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Abstract

We study in detail various aspects of the renormalization of the spin-1 resonance propa-
gator in the effective field theory framework. First, we briefly review the formalisms for the
description of spin-1 resonances in the path integral formulation with the stress on the issue
of propagating degrees of freedom. Then we calculate the one-loop 17~ meson self-energy
within the Resonance chiral theory in the chiral limit using different methods for the descrip-
tion of spin-one particles, namely the Proca field, antisymmetric tensor field and the first
order formalisms. We discuss in detail technical aspects of the renormalization procedure
which are inherent to the power-counting non-renormalizable theory and give a formal pre-
scription for the organization of both the counterterms and one-particle irreducible graphs.
We also construct the corresponding propagators and investigate their properties. We show
that the additional poles corresponding to the additional one-particle states are generated by
loop corrections, some of which are negative norm ghosts or tachyons. We count the number
of such additional poles and briefly discuss their physical meaning.
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1 Introduction

As is well known, in the low energy region the dynamical degrees of freedom of QCD are not
quarks and gluons but the low lying hadronic states and, as a consequence, a non-perturbative
description of the their dynamics is inevitable. An approach using effective Lagrangians appears
to be very efficient for this purpose and it has made a considerable progress recently. In the very
low energy region (F < Ay ~ 1GeV), the octet of the lightest pseudoscalar mesons (7, K, n)
represents the only relevant part of the QCD spectrum. The Chiral Perturbation Theory (xPT)
[1, 2 B] based on the spontaneously broken chiral symmetry SU(3), x SU(3)gr grew into a very
successful model-independent tool for the description of the Green functions (GF) of the quark
currents and related low-energy phenomenology. The pseudoscalar octet is treated as the octet of
pseudo-Goldstone bosons (PGB) and xPT is organized according to the Weinberg power-counting
formula [1] as a rigorously defined simultaneous perturbative expansion in small momenta and the
light quark masses. Recently, the calculations are performed at the next-to-next-to-leading order
O(p®) (for a comprehensive review and further references see [4]).

In the intermediate energy region (Ay < E < 2GeV), where the set of relevant degrees of
freedom includes also the low lying resonances, the situation is less satisfactory. This region
is not separated by a mass gap from the rest of the spectrum and, as a consequence, there is
no appropriate scale playing the role analogous to that of Ay in xPT. Therefore, the effective
theory in this region cannot be constructed as a straightforward extension of the xPT low energy
expansion by means of introducing resonances e.g. as homogenously (but nonlinearly) transformed
matter fields in the sense of [5], [6] and pushing the scale Ay to 2GeV.

In order to introduce another type of effective Lagrangian description, the considerations based
on the large N¢ expansion together with the high-energy constraints derived from perturbative
QCD and OPE appear to be particularly useful. In the limit No — oo, the chiral symmetry is
enlarged to U(3), x U(3)r and the spectrum relevant for the correlators of the quark bilinears
consists of an infinite tower of free stable mesonic resonaces exchanged in each channel and classi-
fied according to the symmetry group U(3)y. An appropriate description should therefore require
an infinite number of resonance fields entering the U(3), x U(3) symmetric effective Lagrangian.
Because the quasi-classical expansion is correlated with the large N¢ expansion, the interaction
vertices are suppressed by an appropriate power of N 1/2 according to the number of the meson
legs. At the leading order only the tree graphs have to be taken into account . An approximation
to this general picture where we limit the number of the resonance fields to one in each channel
and matching the resulting theory in the high energy region with OPE is known as the Resonance
Chiral Theory (RxT) (it was introduced in seminal papers [7, [§]). Integrating out the resonance
fields from the Lagrangian of RxT in the low energy region and the subsequent matching with
XPT has become very successful tool for the estimates of the resonance contribution to the val-
ues of the O(p*) [7] and O(p®) [9} [10] low energy constants (LEC) entering the yPT Lagrangian.
Therefore, studying RxT can help us to understand not only the dynamics of resonances but also
the origin of LECs in yPT.

However, even when restricting to the case of the matter field formalism, it is known from
the very beginning [§] that the form of the RxT Lagrangian is not determined uniquely. The
reason is that the resonances with a given spin can be described in many ways using fields with
different Lorentz structure. For example, for the spin-one resonances one can use i.a. the Proca
vector field or the antisymmetric tensor field or both (within the first order formalism [11], 12]).



Though the theories based on different types of fields with Lagrangians which contain only finite
number of operators are not strictly equivalent already on the tree level (in general, it is necessary
to include nonlocal interaction or infinite number of operators and contact terms to ensure the
complete equivalence, see [12]), we can always ensure a weak equivalence of all three formalisms
up to a given fixed chiral order (this was established to O(p*) in [§] and enlarged to O(p®) in [12]).

As we have mentioned above, the lack of the mass gap (which could provide us with a scale
playing the role analogous to Apy) prevents us from using a straightforward extension of the
Weinberg power-counting formula [I] taking the resonance masses and momenta of the order O(p)
on the same footing as for PGB. Also the usual chiral power counting which takes the resonance
masses as an additional heavy scale (which is counted as O(1)) fails within the RxT in a way
analogous to the yPT with baryons [13]. Nevertheless, it seems to be fully legitimate to go
beyond the tree level RxT and calculate the loops [14] [15, [16} 17, 18, 19, 20} 2], 22].

Being suppressed by one power of 1/N¢, the loops allow to encompass such NLO effects in the
1/N¢ expansion as resonance widths, resonance cuts and the final state interaction and (by means
matching with yPT) to determine the NLO resonance contribution to LEC (and their running
with renormalization scale).

However, we can expect both technical and conceptual complications connected with the renor-
malization of the effective theory for which no natural organization of the expansion (other than
the 1/N¢o counting) exists. Especially, because there is no natural analog of the Weinberg power
counting in RxT, we can expect mixing of the naive chiral orders in the process of the renormal-
ization (e.g the loops renormalize the O(p?) LEC and also counterterms of unusually high chiral
orders are needed). Also a straightforward construction of the propagator from the self-energy
using the Dyson re-summation can bring about the appearance of new poles in the GF. Because
the spin-one particles are described using fields transforming under the reducible representation
of the rotation group and due to the lack of an appropriate protective symmetry, some of these
additional poles can correspond to new degrees of freedom, which are frozen at the tree level.
The latter might be felt as a pathological artefact of the not carefully enough formulated theory,
particularly because these extra poles might be negative norm ghosts or tachyons [23]. On the
other hand, however, we could also try to take an advantage of this feature and to adjust the poles
in such a way that they correspond to the well established resonance states [24].

Let us note, that similar problems are generic for the description of the higher spin particles
in terms of quantum field theory. As an example we can mention e.g. the problem with the
renormalization of quantum gravity which is trying to be cured by imposing additional symmetry
or by introducing a non-perturbative quantization believing that UV divergences are only artefact
of a perturbative theory. In the context of the extensions of the xPT, this has been studied
in connection with introducing of the spin-3/2 isospin-3/2 A(1232) resonance in the baryonic
sector (for a review see [25] and references therein). The Rarita-Schwinger field commonly used
for its description contains along with the spin-3/2 sector also spin-1/2 sector, which is frozen
at the tree level due to the form of the free equations of motion. These provides the necessary
constraints reducing the number of propagating spin degrees of freedom to four corresponding to
spin 3/2 particles. However, these constraints are generally not present in the interacting theory
and negative norm ghost [26] and/or tachyonic [27] poles might appear beyond the tree level.
The appearance of these extra unphysical degrees of freedom can be avoided by means of the
requirement of additional protective gauge symmetry under which the interaction Lagrangian has
to be invariant. Such a symmetry, which is also a symmetry of the kinetic term (but not of the



mass term), is an analog of the U(1) gauge symmetry of the electromagnetic field and its role
is also similar. As it has been shown by means of path integral formalism, it leads to the same
constraints as in the noninteracting theory and prevent therefore the extra spin-1/2 states from
propagating.

On the other hand, it has been proved, that the most general interaction Lagrangian at
most bilinear in Rarita-Schwinger field (i.e. without the protective gauge symmetry) is on shell
equivalent to the gauge invariant one [28] . The latter is, however, nonlocal (or equivalently it
contains an infinite number of terms). Also the above protective gauge symmetry is, as a rule, in a
conflict with chiral symmetry, and has therefore to be implemented with a care. Though there are
efficient methods how to handle this obstacles in concrete loop calculations [25], [2§], the problem
still has not been solved completely.

In the following, we would like to discuss these problems in more detail. As an explicit example
we use the one-loop renormalization of the propagator corresponding to the fields which originally
describe 17~ vector resonance (p meson) at the tree level within the Proca field, the antisymmetric
tensor field and within the first order formalism in the chiral limit. The situation here is quite
similar to the case of spin-3/2 resonances discussed above. In addition, to the spin-1 degrees
of freedom, there are extra sectors that are frozen at the tree level. There exists a protective
gauge symmetry which prevents these modes from propagation. The kinetic term is invariant
with respect to this symmetry while the mass term is not.

By means of an explicit calculation we will show that (unlike the ordinary xy PT') the one-loop
corrections to the self-energy need counterterms with a number of derivatives ranging from zero up
to six and also that a new kinetic counterterm with two derivatives (which was not present in the
tree level Lagrangian) is necessary. We will also demonstrate that the corresponding propagator
obtained by means of Dyson re-summation of the one-particle irreducible self-energy insertions
has unavoidably additional poles. Due to the unusual higher order growth of the self-energy in
the UV region some of them are inevitably pathological (with a negative norm or a negative mass
squared). Though these additional poles are decoupled in the limit No — oo, for reasonable
concrete values of the parameters of the Lagrangian they might appear near or even inside the
region for which Rx7T was originally designed. We also discuss briefly within the antisymmetric
tensor formalism a possible interpretation of some of the non-pathological poles as a manifestation
of the dynamical generation of various types of additional 1+- states. We will also show that the
appropriate adjustment of coupling constants in the antisymmetric tensor case allows us (at least
in principle) to generate in this way the one which could be identified e.g. with the b;(1235) meson
[24]. Such a mechanism is analogous to the model [29] for the dynamical generation of the scalar
resonances from the bare quark-antiquark ”seed”, the propagator of which develops (after dressing
with pseudoscalar meson loops) additional poles identified e.g. as a¢(980) (cf. also [30],[31]).

The paper organized as follows. In Section [2| we remind the basic facts about the propagators
and briefly discuss the issue of the additional degrees of freedom in all three formalisms for the
description of spin-one resonances. We use the path integral formulation where the protective
symmetry analogous to the Rarita-Schwinger case is manifest. In Section |3| we discuss the power
counting. We try to formulate here a formal self-consistent organization of the counterterms and
one-particle irreducible graphs, which sorts the operators in the Lagrangian according to the num-
ber of derivatives as well as number of the resonance fields and which is useful for the proof of
renormalizability of the RxT as an effective theory. In Section {4] we present the results of the
explicit calculation of the self-energies. Then we give a list of counterterms and briefly discuss the



renormalization prescription. Section |5 is devoted to the construction of the propagators and to
the discussion of their poles. Because the basic ideas are similar within all three formalisms, we
concentrate here on the antisymmetric tensor case. Section [6] contains summary and conclusions.
Some of the long formulae are postponed to the appendices: the explicit form of the renormaliza-
tion scale independent parameters of the self-energies are collected in Appendix [D] namely for the
Proca field in[D.], for the antisymmetric tensor field in and for the first order formalism in[D.3]
In Appendix [E| we give a proof of the positivity of the spectral functions for the antisymmetric
tensor propagator.

2 Propagators and poles

In this section, we collect the basic properties of the propagators and the corresponding self-
energies within the Proca field, the antisymmetric tensor field and the first order formalisms. The
discussion will be as general as possible without explicit references to Rx7, which can be assumed
as the special example of the general case.

2.1 Proca formalism
2.1.1 General properties of the propagator

We start our discussion with a standard textbook example of the interacting Proca field. Let us
write the Lagrangian in the form

L=Lo+ Lint, (1)
where the free part of the Lagrangian is
15 1
Lo= =7V V" + §M2v#v“ (2)
with R
Viw =0,V, =0, V. (3)

Without any additional assumptions on the form and symmetries of the interaction part of the
Lagrangian L;,;, we can expect the following general structure of the full two-point one-particle
irreducible (1PI) Green function

I(p) = (M? = p* + ST (p*)PL, + (M? + SH(p?)) PL,. (4)
Here
Pubu
bl = ;2 (5)
PubPv
P;Tv = 9w — # (6)

are the usual longitudinal and transverse projectors and X% are the corresponding transverse
and longitudinal self-energies, which vanish in the free field limit. Inverting we get for the full
propagator

1 T 1 L
Au(p) = TR ET(pQ)P“” + mpw (7)
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The possible (generally complex) poles of such a propagator are of two types; either at p* = sy,
where sy is given by the solutions of

Sy — M2 — ZT(Sv) = O, (8)
or at p? = sg where sg is the solution of
M? +3F(sg) = 0. (9)

Let us first discuss the poles of the first type. Assuming that is satisfied for sy, = M2 > 0,
then for p* — M?

ZV Pubv
Aw(p) = pg_—MQ <_guu + &2 ) +0(1)
_ ) () ( 1
o M2 Zs p) +O(1) (10)
where )
A= TR "

and where 5( )( ) are the usual spin-one polarization vectors. Under the condition Zy > 0 the
poles of this type correspond to spin-one one particle states |p, A, V') which couple to the Proca
field as

OV, (0)lp. A, V) = Zv e (p). (12)

At least one of these states is expected to be perturbative in the sense that its mass and coupling
to V,, can be written as

ME = M?+5MZ (13)
Zy = 14062y, (14)

where dMZ and §Zy are small corrections vanishing in the free field limit. This solution corre-
sponds to the original degree of freedom described by the free part of the Lagrangian L£,. The
additional one particle states corresponding to the other possible (non-perturbative) solutions of
decouple in the free field limit.

The second type of poles is given by (intrinsically nonperturbative) solutions of @ Suppose
that this condition is satisfied by sg = M2 > 0. For p* — M3

ZS PuDv
Bl = =5 + O (15)
where 1

Assuming Zg > 0 this pole corresponds to the spin-zero one particle state |p,S) which couples to
V., as
1/2

OV, (0)[p, S) = ip, 22

ip,, e (17)



For the free field this scalar mode is frozen and does not propagate according to the special form
of the Proca field Lagrangian. Therefore, in the limit of vanishing interaction the extra scalar
state decouples.

Without any additional assumptions on the symmetries of the interaction Lagrangian we can
therefore expect the appearance of additional dynamically generated degrees of freedom.

The general picture is, however, more subtle. Note that, the interpretation of the above
additional spin-one and spin-zero poles as physical one-particle asymptotic states depends on
the proper positive sign of the corresponding residues Zy, Zg > 0, otherwise the norm of these
states is negative and the poles correspond to the negative norm ghosts. Similarly, also poles with
M, ¢ < 0 can be generated, which correspond to the tachyonic states. Let us illustrate this feature
using a toy example. Suppose, that the only interaction terms are of the form
I6] )

r}/ i v > g
5(8#‘/“)2 + YYE ((%V“ )(8pry) + W(@Mapvp)(aﬂ&,v ) (18)

‘Cint = Ect = _%‘7;“/‘7/“/ -

Such a Lagrangian can be typically produced by radiative corrections in an effective field theory
with Proca field, which does not couple to other fields in a U(1) gauge invariant way, and can
provide us with counterterms necessary to renormalize the loops contributing to the V field self-
energy. L gives rise to the following contributions to 37 (p?) and X% (p?)
ol
Ve
L, 2 2 p*
27 = B0 (20)

P = —ap’+ (19)

As a result, we have two spin-one and two spin-zero one-particle states. The masses and residue
of the spin-one states are then

1+a—2’y$\/(1—|—a)2—4’y> 1)
2

Mz, = M*[1+
N
1-3T(ME,) = /(1 +a) -4y, (22)

which are real for for (1 + «)? — 4+ > 0. In the limit o, v — 0, a/y = const we get either the
perturbative solution with mass My, or (for v > 0) an additional spin-one ghost with mass My _
(for 1 + a > 0 and v < 0 this pole is tachyonic). Similarly for the spin-zero states

M2, = MP (5 F \/5; — 45) (23)

SHME) = FVB - 40, (24)

The poles are real for 82 > 4§ and e.g. for 5,6 > 0 one of the poles is spin-zero ghost. In both
cases for appropriate values of the parameters we can get also two tachyons or even the complex
Lee-Wick pair of ghosts. These features are of course well known in the connection with the higher
derivative regularization (as well as with the properties of the gauge-fixing term).



