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Abstract:
Many small proteins fold in a two-state manner, the rate-limiting step being the
passage of the free-energy barrier separating the unfolded state from the native one.
The free-energy barrier is, however, weak or absent for the fastest-folding proteins.
Here a simple diffusion picture for such proteins is discussed. It is tested on a model
protein that makes a three-helix bundle. Assuming the motion along individual
reaction coordinates to be diffusive on timescales beyond the reconfiguration time for
a single helix, it is found that the relaxation time can be predicted within a factor of
two. It is also shown that melting curves for this protein to a good approximation
can be described in terms of a simple two-state system, despite the absence of a clear
free-energy barrier.
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1 Introduction

The folding of proteins to their functional states is a remarkable process [1]. In the
cell, the folding process may require the assistance from helper molecules. However, as
shown by refolding experiments, many proteins have the ability to fold spontaneously
to their native states. This implies that the amino acid sequence contains all the
information needed for the formation of the functional state [2]. The questions of
how the folding process takes place and how the structure is encoded in the sequence
are fascinating and in the focus of both experimental and theoretical research.

Many small single-domain proteins share the common property of folding in a two-
state manner, without significantly populating any meta-stable intermediate state [3].
It is tempting to interpret the apparent two-state behaviour of these proteins in terms
of a simple free-energy landscape with two minima separated by a single barrier,
where the minima represent the native and unfolded states, respectively. If the barrier
is high, this picture provides an explanation of why the folding kinetics tend to be
single exponential, and why the folding thermodynamics show two-state character.

However, it is well-known that the free-energy barrier, ∆F , is not high for all these
proteins. In fact, assuming the folding time τf to be given by τf = τ0 exp(∆F/kT )
with τ0 ∼ 1 µs [4], it is easy to find examples of proteins with ∆F values of a few kT
[3] (k is Boltzmann’s constant and T the temperature).

Suppose the native and unfolded states coexist at the folding temperature and that
there is no well-defined intermediate state, but that a clear free-energy barrier be-
tween the native and unfolded states is missing. What type of relaxation behaviour
should one then expect? Furthermore, would such a protein show easily detectable
deviations from thermodynamic two-state behaviour? To gain insights into these
questions, our group recently performed a Monte Carlo (MC) study of a designed
three-helix-bundle protein [5]. Inspired by energy-landscape theory (for a recent re-
view, see [6, 7]), we compared the calculated relaxation time for this protein with
predictions from a simple one-dimensional diffusion picture.

The paper is organised as follows. In Section 2 the diffusion analysis is discussed. In
Section 3 our MC study of the thermodynamics and kinetics of the three-helix-bundle
protein is presented. A brief summary can be found in Section 4.

2



2 Diffusion Picture

In the energy-landscape approach [6, 7], the high-dimensional folding process is pro-
jected onto one or a few coordinates; in its simplest form, the folding process is mod-
elled as one-dimensional Brownian motion in an external potential F (r) = −kT ln Peq(r),
where r is the reaction coordinate studied and Peq(r) denotes the equilibrium distri-
bution of r. The probability distribution of r at time t, P (r, t), then obeys Smolu-
chowski’s diffusion equation

∂P (r, t)

∂t
=

∂

∂r

[
D(r)

(
∂P (r, t)

∂r
+

P (r, t)

kT

∂F (r)

∂r

)]
, (1)

where D(r) is the diffusion coefficient.

Due to the projection onto a single reaction coordinate r, Eq. (1) is not expected
to hold on short timescales. It may still be useful if the motion in r is diffusive
beyond some timescale that is small compared with the relaxation time. It is then
possible to predict the relaxation time from this equation. In [8] such an analysis was
successfully carried through for a lattice model protein.

