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Summary

Objective: Patients with suspicion of acute coronary syndrome (ACS) are difficult to
diagnose and they represent a very heterogeneous group. Some require immediate
treatment while others, with only minor disorders, may be sent home. Detecting ACS
patients using a machine learning approach would be advantageous in many situa-
tions.
Methods and materials: Artificial neural network (ANN) ensembles and logistic
regression models were trained on data from 634 patients presenting an emer-
gency department with chest pain. Only data immediately available at patient
presentation were used, including electrocardiogram (ECG) data. The models were
analyzed using receiver operating characteristics (ROC) curve analysis, calibration
assessments, inter- and intra-method variations. Effective odds ratios for the
ANN ensembles were compared with the odds ratios obtained from the logistic
model.
Results: The ANN ensemble approach together with ECG data preprocessed using
principal component analysis resulted in an area under the ROC curve of 80%. At the
sensitivity of 95% the specificity was 41%, corresponding to a negative predictive
value of 97%, given the ACS prevalence of 21%. Adding clinical data available at
presentation did not improve the ANN ensemble performance. Using the area under
the ROC curve and model calibration as measures of performance we found an
advantage using the ANN ensemble models compared to the logistic regression
models.
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1. Introduction

Patients who present at the emergency department
(ED) with chest pain or other symptoms suspicious of
myocardial infarction (AMI) or unstable angina pec-
toris (i.e. acute coronary syndrome, ACS) are com-
mon and represent a heterogeneous group. Some
have an AMI with a high risk of life-threatening
complications, whereas others have completely
benign disorders which may safely be evaluated
on an out-patient basis. Since our ability to diagnose
ACS in the ED remains poor, and since the conse-
quences of a missed ACS can be disastrous, there is a
large overadmission to in-hospital care; some 7 out
of 10 patients admitted with a suspicion of ACS
prove not have it [1,2].

A number of methods have been developed to
support the physicians in their decision making
regarding patients presenting to the ED with chest
pain [3—9]. Goldman et al. [3] developed a statistical
model to estimate the relative risk of major events
within 72 h after arrival at the ED. The independent
variables used included age, gender and electrocar-
diographic (ECG) findings, all available at presenta-
tion. Another model, the ACI-TIPI [4] was developed
to assist triage decisions regarding patients with
symptoms of acute cardiac ischemia. This model,
using only a few factors (both clinical and ECG),
was able to significantly reduce hospitalizations for
ED patients without acute cardiac ischemia. In a
recent study by Harrison et al. [7] approximately
3000ACSpatients fromthreedifferent hospitalswere
analyzedwith very good results, using as few as eight
features. They obtained an area under the receiver
operating characteristics (ROC) curve as high as 98%.
An example of ACS prediction can also be found in the
work ofXueet al. [6]whereahybridmachine learning
approach was used, combining artificial neural net-
works (ANN) and decision trees. There are also a
number of approaches that have been developed
to predict the presence of AMI based on a full range
of clinical data [10—13] and data limited to the 12-
lead ECG only [14,15]. Many of these methods used
ANN as the classification tool. The performance is
usually good compared to interpretation made by
experienced physicians.

ANN represents a machine learning tool that
has turned out to be useful for complex pattern
recognition problems. ANN is also widely used for
medical applications (see e.g. [16]). Ensemble
learning for ANN is standard procedure to increase
the generalization performance by combining sev-
eral individual networks trained on the same task.
The ensemble approach has been justified both
theoretically [17,18] and empirically [19]. Combin-
ing the outputs is clearly only relevant when they
disagree on some or several of the samples. The
most simple method for creating diverse ensemble
members is to train each network using randomly
initializedweights (also known as injecting random-
ness). A more elaborate approach is to train the
different networks on different subsets of the train-
ing set. An example is bagging [20] where each
training set is created by resampling (with replace-
ment) the original one, with uniform probability.
Cross-splitting [18] is another ensemble creation
technique that has performed well in connection
with ACS prediction [8].

Comparing ANN models with standard statistical
generalized linear models such as logistic regres-
sion is an important step in the development
procedure. If the results show that the gain of
using a non-linear model, such as the ANN, is
limited, one should usually go for the less compli-
cated model. Logistic regression always has the
nice property of being fully interpretable which
can be used to provide feed-back to the user. When
performing this comparison it is always important
to use more than one measure of performance,
since there are several aspects of what is good
performance [21].

The aims in this study were two-fold. The first aim
was to construct an ACS prediction model for our
study population and explore to what extent we can
confirm previous results obtained for other ACS
study populations. Part of this aim was also to
identify relevant clinical input factors for the ACS
prediction models using an effective odds ratio
approach. The second aim was to conduct a detailed
comparison between ANN and logistic regression
models. In this comparison, we used two common
techniques for ANN ensemble training together with
a single ANN approach. The measures of perfor-
mance were area under the ROC curve, x2 calibra-
tion statistics and Pearson correlations for intra- and
inter-method variations.
Conclusion: Clinically, a prediction model of the present type, combined with the
judgment of trained emergency department personnel, could be useful for the early
discharge of chest pain patients in populations with a low prevalence of ACS.
# 2006 Elsevier B.V. All rights reserved.
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Table 1 Characteristics of the independent variables used to train the ACS prediction models