2.1.2 Additional degrees of freedom in the path integral formalism

The additional degrees of freedom discussed in the previous subsection can be made manifest in
the path integral formalism. Let us start with the generating functional for the interacting Proca

field
1~ =~ 1
210 = [ DV exy (1 [ (—vavw + MV Lo (V. >)> L)

where the external sources are denoted collectively by J. In order to separate the transverse and
longitudinal degrees of freedom of the field V,, within the path integral we can use the standard
Faddeev-Popov trick with respect to the U(1) gauge transformation of the field V,

V.=V, +0,A. (26)
As a result, we get the generating functional in the form

1 1 1
Z[J] = /DVL,DA exp (1/(1413 (—VfDVJ_H + §M2VfVJ_‘u + §M28MA8”A + Eint(‘/l_ - 8/\, J, .. ))) .

2
(27)
Here DV, = DV§(9,V*#) and

g

is the transverse part of the vector field V#, the longitudinal part of which corresponds to the
scalar field A, i.e.

w AV
v (- Ty,

VE =V + 0'A. (28)
The free propagators of the fields V" and A are
) PT/U/
AY(p) = TR (29)
11
An(p) = e (30)

Both these propagators have spurious poles at p? = 0, however, the only necessary combination
which matters in the Feynman graphs is

A" (p) = AV (p) + p'p" An(p), (31)

which coincides with the original free propagator of the field V# and the spurious poles cancel
each other.

Note that, provided the interaction Lagrangian L;,; is symmetric under the U(1) gauge trans-
formation , the spin-zero field A completely decouples and can be integrated out . The theory
can then be formulated solely in terms of the field V*. The U(1) invariant form of the interaction
allows to simplify the propagator A/ (p)

14 g v
AL (p) — —m (32)

within the Feynman graphs and the spurious pole p? = 0 in becomes harmless. In this case,
the scalar one-particle states cannot be dynamically generated. On the other hand, in the case
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when L;,; is not invariant with respect to (26)), we cannot forget the longitudinal component of
V# which has now nontrivial interactions and, as a result, contributions to £* can be generated.

Let us now return to the illustrative example discussed in the previous subsection. Suppose
that the interaction Lagrangian has the form

Lint = Lot + Ly (33)

where L is the toy interaction Lagrangian and we assume « > —1 and ¢ > 0 in what follows.
Then it is possible to transform Z[J] to the form of the path integral with all the additional
degrees of freedom represented explicitly in the Lagrangian and the integration measure. In terms
of the transverse and longitudinal degrees of freedom we get

£i'flt(vi — OA, J?) - Ect(VL — 0\, J,. ) ( — OA, J,)
8
= VIOV - SO0+ ]42 OVE)OV1) + 575 (9,04) (" 0A)
L (VI — BN, ... (34)

In order to lower the number of derivatives in the kinetic terms we integrate in auxiliary scalar
fields x, p, m, o and auxiliary transverse vector field B, writing e.g.

oo (i faudon) - oo (s fatr(Leaaon)) o

and similarly for other higher derivative terms. After the superfluous degrees of freedom are
identified and integrated out, the fields are re-scaled and then the resulting mass matrix can be
diagonalized by means of two symplectic rotations with angles 6y and s (the technical details are
postponed to the Appendix . Finally we get (under the conditions (1 + a)? > 4y and % > 44)

= / DV, DB, DADYDo exp (z / d*zL(V,,B1, A, x, 0, J,...)> (36)
where
Lo Lo u Lo Lo pn
;C(VJ_, BJ_, A, X, g, J, .. ) = §VL DVJ_M + EMV—FVL VJ_# — iBLDBL + §MV—BLBJ—#
1 1 1 1 1
+-0,00'0 — —M§+02 — —0uxO'x — = 2 XA+ —MQ(‘?MA(‘?“A
2 2 2 2 2
r o =(0
L (VO 0,
(37)
and o
—(0) exp .
®) _ mﬁﬁ + B, ) — Ox coshfg — Oo sinh g — OA (38)

and where M2, M2, are the mass eigenvalues and . The theory is now formulated in
terms of two spin one and two spin zero fields, whereas two of them, namely B/ and x have a
wrong sign of the kinetic terms and are therefore negative norm ghosts. As above, the field A
does not correspond to any dynamical degree of freedom, its role is merely to cancel the spurious
poles of the free propagators of the transverse fields V|, and B, at p? = 0.

9



2.2 Antisymmetric tensor formalism

For the antisymmetric tensor field in the formalism [7, 8] the situation is quite analogous to the
Proca field case so our discussion will be parallel to the previous subsection. Let us write the

Lagrangian in the form

where the free part is

1 1
Lo = =5 (OuR")(O"Rp) + 1M Ry B (40)

and introduce the transverse and longitudinal projectors

1
T T pT T pT
., = & (RLEG— ELED) ()
1
Hﬁua,@ = 5 (g/wlglfﬁ o g'/agﬂﬁ) - H;T;I/aﬁ (42)

with Pfa given by @ Again, in analogy with , for completely general L;,; we can expect the

following general form of the full two-point 1PI Green function

1 1
(p) = §<M2 + ET(Z)Q))HZVQ,B + §<M2 - p2 + EL(p2>)H£Vaﬁ
where 7% are the corresponding self-energies. The full propagator is then obtained by means of

the inversion of Fii)aﬁ in the form

F(2)

mvaf

(43)

2 2 .

Aas(p) = — I~ — 1t . 44
ywap (D) P2 — M2 — $L(p?) uvaf T M? + X7T(p?) prop (44)

This propagator has two types of poles analogous to and @, either at p? = sy, satisfying

sy — M? — X5 (sy) =0, (45)
or at p® = sy where
M? + 5" (sp) = 0. (46)
Assuming that the solution of satisfies syy = M2 > 0, the propagator behaves at this pole as
2y puYvaPs — PvguaPs — (@ <> )
Aa = K K o1
Zy O (17, ) ()%
= P VA ZA:UW (P)ugg (p)" 4+ O(1) (47)
where 1
Ty = 48
VISR (48)

and the wave function u,([\y) (p) can be expressed in terms of the spin-one polarization vectors e (p)

as .
A 1 A A
ul) (p) = Y (ueM (0) — M () - (49)
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For Zy, > 0 the pole of this type corresponds therefore to the spin-one state |p, A, V') which couples
to R, as
(01 R, (0)|p, A, V) = Z 203 (p). (50)

nv
Analogously to the Proca case, at least one of these poles is expected to be perturbative and
corresponds to the original degree of freedom described by the free Lagrangian £y. This means

ME = M?+5MZ (51)
Zy = 14062y (52)
with small corrections MZ and §Zy vanishing in the free field limit. The other possible nonper-

turbative solutions of decouple in this limit.
Provided there exists a solution of for which sy = M‘% > 0, we get at this pole

Npap(p) = F?%gGMM+M&w%;MMM—WHW>+mD
N p? ?7]\/[2 waf aﬂ "+0(1) (53)
where ]
% = sy (54
and the wave function is dual to the wave function
W) = T0) = gemasu™ (o). (55)

Provided Z > 0, the poles of this type correspond to the spin-one particle states |p, A, 17> with the
opposite intrinsic parity in comparison with |p, A\, V), which couple to the antisymmetric tensor
field as

(1R (0)|p, A, V) = Z' Pul) (). (56)

v

This degree of freedom is frozen in the free propagator due to the specific form of the free La-
grangian and it decouples in the limit of the vanishing interaction.
As in the Proca field case, we can therefore generally expect dynamically generated additional

degrees of freedom, which can be either regular asymptotic states (M‘Q/’f/, Zyy > 0) or negative

norm ghosts (M‘Q/f/ >0, Zyy < 0) or tachyons (M‘Q/r/ < 0). Complex poles on the unphysical
sheets can be then interpreted as resonances. 7

As the toy illustration of these possibilities, let us take the interaction Lagrangian similar to
in the Proca field case e.g. in the form

a—pf B

Lin = La=——5(0R)(0"Ry) — —((%R“/B )(0" Rags)
v—9 U\ (A AP 6 aB (AP B
7 Oadu R (00 Ryy) + 575 (0,0, R (070" Re). (57)

We get then the following contributions to the longitudinal and transverse self-energies

p4

2Hp?) = —QP2+7W

11



4

ST(0) = —Bp 405 (59)

These are exactly the same as and (with the identification X7 < XT). Therefore,
provided we further identify M2, <+ M‘% L the properties of the poles and residues are the same

as in the previous subsection (see the discussion after and ), with the only exception that
instead of the extra spin-zero states with the mass we have now extra spin-one states with the
same mass but with the opposite parity in comparison with the original degrees of freedom
described by the free lagrangian L.

2.2.1 Path integral formulation

We can again made the additional degrees of freedom manifest within the path integral approach
in the way parallel to subsection An analog of the U(1) gauge symmetry used in the case
of the Proca field formalism in order to separate the transverse and longitudinal components of
the field V), is here the following transformation with a pseudovectmﬂ parameter A,

1 o~
R — R™ 4 2" R, (60)

where

Aop = Oalg — OpMq. (61)

This leaves the kinetic term invariant, while the mass term is changed. Note, that the transfor-
mation with the parameters A, and A} where

AN = Ay + 0N (62)

are the same. This residual gauge invariance has to be taken into account when using the Faddeev-
Popov trick in order to isolate the longitudinal and transverse degrees of freedom of the field R, .
Analog of the formula is now

1 ~
R = RYY + e Ao (63)

where Rﬂ” " is the longitudinal component of R,,. Its transverse component is described with the
transverse component A/ of the field A* where

A= A 4 9PN, (64)

Starting with the path integral representation of the generating functiona]ﬂ

ZlJ) = / DR exp (i / d*z (—%(auRﬂ”)(aﬂR,w) + EMZRWR“” +£mt(R“”,J,...))> (65)

!This is of course true only in the case of the proper tensor field R,,. Provided R,, is a pseudotensor, the
parameter of the transformation is vectorial.
2Here J are the external sources, cf. previous subsecrion.
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and using the Faddeev-Popov trick twice with respect to the transformations and we
finally find for Z[J] the following representation

Z[J] = / DR|DA, exp (i / d'zL(R)", A, .. .)) (66)

where the integral measure is

DR DA, = DRDAS(uR,, + O, Ry + 0, Ra)6(9,A") (67)
and
v 1 rvo v (6%
Ry —ﬁ(a“g O’ +0"g" 0" — (u > v))Rag (68)
oro”
A= (g‘“’ -5 ) A, (69)

are the longitudinal part of the tensor field R*”and the transverse part of the vector field A#
(describing the transverse part of the tensor field R*) respectivelyﬂ The Lagrangian expressed
in these variables reads

174 1 4 1 174 1 4 1 vo N
LOR[", AT, ) = LRI OR) o+ L MR Ry + SMPANOA L+ Ling (B — 26" Nap, ], ).

4
(70)
The free propagators of the fields Rﬁ “and A are therefore
AP () = 2 phaves 71
| (n) = —pg_—MQ (71)
) 11
A(p) = _WPPTH (72)

and, similarly to the case of the Proca field, they have spurious poles at p? = 0. Due to the form
of the interaction, however, only the combination

NPR) = Ap) + 2 AL (p)
2 2

— _—HL,uZ/aﬁ + _HT,uzzaﬁ 73
2 — M2 M2 (73)
corresponding to the free propagator of the original tensor field R*” is relevant within the Feynman
graphs and the spurious poles cancel. By analogy with the Proca field case, for the interaction
Lagrangian invariant with respect to the transformation the field A] completely decouples
and can be integrated out. Such a form of the interaction also allows to modify the propagator

A v*B(p) within the Feynman graphs

e Gua9vps — GusYva
A (p) = === (74)

3Note again that, the field A, has opposite parity than the field R, (being pseudovector for proper tensor field
R, and vice versa).
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and no spurious pole at p? = 0 effectively appears. In this case the opposite parity spin-one states
discussed in the previous subsection cannot be dynamically generated.

In order to illustrate the appearance of the additional degrees of freedom connected with the
interaction Lagrangian (57) within the path integral formalism, we can make the same exercise
with the interaction Lagrangian as we did in the previous subsection with . Our aim
is again to make the additional degrees of freedom explicit in the path integral representation of
Z[J]. The procedure is almost one-to-one to the case of the Proca fields so that we will be more
concise. The technical details can be found in the Appendix

We assume the interaction Lagrangian to be of the form

Lit = Lo+ L, (75)

where L is given by and we assume a > —land 6 > 0 as above. L;,; can be then re-express
it in terms of the longitudinal and transverse components of the original field R,

v 1 rvo N v 1 1776 N v 1 vo N
Lin (R} = 5&" PNap, Js- o) = La(R] - 5¢" INaps T, ) + Lo (R) -3¢ PNag, J,...) (76)

where
ma 1 NN o ng Y "7
Ect(R — 58 Aag(], .. ) = ZR” DRHW/ SYE (DRH )(DRH;W)
B 0 oa
FOON)(OA L) - 1@ 0N @0AL). (77

We then introduce the auxiliary (longitudinal) antisymmetric tensor field B|" and (transverse)
vector fields X'/, p/|, o/l and 7'/ in order to avoid the higher derivative terms in a complete analogy
with the Proca field case. Again, not all the fields correspond to propagating degrees of freedom
and such redundant fields can be integrated out. After rescaling the fields and diagonalization of
the resulting mass terms by means of two symplectic rotations with angles 0y and 6 exactly as
in the case of the Proca fields (see the Appendix [B|for details) we end up with

:/DRDB”DAJ_DXJ_DPJ_DO'J_DWJ_GXP (i/d4$£(R”,B”,AJ_,XJ_,,OJ_,O'J_,WJ_,J,...))

with (cf. (I87)) v
L = iR“”DRuWJr ML R Ry
—iBl’r”DB”W + }lM _B"Bj
+1M2A’1DAM

2

1 1 1
—QXiDXLM + 2]\/[ XX+ iaﬁDULM + 2Mv+O'LO'J_M

LB, (79)

where
—(O) v exp 0 y 1 e (~ ~ . ~
= Ty B = 52 (Ras +D1agsiah Oy + iy cosh )
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and with the diagonal mass terms corresponding to the eigenvalues , (with identification

Mé LM 2.). Again we have two pairs of fields with the opposite signs of the kinetic terms,

namely (R}", B|") and (x|, 0') respectively. As a result we have found four spin-one states, two

of them being negative norm ghosts, namely BﬁL “ and o/ and two of them with the opposite parity,
namely x| and o//. As in the Proca field case, the field A/ effectively compensates the spurious
p? = 0 poles in the R“r Y and Bﬁ‘ Y propagators within Feynman graphs.