If the free energy F (r) has the shape of a double well with a clear barrier in between,
Eq. (1) predicts single-exponential relaxation, with a rate constant given by Kramers’
well-known formula [9, 10]. However, this result cannot be applied to systems that
lack a clear free-energy barrier. To compare the behaviour of our fast-folding model
protein with that predicted by Eq. (1), we therefore solved this equation numer-
ically [5], by a finite-difference scheme of Crank-Nicolson type. The analysis was
carried out using the full F (r) and D(r), as obtained from simulations (see below).

In the idealized situation when F (r) has the shape of a square well and D(r) is a
constant, Eq. (1) can be solved in a closed form. It is instructive to take a look at
this solution. Suppose, for convenience, that the reaction coordinate r is the energy
E. The equilibrium distribution is then given by Peq(E) ∝ exp(−δβE) if E is in the
square well and Peq(E) = 0 otherwise, where δβ = 1/kT −1/kTf, Tf being the folding
temperature. With this Peq(E), Eq. (1) takes the form

∂P (E, t)

∂t
=

∂

∂E

[
D

(
∂P (E, t)

∂E
+ δβP (E, t)

)]
, (2)

where the diffusion coefficient is assumed constant, D(E) = D. The initial dis-
tribution P (E, t = 0) is taken to be the equilibrium distribution at an arbitrary
temperature T0.

3



By separation of variables, it is straightforward to solve Eq. (2) with this initial
condition for P (E, t), the energy distribution at time t. The average energy at time
t, E(t), is found to be

E(t) = 〈E〉+
∞∑

k=1

Ake
−t/τk , (3)

where the time constants τk are given by

1/τk =
D

∆E2
sw

(
π2k2 + 1

4
δβ2∆E2

sw

)
, (4)

∆Esw being the width of the square-well potential. Expressions for the equilibrium
average 〈E〉 and the expansion coefficients Ak can be found in [5].

For a general reaction coordinate r, Eq. (4) remains valid at T = Tf; that is, τk =
∆r2

sw/Dπ2k2, where ∆rsw is the width of the assumed square-well potential in r.
However, for a general r, the temperature dependence is not as simple as that in
Eq. (4).

Two properties of the expansion coefficients Ak are worth mentioning. First, Ak

scales as k2 if k ¿ 1
2π
|δβ|∆Esw, and as 1/k4 if k À 1

2π
|δβ|∆Esw. Second, all Ak

with even k are suppressed if T is close to Tf; in fact, they vanish if T = Tf. From
these two facts it follows that |A1| is much larger than the other |Ak| if T is near Tf.
This tends to make the deviation from single-exponential behaviour smaller than one
might expect from Eq. (4). At the same time, it should be pointed out that the exact
vanishing of Ak for even k at T = Tf is accidental and related to the perfect symmetry
in this particular case (square-well potential and constant diffusion coefficient).

In Section 3.3 the relaxation time of our three-helix-bundle protein is compared both
to the numerical solution of Eq. (1) and to the analytical solution of the simplified
Eq. (2).

3 Monte Carlo Study of a Designed Three-Helix

Bundle

3.1 Model and Methods

The three-helix-bundle protein was studied using a reduced off-lattice model, intro-
duced in [11]. In this model, each amino acid is represented by five or six atoms,
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three of which are the backbone atoms N, Cα and C′. Also included are the H and
O atoms of the peptide units, which are used to define hydrogen bonds. The sixth
atom is a large Cβ which represents the side chain. The Cβ atom is taken to be either
hydrophobic, polar or absent, which gives us three types of amino acids: H with
hydrophobic Cβ, P with polar Cβ, and G (glycine) without Cβ. All bond lengths,
bond angles and peptide torsion angles (180◦) are held fixed, which means that the
model contains two degrees of freedom per amino acid, the Ramachandran torsion
angles φ and ψ.