Input variable No miss., n ACS, n (%) No ACS, n (%)

Age — 70.1a(13.2)b 61.3a(18.0)bc

Gender —
Male 83 (63.8) 279 (55.4)c

Female 47 (36.2) 225 (44.6)
Diastolic blood pressure 15 83.9a(14.9)b 82.7a(12.4)bc

Systolic blood pressure 8 148.5a(29.6)b 142.2a(24.0)b

Heart rate 2 79.4a(22.0)b 78.1a(18.1)b

Smoking status —
Current 29 (22.3) 98 (19.4)
Not current/unknown 101 (77.7) 406 (80.6)

Hypertension —
Yes 47 (36.2) 114 (22.6)c

No/unknown 83 (63.8) 390 (77.4)
Diabetes —

Yes 19 (14.6) 57 (11.3)
No 111 (85.4) 447 (88.7)

Medication —
Yes 82 (63.1) 263 (52.2)
No 48 (36.9) 241 (47.8)

Angina pectoris 2
Yes, � 1 month 4 (3.1) 5 (1.0) c

Yes, > 1 month 56 (43.8) 174 (34.5)
No 68 (53.1) 325 (64.5)

Congestive heart failure —
Yes 20 (15.4) 79 (15.7)c

No 110 (84.6) 425 (84.3)
Chest discomfort at presentation —

Yes 85 (65.4) 238 (47.2)c

No 45 (34.6) 266 (52.8)
Symptom duration 2

0—6 h 100 (76.9) 263 (52.2)c

7—12 h 16 (12.3) 59 (11.7)c

13—24 h 4 (3.1) 42 (8.3)
> 24 h 10 (7.7) 140 (27.8)

Tachypnea —
Yes 13 (10.0) 27 (5.4)
No 117 (90.0) 477 (94.6)

Lung rales —
Yes 12 (9.2) 23 (4.6)
No 118 (90.8) 481 (95.4)

Previous myocardial infarction —
Yes, � 6 months 13 (10.0) 19 (3.8) c

Yes, > 6 months 37 (28.5) 107 (21.2)c

No 80 (61.5) 378 (75.0)
Previous PTCA —

Yes 4 (3.1) 21 (4.2) c

No 126 (96.9) 483 (95.8)
Previous CABG —

Yes 10 (7.7) 55 (10.9)c

No 120 (92.3) 449 (89.1)

There are 130 cases of ACS and 504 cases without ACS. The second column shows the number of missing values for each variable,
where ‘—’ indicates no missing value. The last two columns shows the number of patients (percentage) in each category. For
continuous variables the mean (S.D.) is presented. Also, footnote ‘c’ is used to indicate if a variable is part of the simplified logistic
regression model.
a Mean.
b S.D.
c Clinical variables used in the simplified logistic regression model.
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Table 2 Characteristics of the ECGs recorded on the
patients

ECG finding ACS n (%) No ACS n (%)

ST-elevation 52 (40.0) 80 (15.9)
ST-depression 52 (40.0) 59 (11.7)
T-wave inversion 74 (56.9) 189 (37.5)

There are 130 cases of ACS and 504 cases without ACS. ST-
elevation was defined as STamplitude � 1 mm in two or more
contiguous leads, whereas ST-depression was defined as a
negative STamplitude � 1 mm in any lead. T-wave depression
was defined as a negative T-wave (� 1 mm) with a predomi-
nant R-wave.
2. Materials and methods

2.1. Study population

This study is based on patients with chest pain
attending the ED of Lund University Hospital, Swe-
den, from 1st July to 20th November 1997. Six
hundred sixty-five consecutive visits for which elec-
tronic ECG data could be retrieved were included.
To have as independent data as possible, some visits
were removed such that a criterion of atleast 20
days between two consecutive visits, for a given
patient, was fulfilled. This reduced the dataset to
634 visits, where 130 patients were diagnosed with
ACS and 504 with no ACS. ECG data comprised the
12-lead ECG, recorded using computerized electro-
cardiographs (Siemens-Elema AB, Solna, Sweden).
Table 1 shows the clinical variables used in this
study. Missing values were substituted by the most
common category for categorical variables and the
mean value for continuous variables.

ECG data were reduced to smaller sets of more
effective variables before entered into the classi-
fication models. The reduction was accomplished
using principal component analysis (PCA). Prior to
this analysis the measurements were grouped into
the following six sets of measurements namely: QRS
area (total area of the QRS complex), QRS duration,
QRS amplitudes, STamplitudes (ST-amp, ST-amp 2/
8 and ST-amp 3/8), ST slope (the slope at the
beginning of the STsegment) and positive/negative
T amplitudes. The ST amplitudes 2/8 and 3/8 were
obtained by dividing the interval between ST-J
point and the end of the T wave into eight parts
of equal duration. The amplitudes at the end of the
second and third interval were denoted ST ampli-
tude 2/8 and 3/8, respectively. Each of these six
sets were then subject to a principal component
analysis reduction, e.g. the 12 ST slope variables
(one from each lead) were reduced to two vari-
ables. The final ECG data set, to be used for the ANN
training, consisted of a selection [22] of 16 PCA
variables.