2.3 First order formalism

The first order formalism is a natural alternative to the previous two (for the motivation and
details of the quantization see [12], cf. also [I1]). It introduces both vector and antisymmetric
tensor fields into the Lagrangian, therefore the analysis is a little bit more complex in comparison
with previous two cases. In this case, the Lagrangian is of the form

where now the free part is
1 1
Ly =MV,0,R" + éMzVﬂV“ + ZM2RWR‘“’. (81)

Instead of just one one-particle irreducible two point Green function we have a matrix

2 2
r@p) — [ TP TR0l 2
gy (p);wa kg (p) waf

—~

where (without any additional assumptions on the form of L;,;) the matrix elements have the
following general form (cf. and (43))

D Whos = 3 (M 4 ShaP )Tl s+ SO0 + ST (53)

P () = (M + STy (7)) Pl + (M + S5y () P, (84)
Lo (P) e = % (M + Zrv(p?)) A (85)
Dokl = 5 (M +Zya(p?) A, (36)

Here Y55 (p?), U (p?) and Yey(p?) = Svr(p?) are corresponding self-energies and the off-
diagonal tensor structures are

A,Lwa = _Afxuy = Pu9va — PvYua- (87)
This matrix of propagators
Avv(P)w  Ave(P)aw )
Alp) = Iz K 88
(p) ( ARV(p),uua ARR(p),uvaﬁ ( )
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can be obtained by means of the inversion of the matrix (82)) with the result

2 M? + Z\T/V(P )
ARR(p);waﬁ - e T ZER( )H/Waﬁ + 2 D(pQ) Huuaﬁ (89)
1 M? + S5 (p?)
A — PL RR PT
W = S T Dy )
M+ Sry(p?)
Agry (p)lwa = ﬂwf\,wa (91)
M + Xy g(p?)
Avr(plow = _IWAZ#W (92)
where
D(p?) = (M? + S5(0°)) (M? + 34 (p)) — p*(M + Sry (p*)) (M + Sy r(p?)). (93)

Let us now discuss the structure of the poles, which is now richer than in previous two cases. We
have three possible types of poles, namely sy, sy and sg, being solutions of

D(Sv) =0
M? + Shp(sy) = 0
M?* + %5, (ss) = 0 (94)

respectively. As far as the pole sy is concerned, let us assume sy = M7 > 0. We get then at this
pole (see also previous two subsections)

Arr(p)uas = Mzzu gy ()" +O(1) (95)
AP = Mgzsw O (p) + O(1) (96)
Ay (Pve = }ﬁz_iw;ufli)(p)ey<p>*+0<n (97)
Avr(Plow = ]ﬂz_iw;eg”(pmw*(pwc)(m (98)

where u( )(p) is given by and the residue are
M? + X7, (M)

Zrr = . (99)
D'(Mg)
M? + X5 (ME)

Zyy = REA_V 100
vv D/ (M2 ) ( )

M + Spy(M2) M + Sy (M)
Z = My = Zyg = - My, . 101
RV D'(M2) vV = 4VR D' (M2) 1% (101)

Note that, as a consequence of (94) we get the following relation

ZrrZvv = Zpy = Zips (102)

16



(remember gy (p*) = Xyr(p?)), therefore assuming Zgrg, Zyy > 0 the pole p*> = MZ > 0
corresponds to the spin-one one-particle state |p, A, V') which couples to the fields as

(O|R(0)p, \, V) = Zrr'*u()(p) (103)

v

1L
<O|VH(O)|p7/\7v> - ZVVI/ngL)\)(p)' (104)

Again at least one of such states is expected to be perturbative as above and it correspond to the
original degree of freedom described by Ly; the others decouple when the interactions is switched
off. The other possible poles, sg = M3 and s = Mé are analogical to the spin-zero and spin-one
(opposite parity) states discussed in detail in the previous two subsections; they correspond to
the modes which are frozen at the leading order and decouple in the free field limit. As we have
already discussed, without further restriction on the form of the interaction, all the additional
states can be also negative norm ghosts or tachyons.
Let us illustrate the general case using a toy interaction Lagrangian of the form

Bv

L, — —Oil—V?MVV“V—T(aHV“)Z
« _/8 v /8 o
—y(@ﬁ“ J(O"R,,) — f(auR 7)(0" Rag). (105)
This gives
Shr(0®) = —agp’
Shr(P?) = —Brp’
EXT/V(Z?Q) = —OWP2
z\L/V(p2) = —ﬁvp2
Srv(p®) Svr(p?) =0 (106)

and for Sy, r > 0 the spectrum of one-particle states consists of one spin-zero ghost, one spin-one
ghost with opposite parity. Their masses and residue are

M? 1
ME o= g - 107
§ By S Bv (107)
M2 1
ME o= S g 108
v Br v Br (108)

(provided fr < 0 or By < 0 the corresponding states are tachyons) and two spin-one states with
masses

1+ ap + ay + \/1_)
QCERCYV
D = (1+ag+ay)? —4dagay. (109)

MXQ/j: = M’

To get both M\Q& > 0 we need D > 0, ayag > 0 and 1+ ag + ay > 0; in this case we get for the
residue ZI(%iR) and Z‘(/iv) at poles M2,

1

arZHz5) = ay 200 20 = 5 >0 (110)

17



Assuming Zl(,%R), Z‘(/_V) > 0 (note that, for small couplings M2 = M?(1 + O(ag,ay)) with
Zﬁz}), Z‘(/_V) = 14+O(ag, ay) corresponds to the perturbative solution), the additional spin one-state
is either positive norm state for ay g > 0 or ghost for ay g < 0 (in this latter case the extra kinetic
terms in L. have wrong signs).

Also in this case the propagating degrees of freedom can be made manifest within the path

integral formalism. The corresponding discussion is in a sense synthesis of subsections and
and is postponed to Appendix [C|

3 Organization of the counterterms

Let us now return to the concrete case of RyT. Our aim is to calculate the one loop self-energies
defined in the previous section in all three formalisms discussed there. In the process of the loop
calculation we are lead to the problem of performing a classification of the countertems, which
have to be introduced in order to renormalize infinities. For this purpose, it is convenient to have
a scheme, which allows us to assign to each operator in the Lagrangian and to each Feynman
graph an appropriate expansion index. Indices of the counterterms, which are necessary in order
to cancel the divergences of the given Feynman graph, should be then correlated with the indices
of the vertices of the graph as well as with the number of the loops. When we restrict ourselves
to the (one-particle irreducible) graphs with a given index, the number of the allowed operators
contributing to the graph as well as that of necessary counterterms should be finite.

There are several possibilities how to do it, some of them being quite efficient but purely formal
and unphysical, some of them having good physical meaning, but not very useful in practise.

In the literature, several attempts to organize the individual terms of the RxI" Lagrangian can
be found. Let us briefly comment on some of them from the point of view of its applicability to
our purpose.

The first one is intimately connected with the effective chiral Lagrangian £, ,.s which appears
as a result of the (tree-level) integrating out of the resonances from the Rx7T. Such a counting
assigns to each operator of the resonance part of the RxT Lagrangian L, a chiral order according
to the minimal chiral order of the coupling (LEC) of the effective chiral Lagrangian £, ,es to which
the corresponding operator contributes [10], [9]. More generally, in this scheme the chiral order
of the operators from L, refers to the minimal chiral order of its contribution to the generating
functional of the currents Z[v,a,p,s] = 3., Z®™[v,a,p,s]. The loop expansion of Z[v,a,p, s]
formally corresponds to the expansion around the classical fields which are solutions of the classical
equation of motion. The formal chiral order of the resonance fields corresponds then to the chiral
order of the leading term of the expansion of the classical resonance fields in powers of p and
external sources according to the standard chiral power counting, i.e.

ViE=0(p’), R =0@. (111)

At the same time, for the resonance mass (which plays a role of the hadronic scale within the

standard power counting) we take
M = 0(1), (112)

and for the external sources as usual

v, a" = O(p), x,x" =0@(). (113)
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The resonance propagators are then of the (minimal) order O(1) and the order of the operators
which contain the resonance fields is at least O(p?). This formal power counting therefore restricts
both the number of the resonance fields in the generic operator as well as the number of the
derivatives. When combined with the large Ng arguments, it allows for the construction of the
complete operator basis necessary for the saturation of the LEC’s in the chiral Lagrangian at a
given chiral order and a leading order in the 1/N¢ expansion [9].

Originally this type of power counting was designed for the leading order (tree-level) matching
of RxT and xPT within the large N¢ expansion and there is no straightforward extension to
the general graph I' with L loops. The reason is that the above power counting of the resonance
propagators inside the loops does not reproduce correctly the standard chiral order of the graph.
As a result, the loop graphs violate the naive chiral power counting in a way analogous to the
xPT with baryons [13] .

The second possibility applicable to loops is to generalize the Weinberg [I] power counting
scheme and formally arrange the computation as an expansion in the power of the momenta and
the resonance masses [32] (though there is no mass gap and no natural scale which would give to
such a formal power counting a reasonable physical meaningﬂ). Nevertheless, provided we make a
following assignment to the resonance field and to the resonance mass M

VE R =0(1), M = O(p) (114)
we get for the kinetic and mass term of the resonance field
Ekina Emass = O(PZ) (115)

i.e. the same order as for the lowest order chiral Lagrangian, which allows the same power counting
of the resonance propagators as for PGB within the pure yPT. As a result, the Weinberg formula
for the order Dr of a given graph I' with L loops built from the vertices with the order Dy,

Dr=2+2L+) (Dy—2), (116)
\%4

remains valid also within RyT. Note however, that now p?/M? = O(1) and therefore the coun-
terterms needed for renormalization of the graph with chiral order Dr might contain more than
Dr derivatives (this feature is typical for graphs with resonances inside the loops because of the
nontrivial numerator of the resonance propagator). Therefore this type of power counting is less
useful for the classification of the counterterms than in the case of the pure xyPT, where Dr gives
an upper bound on the number of derivatives of the counterterms needed to renormalize T'.
There are also some other complications, which depreciate this counting in the case of RxT.
First note that the interaction vertices with the resonance fields can carry a chiral order smaller
than two. This applies e.g. to the trilinear vertex in the antisymmetric tensor representation

OFFE =g (R, R R") (117)

4Sometimes it is argued [32],[33], that such a counting can be used within the large N¢ limit, due to the fact that
the natural xPT scale A, pr = 47F = O(\/N¢) grows with N¢ while the masses of the resonances behave as O(1).
In fact this results only in the suppression of the loops but generally not in the suppression of the counterterm
contributions. In the latter case the expansion is rather controlled by the scale Ay ~ Mr = O(1), where My, is the
typical mass of the higher resonance in the considered channel not included in truncated Lagrangian corresponding
to minimal hadronic ansatz.
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or to the odd intrinsic parity vertex mixing the vector and rge antisymmetric tensor field in the
first order formalism

O = eopu ({V, R* }uP). (118)
Therefore, increasing number of such vertices will decrease the formal chiral order causing again a
mismatch between the chiral counting and the loop expansion. Furthermore, such a naive scheme
unlike the previous one does not restrict the number of the resonance fields in a general operator
because only the number of derivatives, the resonance masses and the external sources score.

The former drawback can be formally cured by adding an artificial power of M in front of such
operatorﬂ (or equivalently counting the corresponding couplings as O(p?) and O(p) respectively)
in order to increase artificially their chiral order and preserve the validity of the Weinberg formula,
which now can serve as a formal tool for the classification of the counterterms. How to treat the
latter drawback we will discuss further bellow. Let us, however, stress once again, that there is
no physical content in such a classification scheme, though it might be technically useful.

Third possibility how to assign an index to the given interaction terms and to the general
graphs, independent of the previous two, is offered by the large Ns expansion. In the No — oo
limit, the amplitude of the interaction of the n mesonic resonances is suppressed at least by the
factor O(Né_”/ 2) and, more generally, the matrix element of arbitrary number of quark currents
and n mesons in the initial and final states has the same leading order behavior; e.g. for the
GB decay constant we get F' = O(Né/ 2). Because within the chiral building blocks the GB fields
always go with the factor 1/F, we can treat the coupling co corresponding to the operator O of
the RxT' Lagrangian as co = O(NS°), where

R

W = 1-— 7 — S0, (119)

n$ is the number of the resonance fields contained in O and s is a possible additional suppression
coming e.g. from multiple flavor traces or from the fact, that this coupling appears as a countert-
erm renomalizing the loop divergencesﬂ From such an operator, generally the infinite number of
vertices V with increasing number n.5 of GB legs can be derived, each accompanied with a factor
coFe8/2 and therefore, suppressed as O(Ng" ), where the index wy is given b

O 1%
wvzl—%’*—"%—s@. (120)

For a given graph, we have the large No behavior O(N&") Whereﬁ

1
wpzzwvz1—§E—L—Zso, (121)
\%4 @

where L is number of the loops, E is the number of external mesonic lines and we have used the
identities

> (np+nbs) = 20p+2es+E
14

°In the case of OFV it seems to be natural from the dimensional reason.

SNote that, each additional mesonic loop yields a further suppression 1/N¢, see also bellow.

"Here and in what follows we use subscript @ when referring to the operator, while the superscript V' corresponds
to the concrete vertex derived from the operator O.

8Here and in what follows, the sum over O include all the operators from which the individual vertices entering
the graph I' are derived with necessary multiplicity.
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In+lcy = L+V—1 (122)

relating L. and E with the number of resonance and GB internal lines Ir and Igg. The loop
expansion is therefore correlated with the large No expansion; higher loops need additionally
N¢—suppressed counterterms O, with higher sep_,:

1
50, = (1 - 5E) —wr=L+)» so (123)
(@]

Though the formula refers seemingly to individual vertices, reformulated in in the form
(123)) it points to the members of the chiral symmetric operator basis of the RxT Lagrangian.
However, as it stays, it does not suit for our purpose because the large N¢ counting rules give
no restriction for the number of derivatives as well as to the number of resonance fields (once
the couplings respect the leading order large N¢ behavior described above). The formula
expresses merely the the fact that the large N¢ expansion coincide with the loop one.

Let us now describe another useful technical way how to classify the couterterms, which could
overcome the problems with the above schemes and is in a sense a combination of them. Let us
start with the familiar formula for the degree of superficial divergence dr of a given one particle
wrreducible graph I'; which provides us with the upper bound on the number of derivatives dp,, in
a counterterm O, needed for the renormalization of I'. Because in the Proca and antisymmetric
tensor formalisms the spin 1 resonance propagator behaves asﬂ O(1) for p — oo, we get

do,, < dpr =4L —2Igp + Y _do (124)
(@]

where dp means the number of derivatives of the vertex V derived from the operator O. Elimi-
nating I5p in favour of L and I and using the identity

an:2[R+ER7
o

relating Iz with the number of external resonance lines Er, we get eventually

do,, < dr =2+2L+ ) (do+nf —2) — Eg.
(@]

Adding further to both sides >, (2n? + Qng) +n% + n?), the total number of insertions of the
external v, a, p and s sources weighted with its chiral order, we have

Do, +nf—2<2L+> (Do +ng —2)
o

where Dg is the usual chiral order (as in pure x PT) of generic operator O. Therefore, introducing
an index ip of a general operator O as followﬂ

io = Do +n% —2 (125)

9In the case of the first order formalism, the mixed propagator behaves as O(p~!). In this case, dr = 4L —
2l — IRy + ) do where Iy is number of the internal mixed lines. In the following considerations we can take
the r.h.s. of (124)) as an upper bound on dr with the conclusions unchanged.

10 Analogous assignment of the chiral order to the interaction terms with at least two resonance fields is proposed
in [32], note however, that in this reference it is used by means of substitution Dy — ip in the Weinberg formula

(116) with counting M = O(p).
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we get analog of the Weinberg formulaEL now in the form of an upper bound

io, <ir=2L+ )Y io. (126)
@

Let us now discuss its properties more closely. First, the number of operators with given ip < ipax
is finite, because this requirement limits both the number of derivatives as well as the number of
resonance fields. Second, note that, for general operator O the index ip > 0. We have ip = 0
for the leading order xPT Lagrangian, for the resonance mass (counter)terms as well as for the
resonance-GB mixing term (A*u,) possible for 17~ resonances in the Proca field formalism@.
The usual interaction terms with one resonance field and O(p?) building blocks correspond to the
sector 7o = 1, the same is true for the trilinear resonance vertex as well as for the “mixed”
vertex (118]), while the two resonance vertices with O(p?) building blocks correspond to the sector
10 = 2, etc.

Therefore, according to the formula , the loop expansion is correlated with the organiza-
tion of the operators and loop graphs according to the indices 7o and ir respectively analogously
to the pure xPT, with the only exception that also lower sectors of the Lagrangian w.r.t. io are
renormalized at each step. Therefore, we get the renormalizability provided we limit ourselves to
the graphs composed from one-particle ireducible building blocs for which the RHS of is
smaller or equal t0 7.x.

