtree found by following an edge. Then g(z) can be
expressed in terms of h(z) as

g(z) = z
∑
m

pmh(z)m ≡ zH(h(z)), (12)

to be interpreted as follows. The explicit factor of z represents the first
node. It has m outgoing edges with probability pm, each of which represents
a subtree and yields a factor h(z); see fig. 1 for a graphical illustration. By

= + + + + ...

Fig. 1. g(z) in terms of h(z) for a DRG model, illustrating eq. (12).

a similar argument, h(z) satisfies the recursion

h(z) = z
∑
m

mpm

〈m〉 h(z)m−1 = z
H ′(h(z))

H ′(1)
, (13)

as depicted in fig. 2. Note that for the case of a Poissonian degree distri-

= + + + + ...

Fig. 2. Illustration of the recursive relation (13) for h(z).

bution, the recursion simplifies to the RG result. Indeed, the Poissonian
restriction of DRG is asymptotically equivalent to a version of RG allowing
for non-simple graphs.
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4.3.4. Component sizes in CDRG

Finally, we wish to obtain the asymptotic size distribution {Pn}, and its
associated generating function g(z), in a CDRG model.

Here, the multivariate generating function H(x) for the colored degree
distribution will be needed. Of interest is also the colored degree distribution
qm|a of a node reached by following a random edge emanating from a stub
of given color a. This is given by qm|a =

∑
b Tabmbpm. It follows that

the generating function for the distribution of its remaining colored degree
(where the incoming stub is neglected) is

∑
b Tab∂bH(x).

With g(z) having its usual meaning, we will denote by ha(z) the anal-
ogous generating function for the size distribution of a subtree found by
following an edge emanating from a stub of color a. Then, generalizing eq.
(12), g(z) can be expressed in terms of h(z) = (h1(z), . . . , hK(z)) as

g(z) = z
∑
m

pm

∏
a

ha(z)ma ≡ zH(h(z)), (14)

with the following interpretation. The explicit factor of z accounts for the
first node, which has a colored degree m with probability pm; each stub
of color a represents a subtree and yields a factor ha(z). The argument
generalizes the one used for DRG, as depicted in fig. 1.

By a similar argument, h(z) satisfies the coupled recursion

ha(z) = z
∑

b

Tab∂bH(h(z), (15)

generalizing the DRG relation, eq. (13), depicted in fig. 2.

4.4. The Appearence of the Giant

For all models, g(z) is the generating function for the component size
distribution {Pn}, and normalization of probability requires g(1) = 1. In-
deed, this corresponds to a fixed point of the recursions for z = 1 in all
models. However, it is a physical solution only if it corresponds to a stable
fixed point of the associated recursive equations. Where it fails to be sta-
ble, a competing solution with g(1) < 1 will take over, yielding a probability
deficit of magnitude 1− g(1).

For the asymptotically resulting branching process this can be inter-
preted as being due to a finite probability to obtain an infinite tree. For a
finite but large graph, it corresponds to the appearance of a giant compo-
nent, asymptotically containing a finite fraction 1− g(1) of the nodes, and
the transition where the naive fixed point loses stability defines a percolation
threshold, typically of second order. Below the threshold, all components are
small, and above it there is a single giant, while the remaining components
are small.
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4.4.1. The giant in RG

For z = 1, the recursion (9) for g = g(1) simplifies to g → ec(g−1), with
a solution satisfying cge−cg = ce−c. The stability of a solution depends on
the magnitude of the Jacobian, given by cec(g−1), which equals cg when g
is a solution.

It has the trivial solution cg = c, i.e. g = 1. For c smaller than a critical
value, c = 1, this solution is indeed stable under iteration of the recursion,
with the Jacobian given by c.

For c > 1, it fails to be stable, and so we must look for another fixed
point as the physical solution. Indeed, such a fixed point exists, as follows
from looking at a graph of the function c → ce−c, which has a unique
maximum for c = 1. Thus, for each c > 1 there is a dual value ĉ < 1 with
the same value of this function, yielding the stable solution g(1) = ĉ/c < 1.

Thus, we have established a probability deficit for c > 1, reflecting the
existence of a giant component, asymptotically containing a finite fraction
1− ĉ/c of the nodes. The critical point c = 1 ⇒ ĉ = 1 defines the percolation
threshold, above which there is a finite probability for an arbitrary pair of
nodes to be connected via a finite path.

4.4.2. The giant in IRG

For an IRG model, g = g(1) is given by the linear combination g = r·g ≡∑
a raga, with g = g(1) satifying the recursion ga → exp[

∑
b cabrb(gb−1)], as

follows from setting z = 1 in eqs. (10,11). The stability of the trivial solution
g = 1 depends on the spectrum of the local Jacobian matrix J = {cabrb}.