The diagnosis of ACS is defined as one of the
following discharge diagnoses for the patient: AMI
and unstable angina pectoris. The discharge diag-
noses were made by the attending senior ward
physicians and also reviewed by an experienced
research nurse. AMI was defined by the WHO criteria
[23] where the biochemical criterion was atleast
one measurement of CK-MB > 10 mg/l or Troponin T
> 0.1 mg/l. The criteria for unstable angina were
(i) observed with (ii) and/or (iii):
(i) Ischemic symptoms: chest pain > 15 min, syn-
cope, acute heart failure or pulmonary
oedema.
(ii) E
lectrocardiogram (ECG) changes: transient or
persisting ST segment depression (� 1 mm)
and/or T-wave inversion (� 1 mm) without
developing Q waves or loss of R wave height.
(iii) B
iochemical markers: CK-MB 5—10 mg/l or Tro-
ponin T 0.05—0.1 mg/l.
The non-ACS cases consisted of patients with the
diagnosis of stable and suspected angina pectoris,
together with the category ‘‘other diagnosis’’. Out
of the 504 non-ACS cases, 271 had discharge diag-
noses other than stable or suspected angina pec-
toris. Table 2 shows common ECG characteristics for
both the ACS cases and the non-ACS cases, obtained
by the lead measurements.

2.2. Artificial neural networks

We considered ANN in the form of feed-forward
multilayer perceptrons (MLP) with one hidden layer
and no direct input—output connections. The hidden
unit activation function was the hyperbolic tangents
and the output activation function was the standard
logistic function. We used the cross-entropy error
function for two classes. In addition, we introduced
a weight elimination term Ereg [24], controlled by a
tunable parameter l, to possibly regularize the net-
work:

Ereg ¼ l
X

i

b2
i

1þ b2
i

where the sum runs over all weights in the MLP,
except threshold weights. The total error is the sum
of the cross-entropy part and Ereg for the case when
using regularized MLPs. The minimization of the
error function was accomplished using the gradient
descent method.

Among several existing methods for constructing
ensembles, such as voting and boosting (see e.g.
[25]) we have used two methods: the common bag-
ging method [20] and S-fold cross-splitting [18,8]. In
bagging one starts with a given training set and
then creates new training sets by resampling, with
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Figure 1 Ensemble model selection procedure. A given
training data set was split into several training/validation
parts using K-fold cross-validation. Each of these smaller
training sets (T) were then used to create an ANN ensem-
ble and the corresponding validation set (V) was used for
validation. For each K-fold cross-validation split, Kensem-
bles were created which resulted in K validation results.
The whole procedure was repeated N times with different
random K-fold cross-validation splits.
replacement, the original one. Thus, the bagging
ensemble contains MLPs trained on bootstrap sam-
ples of the original training set. The ensemble out-
put tens is simply computed as the mean of the
individual ensemble members, i.e.,

tens ¼ 1

C

XC

n¼C
tn (1)

where tn is the output of the n: th MLP in the
ensemble and C is the bagging ensemble size.

Another way to create diverse training sets is to
randomly partition the dataset into S bins. One can
then create S slightly different training sets by
excluding one of the parts each time. This procedure
can be repeated N times to create N � S different
but similar training sets. By training an MLP on each
of these training sets we can create a pool of MLPs
that can be combined into a N � S cross-splitting
ensemble. As for bagging the ensemble output is
computed as the mean over the N � S MLP outputs
(see Eq. (1)). Clearly, the difference between the
training sets will increase if fewer bins are used, as a
larger fraction of the original training set is
excluded each time. For the efficiency of the
ensemble we therefore used S ¼ 2, supported by
the findings in Green et al. [8]. This approach to
ensemble creation can be found in the work of Krogh
et al. [18], but used in a different context.

The ensemble size, C for bagging and N � S for
cross-splitting, influences the performance of the
ensemble method compared to single MLP classi-
fiers. In this study we used an ensemble size of 25 for
the model selection and 50 for the final test runs.
Both sizes are reasonable according to numerical
studies (see e.g. [19,26]).

2.3. Ensemble model selection

Even though the use of ensembles decreases the
usual negative effect of overtraining, one must per-
form model selection for the ensemble. We use the
standard K-fold cross-validation procedure to esti-
mate the generalization performance. However, to
actually validate the ensemble, each training group
in the K-fold cross-validation procedure is used to
train an ensemble with either bagging or S-fold
cross-splitting. Fig. 1 summarizes the procedure
used for performing ensemble model selection.
Model selection is performed, using a grid search,
over parameters l and the number of hidden units in
the ANN.

Alternative procedures can be used with the S-
fold cross-splitting ensemble, which combines both
the cross-validation and the ensembles creation [8].
However to accurately validate both the bagging
and the S-fold cross-splitting ensemble we used the
above procedure even though it is more costly in
terms of CPU-time.

2.4. Multiple logistic regression

Multiple logistic regression [27] was also used to
predict the probability of ACS. Both full logistic
regression models, using the same inputs as the
ANN models, and a simplified model using only
clinical input data were trained. The clinical input
variables used for the simplified logistic regression
model can be found in Table 1.