The counting rules can be summarized as follows

RNV? VM = O(p)a M = O<1) (127)
and for the external sources as usual
v, a" = 0(p), x,x" = 0. (128)

Note also that, the index i» can be rewritten as
o
z’O:DO—2< —%R) (129)

and in the last bracket we recognize the exponent controlling the leading large Ns behavior of
the coupling constant in front of the operator ©. Remember, however, that the loop induced
counterterms have an additional 1/N¢ suppression for each loop (cf. ([21])). Therefore it is
natural to modify the index ip and ir as follows (the coefficient 1/2 is a matter of convenience,
see bellow)

~ ' 1 o 1
io = Z—O+S@:—Do—<1—n—R—So):—Do—wO

2 2 2 2
~ ir . o _ 5
v = §+SF—L+;?+SF—2L+Z@:ZO (130)

"This can be recovered for n§ = 0, when the inequality changes to the equality.
12Note however, that this term can be removed by means of the field redefinition.
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where wo is given by (119) and we have used (123)) in the last line. With such a modified indices
io, ir the formula (126)) has the form

o, <ir=2L+Y io (131)
@

The content of this redefinition of ip» is evident: the operators are now classified according to
the combined derivative and large N¢ expansion according to the counting rules (for pure x PT
introduced in [34], [35], [36])

1
o

In what follows we shall use for the classification of the counterterms and for the organization of
our calculation the index i given by and . Note however, that these formulae similarly
to the previous cases, do not have much of physical content and serve only as a formal tool for
the proof of the renormalizability and for the ordering of the counterterms. Namely, the index
ir which is by construction related to the superficial degree of the divergence (and which applies
to one-particle irreducible graphs only) does not reflect the infrared behavior of the (one-particle
irreducible) graph T, rather it refers to its ultraviolet properties.

Note also, that the hierarchy of the contributions to the GF by means of fixing ir for one-
particle irreducible building blockﬂ might appear to be unusual. For instance, let us assume the
antisymmetric tensor formalism. Taking then ir = 0 allows only the tree graphs with vertices
from pure O(p?) chiral Lagrangian with resonaces completely decoupled (the only ip = 0 relevant
term with resonance fields is the resonance mass terms) and such a case is therefore equivalent
to the LO xPT. When fixing ir < 1, also the terms linear in the resonance fields (at least in
the antisymmetric tensor formalism, where the linear sources start at O(p*)) can be used as the
one-particle irreducible building blocks and again only the tree graphs are in the game. However,
the resonance propagator is still derived from the mass terms only. Therefore, summing up all the
tree graphs with resonance internal lines leads then effectively to the contributions equivalent to
those of the pure O(p*) xPT operators with O(p*) LEC saturated with the resonances in the usual
WayE. Because the resonance kinetic term has ip = 2, the resonances start to propagate only when
we take ir < 2. At this level we recover the complete NLO xPT as a part of the theory (including
the loop graphs) supplemented with tree graphs built from the free resonance propagators and
vertices with ip < 2. As far as the resonance part of the Lagrangian is concerned, these vertices
coincide with the O(p®) vertices in the first type of power counting we have considered in the
beginning of this section (where we assumed R, = O(p?), see ([{111))) but also the four resonance
term without derivatives is allowed. The resonance loops start to contribute at i < 3 (with the
resonance tadpoles) and ir < 4 (with the pure resonance bubbles). In order to renormalize the
corresponding divergences, plethora of new counterterms with increasing number of resonances as
well as increasing order of the chiral building blocks is needed. In what follows we will encounter
graphs with ir = 6 (the mixed GB and resonance bubbles) for which we will need counterterms
up to the index 1o < 6.

p=0(6"?), v,a=0("?), x,x" = 0(5), olt) (132)

BThat means at a given level i, we allow for all the graphs with one-particle irreducible building blocks
satisfying ir < imax. This point of view is crucial in order to preserve the symmetric properties of the corresponding
GF.

4 Here we tacitly assume that the trilinear term without derivatives has been removed by means of field redefi-
nition, cf. [9] [10].
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Figure 1: The one-loop graphs contributing to the self-energy of the Proca field. The dotted
and full lines corresponds to the Goldstone boson and resonance propagators respectively. Both
one-loop graphs have ir = 6

4 The self-energies at one loop

In this section we present the main result of our paper, namely the one-loop self-energies within
all three formalisms discussed in the Section [2| in the chiral limit. In what follows, the loops are
calculated within the dimensional regularization scheme. In order to avoid complications with the
d—dimensional Levi-Civita tensor, we use its simplest variant known as Dimensional reduction,
1.e. we perform the four-dimensional tensor algebra first in order to reduce the tensor integrals to
scalar ones and only then we continue to d dimensions.

4.1 The Proca field case

Our starting point is the following Lagrangian for 1~ resonances [37] (see also [38])

1 5 = 1
EV = —Z—l<VM,,V’“’>+§M2(V“V“>

V) + SOV IV TP ) 4 (133)
where we have written down explicitly only the terms contributing to the self-energy. Originally
it was constructed to encompass terms up to the order O(p®) within the chiral power-counting
, . In the large N¢ limit the couplings behave as gy = O(Né/2) and oy = O(Ngl/Q). This
suggests that the odd intrinsic parity terms are of higher order, however the vertices relevant for
our calculations have the same order O(Ng') in both cases due to the presence of the factor 1/F =

O(Ng Y 2) which accompanies each Goldstone bosons field. In the above Lagrangian the operators
shown explicitly have no more than two derivatives and two resonance fields. Therefore, because
the interaction terms are O(p?) we would expect (by analogy with the YPT power counting) the
counterterms necessary to cancel the divergencies of the one-loop graphs to have four derivatives
at most. However, the nontrivial structure of the free resonance propagator (namely the presence
of the P, part) results in the failure of this naive expectation. In fact, according to (125 and
, the operators in have index up to 1o < 2, whereas the Feynman graphs corresponding
to the self-energies ¥, 1 (depicted in Fig. [I) ip = 6. In order to cancel the infinite part of the
loops we have therefore to introduce a set of counterterms with two resonance fields and indiceq™|
1o < 6, namely

1 VATEPESIS Y
£l = M2V L 0,0 - (D)

1
X X
+ 7 {Day D}V D, DPIVH) + =2 ({ Do, D}V, {D, D*}V)

5Note that, for these counterterms the index ip coincides with the usual chiral order Do.
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X X
SPHDa, DAVAD®, DAYV, + S HDV, D, DOYVs) + Xva( DV, DY)

+/:$(6>. (134)

Here the last term accumulates the operators with six derivatives (ip = 6), which we do not
write down explicitly. The bare couplings are split into a finite part renormalized at a scale pu and
a divergent part. The infinite parts of the bare couplings are fixed according to

Zy = Zy(p)
. 80 [ M\?
Zy = Zv(/ub)Jrg(F) 01 Ao
. 80 (M\? , 1
Xy = XWW‘?(?) VRN
Yy = Y\;(M)
XV = XJ(N)
where
Xy(p) = Xpq(p) + Xys(p)
Xy(n) = Xyy(p) + Xia(p) + Xya(p) + Xy () + Xy5(),
and

Ao = % (ﬁ—%(lnéﬁr—’y—i—l))

The result can be written in the form (in the following formulae x = s/M?)

(W)Q S ot~ gt (]ﬁ)zx?’é(w)—%a%(x—m vl >]

1=0

Bils) = (47TF) 23:

=0

Xr(s)

In the above formulae «; and 3; can be expressed in terms of the renormalization scale independent
combinations of the counterterm couplings and xlogs. The explicit formulae are collected in
the Appendix The functions B(z) and J(z) correspond to the vacuum bubbles with two
Goldstone boson l1nes or with one Goldstone boson and one resonance line respectively. On the
first (physical) sheet,

B(z) = B'(z)=1-In(—2)
(z) = J'(z)= = {1 - (1 - 1) In(1 — :1:)} : (135)

T T

)

where we take the principal branch of the logarithm (—7 < ImInx < 7) with cut for < 0. On
the second sheet we have then B! (x —i0) = B!(x +1i0) = B!(z —i0) + 27i and similarly for J(z),
therefore

B™(z) = B'(z)+ 2ni
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Tz = J(z)+ 2m (1 - 1) . (136)

The equation for the pole in the 17~ channel
s—M*—Yr(s) =0

has a perturbative solution corresponding to the original 1~ vector resonance, which develops a
mass correction and a finite width of the order O(1/N¢) due to the loops. This solution can be

written in the form 5 = M3 & — 1Myl phys where

M\ (< 1., /M2
2 2 2 9
M2 = M?+ReSp(M?) = M? |1+ (47TF> <§Oa -5 (F> )
M \*1 M2
MonTogn = ~Im3(M5) = M <m) 2% <F> "

which gives a constraint on the values of o;’s

1
M2+ Mphysrphys = M?

phys

and in terms of the physical mass and the width we have then

T hys
ET(S) = Mghys ( 4;1;}:)

ZE(S) = Mghys( phys) Zﬁz

For further numerical estimates it is convenient to adopt the on shell renormalization prescription
demanding M?* = M3 . and also to identify F' with F; (because F' = F, at the leading order).
This gives

1 .
Zoz xt— —av r—1)%z](z )] — = MypysDphys ™ B(z)

3

1 Tpnys ?

T Mopys (47TF> D o
phy i=0

and, introducing parameters a;, b; with natural size O(1

a; = W% (%) a; ~ O(1)
R (iﬁ’;ffﬁw()(n
we get in this scheme for o/ (7) = MphysE’" L (M3 )
op(x) = 7r]\/[p};y;s (1 —1—2(12 2t —1) — 2*B(x )) _ % (%)20‘%@— 1)%2J(z)
op(x) = i}\;‘;ﬁ; i:ble

=0



Figure 2: The one-loop graphs contributing to the self-energy of the antisymmetric tensor field.
The dotted and double lines correspond to the Goldstone boson and resonance propagators re-
spectively. The GB and pure resonance bubbles have i = 4, while the “mixed” one has ir = 6

4.2 The antisymmetric tensor case

We start with the following Lagrangian for 17~ resonances (here only the terms relevant for the
one-loop selfenergy are shown explicitly)
1 178 o Ye] 1 2 v
Lr = —§<DMR“ D®R,,) + ZM (RM™ R,)
1Gy
+  —=(R"[uy, w,]) + di€pvac (Dau’ { R, R’
2\@( [y, wy]) + dr€pac (Dpu’{ ;i
+  dsEpon (WD, R RP7Y) + dut popa{u, {D*R* , R*})
+ INYYAR,,R'YR) + ... (137)

Note that, in the large N¢ limit the coupling Gy behaves as Gy = O(Né/z), whereas d; = O(1) and
AVV = O(N, /2y Apparently the intrinsic parity odd part and the trilinear resonance coupling
are thus of higher order. However, the trilinear vertices contributing to the one-loop self-energies
are O(N51/2) in both cases due to the appropriate power of 1/F = O(NEI/Q) accompanying .
Therefore, the operators with two and three resonance fields cannot be got rid of using the large
N¢ arguments. Also nonzero d; are required in order to satisfy the OPE constraints for VVP GF
at the LO; especially for d3 we get [39]

No (MN\> 1[F\?
do — — il i 138
T 642 (FV> T3 (FV> (138)
where Fy is the strength of the resonance coupling to the vector current.
The Lagrangian (137)) includes terms up to the index ip < 2. The one-loop Feynman graphs
contributing to the self-energy are depicted in Fig. [2] The first two bubbles include only interaction
vertices with ip = 1 and therefore they have indices it = 4 while the third one is built from vertices

with i» = 2 and has the index ir = 6. In order to cancel the infinite part of the loops we have
then to add counterterms with indices ip < 6, namely the following set

1 1 1
£e = ZM2ZM(RWRW) + §ZR<DQRO“”D5R5M> + ZYR(DaR“”D“Rw)
1 1
+ZXR1(D2R‘“’{DV, D}R,.) + gXRZ<{DV, D, }R*™{D’, D*}R,,)
1
+§XR3<{D07 DQ}RMV{DW Da}R,u0'>

1 1
+ZW31<D2R’*”D2RW) + 1—6WRQ({D°‘, DPYR"™{D,, Dg}R,,)
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+L50) (139)

where the last term accumulates the operators with six derivatives (ip = 6), which we do not
write down explicitly. The infinite parts of the bare couplings are fixed as

M2 VYV 2
Ly = Zf\/,(u)%—@(—) d%)\oo—GO <)\ ) Aoo

M

. 40 [ M\? 1 ) )
ZR = ZR(,u) + E F W(12d1<d3 + d4) — d3 — 9d4 + 6d3d4))\oo
\VVV 2 1
+80 ( ii ) WAOO
. 40 (MN\® 1
Y = Yh(u) + 5 (F) —(6d} — 12d, (ds + dy) + 5d3 + 9d; — 6dsdy) Aso
1

G\’ 1
Xr = Xplp)+ —(d§—6d3d4+5di)>\m—(—v) —A

M
9 \ F 2 I M2
, 40 [ M\* 1 N
Wr = WR(MHg(F) —4(d§+6d3d4—5di)Aoo—1o< - ) T

where

Xp(p) = Xgi(p) + Xpo(p) + Xps(p)
Whn) = Wii(w) + Why(p).

An explicit calculation gives for the renormalized self-energies (in the following formulae z =

5/ M?)
ST (s) = M2 (4%)2 i:ax _ (% (%)293@(9;) + 49—0d§(a:2 _ 1)2f(g;)>]

Z Bix' + —O (245 + (d3 + 6dsdy + df)x + 2d32°) (x — 1)° A(x)]

Here the functions B(z) and J(z) are same as in the previous subsection and J(z) is given on the

physical sheet by
o ,/1———1
J(x)=J —2—1—\/1——111
/1 —|—1
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with the same branch of the logarithm as before. On the second sheet we have 7H(:U —i0) =
71(33 +1i0) = 71(95 —10) + 2imy/1 — 4/x and therefore

T (@) = T (@) + 2imy /1 %

The explicit dependence of the renormalization scale invariant polynomial parameters o; and ;
on the counterterm couplings and xlogs are given in the Appendix [D.2]

In order to simplify the following discussion we put AYVY = 0 in the rest of this subsection.
This is in accord with the fact, that the corresponding trilinear interaction term can be effectively
removed by resonance field redefinition [9]. Also, the two-resonance cut starts at @ = 4 which is
far from the region we are interested in. Here the effect of the resonance bubble can be effectively
absorbed to the polynomial part of the self-energies.

The equation for the propagator poles in the 17~ channel

s—M*—Y.(s)=0

has an approximative perturbative solution corresponding to the original 17~ vector resonance,
which develops a mass correction and a finite width of the order O(1/N¢) due to the loops. This

solution can be written in the form s = Mghys — 1My phys Where

M\ (< 1/Gv\>
2 _ 2 2\ 2
M2 . = M?+ReS (M*) =M H(W) (Zi:o ai_§<?)>
M \?1 /G, \?
My Tphys = —Tm3 (M?) = M? <4W—F) 5(%) "

which gives a constraint on the values of a;’s

, 1 , 1 (M2
Mphys + ;Mphysfphys =M 1 + W ? Z a; | .
i=0
This allows us to re-parameterize perturbatively X (s) in terms of Mppys and [phys as

r 2 Mphys [ i 40 20,2 27 1 295
X(s) = My, A E ;O‘ix _§d3($ —1)"J(x) _%thysMphysx B(z)

-~

Moy \2 [~ ., 20
Sh(s) = Mp, (WL*W) > Bt + — (2d3 + (d3 + 6dsdy + d3)z + 2d327) (x — 1)2J(x)] .
L :=0

4 F 9
As for the Proca field case, within the on shell renormalization prescription M?* = M2, and
we get a constraint
3
1 thys Mphys 2
1 _ 140
™ Mphys 4 F, ; “ (140)
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As a result, We can re-write the self-energy (in the units of M?_, i.e. as in the previous section

phys?
ot p(x) = My i (M

Phys ohys) in what follows) in the form

1T
of (z) = — -2 |9 [ - —i—Zazx —1)

40 lwphys 2 2/ 92 27
d -1
T lwphys 9 <4 1 ) 3(37 ) <x)

using the re-scaled parameters a; with a natural size O(1)

a; =T

M, phys M, phys
r

phys

So that the ¥’ (s) has four independent parameters a;, i = 1,2,3 and ds. Similarly, ¥/.(s) can be
written in this scheme in terms of six independent dimensionless parameters b; , d3 and ~

Mopos { Moo \ 2
"Tone (47er) b (1)

as
3 2
r ]' F h; _— phys i 20 M hys ~

In order to satisfy the OPE constraints for V'V P correlator [39], we have to put further (according

to (139))

g__3 Mppnys \ F7r21 1 [ 4nF\?

T4 \arF ) \Fy 6 \ Mpnys
which reduces the number of the independent parameters for o (z) and o/.(x) to three and five
respectively.