The potential function

E = Eloc + Eev + Ehb + Ehp (5)

is composed of four terms. The local potential Eloc has a standard form with threefold
symmetry,

Eloc =
εφ

2

∑

i

(1 + cos 3φi) +
εψ

2

∑

i

(1 + cos 3ψi) . (6)

The excluded-volume term Eev is given by a hard-sphere potential of the form

Eev = εev

∑′

i<j

(
σij

rij

)12

, (7)

where the sum runs over all possible atom pairs except those consisting of two hy-
drophobic Cβ. The parameter σij is given by σij = σi + σj + ∆σij, where ∆σij =
0.625 Å for CβC′, CβN and CβO pairs that are connected by three covalent bonds,
and ∆σij = 0 Å otherwise. The introduction of the parameter ∆σij can be thought
of as a change of the local potential.

The hydrogen-bond term Ehb has the form

Ehb = εhb

∑

ij

u(rij)v(αij, βij) , (8)

where the functions u(r) and v(α, β) are given by

u(r) = 5
(

σhb

r

)12

− 6
(

σhb

r

)10

(9)

v(α, β) =

{
cos2 α cos2 β α, β > 90◦

0 otherwise
(10)

The sum in Eq. (8) runs over all possible HO pairs, and rij denotes the HO distance,
αij the NHO angle, and βij the HOC′ angle.
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The last term of the potential, Ehp, is an effective hydrophobic attraction given by

Ehp = εhp

∑

i<j

[(
σhp

rij

)12

− 2
(

σhp

rij

)6 ]
, (11)

where the sum runs over all possible pairs of hydrophobic Cβ.

To speed up the calculations, a cutoff radius rc is used, which is taken to be 4.5 Å
for Eev and Ehb, and 8 Å for Ehp. Numerical values of all energy and geometry
parameters can be found in [11].

A slightly extended version of this model, with five amino acids rather than three,
has been applied to the three-helix-bundle B domain of staphylococcal protein A [12]
and two related sequences [13].

The idealized three-helix-bundle protein studied here contains 54 amino acids and
is a truncated three-letter version [14, 15] of a four-helix-bundle protein de novo
designed by Regan and DeGrado [16]. It consists of three identical stretches of H
and P amino acids, connected by two GGG segments. The HP segment is given by
PPHPPHHPPHPPHHPP and is such that it can make an α-helix with all H on the
same side.

The thermodynamic behaviour of this sequence was studied by using simulated tem-
pering [17–19], in which the temperature is a dynamic variable. This method was
used in order to speed up the calculations at low temperatures. For a review of
simulated tempering and other generalized-ensemble techniques for protein folding,
see [20]. Our simulations were started from random configurations. Two kinds of
conformation moves were used: first, the pivot move in which a single torsion angle is
turned; and second, a semi-local method [21] that works with seven or eight adjacent
torsion angles, which are turned in a coordinated manner. The non-local pivot move
was included in order to accelerate the evolution of the system at high temperatures.

An MC-based kinetic study was performed, too. These simulations are only meant to
mimic the time evolution of the system in a qualitative sense. The kinetic simulations
differ from the thermodynamic ones in two ways: first, the temperature was held
constant; and second, the non-local pivot update was not used, but only the semi-local
method [21]. This restriction is needed in order to avoid large unphysical deformations
of the chain.
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Figure 1: Representative structures for the two topologies, FU and BU. Drawn with
RasMol [22].

3.2 Thermodynamics

It turns out that this designed sequence does make a stable three-helix bundle in
this model, except for a twofold topological degeneracy. Figure 1 is a schematic
illustration of representative structures for the two topologies, as obtained by energy
minimisation. The difference between the two topologies is that if one lets the first
two helices form a U, then the third helix is either in front of (FU) or behind (BU)
that U. In order for the model to be able to discriminate between these states, it would
probably be necessary to change the hydrophobicity potential Ehp. A simple pairwise
additive potential like that in Eq. (11) has problems with this task because the contact
patterns are very similar in the two topologies [23]. A measure of structural similarity
with the (degenerate) native state is provided by the parameter

Q = max
[
exp

(
−δ2

FU/(10Å)2
)
, exp

(
−δ2

BU/(10Å)2
)]

, (12)

where δFU and δBU are the root-mean-square deviations from the ideal FU and BU
conformations in Fig. 1 (calculated over all backbone atoms).