The optimization procedure for the simplified
logistic regression model was as follows: starting
with the full multivariate model with all indepen-
dent variables included, we excluded one insignif-
icant independent variable at a time, starting with
the variable with highest p-value, until only signifi-
cant and important predictors remained. Categori-
cal variables with more than two categories were
kept in the model if the odds ratio associated with
any of the categories was significant. The statistical
power to detect associations between some of the
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rare but possibly important clinical characteristics
was low. Thus, variables with estimated odds ratio
of atleast 2.5 (or, equivalently, atmost 0.4) were
considered as important predictors and kept in the
model even if they were not statistically significant.
In order to simplify the final model, categories with
odds ratios close to one were collapsed with the
reference category for that variable. Similarly,
unknown response to one of the variables (hyper-
tension) was also added to the reference category.

2.5. Statistical analysis

2.5.1. Effective odds ratios
To discern the information content in each of the
ANN input features we considered effective odds
ratios. Odds ratio is the ratio between the odds for
an event when a feature is present and the odds for
an event when that feature is absent. Odds ratios
are well known in the statistical community but
cannot be used in conjunction with ANN since the
output of an ANN is a non-linear function of the
inputs. Odds ratios are defined as:

OR ¼ p1=ð1� p1Þ
p0=ð1� p0Þ

¼ p1ð1� p0Þ
p0ð1� p1Þ

(2)

where p1 is the risk of an event for a patient with a
certain feature and p0 is the risk for the patient
without that certain feature. In generalized linear
models, such as the logistic regression model used in
this study, the odds ratio for a particular feature is
ew, wherew is the weight for this particular feature.
In an ANN we have a non-linear function in the
exponent which depends on all other input features
in the ANN. However, it is possible to calculate an
effective odds ratio by averaging expression (2) over
all patients [28].

For the logistic regression model there is an
alternative interpretation of the odds ratio for a
specific feature. The logistic standard bare model
can be described by the following relation:

y ¼
Xm

i¼1
xivi þ v0

where y is the log odds of an event, given the input
ðx1; x2; . . . ; xmÞ. If we take the derivative of this
relation with respect to a certain feature xi we
end up with:
@y

@xi
¼ vi ¼ log ðORxiÞ (3)

In other words, we can interpret the derivative with
respect to a feature xi as the log odds ratio for that
feature. We can easily generalize this measure to
the ANN case. However, the resulting expression will
depend on the other input features via the hidden
layer function. We can consider odds ratios for an
ANN as either the effective odds ratio where we
average expression (2) over all patients, or we can
use the derivative interpretation, by averaging
expression (3). It is not obvious which one provides
the best approximation of odds ratios for the ANN. In
this study we used the former approach.

2.5.2. Model calibration
Model calibration, which is a comparison between
the observed and predicted ACS risk, was evaluated
using the Hosmer—Lemeshow goodness-of-fit test
[29], which is given by,

x2 ¼
XG

j¼1

ðoj � njp̄ jÞ2

njp̄ jð1� p̄ jÞ

In this expression oj is the number of observed ACS
cases in bin j, p̄ j the mean average predicted ACS
risk in bin j, and G the number of bins meanwhile nj

is the number of samples in the bin. This test follows
the x2 statistics with (G� 2) degrees of freedom. In
this study we have used 10 bins of equal size. The
resulting x2 statistic is used to indicate non-signifi-
cant differences (p> 0:05) between observed and
predicted ACS.

2.6. Performance estimation

In addition to the calibration assessment we also
constructed ROC curves for all methods. The area
under the ROC curve provides yet another (popular)
measure of performance. It has the interpretation of
the probability that a randomly chosen patient with
ACS has a larger predicted ACS risk than a randomly
chosen patient without ACS (see e.g. [30]). From the
ROC curve we also accessed the specificity at a level
of 95% sensitivity. This somewhat arbitrary level was
chosen because with current standard evaluation,
some 2—5% of the ACS patients are erroneously dis-
charged from the ED, which implies a sensitivity of
atleast 95% for the routine ED work-up.

To estimate the generalization performance of the
tested models we used a five-fold cross-testing pro-
cedure, repeated 20 times, resulting in 100 test sets
on which the area under the ROC curve was calcu-
lated. Theprocedure is similar to the cross-validation
method used formodel selection and is accomplished
by dividing the data set into five parts of (approxi-
mately) equal size. An ACS prediction model is con-
structed on all parts except one, which is used as the
independent test set. The median of the 100 ROC
areas is used as the test performance for a given
model and selection of independent variables.

An alternative approach to measure the general-
ization performance is to make an ensemble of
the test ACS predictions. This is accomplished by
computing the average ACS probability for each



Neural network and logistic regression to predict ACS 311
patient taken over the 20 cross-splittings defined
above. The end result is a single list of test ACS
probabilities, comprising the full data set, and its
corresponding ROC curve. The 100 test set predic-
tions, for a given particular model, is thus trans-
formed into one set of test predictions, defined as
the full test ensemble. One would expect this
approach to produce an estimation of the general-
ization performance that is above the one given by
the median of the 100 single test results since there
is yet another ensemble effect to account for.
Furthermore, using the full test ensemble enables
a straightforward statistical comparison between
different ROC curves and their areas. Associated
p-values for ROC area differences using the full test
ensemble were calculated using a permutation test
(see e.g. [31]).
Table 3 Test ROC areas obtained from the different meth