(141)

4.3 The first order formalism

In this case, the interaction part of the Lagrangian describing 17~ resonances collects all the terms
from the previous two formalisms. It contains also one extra term which mixes the the fields R,

and V,
1 2 o 1 2 uv 1 iy
Lry = §M (V,VE) + é_lM (R'"R,,) — §<R Viw)

1 ~
S0VvEaBur <{Va7 Vlw}uﬁ>

V“”[uu,u,,]) + 5

__r (
2\/—gV
ZGV v o v (67
2\/—<RM [uuvuub +d15uma<Dﬁu {R"™, R ﬁ}>

+d38 pox (UM Dy R* ) RP7}) + dyé popa (U, { D*R*™ | R })

1
—|—§MURV6&/3W,<{VO‘, R Py +iINYVY(R,, R R +
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Figure 3: The extra one-loop graphs contributing to the vector field self-energy of in the first order
formalism. The dotted and double lines corresponds to the Goldstone boson and antisymmetric
tensor field propagators respectively, the thick line stay symbolically for the “mixed” propagator.

Because the free diagonal propagators are the same as in the pure Proca or antisymmetric tensor
cases, all the graphs depicted in the Figs. contribute also here to the diagonal self-energies
Ygrr and Xy, The mixed vertex and mixed propagator generate additional graphs contributing
to Xrgr, Xyy and Xy which are depicted in the Figs. EI and [b| respectively (in the latter case
also the GB bubble contributes).

Figure 4: The extra one-loop graphs contributing to the antisymmetric tensor field self-energy in
the first order formalism. The meaning of the various types of lines is the same as in the previous
figures.

Figure 5: The one-loop graphs contributing to the “mixed” self-energy in the first order formalism.

Similarly, the set of counterterms necessary to renormalize the infinities includes all the terms

(134) and (139) and additional mixed terms

feo= M2 VS 0,7 — (D)
FE D, DVADY, DAYV + V2D, DAV (D, DY)
+%<{Da, Ds}VP{D* DM}V, + %(DQV#{D”, D"}Vg) + Xys5(D?*V,D*V*)
+%M2ZMR(RWRW> + %ZR(DQR““DﬁRgM) + iYRwaRﬂ"mRMV}
+%XRI<D2R“”{DV, D°}R,,) + éXm({D,,, D, }yR*™{D’,D*}R,,)

1
+§XR3<{D07 DQ}RMV{DIM Da}R,uo'>

1 1
+ZWRl(D2R””D2RW> + 1—6WRQ<{DC’, DPYR"™{D,, D3} R,,

31



1 = 1 N 1 =
—EZRVM(R“”VH,) + §XRVlM<DaR“”DaVW) + §XRV2M(D“R“"D"VU,,

+LHO)
Now the infinite parts of the bare couplings have to be fixed as follows
20 [ M\?
? (—) (O‘RV -+ QUv)(Zdl — URV>)\00

Zry = Zpv(p) — 7

20 (M\* 1
XRV = XEV(M)_§<F) W(O’RV—FQO‘V)(ZLd?,‘FURV))\OO

Zav = Zyv(p)

20 ?
ZV = Z‘T/(Iu) + 3 (F) (O-RV<O-RV + 20'v) + 40"2/) )‘oo

20 ( M\ 1
XV = X(/(M) - — <—> — (URV(URV —{—20‘/) +40‘2/) )\oo

9 \ F 2
Yy = Yy(w)
Xy = Xy(u)
20 [ M\>
Zur = Zygp(H) + =5 <7> (4d} — orv(ory — 2d1)) Ao
40 (M2 10
ZR = ZE([IJ) E (F) (12d1 (dg + d4) - dg - 9di + 6d3d4))\oo + gO'Rv(lodg + 18d4 + URV))\oo
. 10 (M\? 1
Y = Vi) + g (F) 73 (240} — 48d1(ds + dy) + 20d5 + 365

—24d3dy — 0%y + 20Ry(ds + 3d4)) Ao

. 40 (MN® 1

101

Gry\> 1
9 M2 O'Rv(6(d3 —+ d4) — O'RV))\oo — e —)\OO

F ) M?

40 (M? 10
WR — W}E(M) + — (_) M4 (d + 6d3d4 — 5d2))\ + O-RV(O-RV — 2(d3 + 3d4)>/\oo

9 \ F 9
where
(n) = X%(M)Jers)(M)
Xy () = Xpi(p) + Xvo(p) + Xyg(p) + Xy (p) + Xys(n)
(n) = Xﬁl(M)Jer( )+X33(M)
(1) Wi (k) + Whro(n)
Xpv(p) = Xpyi(p) + Xgya(p)

The renormalized self-energies can be then written in the form

swir = () [Sore o2 (1) e
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—f—E(O'RV + 20'\/)(2d35(7 + 2d3 — O'Rv)<5(] — 1)2 A(l'):| = EVR(S)T

9
Zavv Ry (%)21;3@(3:)

siver = ()
— = (orv(oRy + 20v) + 402 (x — 1)%2 T (90)}

10
9
2 3
L roo__ VV z
2 3 GV 2 R
EéR(S)T = (47TF> Za Ryt (?> :L'zB(iL')
10 ~

——(4d3(z +1)* — 2dsopy (z + 1) + oy ) (z — 1)? (x)}

9

Sty = 20 ()

+(4d3 - QO'Rvdg + O-RV + 24d3d4 + 4di - 60’3\/(14)]7 + 8dil’2)(l‘ - 1)2 A(I)] .

Z BRR 8d — dopyds + 202,

Here again the renormalization scale independent coefficients of the polynomial parts of the self-
energies are expressed in terms of the couplings and chiral logs; the explicit formulae can be found

in the Appendix
The equation for the poles in the 17~ channel

D(s) = (M? + Sia(s))(M? + Spy(s)) — s(M + By (s)) (M + Svr(s)) =0

can be solved perturbatively writing the solution in the form 5 = M2

phys — iMphysLphys = M? + A,
To the first order in A and the self-energies we get then

5= M+ Xpp(M?) + Xy (M?) = M(Spy(M?) + Sy r(M?))

and therefore

M2 = M?+Re [Shp(M?) + X0y (M?) — M(Sgy(M?) + Syrp(M?))]
M 2 3 2 1 M 2 G 2
_ 2 RR VvV _ rv _ 1 (M v
= M 1+<4’/TF) (;(az +az ) Q;Qz 2<F> (gV+ M)
MonysTpnys = —Im [SEp(M?) + X7 (M?) — M(Sgy (M?) + Syr(M?))]

M \*1
= oM?*(—) =
" <4WF) 2

which yield the constraint

1 M\2 /(S 2
i e = (” (77 (Zwﬁ%w —2Zaﬁv>)'



In the on-shell scheme M? = M2 _we get further

phys

3 2
1 thys Mphys ’ RR \%a7% RV

T M,
phys =0 i—0

On the contrary to the previous two cases, this allows to exclude both the constants g, and Gy
in favor of the physical observables only for the combination

o(z) = zopp(z)+ opy(x) — 2(ory () + ovr(z))
_ 1l (4 4 1) — 2*B
= WMphys +Za,x— - ()

_% <‘;W7TL?:) ZE($ — 1)2 A(x) [dg(l‘ + 1)(2d3($ + 1) + oRy + 4UV) + UV(URV _ 20'V)]

(here X7 = M?ckp, X%, = Mogy etc.), where

Monys { Mpnys \
a; = T2 (ﬂ> (afff + oV —2a™)

Pohys \ 47F;
with ot = oY = 0 are parameters of order O(1),
From the OPE constraints applied to V'V P correlator within the first order formalism we get
further
p NCM2+1F2+1( Lov)
= — — | = —(o o
’ 6472 \ Fy 8 \ Fv g VTRV
3 (Mg \* [ Fr\’ 1 (4nF\?| 1
— 2 el Sl B I -
1 (4@; ) Fy 6 \ M) | T 2lomv T V)

Using dimensionless variables, we can write the condition for the poles in the form
(1+ 05a(2)(1 + opy () — 2(1+ ory(2))(L + ovr(z) =0
in the 17~ channel and

1+U£R(x) =0
L+oyy(z) = 0

in the 17~ and 0"~ channels respectively. Within the on-shell scheme

1r 2 . .
opy(s) = ——B (Zaﬁvgﬂ—u—c)cx?B(x))
=0

m M. phys

~

10 ( Mynys \® 2
+5 (T22) [onr +20v)(2dsw +2d5 — o)z = 1) ()|

3

1 T'ohys

ot = L (3o s o)
phys =0
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2
10 (Myrys [(URV<0RV +20v) + 402 (x — 122 (2)
9 \47F, v
3
) 1 Tops )
opy(s) = . Mp:]ys 2 bV
3
) 1 Tps Z. ~
ohp(s) = - ]\Z)hyys (; a Va4 (1 — C’)2x3B(x)>
10 [ Mpnys \ -
-5 <ﬁ) [(4d§(m +1)? = 2dsopy (v + 1) + oy ) (z — 1)° (x)}
3 2
. 1T hys i 5 (M, hys
UER(S) - Mphyys ZZ_; bem + 9 (ﬁ) [(8d§ —4ogyds + 20?2\/
(42 — 20y dy + 0y + 24dydy + Ad2 — 6o pydy)a + 8d2e?)(z — 1)2 A(:c)} .
and

1 thys —phys ~2 192 Mphys ’ M, Mphys ’
T Miypys 27\ F, P\ Ay,
and the other parameters are of natural size O(1) with the constraint

2 4
Z(GZRR QZCL v Zazzl.

=0 i=0 =0

4.4 Note on the counterterms

Let us note, that the counterterm Lagrangians , and might be further simplified
using the leading order equations of motion (EOM) in order to eliminate the terms with more
then two derivatives as it has been done e.g. in [I6]. However, this does not mean, that we do
not need to introduce such counterterms at all. As we have proved by means of the above explicit
calculations, without the higher derivative counterterms (or equivalently without the couterterms
proportional to the EOM) we would not have the off-shell self-energies finite.

In fact, the infinities originating in the missing EOM-proportional counterterms are not al-
ways dangerous. Note e.g., that such infinities are in fact harmless, provided we restrict our
treatment to strict one-loop contribution to the GF of quark bilinears or to the corresponding
on-shell S-matrix elements. Namely, in this case, the one-loop generating functional of the GF
is obtained by means of the Gaussian functional integration of the quantum fluctuations around
the solution of the lowest order EOM. As a result, the EOM can be safely used to simplify the
infinite part of the one-loop generating functional. On the strict one-loop level the infinite parts
of the self-energy subgraphs corresponding to the missing EOM-proportional counterterms cancel
with similar infinities stemming from the vertex corrections.

Nevertheless, already at the one-loop level these counterterms might be necessary under some
conditions. Namely, near the resonance poles we can (and in fact have to) go beyond the strict one-
loop expansion e.g. by means of the Dyson resumation of the one-loop self-energy contributions
to the propagator. This will generally destroy such a compensation of infinities. This is the reason
why we keep the counterterm Lagrangian in the general form , and .
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5 From self-energies to propagators

In the previous sections we have given the explicit form of the self-energies in a given approxi-
mation within all three formalisms for the description of the spin-1 resonances. Here we would
like to discuss interpretation of these results and the construction of the corresponding propa-
gators. We will concentrate on the most frequently used antisymmetric tensor representation,
where all the characteristic features of other approaches are visible without unsubstantial tech-
nical complications. The remaining two cases can be discussed along the same lines with similar
results.
Let us remind the form of the self-energies for the antisymmetric tensor case

r — 1 Pphys 2N 2 : i 40 Mphys 2 2/ 9 97
3 2
1 Tpnys 20 ( Mpnys 2 2 2,.2 27
p(r) = S PN gt (2R 2+ (1 2 —1
olp(x) Vo izoblx—i— 5 (47TF7F di (24 (14 6y + %)z + 29°2%) (z — 1)*J (2),

(143)

where d3 is given by and where we have already re-parametrized the general result in terms
of the parameters of the perturbative solution of the pole equation in the 1=~ channel (which we
have identified with the original degree of freedom). In doing that we have tacitly assumed the
validity of the general relation between the self-energies and the propagator . The equations
determining the additional poles of the propagators are then

fu(@) ) (144)
fr(x) = 1+op(x)=0. (145)

|
8
|
—_
|
)
~=
=
I
(@)

In what follows we shall discuss these equations in more detail. We will find a lower and upper
bound on the number of their solutions and give a proof, that the corresponding lover bounds are
greater than one on both sheets. We will also briefly discuss the compatibility of the relation @
with the Kéallén-Lehman representation and show, that at least one of the roots of @ and @
corresponds inevitably either to the negative norm ghost or the tachyon.

5.1 The number of poles using Argument principle

Let us first briefly discuss a determination of the number of solution of the equations @ and .
This can be made using the theorem known as Argument principle (see e.g. [40]). According to
this theorem, for a meromorphic function f(z) with no zeros or poles on a simple closed contour C,
the difference between the number of zeros N and poles P (counted according to their multiplicity)
inside C' is given as

N —-P = %[arg f(@)]e. (146)

Here [arg f(z)]c is the change of the argument of f(z) along C. Using this theorem we will show,
that in both cases (6) and (145) there is a nonzero lower bound on the number of solutions on
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the first and the second sheet, which correspond to the poles of the propagator . We will also
give conditions for the saturation of these lower bounds.

Let us start with (145). The left hand side of the pole equation fr(z) =1+ o7(z) is analytic
on the first sheet (and meromorphic on the second sheet) of the cut complex plane with cut from
z=1to z = 4o0. Let us choose contour C' = C; + Cr — C_ + C. which is usually used for
the proof of the dispersive representation for the self-energy, namely the one consisting of the
infinitesimal circle C. encircling the point z = 1 clockwise, two straight lines C. infinitesimally
above and bellow the real axis going from z = 1 to 2z = R and a circle Cz corresponding to
2 = Re? 0 < 0 < 27, and take the limit with ¢ = 0, R — oo in the end. According to the
argument principle, the total change of the phase of the function fé’”(z) along this contour gives
the number of zeros (with their multiplicities) n! of f(2) on the first sheet and n'! — 2, where n'!
is the number of zeros of f(z) on the second sheet (note that f1(z) has pole of the second order
at z = 0) lying inside the contour C, i.e.

W= ol Gl

1
n'l = %[arg fH(2)]e + 2.

Let us assume the contour C. first. Suppose that x = 1 is not a solution of the equation
fr(z) = 0. As a consequence, [arg f5""(2)]¢. vanishes
On the contour Cp, i.e. for z = Re'? we get for by # 0

. o 1T 20 ([ M, 1 InR
III i0 3 .30 phys phys 2
(R =R - b ds2v* |1 —InR 2 — 0 @)
Jr (ReT) = Re <7rMphyS 21 (4@;) V- R i -8 F )]+ (R R ))

and therefore, for R — oo, [arg £+ (2)]c, — 6m. The same is valid also for b = 0 with v # 0.
However, for b3 = v = 0 we get

i1 i0 2 2i0 I phys Mphys 2 . n
T R =R — b+ — | — ) il -InR+i2r—-0F7)|+ 0O
( ¢ ) ¢ (’/l Mphys 2 9 (47(}7#) 3 [ 1( )] (E R ))

In this case [arg fi"'(2)]¢, — 47 and because ds # 0 (unless we are in a conflict with OPE for
the tree level VV P correlato, this gives also the lower bound for [arg f7""(2)]c,.

Finally let us discuss the lines C.. Because Im fi(x 4+ i0) = Imoh(z £i0) = 0 (and fL
is real analytic), Im f&(z +i0) > 0 for z > 1, and Refl/" (R +i0) — —oo for R — oo, we
can easily conclude that in this limit [arg £/ (2)]c, = . = 0 unless (1) > 0, in the latter case
larg 777 (2)]c, = 7 and in both cases [arg fr (2)]c. = +larg £ (2)]c, -

Putting all pieces together we get under the assumption f7. < H( 1) # 0 the following bound

[arg f7" (2)]c = 4m

16Tn the case fé () — 0 for z — 1 when fj{ M) = (x — 1)F gén( ) where k < 3 and when gé’H(a:) (which
has the branching point at 2 = 1) has a finite nonzero limit at z = 1) we get [arg f1"' (2)]c. = —27k.