The thermodynamic behaviour of this model protein was studied in detail in [5, 11].
In particular, it was found to have the following properties:

• Its helices are more stable than those of the corresponding one- and two-helix
segments, which is in agreement with the well-known fact that secondary-
structure elements in general are less stable in isolation than as parts of a
full protein.

• It undergoes an abrupt folding transition from an expanded state to the three-
helix-bundle state, without forming any well-defined intermediate state. The
temperature dependence of quantities such as the hydrogen-bond energy and
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Figure 2: Temperature dependence of (a) the hydrogen-bond energy Ehb and (b)
the radius of gyration Rg. The lines are fits to the two-state expression X(T ) =
[Xu + XnK(T )]/[1 + K(T )], where K(T ) = exp[(1/kT − 1/kTm)∆E] is the effective
equilibrium constant and Xn and Xu denote the native and unfolded values of X,
respectively. Such a fit has four parameters: the energy difference ∆E, the melting
temperature Tm, and the two baselines Xu and Xn.

the radius of gyration can be quite well described in terms of a simple two-state
system, as illustrated in Fig. 2. This figure also shows that helix formation and
chain collapse occur in parallel for this protein.

• It has no clear free-energy barrier between the unfolded and native states. Fig-
ure 3 shows the free-energy profiles F (E) and F (Q) at T = Tf. F (Q) exhibits a
very weak barrier, < 1 kT , whereas F (E) shows no barrier at all. This clearly
demonstrates that at a simple two-state description is an oversimplification, de-
spite that the melting curves show approximate two-state character (see Fig. 2).

It should be stressed that the behaviour of the model depends strongly on the param-
eters εhb and εhp that sets the strengths of the hydrogen bonds and the hydrophobic
attraction, respectively. These parameters must be carefully chosen in order for the
folding transition to be first-order-like [24].

3.3 Kinetics

In our MC-based kinetic study, the relaxation of ensemble averages of various quan-
tities was studied at T = Tf. For this purpose, a set of 3000 folding simulations was
performed, starting from equilibrium conformations at the temperature T0 ≈ 1.06 Tf.
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Figure 3: Free-energy profiles at T = Tf for (a) the energy E and (b) the similarity
parameter Q (dark bands). The light-grey bands show free energies for block averages
(see Eq. 13), using a block size of τb = 106 MC steps. Each band is centered around
the expected value and shows statistical 1σ errors.

At this temperature, the chain is extended with a relatively low helix content (see
Fig. 2).

Figure 4 shows the relaxation behaviour of the energy E and the similarity parameter
Q [see Eq. (12)]. Fits of the large-time data to an exponential give relaxation times
of τ ≈ 1.7 · 107 and τ ≈ 1.8 · 107 for E and Q, respectively, in units of elementary
MC steps.

These calculated relaxation times were compared with predictions from the diffu-
sion picture discussed in Section 2. For this purpose, it is necessary to perform a
coarse-graining in time, since the behaviour is not expected to be diffusive on short
timescales. A convenient way to implement that is to consider block averages b(t)
defined by

b(t) =
1

τb

∑

t≤s<t+τb

r(s) t = 0, τb, 2τb, . . . (13)

where τb is the block size and r is the reaction coordinate considered. The block size
was taken to be τb = 106 MC step, corresponding to the reconfiguration time for an
individual helix [5]. Using the block variables, the diffusion coefficient was estimated
by using Db(r) = 〈(δb)2〉r/2τb. The free energy Fb(r) for the block averages was
calculated too, and was found to be similar to that for the unblocked variables, as
can be seen from Fig. 3. Having obtained Db(r) and Fb(r), the relaxation time was
calculated in two ways. The first estimate, τpred,0, was obtained by using a square-
well approximation of Fb(r) and a constant Db(r) = Db. The second estimate, τpred,
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Figure 4: Relaxation behaviour at the folding temperature Tf, starting from T0 ≈
1.06Tf. (a) δE(t) = E(t)− 〈E〉 against simulation time t, where E(t) is the average
E after t MC steps (3000 runs) and 〈E〉 denotes the equilibrium average. (b) Same
plot for the similarity parameter Q.