Model Number of va
(categoriesa þ

ANN bagging ensemble
Clinicalþ ECG data 38

ECG data 16

Clinical data 22

ANN cross-splitting ensemble
Clinicalþ ECG data 38

ECG data 16

Clinical data 22

ANN single MLP
Clinicalþ ECG data 38

ECG data 16

Clinical data 22

Multiple logistic regression (no interaction)
Clinicalþ ECG data 38

ECG data 16

Clinical data 22

Multiple logistic regression (simplified)
Clinical data 13

For each method two estimations of the generalization performanc
97.5 percentiles) over the 100 test sets defined by the cross-testin
bounds) from the full test set ensemble.
a The base categories are not counted.
2.7. Software

In this study we used the SAS system to build and
develop the logistic regression models meanwhile a
C++ based software package was used to build the
ANN models. The statistical comparisons were con-
ducted using custom made Perl scripts.
3. Results

The test ROC areas obtained for the different meth-
ods and different combinations of independent vari-
ables are summarized in Table 3. For each method
the ROC area is given both as the median area of the
100 test sets and as the single area of the full test set
ensemble.
ods

riables
continuous)

Test ROC area (%)

79.1 (69.2, 86.2)
80.1 (76.2, 84.2)
79.8 (69.2, 88.5)
81.1 (77.1, 85.2)
75.3 (67.2, 83.0)
76.0 (71.8, 80.4)

78.7 (68.6, 86.5)
80.0 (76.1, 84.0)
80.2 (70.7, 89.2)
81.0 (77.1, 85.2)
75.1 (67.0, 82.6)
75.3 (70.9, 79.8)

76.3 (65.3, 83.7)
77.1 (72.7, 81.6)
76.0 (60.0, 87.1)
80.0 (76.0, 84.2)
72.6 (64.9, 80.7)
73.3 (68.6, 78.1)

75.7 (63.5, 84.2)
76.4 (71.8, 80.9)
70.5 (54.2, 81.2)
71.0 (65.8, 76.2)
72.5 (64.6, 81.7)
73.1 (68.4, 78.0)

75.2 (66.4, 82.8)
75.1 (70.7, 79.7)

e are presented. The first line corresponds to the median (2.5,
g procedure. The second line is the ROC area (95% confidence
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Figure 2 The ROC curves for the best ANN ensemble and
the best logistic regression model using the full test
ensemble. The areas under the curves were 81.1% and
76.4%, respectively. The difference was significant
( p ¼ 0:03).
The best areas were obtained using the ANN
ensemble approach with ECG data, 79.8% and
80.2% (median values) for the bagging and the
cross-splitting ensemble, respectively. Adding clin-
ical data to the ANN models did not improve the
performance, there was actually a slight decrease of
the performance (79.1% and 78.7%), although not
significant. Comparing the two ANN ensemble crea-
tion methods, it is apparent that both methods
yielded similar results. The logistic regressionmodel
using both ECG and clinical data received an area of
75.7%. Using only ECG data in the logistic model the
results dropped to only 70.5%, indicating the pre-
sence non-linearities in the ECG data that the logis-
tic regression model could not capture. Comparing
the logistic regression models, built on clinical data
alone, the simplifiedmodel, using feature selection,
and the normal model, with all features present,
received an ROC area of 75.2% and 72.5%, respec-
tively.

Using the full test ensemble when measuring the
performance allows for a (statistical) comparison of
twoROCcurves.As canbe seen inTable3 therewas an
overall increaseof theperformanceusing the full test
ensemble (except for the simplified logistic model)
and this is most certainly due to the ensemble-aver-
aging effect. The difference was significant
(p ¼ 0:05) when comparing the ANN bagging ensem-
ble trained with clinical data only (76.0%) and ECG
data only (81.1%). For the cross-splitting ensemble
the corresponding (significant different) areas were
75.3% and 81.0% (p ¼ 0:03). Using the simplified
logistic regressionmodel, where each non-significant
Table 4 Test x2 calibration and intra-Pearson correlation v

Model Calibratio

ANN bagging ensemble
Clinicalþ ECG data 14.5 (3.5
ECG data 12.5 (3.2
Clinical data 11.7 (4.1

ANN cross-splitting ensemble
Clinicalþ ECG data 13.6 (4.4
ECG data 11.8 (3.6
Clinical data 11.6 (3.2

ANN single MLP
Clinicalþ ECG data 15.7 (4.2
ECG data 40.2 (7.3
Clinical data 11.5 (3.5

Multiple logistic regression
Clinicalþ ECG data 24.8 (6.9
ECG data 17.1 (3.9
Clinical data 12.8 (4.5

Multiple logistic regression (simplified)
Clinical data 11.7 (3.6

The values are presented as median (2.5, 97.5 percentiles) over th
calibration assessment. Pearson correlation values are median (2.5
input feature was removed, resulted in an ROC area
of 75.1%. The logistic regression model with all fea-
tures present performed worse, receiving an ROC
area of 73.1% (p ¼ 0:02). Also including ECG data
in the logistic regression model did not significantly
improve the performance compared to the simplified
model basedon clinical data only. It is also interesting
to compare sensitivity and specificity values for the
differentmethods. Fig. 2 shows theROC curve for the
full test ensemble using the ANN bagging ensemble
and the logistic regression method. At the sensitivity
level of 95% we obtained a specificity of 41.1% and
33.7% for the ANN and the logistic model, respec-
alues obtained from the different methods

n (x2) Pearson correlation

, 58.8) 0.88 (0.85, 0.90)
, 47.6) 0.85 (0.81, 0.88)
, 35.3) 0.92 (0.90, 0.93)