1"Note however, that the requirement that the tree level conditions for OPE are satisfied might be modified by
loop corrections.
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and therefore for the number of zeros in the cut complex plane we get

2 4 (147)

n! <
n't <5 (148)

IAINA

where the lower bound is saturated for fé’”(l) < 0, b3 = v = 0 and the upper bound for

LT(1) > 0 and either bs # 0 or 4 # 0. For f1''(1) = 0 (provided we include also this zero with
its multiplicity into n’!) the these bounds are valid tod™}
An analogous simple analysis for f;(z) = 2z — 1— ¢} (z) in the cut complex plane with the cut
from z = 0 to z = 400 gives [\ for f]"7(0) #0
3 < nf<4 (149)

n'l = 5 (150)
where the lower bounds are saturated for i’H(O) < 0 otherwise n! equals to the upper bound.
We can not therefore avoid in any way the generation of the additional poles (some of them
might even be of the higher order) in both 17~ and 17~ channels of the propagator only by means
of an appropriate choice of the free parameters a;, b; and . The minimal number of the additional
poles (with their orders) on the second sheet is the same for both channels (note that, one pole
in 17~ channel has to correspond to the perturbative solution describing the original degrees of
freedom we have started with). The conditions for the saturation of the lower bounds in the 17—
and 17~ channels are

3 2
1 Tpys 20 [ Mpnys\~
_ Z_phys g Iy i L N S| 151
S ey < () @< s1)
phy: i=1
and
3
1T
— o Py Ny s (153)
ﬂ-Mphys =0

respectively. Note that, while the first condition is in accord with the large No counting, the last
one is not. Let us now discuss the physical relevance of such additional poles.

18Tn this case the point z = 1 is solution of fé’”(x) = 0 and provided f%’”(x) = (z—1)* g%’”(x) (zero with

multiplicity £ < 3) we have according to the footnote the phase deficit —27k (i.e. the number of the poles
different from z = 1 is then reduced by k) in comparison with the case fI{’H(z) # 0.
YNote, that in this case,

: : 1T 40 [ M 2 1 nR
1,11 i0 3 _3i0 phys phys 2 .
f+7 (R =R —— a3+ — | —— ds[l—-InR+i2r—0Fm)|+0 | =, —
L ( © ) © ( Wiwphys 3 9 (4’/Tlﬂ'> 3[ 1( )] (R’ R ))

and therefore [arg f'7(2)]c, = 6.
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5.2 The Kallén-Lehman representation and nature of the poles

In this subsection, we will show that the the propagator (44) with self-energies and - is
incompatible with the Kallén-Lehman representation with the positive spectral functlon More-
over, at least one of the solutions of both equations (@ and is pathological and corresponds
to the negative norm ghost or the tachyonic pole.

Let us first briefly remind the Kallén-Lehman representation of the antisymmetric tensor field
propagator. According to the Lorentz structure we can write the following spectral representation
of the full propagator (modulo generally non-covariant contact terms)

By (®) = P (D) A1) = M (0) A 0) + AL ()
where (up to the necessary subtractions)
00 2
Aro?) = [ qelers) 154
rr(p”) /0 S (154)

and where the spectral functions prr(p®) are given in terms of the sum over the intermediate
states as

(2m)*0(0°) [or (P*)P* W (p) — pr(0" )0 I 0s(0)] = Y 89 (0 = ) (01 Ry (0) [ N) (N | Ra(0)[0)..

(155)
Note that, in the above formula we assume all the states | V) to have a positive norm; the spectral
functions prr(p?) are then positive (for the proof see the Appendix . For the one particle
spin-one bound stated states |p, A} with mass M either

(0| Ry (0)[p, N) = 2,2l (p) (156)
(0| Ry (0) [, \) = Zy P00 (p) (157)

according to its parity (cf. and ( . Therefore (using the formulae from the Appendix [E]),
the corresponding one partlcle contribution to prr(u?) is

one-particle 2
PP () = 5 Zu o — M) (158)

Positivity py7(u?) implies Z; 7 > 0 in the above one-particle contributions.
For free fields with mass M we get

2

p][‘/ree(luﬂ) _ W (5(#2 — MQ) — 5(,&2))
pé:ree(lﬁ) — %5(,“2) (159)

Note the kinematical poles in Ay 7(p?) at p* = 0, which do not correspond to any one-particle
intermediate state and which sum up to the contact terms of the form

1

ASree contact(p) — e (guocg,é’u — guﬁgua) . (160)

uraf
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Let us now define for complex z by means of the analytic continuation (up to the possible
subtractions)

s —Z

App(z) = /OOO asPers) (161)

Within the perturbation theory however, the primary quantities are the self-energies, which we

define as (cf. (44))

1 2
AT(S) = EM2+ET(S)
Ar(s) = ! 2 (162)

ss— M2 —%(s2)

The poles at s = 0 are of the kinematical origin and in analogy with the free propagator they sum
up into the contact terms provided ¥(0) = ¥(0). The formulae can be understood as the
Dyson re-summation of the 1P self-energy insertions to the propagator or as an inversion of the
1PI two-point function. Due to the positivity of prr(s), we get for the imaginary parts of X,
the following positivity (negativity) constraints:

1
Im¥ (s +i0) = 5e(s)s ImA (s +i0)][s — M? — X1 (s +1i0)]* <0

1
ImYr(s +i0) = —59(5)3 ImA7(s +i0)|M? + X1 (s +40)|* > 0. (163)

Let us now turn to the RyT -like effective theories and try to demonstrate their possible
limitations. In such a framework the self-energies ¥ p are given by a sum of the 1PI graphs
organized according to some counting rule (for RxT e.g. by the index ir, cf. (126)). Up to a
fixed given order (which we assume to be fixed from now on) we have the asymptotic behavior
Y7(2) = O(z"1nf 2)) for 2 — —o0 according to the Weinberg theorem. Here n corresponds to
the maximal degree of divergence of the contributing (sub)graphs and therefore, it grows with
the number of loops as well as with the index of the vertices (cf. ).

Such a grow of the inverse propagator is known to lead to problems. Suppose e.g., that we can
organize the result of the calculation of the 1PI graphs in the form of a dispersive representation
for the functions ¥, 7(z) on the first sheetlﬂ

L,T .
) [ee] I E
o} 4(z) = P () 4 Sal) / ar_Imer(e 2 0) (164)

where 2, > 0 is the lowest multi-particle threshold, P»7(2) and QX (2) (we suppose Q=7 (z) > 0
for x > 0) are renormalization scale independent real polynomials of the order n and n + 1
respectively and Im> r(z + i0) can be obtained using the Cutkosky rules. The contributions to

20Here we do not assume the existence of any CDD poles [41] for simplicity. In general case, provided the spectral
representation of Ay, r is valid in the form 1) and ImAZ}T(s) = O(s") for s — oo we formally get

1 [ d ImA C;
ALY (2) = Pu(2) + Qi (2) ( / QL’Tx mAp p(z) Z - ZO:)

™ n+1(x) r—z

where C; > 0 and 0 < zp; < x; correspond to the CDD poles.
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PET(z) stem from the counterterms necessary to renormalize the superficial divergences of the
contributing 1PI graphs as well as from the loops (ylogs)F}

As a consequence, the functions 2"Ay 7(z) where 0 < k < n and where Ay 7(s) is naively
defined by are analytic (up to the finite number of complex poles z; generally different for
Ay and Ar and a kinematical pole at z = 0 - see bellow) in the cut complex plane. As far as
the number of poles z; are concerned, provided Im¥;, r(z +:0) < 0 as suggested by (163), we can
almost literally repeat the analysis from the previous subsection based on the argument principle.
The change of a phase of the inverse propagator along the path Cg is now [arg Ap '} (2)]c, — 2mn
(for R — o0), while the absolute value of the [arg AZ}T(,Z)]C . is bounded by 7 due to the positivity
(negativity) of Im¥, r(x £ ¢0). Provided AZ}T(xt) # 0, we can therefore conclude

1 < nf (165)
n < nff—p! (166)
where n! is the number of the solutions of the equation AZ}T(Z) = 0 on the first and second

sheet respectively and p'’ is the number of the poles (weighted with their order) of 37, 7(2) on the
second sheet?]

Therefore, because zFAf r(2) = O(zF"71), we can write for 0 < k < n an unsubtracted
dispersion relation (cf. , we will omit the subscript L, T in the following formulae for brevity
and write simply A(z), p(s) etc.)

FAG) = Z R;z) N 1 /°° dmxkdiscA(x)

— y—z; W r—z
7>0
or .
1 [ zFdiscA(x)
= de——mm—=. 167
szz—zJ T2k o R (167)

and for k = 0 (note the kinematical pole at z = 0)

A(z) = % +y LI / dp A (168)

- Z— Z; T r—z
7>0 J

Due to the asymptotic fall off A(z) = O(z7""1) the discontinuity discA(z) has to satisfy the
following sum rules

1
— —/ dzzFdiscA(z Z =0, 0<k<n-1 (169)

7

1
——/ dadiscA(z +ZR +Ry = 0 (170)

™
J

21Tn what follows we give such an representation of our one-loop ir < 6 result explicitly.

22Note that, the case n = 1 is in some sense exceptional. In this case it is possible to get a realistic resonance
propagator compatible with the K&llén-Lehman representation with no pole on the first sheet and one pole on the
unphysical sheet. Such a propagator has been obtained in [42] for scalar resonances. Cf. also [43].
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Suppose on the other hand validity of the dispersive representation (161)). Then all the poles have
to be real, and we can identify

p(s) = ——dlsCA ZR (s )+ Rod(s). (171)

However, the sum rules are generally inconsistent with the spectral representation (161)).
The validity of some of them might require either an appearance of the states with the negative
norm in the spectrum, i.e. we are in a conflict with the positivity of the spectral function p(s) > 0
or an appearance of physically non-acceptable tachyon poles leading to the acausality. For instance,
suppose discA(s) < 0, then for Ry > 0 at least one of the poles has to correspond to a negative
norm one-particle state (ghost). On the other hand, for discA(s) < 0, R; > 0 we can still satisfy
the £ = 0 sum rule with negative Ry, however, from the £ = 1 sum rule we need at least one pole
to be negative (tachyon) (in this case, however, the sum rules with even k cannot be satisﬁed)ﬁ.
These considerations illustrate the known fact that the representation of the propagator based on
the formulas has limited range of validity within the fixed order of the perturbation theory
and has to be taken with some care.

One point of view might be that the range of applicability of the formulae is |z] < Apax =
min{|z;|} where {z;} is the set of unwanted poles. Provided there exists a genuine expansion
parameter « applicable to the organization of the perturbative series, according to which X r
= is0 aiE(Li?T (e.g. expanding in powers of @ = 1/N¢ in RxT), one can expect the additional
(generally pathological) poles of A 1 (%) to decouple ( i.e. Apax — 00 for @ — 0). In such a case
we could argue that they are in fact harmless. However, the size of A, for actual value of «
need not to be far from M which could invalidate this approach to the theory in the region for
which it was originally designed.

Alternatively, instead of using the (partial) Dyson re-summation, we can expand directly
A,uap(p) to the fixed finite order n which leads to

2 1 1 1
Ap(s) = = D8 ——— 4 ... +a" R
1(s) 5(3—M2+a5—M2 L<S)5—M2+ +&5—M2 (s )3—]\/[2

Ar(s) = § <# + 04%2%)(32)L +...+ a”—Eg?)(sQ)L) :

This expansion (which does not give rise to the additional poles of the propagator) might be
useful for s < M?, however, in this case a higher-order pole at s = M? is generated, which is not
correct physically in the resonance region s ~ M?. Here we instead expect a single pole on the
second sheet of Ar(2), where z = M3 - — iMpuysIpnys (where the mass M3 = M? 4 O(a) and
the width I'yhys = O(a)) corresponding to the original degree of freedom of the free Lagrangian.
Therefore, the Dyson re-summation (i.e. the application of the formulae ) suplemented with
some other more sophisticated approaches (e.g. the Redmond and Bogolyubov method [44] 45]
consisting of the subtraction@ of the additional unwanted poles from the propagator, or diagonal
Padé approximation method [46]) seems to be inevitable for s ~ M?.

23 An analogous discussion can be done for the second sheet. Concrete examples of various types of poles will be
given in the next section.

24Note that, in order to perform this on the lagrangian level, nonperturbative and nonlocal counterterms would
have to be added to the theory. However the status of such a counterterms is not clear, cf. [47].
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{lz=1-0(2)| 2, 1st sheet} {lz—1-0(2)| 2, 2nd sheet}

Figure 6: The plot of the the square of the modulus of the propagator function |z — 1 — op(2)] ™2
on the first and the second sheet for a; = 0. The pole on the second sheet and the peak on the

first sheet correspond to the p(770).

However, in the concrete case of our calculations of the antisymmetric tensor field propagator,
the plain Dyson re-summation might produce various types of poles some of which we illustrate
in the next subsection.

5.3 Examples of the poles

The additional poles of the propagator can have different nature. Let us assume the 17~ channel
first. By construction for any values of the constants a; we have one pole on the second sheet (which
is directly accessible from the physical sheet by means of the crossing of the cut for 0 < z < 1)
which corresponds to the physical resonance (p meson) we have started with at the tree level. On
the first sheet we get then a typical resonance peak. These two structures are illustrated in the
Fig. [6| where the square of the modulus of the propagator function, namely i.e. |z —1—o0z(2)|72,
is plottedﬁ on the first and the second sheet for a; = 0. In this case, no additional pole appears
in the region of assumed applicability of RxT. However, for another set of parameters we can get
also pathological poles not far from this region (e.g. tachyon as it is illustrated in analogous Fig.
, now for ag = a; = ay = 10, az = 0).

In the 1%~ channel, there is no tree-level pole in the propagator. The structure of the poles
of the Dyson resumed propagator is strongly dependent on the parameters b; and  in this case.
Let us illustrate this briefly. Note e.g. that, the equation can have (exact) solution z = 1
on the first sheet provided the parameters b; satisfy the following constraint

3
Mihys
D b= 16 (172)

i=0 phys

where the numerical estimate corresponds to (Mpnys, I'pnys) ~ (M,,T',). In order to interpret this

25We have used the following numerical inputs: Mphys = T70MeV, T'pnys = 150MeV, F' = 93.2MeV, Fy =
154MeV.
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{tz—l—u’L(z)|'2, 1st sheet} {lz—l—u’L(z)rz, 2nd sheet}

Figure 7: The plot of the the square of the modulus of the propagator function |z — 1 — op(2)] 72
on the first and the second sheet for ag = a; = as = 10, a3 = 0. The additional pole on the first

sheet is a tachyon.

solution as a 17~ bound state pole we need the residuum Z,4 at this pole to be positive, i.e.

23t = 0p(@) oo = — 57 Db > 0 (173)

otherwise the pole is a negative norm ghost state. Of course, from the phenomenological point
of view, both these possibilities are meaningless. Note also that, the constraints (172)) and ((173))
require unnatural large values of the parameters b; and it is also in a conflict with the large N¢o
countingjﬂ.

For v = 0, a pathological tachyonic solution of exists for z = —2 provided

. Moo
> (=2)b = — R

thys

which might be satisfied with more reasonable values of the parameters b; than in the previous
case. More generally, we can have pathological poles x = x., where x,, is a solution of

2+ (1+6y+9%)z, + 272953 =0.

This z., is a pole of the propagator on both physical and unphysical sheets under the conditions
that the following constraint on the parameters b;

3
. M
D aby = —mpte
i=0 Lohys
is satisfied. Here z., is real (and negative) for |y+5| > 2v/6 and it represents therefore a physically
unacceptable tachyonic pole. Outside of this region of v we get pair of complex conjugate poles
on the physical sheet with Rex, > 0 when —3 + 2V2 >y > —3 —2V2.

*While b; = O(1) in the large N limit, the right hand side of (172) begaves as O(N¢).
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{|1+(rr(z)|'2 1st sheel} {|1-+—0'T(z)|’2 2nd sheet}

Figure 8: The plot of the the square of the modulus of the propagator function |1 + o7 (z)|~2 on
the first and the second sheet for by = —2.16, by = —3.66, by = —4.45, b3 = 1.47 and v = 0.
Along the desired b;(1235) pole on the 2nd sheet (z = 2.552 — 0.2951) and peak on the 1st sheet,
additional structures appear.