The case of the largest eigenvalue of J being exactly unity defines a
critical hypersurface in parameter space, beyond which the trivial fixed point
g(1) = 1 ⇒ g(1) = 1 loses stability, and a competing fixed point appears
with ga(1) < 1 ⇒ g(1) < 1. Again, the corresponding probability deficit
1− g(1) is taken as the probability for winding up in a giant component of
size N(1− g(1)).

4.4.3. The giant in DRG

For a DRG model, setting z = 1 in eqs. (12,13), yields for g = g(1) and
h = h(1) the relation g = H(h) and the recursion h → H ′(h)/H ′(1), with
the trivial fixed point h = 1 ⇒ g = 1. The stability of this is governed by
the Jacobian H ′′(1)/H ′(1) = 〈m(m− 1)〉 / 〈m〉. Stability results if this is
smaller than unity, i.e. if 〈m(m− 2)〉 < 0, defining the subcritical domain
of DRG [4].

In the supercritical domain, there will be a unique competing solution
h < 1, satisfying hH ′(1) = H ′(h), yielding g < 1, with the corresponding
probability deficit indicating the existence of a giant component.
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4.4.4. The giant in CDRG

Similarly, in a CDRG model, we can pinpoint the subcritical region by
analyzing the stability of the trivial solution h(1) = 1 of the recursion (15)
with z = 1, amounting to h → T∂H(h). The Jacobian amounts to J = TE,
i.e. the matrix product of T and the matrix E = {Eab} of second order
multivariate combinatorial moments of the colored degree distribution, as
defined in eq. (7), and subcriticality corresponds to the largest eigenvalue
of J being smaller than unity.

In the supercritical region, we will have non-trivial solution yielding
g(1) < 1, with an associated probability deficit and a giant component of
corresponding relative size.

5. Discussion

All of the models discussed in this article admit versions with or without
the restriction to simple graphs. They share the existence of several nice
properties, such as the computability of interesting local and global charac-
teristics, and the existence of a phase transition in the form of a percolation
threshold, where a giant component appears.

The sparse RG model is a mathematically very interesting object. Nev-
ertheless, it is severly limited as a model of real-world networks. Its degree
distribution is restricted to be Poissonian, and it is suffers from a funda-
mental lack of correlations between edges. Its main importance is as a role
model for more general random graph models.

The DRG approach yields a general class of random graph models, and
contains a non-simple version of RG as a special case. Although it admits
arbitrary degree distributions, it shares with RG a fundamental lack of edge
correlations.

Generalizing RG by adding hidden variables in the form of unobservable
vertex colors, allowed to affect edge probabilities, yields another general
class of models – IRG. It admits arbitrarily many distinct models for a
single degree distribution, and displays non-trivial edge correlation. Its
most serious limitation lies in the restriction of the degree distribution to
a Poissonian mix (which however does not exclude power-behaviour!). It
trivially contains RG as a special case, and its restriction to a rank one
preference matrix, cab = CaCb, defines a class of uncorrelated models, that
has been shown to be asymptotically equivalent to the restriction of DRG
to Poissonian mixtures [6]. Thus, IRG and DRG define distinct superclasses
of the classic RG model, and one might expect that there exists a larger
class that contains them both as distinct restrictions.

Such a unified class of models indeed exist. The generalization of DRG
to models with unobservable color on individual stubs, that is allowed to
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affect the edge probabilities as emerging from the stub pairing statistics,
yields a very general class of models – CDRG. It allows for arbitrary degree
distributions, as well as for non-trivial edge correlations. It contains as
distinct subclasses both DRG (trivially) and IRG (as the restriction of the
colored degree distribution to a mix of multivariate Poissonians) [7, 8].

CDRG shares with DRG an interesting relation to Feynman graphs of
simple field theories; work is in progress to explore this relation. CDRG
should also admit a straightforward extension to cover models also of di-
rected graphs.

A unifying formalism for random graphs appears to be a prerequisite for
the possibility to devise a systematic model inference scheme based on the
observed properties of real-world networks. CDRG appears to be a step on
the way to such a formalism for sparse, truly random graphs.
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[3] T. ÃLuczak, in Poznań, 1989 (A.M. Frieze, T. ÃLuczak, eds.), Random Graphs,

vol. 2 (John Wiley & Sons, New York, 1992), pp. 165–182.
[4] M. Molloy, B. Reed, Combinat. Prob. Comput. 7, 295–306 (1998).
[5] M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64, 026118

(2001).
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[8] B. Söderberg, Phys. Rev. E 68, 026107 (2003).
[9] B. Bollobás, Random graphs, 2nd ed., Cambridge University Press, Cam-

bridge, 2001.
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