, 65.3) 0.89 (0.86, 0.91)
, 24.9) 0.85 (0.82, 0.88)
, 40.8) 0.93 (0.91, 0.94)

, 65.2) 0.88 (0.85, 0.91)
, 436.5) 0.69 (0.59, 0.78)
, 44.1) 0.93 (0.87, 0.95)

, 93.6) 0.88 (0.84, 0.90)
, 67.2) 0.85 (0.80, 0.89)
, 45.3) 0.93 (0.91, 0.95)

, 39.6) 0.96 (0.94, 0.97)

e 100 test sets defined by the cross-testing procedure for the
, 97.5 percentiles) over all full test split pairs.
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Figure 3 This figure shows the expected and the predicted fraction of ACS for patients in the full test ensemble. Left
and right figure are the ANN ensemble, trained on ECG data only, and the logistic regression model, trained on both ECG
and clinical data, respectively.
tively. With the prevalence of 20.5% ACS in this study
population this corresponds to a negative predictive
value of 97.2% (96.1%) and a positive predictive value
of 29.5% (25.8%) for the ANN ensemble (logistic
regression) method.

3.1. Calibration comparison

The degree of calibration for the different methods
was quantified using the Hosmer—Lemeshow good-
ness-of-fit test [29]. The results are presented in
Table 4. Comparing the best models (cross-splitting
ensemble and logistic regression) we obtained x2

values of 11.8 and 24.8, respectively. Both values,
taken as the median over the 100 test sets, corre-
sponds to p-values of 0.16 and 0.002. We thus con-
clude that the best logistic regression model was not
calibrated, meanwhile the ANN model was. More-
over, we see that the most calibrated model was the
single MLP with a x2 and a p-value of 11.5 and 0.17,
respectively. Generally models trained with only
clinical data received the best calibration scores.
The overall worse calibrated model was the single
MLP model trained using only ECG data (x2 ¼ 40:2).
An illustration of the degree of calibration in the full
test ensemble is presented in Fig. 3 where the solid
bars represent the predicted fraction of ACS mean-
while the textured bars represents the true fraction
of ACS.

3.2. Scatter plots

Although the ROC area and the calibration compar-
ison may reveal differences between the logistic
regression and the ANN ensemble model, they are
not useful for detecting differences on a patient per
patient basis. It is therefore interesting to look at
ordinary scatter plots, both for intra- and inter-
method comparisons. To quantify the degree of
correlation in the scatter plots we used the Pearson
correlation coefficient. Results for the intra-method
correlations can be found in Table 4. The simplified
logistic regression model obtained the largest cor-
relation coefficient (0.96). Generally methods
trained with only clinical data had smaller intra-
variations compared to method trained with ECG
information. Comparing the best ANN and logistic
regression model according to Table 3 we can con-
clude that the ANN had larger intra-method varia-
tions (0.85 compared to 0.88 for the logistic
regression model). Fig. 4 shows the scatter plots
for these two models, where the test splits are
chosen as to correspond to median Pearson correla-
tion values. Thus, the scatter plots in Fig. 4 repre-
sents typical intra-variations in the 20� five-fold
cross-testing scheme for the two models.

For inter-method comparisons, we first looked at
the best ANN model and the best logistic regression
model according to the ROC area (see Table 3). The
median Pearson correlation coefficient for all inter-
method test split pairs was 0.59 and Fig. 5 (left part)
shows a corresponding scatter plot. Since there was
an ROC area difference of 4.5% between the two
models (80.2% compared to 75.7%) one would
expect some inter-method differences, but the
scatter plot shows a large variation for many
patients.

It is also interesting to compare ANN and logistic
regression models that had almost the same ROC
area and calibration statistics. The bagging ensem-
ble trained on clinical data obtained an ROC area of
75.3% and calibration x2 of 11.7. The corresponding
numbers for the simplified logistic regression model
was 75.2% and 11.7%, respectively. The median
Pearson correlation coefficient for this comparison
was 0.85 and the corresponding scatter plot is shown
in Fig. 5 (right part). Although there were no differ-
ences in performance and calibration between
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Figure 5 Inter-method scatter plots. The left figure shows ACS predictions for the ANN cross-splitting ensemble (ECG
data) vs. the logistic regression model (all input features), using test split 12 and 15, respectively. The right figure
corresponds to the bagging ensemble (clinical data) and the simplified logistic regression model, using test split 6 and 17.

Figure 4 Intra-method scatter plots. The left figure shows the ANN cross-splitting ensemble ACS predictions for
patients in test splits 1 and 8. The right figure are the corresponding ACS predictions for logistic regression model (test
split 13 and 18). The ANN ensemble was trained on ECG data meanwhile the logistic regression model used both ECG and
clinical data.
these two models, there were still significant ACS
prediction differences for specific patients. To
further analyze the differences we looked at the
10 patients that had the largest ACS prediction
differences in this scatter plot. The absolute differ-
ences ranged from 0.42 to 0.28. Four ACS patients
was part of this subset and the ANN ensemble was
correct in three cases. Among the remaining six non-
ACS patients the ANN ensemble correctly classified
four of them.