However, we can easily get a more realistic situation and ensure that the position of the complex
pole zr = xr—iyg on the second sheet in the 17~ channel corresponds e.g. to a resonance by (1235).
In this case, two conditions for b;, and v have to be satisfied, which correspond to the real and
imaginary part of the pole equation 1+ ¢/.(zg) = 0. This allows us to eliminate two of the five
independent parameters in favor of the mass and the width of the desired resonancelﬂ However, it
might be difficult to eliminate additional pathological poles in the assumed region of applicability
of RxT. We illustrate this in the Fig. [§ where the the square of the modulus of the propagator
function |1 + o7(2)|~2 on the first and the second sheet for by = —2.16, by = —3.66, by = —4.45,
bs = 1.47 and v = 0 is plotted on the first and the second sheet. In addition to the desired
b1(1235) pole on the second sheet we get also four additional poles on the second sheet which is
difficult to interpret physically as well as two additional structures the first sheet one of which can
be interpreted as an tachyonic pole.

In general it is not so straightforward to formulate the conditions for a;, b;, and ~ under which
there are no additional poles on the real axis in the antisymmetric tensor field propagator. Because
Imo? (2 410) is negative for z > 0 (and similarly Imo’.(xz+10) is positive for z > 1), we can clearly
conclude, that there is no real pole in these regions on the first and the second sheet. As far as
the regions of z < 0 (for ¢}) and x < 1 (for o},) are concerned, we can proceed as follows. Note,
that we can write for the functions .J| (z) and B (x) the following dispersive representation

/

dz 1
4122 —x

B(z) = 2+:z:+(x+1)2/oo(
2+ 2+ b(x) 0
j(x) - /lmdxaf/ (1_%)x'1—x’

from which the representation (164]) for X, with desired properties easily follows. From this we
can see that on the first sheet b(z), J(z) > 0 for < 0 and = < 1 respectively. Similarly, for X7

2TSimilar conditions we get in the 1=~ channel, provided we demand to generate e.g. p(1450) dynamically.
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we can write

o~

1
(2+ (1 +6y+9%)z+29%2%) J(z) =1+ G (37* + 18y +5) z + j(z)

where

j(x):x2/1°<>dx (1—%) (2—1—(1—1—67—1—7):6 oy )

'3 [

and j(x) > 0 for x < 1. The equations and ((145) have therefore the following structure

m) = 2320 +2) - (52) B - 12T) (174)
pria) = -5 (322 o - 07 GG + 1), (175)

where py, r(x) are the following polynomials of the third order

3
11, -
= r—1-—- "B |14 § (=1 =(@x-1
pr(z) x Vo [ x>+ 2 a;(x )] (x Jqr(x)
3 2
1T, 10 [ Mones
= 14+ -2 N i [ 2222 2 (342 +18v+5 —1)2
pr() +7rMphyS;:0 :c+27(47rFﬁ> 3(37° +18y+5) w(z - 1)
where 1T
q(z) =1— =B (Q+z+2*)(az — 1) + a1 + az(z + 1))
77Mphys

Because the right hand sides of the equations ((174)) and ((175)) are negative in the regions of interest,
the sufficient (but not necessary) condition of the absence of the poles in these regions is ¢ (z) < 0
for x < 0 and pp(x) > 0 for x < 1. For gz (x) this can be achieved in many ways, e.g. for

as > 1
1T,
0) = 1--——"% ~1)<0
qL( ) WMphys (&1 + ag + as )
/ 1T,
0) = phys ~1)>0
q.,(0) 7T]\4}%(“ 3+ a ) >
1.€. M
a1>7rﬂ, ar <0, az > 1.
thys

Note however, that such a condition for a; requires unnatural value for this parameter and is in a
conflict with the large N¢ counting. Similarly, the condition pr(x) > 0 can be ensured e.g. when
the coefficients at the third power of x vanish identically, 7.e.

10 [ Moo \2 M,
b _ pnys pysdz 32 18 5
3 27(47TFW> "o 3 (377 + 18y +5),
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the coefficients at the second power of x are positive, i.e

20 ( Mpnys\*  Miphys
<—th) TP 42 (397 + 18y + 5) ,

2 > =5
27 \4rF, ) " Ty
and
1T ’
1) = 14+ =237 >0
3
/ o 1 thys .
pr(l) = %mzbﬂ > 0.
7=0

On the contrary to the previous case, these conditions respect the large N counting. Therefore
without any detailed information about the actual value of the a; and b; it seems to be quite
natural to have tachyonic pole in the 17~ channel and no bound states or tachyon poles in the
1%~ channel of the propagator.

6 Summary and discussion

In this paper we have studied and illustrated various aspects of the renormalization procedure
of the Resonance Chiral Theory using the spin-one resonance self-energy and the corresponding
propagator as a concrete example. The explicit calculation of the one-loop self-energies within
three possible formalisms for the description of the spin-one resonances, namely the Proca filed,
antisymmetric tensor field and the first order formalism is the main result of our article. Because
the theory is non-renormalizable and the loop corrections break the ordinary chiral power counting,
we had presumed an accurence of problems of several types which have proved to be true within
our explicit example.

The first sort of problems concerned the technical aspects of the process of renormalization,
namely the organization of the loop corrections and the counterterms and the mixing of the
ordinary chiral orders by the loops. In order to organize our calculations we have proposed a
self-consistent scheme for classification of the one-particle irreducible graphs I'" and corresponding
counterterms (O; which renormalize its superficial divergences. The classification is according to
the indices ir and 7¢, assigned to graph I' and operator O; respectively. Though the scheme based
on ip restricts both the chiral order of the chiral building blocs (number of derivatives and external
sources) as well as the number of resonance fields in the operators in the Rx7T Lagrangian at each
fixed order and can be understood as a combination of the chiral and 1/N¢ counting, it is however
not possible to assign to ir a clear physical meaning connected with the infrared characteristics
of the graphs I'. Nevertheless the scheme works at least formally and can be used for the proof of
the renormalizability of RxT" to given order ir,ip, < imax. We have used it at the level i,x < 6
and proved that the complete set of counterterms from zero up to six derivatives is necessary to
renormalize the divergences of the one-loop self-energies in the contrary to the naive expectations
based on the usual chiral powercounting.

The last aspect, namely that the complete set of counterterms including also those with two
derivatives (i.e. the kinetic terms) is necessary, is connected to the second sort of problems. The
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tree level Lagrangian is constructed using just one of such a kinetic term in order to ensure the
propagation of just three degrees of freedom corresponding to the spin-one particle state. If we
would include all possible kinetic terms with two derivatives into the free Lagrangian, we would
get (according to the formalism used) additional poles in the free propagator corresponding to
the additional one-particle states some of them being necessarily either negative norm ghost or
tachyon. This was the first signal of the problems with unphysical degrees of freedom connected
with the one-loop corrections to the self-energies. The higher derivative kinetic terms further
increase the number of these extra degrees of freedom. We have studied this feature also using
the path integral representation and integrated in additional fields which appear to be responsible
for the additional propagator poles.

The problems with additional degrees of freedom are also connected with the well known
fact that the propagator obtained by means of the Dyson re-summation of the perturbative one-
particle irreducible self-enery insertions might be incompatible with the Kéallén-Lehman spectral
representation even in the case of the renormalizable theories [48]. As is well known, in this case
tachyonic or negative norm ghost state can appear as an additional pole. Such an extra pole
is usually harmless because it is very far from the energy range where the theory is applicable.
In the power-counting non-renormalizable effective theories like Rx7T such problems are much
stronger either because of the worse UV behavior of the self-energies (which increases the number
of additional poles) or because the additional pathological poles might lie near the region where
the theory was assumed to be valid. The nontrivial Lorentz structure of the fields describing spin-
one resonances further complicates this delineation because some of the additional poles might
have different quantum numbers than the original tree-level degrees of freedom. As far as this
type of poles is concerned, we have demonstrated using the path integral formalism that it can
be eliminated by means of the requirement of additional protective symmetry of the interaction
Lagrangian, which is an analog of U(1) gauge transformation known for the Proca and Rarita-
Schwinger fields. However, these symmetries are in general in conflict with chiral symmetry,
though individual interaction vertices can posses such a symmetry accidentally.

The results of our calculations proved to fit this general picture. Using the explicit example of
the one-loop antisymmetric tensor self-energy we have shown that the Dyson re-summed propa-
gator has always (ie. irrespectively to the actual values of the couterterm couplings) at least three
additional poles on the first sheet in the 17~ channel, just five such poles on the second sheet (one
of them corresponding to the original degree of freedom) and at least two additional poles on the
first sheet in the 17~ channel and at least four such poles on the second sheet. As we have seen
in explicit analysis of the pole equations, without any additional information about the size of
the counterterm couplings and consequently about the actual values of the renormalization scale
invariant parameters entering the polynomial part of the self-energies, a rich variety of poles in
the propagator is possible. Some of the poles might be unphysical (complex conjugated pairs of
poles on the first sheet and tachyonic or negative norm ghosts on both sheets) and some of them
even can be situated near or inside the assumed applicability region of RyT'.

It might be argued that the additional poles are just artifacts of the inappropriate treatment
of the theory and that the one-loop one-particle irreducible self-energy insertion cannot be re-
summed in order to construct a reliable approximation of the full resonance propagator. However,
the mere truncation of the Dyson series keeping only first two terms (corresponding to tree-
level contribution and to the strict one-loop correction to the propagator respectively) generates
double poles at s = M? on both sheets and is therefore in contradiction with the expected
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analytic structure of the full propagator. Though this might be an useful approximation of the
full propagator for s < M?, it cannot be correct in the resonance region. Therefore provided we
would like to use Ry T at one-loop also for s ~ M?, the construction the propagator using some sort
of re-summation (i.e. the Dyson one or its modifications like e.g. the Redmond and Bogolyubov
procedure or Padé approximation) might be inevitable. The actual position of the additional poles
(if there are any within the chosen procedure) might be then understood as a bound limiting the
range of applicability of the theory. In the most optimistic scenario all the additional poles are far
form the region of interest and Rx7" can be treated as a consistent effective theory describing just
the degrees of freedom we start with at the tree level. The less satisfactory case when only the
pathological poles are far-distant, we can either abandon the theory as inconsistent or alternatively
we can try to interpret the non-pathological poles as a prediction of the theory corresponding to
the dynamical generation of higher resonances. Such a treatment was used in the case of scalar
resonances in [29] (see also [30), 31]). Eventually in the case when all the additional poles lie near
s ~ M?, either the approximative construction of the propagator or one-loop RxT itself might
be problematic. Which scenario actually turns up depends on the values of the couplings in the
RxT Lagrangian.
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A Additional degrees of freedom in the path integral - the
Proca field

Suppose that the interaction Lagrangian has the form
£int = Ect + £;nt (176)

where L is the toy interaction Lagrangian (18). Our aim will be to transform Z[.J] to the form of
the path integral with all the additional degrees of freedom represented explicitly in the Lagrangian
and the integration measure. In terms of the transverse and longitudinal degrees of freedom we
get

Li(VL— 0N J,...) = La(VL—0ANJ,..)+ L, (V. =0\ J,...)
Y

« 15} )
= SVIOVL, — SO + 5 (@VI)(OVL) + 535 (0,08)(0"0A)
+L,,(VL— 0N, ... (177)
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In order to lower the number of derivatives in the kinetic terms we integrate in auxiliary scalar
fields x, p, ™, o and auxiliary transverse vector field B, ,. Writing

exp (—z' / d4x§(DA)2) = / Dy exp (2 / dz (%XQ — aﬁxaﬂA)) (178)

and similarly for other higher derivative terms we can finally formulate the theory as

Z[J] = /DVLDBLDADxDpDUDW exp <z / d*zL(V, B, A, x,p,0,7,J,.. )) (179)
with
DB, = DB&O,B") (180)
YIya%
Bt — (gw_ aDa )B,,. (181)
and
1 u |- L2 Vel
LV B, A x,p,omJ...) = 5(1 +o)ViOV,, + §M ViVi, — EM BB, — B0V
1 1
—M?*9,AN"A + —* — KA
—|—2 0N\ + 25)( 0, X0
1
—%Mzaupa“p — Oypdtoc — 0"\ — o
+L,,, (VL —0A, J,..)) (182)

In this formulation the kinetic terms have no more than two derivatives, however, the number of
fields is higher than the actual number of degrees of freedom. We therefore have to integrate out

the redundant variables. As a first step we diagonalize the kinetic terms performing the shifts
Vi = V4 LB“
L Lo l+at
A A 1 1
RO VEA Tl
)
P’

X — x—m (183)
respectively to the form
1 1
£<VJ_7-BJ_7A7X7P70-77T7 JJ) = 5(1+Q>VfDVLH+§M2VfVJ—#

1 1
—5(1+ o) 'B/OB! + 5M2 (1+a)?=~7") BBy,

+M?*(1+a)"'VI'B,,

1
+5 M9, 00" A -

57200 x + o (x = 7)?
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1
— = M20,p0"p +

0yo0t'oc — o

20 2M72
+L,, (V. J,...). (184)
where 1 1
T — _ _ 1
Vv VL+1—|—QBL oA M28X (185)

Now the superfluous degrees of freedom are easily identified. Namely, the fields p and o decouple
and moreover m has no kinetic term. Both of them can be therefore easily integrated out. As a
result of the gaussian integration we get

Z[J] = / DV, DB, DADXDo exp (2 / d'zL(V,Bi, A, x,0,J,.. -)) (186)
where
1 1
LVL, B A x,0 ) = S(L+a)VIOVL, + §M2vaw

1 1
—5(1 + o) 'BYOBY + 5M2 (1+a)?=~7") BBy,
+M*(1+ ) 'VI'By,

1
0uxO0"x + 000!o — 5502 — X0

EOYVE
1
+§M28MA8“A

’ —

L, (V. J,..). (187)

2M?

Let us assume @ > —land 0 > 0 in what follows. Note that, in this case the fields B and x
have opposite minus sign at their kinetic terms. This is a signal of the appearence of the negative
norm ghosts in the spectrum of the theory. The ”dangerous” fields B and x mix with the fields
V1! and o respectively. In order to identify the mass eigenstates we further rescale the fields

VE = (14a) Y2V

B — (1+a)B}

x — Mx

o — 0 Y’°Mo (188)

and afterwards we diagonalize the mass terms

1 M? 1+ a)?
Emass = §1+a(vaJ-H+(1_%> BﬁBJ-N)

1
—§M2 (Bo* + 5_1/2XCT) (189)
by means of an appropriate Sp(2) symplectic rotation of the fields V', BY and x, o

Vit — V{coshby + B sinh 6y
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B! — V!sinh0y + B’ coshy,
X — xcoshfg+ osinhfg
o — xsinhfs+ o coshfs. (190)

This is possible for (1 +a)? > 4y and 3? > 46, when the off-diagonal elements of the mass matrix
vanish for

14+ a)—=2y—(1+a)y/(1+a)?—4y

tanh 6y = 2
B4
tanh g = 55172 . (191)
We get finally for the generating functional
ZJ] = /DVLDBLDAD)CDU exp (i/d‘lxﬁ(vl, B, A x,0,J,.. )> (192)
where
Lou RYCRT L o Lo o
LV,,B,Ax,0,J,...) = §VLDVM + §Mv+VLVLM — §BLDBL + §vaBLBLM
1 1 1 1 1
+-0,00'0 — —M§+02 — =0, x0"x — M2 x*+ —M28MA3“A
2 2 2 2 2
1 =0
(193)
where now o
—(0 ex .
®) _ ﬁ(VLjLBL) — Ox cosh g — Qo sinh 8 — OA (194)

and where M2,, M2, are the mass eigenvalues and . The theory is now formulated
in terms of two spin one and two spin zero fields, whereas two of them, namely B/ and y, are
negative norm ghosts. The field A do not correspond to any dynamical degree of freedom, its role
is merely to cancel the spurious poles of the free propagators of the transverse fields V, and B,
at p? = 0.