∆rsw Db τpred,0 τpred τ
E: 140kTf (9.3± 0.2) · 10−5(kTf)

2 2.1 · 107 1.9 · 107 1.7 · 107

Q: 1.0 (1.00± 0.02) · 10−8 1.0 · 107 0.8 · 107 1.8 · 107

Table 1: The predictions τpred,0 and τpred (see text) along with the observed relaxation
time τ , for the energy E and the similarity parameter Q. ∆rsw is the width of the
square-well potential and Db is the average diffusion coefficient.

was obtained by numerical solution of Eq. (1), using the full Fb(r) and Db(r).

The results of this analysis are summarized in Table 1. From this table it can be seen
that the simple estimate τpred,0 is correct within a factor of two for both E and Q.
This is encouraging, but should not be taken to suggest that the underlying diffusion
picture is perfect. If it had been perfect, the more elaborate estimate, τpred, would
have agreed with the observed value τ , which is not the case. In fact, τpred is not better
than τpred,0, at least not in Q, despite that there is a weak barrier in this coordinate
(see Fig. 3b). That this one-dimensional description of the folding process is not
perfect is no surprise, given that it completely ignores non-Markovian effects. How
non-Markovian effects may affect folding times has been discussed in [7,25]. Another
way to refine the analysis would be to use a set of two or more reaction coordinates
rather than a single one [7, 26, 27]. With a multidimensional representation of the
folding process, non-Markovian effects could become smaller.
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The relaxation time analysis indicates that the dynamics are approximately diffusive
on timescales beyond 106 MC steps ∼ τ/20. If the potential is close to a square well
and the diffusion coefficient approximately constant, Eqs. (3) and (4) suggest that the
leading correction term to the asymptotic exponential behaviour should be a second
exponential with a time constant of τ2 = τ/4 at T = Tf (unless A2 is very small). A
look at the data in Fig. 4 shows that Q(t) is approximately single exponential down
to very small t, whereas there are non-negligible deviations from this behaviour in
E(t) below t ∼ τ/3. The data for E(t) can be well described by a double exponential
with time constants that differ by a factor of 4, but drawing any firm conclusion
about the value of the second time constant is impossible, due to limited statistics.
There is, however, a recent experimental study [28] of fast-folding mutants of the
five-helix-bundle protein λ6−85, in which double-exponential fits were performed near
T = Tf (for the mutant λQ33Y). Although it could be accidental, it is interesting to
note that the two fitted time constants differed by a factor close to 4, as predicted
by Eq. (4).

4 Summary

In this paper, a simple diffusion-based theory for fast-folding proteins was discussed.
It was tested against MC results for a three-helix-bundle protein, which were obtained
using a reduced off-lattice model with a relatively detailed chain representation. The
main findings were as follows.

• Assuming the motion in individual reaction coordinates to be diffusive on
timescales beyond the reconfiguration time for a single helix, the relaxation
time could be predicted within a factor of two.

• The closed-form solution for a square-well potential and a constant diffusion
coefficient predicts that the leading corrections to the asymptotic exponential
behaviour for large t are exponentials with time constants of τ2 = τ/4 and
τ3 = τ/9 at T = Tf. Due to statistical limitations, this could not be tested on
our model protein, but a double-exponential fit of recent experimental data for
a fast-folding protein actually gave time constants differing by a factor close to
4 [28]. Whether that was accidental or not remains to be seen.

• Although the relaxation time could be predicted quite well, it is clear that the
one-dimensional diffusion description leaves room for improvement, as could be
seen from our numerical solution of the diffusion equation.
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[11] A. Irbäck, F. Sjunnesson, S. Wallin, Proc. Natl. Acad. Sci. USA 97, 13614 (2000).
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