3.3. Comparing risk factors

For the logistic regression method one can easily
compute odds ratios for each of the independent
variables. Using odds ratios one can compare the
different ‘‘predictor’’ variables. For the ANN
ensemble one has to compute effective odds ratios
because of the non-linearity in the model (see
Section 2.5.1). Odds ratios for the logistic regres-
sion model and effective odds ratios for the ANN
bagging ensemble are shown in Table 5. Bothmodels
were trained using only clinical data. For the ANN
ensemble standard deviations were computed
across patients. For both the logistic and the ANN
ensemble model the odds ratios were computed
using the full data set. For the ANN model this
implied training an ANN ensemble on the full data
set followed by the effective odds ratio calculation.
For the logistic regression model odds ratios were
calculated from the weights estimated using the
full data set.

There was an overall good agreement between
the odds ratios from the logistic regression model
and the effective odds ratios obtained from the ANN
bagging ensemble. Categorical factors with the lar-
gest odds ratios were symptom duration, angina
pectoris, previous myocardial infarction and chest
discomfort at presentation. It appears that the
logistic regression model gave higher weight to
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Table 5 Odds ratios and effective odds ratios for the
logistic regression model and the ANN bagging ensem-
ble

Variable Logistic
regression

ANN

Age 1.04 1.03 (0.01)
Gender

Male 1.47 1.57 (0.42)
Diastolic blood pressure 1 0.99 (0.01)
Systolic blood pressure 1 1 (0.01)
Heart rate 1 1 (0.01)
Smoking status

Current 1.59 1.37 (0.16)
Hypertension

Yes 1.6 1.41 (0.18)
Diabetes

Yes 1.15 1.07 (0.07)
Medication

Yes 0.8 0.96 (0.13)
Angina pectoris

Yes, � 1 month 2.63 2.38 (0.58)
Yes, > 1 month 0.84 1.06 (0.3)

Congestive heart failure
Yes 0.59 0.65 (0.1)

Chest discomfort at presentation
Yes 2.14 2.2 (0.49)

Symptom duration
0—6 h 5.12 3.79 (0.77)
7—12 h 3.8 2.67 (0.54)
13—24 h 1.33 1.02 (0.1)

Tachypnea
Yes 1.01 1.15 (0.19)

Lung rales
Yes 1.78 1.55 (0.15)

Previous myocardial infarction
Yes, � 6 months 3.19 2.94 (0.63)
Yes, > 6 months 1.86 1.97 (0.42)

Previous PTCA
Yes 0.5 0.58 (0.11)

Previous CABG
Yes 0.41 0.47 (0.11)

These models were trained using clinical data only. For the
ANN ensemble the figures in parenthesis are standard devia-
tions computed across patients.
‘‘symptom duration’’ and that an ‘‘angina pectoris’’
event that occurred > 1 month ago was not asso-
ciated with a decrease in ACS risk, as in the logistic
regression model. Neither of the models found the
factors heart rate and diastolic and systolic blood
pressure to be associated with any change of ACS
risk.
4. Discussion

Part of the aim of this study was to construct amodel
for ACS prediction at the ED, only using data that are
immediately available at presentation. The model
was developed using data from chest pain patients
at the ED of a university hospital and included
clinical and ECG data. The best model was found
to be an ANN cross-splitting ensemble, trained on
ECG data only, with an area under the ROC curve of
about 80%. The model was also well calibrated.
There is a general consensus that ECG is one of
the most important factors predicting ACS early
at the ED. This is confirmed in this study since the
best performance was obtained using only the ECG.
Adding clinical information did not improve the
performance for our study population. The obtained
results did not confirm the high levels of ROC areas
(> 95%) found in other recent studies (e.g. [5,7,9]).
One limiting factor in our study was the relatively
small study population, however, this cannot be the
only explanation. The prevalence of ACS was larger
in the work of Kennedy and Harrison [7,9], ranging
from 37% to 55% compared to a 21% prevalence of
ACS in our study, which we believe is a more realistic
number for an ordinary ED [32]. The prevalence of
ACS in Baxt et al. [5] was as low as 16%. Further-
more, the presence of ST-elevation, ST-depression
or T-wave inversion ECGs, in our population (see
Table 2), was different compared to the cohorts of
Kennedy and Harrison, where their training ACS
(non-ACS) cases had 32% (1%) ST-elevation, 51%
(1%) ST-depression and 44% (4%) T-wave inversion.
It is apparent that ECG changes of this kind is very
indicative of ACS andmay therefore explain why ACS
prediction was more difficult in our study popula-
tion. Baxt et al. [5] obtained an ROC area of 90% with
their ANN model, but this included a set of early
chemical markers that was not part of our data,
since we only included patient data immediately
available at presentation. The ECG data used in our
model was derived from measurements of the 12-
lead ECGs and not from interpretations made by ED
staff. The fact that our best model only used such
ECG data is interesting since that would allow for a
prediction model that is fully automatic without any
manual intervention.