B The additional degrees of freedom in the path integral-
the antisymmetric tensor case

We assume the interaction Lagrangian to be of the form
Ling = Lot + Ly, (195)

where L is given by and re-express it in the terms of the longitudinal and transverse com-
ponents of the original field R,,

7

v 1 6% N v 1 rvo N 4 v 1 ro n
Lint(RY —551 Mg Js- ) = La(R] —55“ TNaps s )+ Ly (R —55“ Fhag, J,...) (196)
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where

v 1 Vo, n o v 7 v
Lo (R" —55“ Fhapd,...) = ZR“ DR”W+4M2(DRW )(OR) )
)
00N (OA L) — 505 (@ 0N @00 L), (197)

We can introduce the auxiliary (longitudinal) antisymmetric tensor field BﬁL Y and (transverse)

vector fields '/, p/|, o'/ and 7/ in order to avoid the higher derivative terms and write in complete
analogy with the Proca field case

/DRDB”DALDXleLDULDWL exp( /d ZL‘,C(R”,B”,AL,XL,,OL,O'L,WL,J,...))

(198)
where the measures and fields are
DBy = DB(S(@ B, + 0,Bay, + 0,Bua) (199)
Bf" = —ﬁ(aﬂ g"*0% + 0" g" 0" — (1 <> v))Bag (200)
and for ¢* = x*, p*, ot and 7
D¢, = Dpd(9,¢") (201)
oro”
¢ = (9‘“’ -0 > D1y (202)
The Lagrangian is then
1+a_,, 1 y
L = 1 RM DRHAW + Z—leRﬁ R”W,
1 14 v
— ML By + B OR)
Lo ronn L ou I
‘|‘§M AJ_DAJ_M - %XJ_XJ_M - XJ_DAJ-M
1
+25M28a 8apm — 8api6aalu — 8“A’i@a7uu — Wﬁalu
1 -
+Lint (R‘“’ — 55*‘”05/\&5, J,.. ) . (203)

Note that, the fields x*, p*, o* and 7* mix with A* and are therefore pseudovectors. The
Lagrangian is completely analogical to up to the more Lorentz indices, so will be brief
in the next steps. First we identify the redundant degrees of freedom diagonalizing the kinetic
terms by means of the following sequence of shifts (cf. (183))

R = RY —2(1+a) B

1 1
Aﬁt_ — A“ +MXJ_—W7T5L_
plj_ — pL+M2
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X1 = x|+ (204)

As a result we get the Lagrangian in the form (cf. (184))

1 v 1 v
L = Z(1+Q)Rﬁ DR”HV+ZM2RTT Ry

1
—~(14+ )" Bf"0OB) + (1 +a) > M*B" B 4, — ;M2B|‘|“’B||W
—(1+ )" M*R|" B},

1 1 1
—0—§M2A‘iDAJ_# - mX’iDXLM - %(X‘i + Wi)(XJ-u + WL#)

1 )
+25M28a P O0apiy — W@“JﬁﬁaaLu — oL,
+Lint (R, J,...) (205)
where
B = R™ —9(1+a)" B — Lemos(} L g 206
=4y = (1+a) I~ 5 (Aas + WXLaB)- (206)

Integrating out the superfluous fields p,, and 7, which are decoupled from the interaction we
get

:/DR’DB”DAlDXleLDULDWLeXp (i/d4$£(R||,B”,AJ_,XJ_,pJ_,OJ_,WJ_,J,...))

(207)
with (cf. (187))
1 v 1 v
L = 1(1 + a)Rﬁ Ry + ZM2Rﬁ Ry
1
—(14+ )" Bf*OB) + (1 +a) > M*B}" B ., — ;MQBﬁ“’B”W
—(1 + a)_lMQRfl‘”B”W
1
+§M2AﬁDAL#
L, )

_2M2XLDXJ-M QMQULDUJ_M + ﬁULO'J_“ +x' o,
+Lint (S, J,...) (208)

Again, assuming o > —1 and ¢ > 0 we have two pairs of fields with opposite signs of the kinetic

terms, namely (Rﬁ Y B“ ") and (x'/,0") respectively.The fields within both of these these pairs
mix. After re-scaling

R — (1+a) 'R (209)
1

% - 1/2 pupv

B” — 2(1—1— a) B||

XL — MXi
M

ol — ol

N
54



the form of the mass matrix becomes identical to that of (with obvious identifications) and
we can therefore perform the same symplectic rotations as in the Proca field case and under the
same assumptions to get diagonal mass terms corresponding to the eigenvalues , . As a
result we have found four spin-one states, two of them being negative norm ghosts, namely BﬁL v
and o/ and two of them with opposite parity, namely x| and ¢//. As in the Proca field case, the
field A/ effectively compensates for the spurious p?> = 0 poles in the Rﬁ Y and Bl’r Y propagators

within Feynman graphs.

C Path integral formulation of the first order formalism

Within the first order formalism, the path integral formulation is merely a generalization of the
previous two cases, so we will be as brief as possible in what follows. Note that, now the kinetic
term is invariant with respect to the both transformations and , therefore the manifesta-
tion of the degrees of freedom within the the path integral formalism can be done in analogy with
the previous two cases. Using triple Faddeev-Popov trick in the path integral

1 1
Z[J] = /DR exp (i/d4:c (MVVaNRW + EMQVMV“ + ZM2RMVR“” + Lon(VE RM™ T, .. )))

(210)
we get
ZlJ) = /DRDALDVLDAexp (i/d%ﬁ(Rﬂ”,Aj,Vf...,A, J,...)) (211)
where
5 N L, o1 1 y
LR, AN VRN ) = MVL,O,RY + §M2VL#Vf+ Z—lMQR”WRﬁ
1 1
+§M2A’1DAM + §M20NA8“A
1 ~
—|—£mt(R“‘“’ — 55“"°‘£Aa5, VE—0%A, J,) (212)
and, as in the previous subsections
DRy = DRI(OaRyu + 0y Rap + 04 Rua)
DA, = DA,A")
DV, = DV§(0,A")
v 1 ro 124 6]
R = —o=(0"g"0% + 0"g"0% — (1 > v)) Rap
o+o¥
A = w — A
L <g 0 ) v
“wAv
Vi = (g”” - 85 ) V.. (213)
In order to diagonalize the kinetic terms we perform a shift
1
Vit = VI — M&,Rﬁ“ (214)
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and get

v « 1 v 1 v 1
LRI AL VE A ) = JRVDRyw + IMP Ry B + S M2V, VY

1 1
+§M2A‘iDAM + §M28“A8“A
v 1 vaBx @ 1 1% o
+Lint (R — 5&" Phag, VO — M@R”“ —0°A, J,).

(215)

The discussion of the role of the field R}" and the A’} is the same as in the antisymmetric tensor

case. The extra fields V{* and A do not correspond to the original degree of freedom, their free
propagators are

5 PT;UJ
AY (p) = Ve (216)
11
An(p) = M (217)

with spurious poles at p?> = 0. According to the form of the interaction, only the combination
with spurious poles cancelled, namely

w o 1 oy PT v PL 12%
AYL(p) + PP An(p) + 5 EPaps A (p) = R TP VT (218)
enters the Feynman graphs.
Alternatively, we could make in (212)) the following shift
1
Rfl‘” — Rﬁ” + i (o"Vy =o'V (219)
leading to
uv Ap (e A 1 ] 1% 1 2 1% 1 2 uv
1 1
+§M2A‘1EIALM + §M28#A8“A
1 1 —~
+£mt(Rﬁ” + i (o"Vy =o'V — 56““‘”‘5/\@5, Vi —=0%A, J, . ).
(220)

In this formulation, the role of the fields V{* and the field A is the same as in the Proca field case.
Rﬂ‘ ” does not correspond to the original degree of freedom and, as in the previous formulation, it

serves together with A, to cancel the spurious p* = 0 poles.
Let us end up this subsection with the path integral treatment of the toy quadratic interaction
Lagrangian ((105)). Using the same transformations as before we get

1 1
LR AL VE A ) = MVLORY + §M2VMVf + ZJw?R”WRﬂ‘”
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1 1
5 MPAOAL, + 5 M0, MDA

2
ay Bv QR v 53
—i——VLHDVf (DA) R”WDRTT 1 — A" TOA,
1
+L (R — Ee“mﬂ/\mﬁ, Ve —0%A, J,...) (221)

Introducing the auxiliary fields analogous to the previous two examples, we have

1
LRI Ay X oh ) = OZ?VVLMDVL“JriMQVMVf

QR v 1 v
+ Riw DR + ZMQR”WRW
+MV.,0,R}"

1 1
+§M2A‘1EIAM - 5M?ADA

1 1
OA — — HOA
25VX + X 285 XX — XL OAL,
1
,Cmt(R'uy §€‘uya ALaﬂ; Vf — 8‘”/\, J, .. ) (222)

The kinetic terms can be diagonalized now by means of the shifts

AL = AL+ X (223)
1
to the form
LR A " J ) = Yy ove+ Sav, v
| XaXJ_a PACIRIE 2 i) 1 9 1V
QR v 1 v
+IRHWDRT|‘ + ZMQR”WR“‘L
+MVLV8MRT|W
1 1
+§M2A‘1DAM - 5M2ADA
L Loy
_WXJ_DXJ_M - %Xﬁuu
1
|:| 2
topX-X Tt gg
+‘Cznt(57 VV’ J’ T )7
(225)
where
_ 1 —~
Ky uy = _upvaf _ aBs
R = R” 25“ Alag 2M2€” X Lag
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1

M a fo
V= V-t

0%x.

In the formula (225]) the scalar and axial-vector ghost field as well as two propagating dynamically
mixed spin-1 degrees of freedom are explicit.

D The parameters o; and ; in terms of LECs

In this appendix we present the expressions for the renormalization scale independent polynomial
parameters entering the self-energies (cf. Section .

D.1 The Proca field case

w0 = (55 zuw

o — (%)2%(@—%005 (35 +3)

- (%)2M2X{}(u) + ot <1n L %)
- (%)2M4U6(u)+g2v (%)2(111]\5_22_%)
= (50 Zw = e

b= (55) v

b= (S) e

4rF\? ,
By = <_M ) MV (p).
Here Uy and Vi, are certain linear combinations of the couplings of Lg(ﬁ) renormalized as

M\* 1
Uy = Up(p) — 297 (—) A

F) M*™™
Vw = W(p

D.2 The antisymmetric tensor case

ArFN\? _ 0 , M2 20, ., AVVVA? C R M2
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ATF\? . . 40 M? 20 1
o = (557 @it + i) - Fod+2dymis - 2 (a4 1)

10 (AVVVN? /R M?

5 () () (o7

AT F\? . . 40 M? 1
ar = (57) MG+ Who) - i (254 5) +

VVV N 2 2 2
= (50) () -on35)
3 M M !

AnF\? 4 M2 1
a; = (”—) M4U;;(H)+§Od§ (ln——i-—)

M w?> 3
Bo = (%)2 Zy (1) — %dfln]\i—; —~ %(&ﬁ +d3) - g (AVA;VY (%)2 (11 —6ln ]\Z—;)
B = (%)2 Yh(u) — %(&ﬁ — 12d;(d3 + d4) + 5dj + 9d; — 6d3ds) In ‘Aj—;
—Z—g(gdf — 18d,(ds + dy) — 7d3 — 12d3; + 18dzdy)
2 2
3 () () (eom )
By = (%)2 M*Wh(p) — %(dg + 6dsdy — 5d3) In Ai—; — 2—3(d§ + 4d3)

5 (AVVVN? (F? M?
5 0r) () (e

ATFN® o 40 , (. M? 2
By = (7) MV (p) = 5 da (ln?—g)-

Here Ugr and Vg are certain linear combinations of the couplings of ,c;f“’) with the infinite parts

fixed as
. 80 (M\® 1
Ur = UR(M_?(F) Wd?’%"

. 80 (M\? 1
VR = VR(M)—FE(F) Wd4>\oo.

D.3 The first order formalism

47TF 2 10 M2 1
oV = (_M ) Zpy () + 3(03\/ + 20v) {(dl —d3) + 3(2d, — ogry) (ln 12 + §)]
4 F\’ 10 M2 1
afV = (7) M? Xy (1) + ?(URV + 20v)(4ds + oRy) (hl e + 5)
AT F\? 20 M2 1
oV = (_M ) M*Yh (1) — §(URV + 20v)d3 (hl? + g)
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0

Vv
1
4%
2

Vv
3

LgyGy (M 2 | M2 2
F n/ﬂ 3

=

> &~ N
3 3
593

10 M2 1
:u) - = (O'RV(O'RV + 20’\/) + 40"2/) (ln— + —)

ZT‘
v 3 M2 3

W
3
25

10 M2 1
MZX‘T/(,LO + ? (URv(URV + 2Uv) -+ 40"2/) (ln ? + §)

MN\? ([, M2 2
MUY (1) + g7 <F> (ln——g)

W
3
2 5|

<

112

vin) = ag

W~ N i
= S =
S ESH
S
=

(1)

N
3
2 5|

10 M2 1
o B o )

<|
N
S%
=

/\A/\/\/—E/—\/—\/—\/—\
SE
B

N A A A U U U N N
[N}
R
<
<

10
_5 (dl - d3) (2d1 + 2d3 — URV)

4 F\ 2 . . 40 M2 20
(—M ) (ZR(1) + Yi(p)) — (31 + 2d5) - (
10 M? 1
‘l'g (111 F + g) O'RV(4d3 + URV)

1
d? + §d§)

4rF\ 2 , ; 20 M2 1
( Vi > M*(X (1) + Wr(p) — §d3(2d3 + ory) (ln " + §)

L(Gy\*(, M* 2
[ =X In— — =2
ke < F) (n I 3)

ArF\? . 40 M2 1
(7) M UR(,U)""?dg (1HF+§)
ArF\? . 10 w1
(M> ZMR(N)+§(URV(2d1—URV)—4d§) (InFJrg)

20

10
_E(d% + dg) + EURV (dl + ds — URV)

40 10
O[(})%R - ?dg + EORV (2d3 — URV)
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47 F\ 2 20 M?
RR (”7) Yi(p) — 5(6df — 12d,(ds + dy) + 5d3 + 9d3 — 6dsdy) In z
20
—§(9d§ — 18d,(ds + dy) — Td3 — 12d; + 18d3d,)
5 M? M2 2
_ﬁng (32d3 + 6(d3 + 9d4) In ? - 30'RV (11’1 F — g))

ATF\? . 20 M? 80
pr = () AWy - T8+ saus - sy - S+ )

) M2 MQ 2
+—0Rv (8d3 + 6(d3 + 3d4) In F — 30Ry (ln F — _>)

27 3
4rF\ 2 40 M2 2
RR __ Ay rr 2

Here Uy, Vi, Ug, Vg and Ygy are certain linear combination of the couplings from E%E/ﬁ) with
infinite parts fixed according to

M\* 1
Uy = Uyp(p) - 297 (—) —

F) M7
VW = W
. 80 (M\* 1
Up = Ug(p) — <f> de)\oo

r 8 ? 2
Ve = VR(M)JFg (F) Wd4>‘oo

. 40 (MN\? 1 gwGy (M\? 1
YRV = YRV(/L)—Fg(F) W(URv—FQUv)dg)\oo—l— M F W)\OO

E Proof of the positivity of the spectral functions

Here we prove the positivity of the spectral functios pr r(u?) defined as
(2m)720(0°) [pr ()" 11} (P) = pr(P*)P° 105 (P)] = > 6 (0 — piv) (0] Ry (0)|N) (N| R (0)[0).
N

(226)
Let us define for p? > 0

(N

Ny - ™)
u,u,u (p> - \/F(pﬂgu

(») — oM (p)

1 .5 0
p,)l\/)(p> = §€ul/ IBu((,vﬁ)(p)

where 55[\) (p) are the usual spin-one polarization vectors corresponding to the mass y/p?. Then

for p*> > 0 we get the following orthogonality relations

u) (pyu I (pyr = —26™M
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wQ) (p)wt I (p)r = 26M
uQ) (p)w M (p)* = 0

and the projectors can be written for p? > 0 in terms of the polarization sums as

1 A

Wooslp) = =52 w0 ug) (p)°
wO(p
nyaﬂ(p) = Zwm/ aﬁ

Multiplying (155)) by u()‘)( )*u(a)g (p) and w( )(p)*wgg) (p) respectively we get the positivity con-
straints for the spectral functions

0 < D69 = pw) (01RO VU ()2 = 2(27) *0(0°) pi (0?0

0 < 360 — pa) O] Ruw (0) [ N)w® O (p)*|* = 2(2m) 0(5°) pr ().
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