Part of this study was also to compare models
based on ANN with logistic regression models. Since
there are several aspects of how to measure the
performance of a given prediction method, we used
more than one measurement. The area under the
ROC curve is a very popular performance measure in
medical applications, but will of course not reveal
differences for specific points along the ROC curve.
Furthermore, the ROC curve is invariant under any
transformation of the ACS predictions as long as the
order of the individual ACS predictions is not chan-
ged. In a clinical setting however, it is important
that the output value of the model can be inter-
preted as ACS predictions, i.e. we want a good
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calibration. One approach to measure the degree of
calibration for the ACS predictions is the Hosmer—
Lemeshow goodness-of-fit test [29]. Comparing
models using the area under the ROC curve as
performance measure we found an advantage using
ANN ensembles compared to both single MLPs and
logistic regression. The two different ensemble
models tested, bagging and cross-splitting ensem-
ble, obtained comparable ROC areas for the differ-
ent sets of variables used. It is also apparent that
using ensemble averaging increases the perfor-
mance compared to the single MLP models. Using
only clinical data, and no ECG data, there were no
significant differences between logistic regression
and ANN ensembles. Using only ECG data the per-
formance was better for the ANN ensembles com-
pared to the logistic regression model, indicating
non-linear effects not captured by the linear model.

Comparing models using the Hosmer—Lemeshow
test we found most ANN ensembles to be well
calibrated with x2 values ranging from 11.6 to
14.5 with the corresponding p-value range of
0.17—0.07. For the logistic regression models the
variation was larger ranging from 11.7 to 24.8 for
the x2. Although the single MLP model using only
ECG data obtained a larger ROC area compared to
the corresponding logistic regression model, the
calibration was much worse. It is obvious that there
is no one-to-one correspondence between ROC area
and calibration using the Hosmer—Lemeshow test,
indicating that it is important to use both measure-
ments for the final model selection. To continue the
comparison betweenmodels we also looked at intra-
and inter-method scatter plots, and the associated
Pearson correlation coefficients, to reveal differ-
ences on a patient per patient basis. When compar-
ing two models with the same ROC area and
calibration statistics large differences for individual
ACS predictions was found (see Fig. 5). An individual
patient could be classified as having ACS using one
method but with the other one the same patient
would be at low risk.

The final choice of ACS prediction model, or even
a combination of more than one model, has to be
further analyzed and validated in properly designed
prospective studies. A hybrid model consisting of
both ANN ensembles and logistic regression models,
each optimized using different input data, may turn
out to be the overall best model.

4.1. Clinical implications

Because of possibly disastrous consequences of
a missed case of ACS, the evaluation of patients
with suspected ACS is very important. The quality of
the current standard ED assessment is, however,
insufficient. A large number of patients with sus-
pected ACS are incorrectly hospitalized [2,1,33] and
many patients with ACS are diagnosed only after
lengthy (up to 12 h) observation, with a resulting
delay in therapy and an impaired prognosis. At the
same time, as many as 5% of those with ACS are
erroneously sent home from the ED [34,32]. Thus,
there is a great need for methods to improve ED
evaluation. One such method is a decision support
system based on ACS prediction models.

The best model developed in this study had a
specificity of 41% at the sensitivity level of 95%. For
our ACS prevalence of 21%, this corresponds to a
positive predictive value of about 30% and a nega-
tive predictive value of 97%. The positive predictive
value may seem low, but it is likely comparable to
that of the ED physician’s decision after current
standard ED assessment, where some 70% of those
admitted for suspected ACS prove not to have it
[2,1,33]. We have been unable to find any published
data on the positive predictive value of standard ED
assessment for possible ACS.

Models for ACS prediction based on ECG and
clinical characteristics can probably be applied in
many different healthcare settings. For the present
ACS prediction methods, it seems wise to exploit the
reasonably high negative predictive value. Our mod-
els are thus probably best used as support for dis-
charging a patient in healthcare settings where ACS
prevalence is low, e.g. in primary care, in the initial
ED triage or in telemedicine situations where infor-
mation is limited. Adding the clinical judgment of a
physician would probably increase the negative pre-
dictive value to close to 100%.

Whatever the use of our models, the limited
number of variables imply a small need for manual
input, and an increased likelihood that the model
will actually be used in a busy environment. With the
exception of the ACI-TIPI [4], the need for a time-
consuming large input has been a weak point of
several previous prediction models, e.g. [5], where
up to 40 questions need to be answered before the
model gives decision support.

4.2. Limitations and future work

The patients included in the present model were
retrospectively collected and from one center only.
Furthermore, the size of the collected dataset has
an effect on the performance of the models and
increasing the number of patients would probably
lead to an increased performance. Before clinical
implementation, the model clearly needs to be
validated prospectively, preferably at multiple cen-
ters. To fully explore the use of ANN ensembles
other techniques such as boosting or voting should
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be tested. Also the observed diversity between
between logistic regression models and the ANN
models could be utilized using a hybrid approach.
The ECG representation using PCA may not be opti-
mal and should be further investigated.
5. Conclusion

We have found that ANN ensembles, using ECG data
only, can predict ACS at the ED with an area under
the ROC curve of about 80%. No significant increase
in performance was obtained adding clinical data
available at presentation. Also, no significant dif-
ferences were found between the bagging and the
cross-splitting ensemble techniques. Comparing
ANN ensembles with logistic regression models we
found the former approach to be better in terms of
ROC area and calibration assessments. Both ANN and
logistic regression models showed intra-method var-
iations, as a result of training the models with
different parts of the study population. This varia-
tion was larger for the ANN ensemble models.
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