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We study the AdS/QCD correspondence, which provides a new way to produce
hadronic models, in a flavour-broken hard-wall approach to obtain K`3 transition form
factors. We also calculate meson masses, decay constants, and pion form factors both
in a hard-wall and a soft-wall approach. The latter is necessary to obtain correct Regge
trajectories. We obtain results for light unflavoured and strange vector, pseudovector,
pseudoscalar, and scalar mesons. All results are compared to and agree well with current
experimental data.
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1 Introduction

1.1 Overview

The AdS/CFT correspondence [1] has provided a new approach to calculate quanti-
ties in strongly coupled theories like quantum chromodynamics (QCD) at low energies.
AdS/QCD, the extension of the original conjecture to more realistic gauge theories, has
been an increasingly fruitful field of research for the past decade. This text aims at
exploring the intriguing results which can be obtained from the correspondence.

Chapter 1 gives a short introduction to the holographic principle, of which the AdS/CFT
correspondence is a special case, mainly using plausability arguments. After this, the
idea of the AdS/CFT correspondence will be stated together with an instruction of how
to use and extend it to the QCD case. This involves some mathematical basics about
the anti de Sitter space (AdS), the space in which the fields we deal with live.

Having all the necessary techniques at hand, we can begin to build up a model describ-
ing mesons and many of their properties. In Chapter 2 this will be done in a hard-wall
setting with Nf = 3. For this we mainly follow [2], whose results we confirm. This
includes the calculation of meson masses, decay constants, and form factors, especially
the K`3 form factor.

In Chapter 3, we present new calculations in several soft-wall models, adopting ideas
from [3, 4, 5]. Masses, decay constants, and form factors will be calculated and compared
to experimental data.

Finally, the peculiarities of dealing with scalar mesons will be discussed in Chapter 4
and masses as well as two-point correlators will be calculated. This will also serve as
an example to explain how one has to deal with the boundary conditions occurring in
AdS/QCD models (treated extensively in [6]).

1.2 The Holographic Principle

In theories of quantum gravity, the holographic principle is the assumption that to
the description of the dynamics of a region of spacetime exists an equivalent descrip-
tion, localized on the boundary of that region. Quantum gravity (QG) is the attempt
to self-consistently unify the theories of quantum mechanics and general relativity, for
which the well-known string theory and the loop quantum gravity (LQG) are candi-
dates. The choice of the word holographic stems from the fact that on a hologram a
three-dimensional picture is essentially stored on a two-dimensional surface.

Holographic features were first discovered in connection with black holes. Let us try
to understand how this comes about [7]. Black holes are not really black. They radiate
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photons which have a spectrum characteristic of a black body with (for the simplest
types of black holes, the Schwarzschild black holes) a temperature

TH =
~

8πkBM
(1.1)

(in geometrized units, i.e. c = GN = 1), where M is the mass of the black hole. This
effect was predicted by Stephen Hawking, who also provided the theoretical arguments
for its existence (so far however, Hawking radiation has not been observed). The Hawking
radiation is caused by quantum fluctuations near the horizon of the black hole. Important
for the following steps is that there is something like a temperature of a black hole.

Another observation is that the area A of black holes, i.e. the area of its horizon,
always increases with time,1 so we can write

dA
dt
≥ 0. (1.2)

(This is referred to as Hawking’s area theorem.) Moreover, when two black holes merge,
the area of the resulting black hole is always larger than the sum of the areas of the
original black holes. The surface area of a Schwarzschild black hole is given by A =
16πM2, which we can then write in differential form as

dM =
1

32πM
dA =

~
πkBM

d
(
kBA

4~

)
. (1.3)

Here, dM is the change in the total energy of the black holes and, identifying the Hawking
temperature TH, we can write

dE = THdS, (1.4)

where we defined
S =

kBA

4~
. (1.5)

The area theorem then suggests that S, in fact, behaves in a way we expect it from
an entropy, namely as in the second law of thermodynamics. The above and further
considerations then lead to the theory of thermodynamics of black holes. Of relevance
for this introduction is the observation that the entropy of a black hole is essentially
given by its surface. Another argument why a black hole should indeed have an entropy
is that if one throws a gas with a certain energy into a black hole, the entropy of the
gas disappears into the black hole. In order not to violate the second law, one must
assume that this loss of entropy is compensated by an increase in the entropy of the
black hole. Also note that the Schwarzschild black hole can be completely characterized

1One should maybe remark that if Hawking radiation exists, then this principle is violated since, by
loosing mass, a black hole also looses area. The following steps are in principle still correct but when
speaking of the entropy which should obey the second law of thermodynamics, one has to consider
the sum of the entropy of black hole and the one of the remaining universe. So if the black hole
looses area and thus entropy by radiating, then the entropy in the rest of the universe must rise by
at least the same amount.
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by its mass M . (This is referred to as no-hair theorem. For a general black hole, a
similar statement is true but one needs the mass, the electric charge, and the angular
momentum.) Therefore the increase in the entropy of the black hole only depends on the
mass of the gas and hence the only way this can be true in all situations is if the entropy
of the black hole is in some sense maximal. This was argued by Jacob Beckenstein. He
used this and the fact that matter collapses into a black hole when it is too dense, to
put an upper bound on the entropy of a region of space and, assuming weak gravity,
spherical symmetry and a few more conditions, the entropy bound of that region of space
is related to its boundary area. This is referred to as spherical entropy bound. Entropy
in turn is in some sense a measure for the information content of a system.2

A major step was taken by Gerardus ’t Hooft [8] (1993) in elevating this entropy bound
to a general principle, the holographic principle3, stating that the description of a volume
of space can be thought of as encoded on the boundary of that region. Leonard Susskind
[10] (1995) gave this principle an exact string theoretic interpretation. To understand
how this was motivated, let us go back to the black holes emitting Hawking radiation.
This radiation, as calculated by Hawking, is purely thermal and does not depend on
the material falling into the black hole. However, if the matter entering the black hole
found itself in a pure quantum mechanical state, this state would be transformed into
the mixed state of Hawking radiation and the information about the original quantum
state would be lost, thus contradicting Liouville’s theorem (in its quantum mechanical
formulation, the von Neumann equation) and consequently quantum mechanics. This
poses a paradox, known as the black hole information paradox.

There are several ways, how this paradox can be solved.4 Information can be preserved
if one assumes that Hawking radiation is not completely thermal but has small quantum
corrections. A possible mechanism which could explain this was found by ’t Hooft.
He explained how incoming particles could affect the outgoing particles by deforming
the horizon with their gravitational field. The deformed horizon would then produce
different outgoing particles than the original one. Most remarkable is the fact that this
deformation is quite similar to the deformation of a world sheet in string theory emitting
and absorbing particles. This led ’t Hooft to the conclusion that the correct description
of the black hole would have to be given in a string theoretic framework.

At that time, Susskind had also been working on the holographic principle, mostly
independent of ’t Hooft. He claimed that the oscillating horizon gives a complete descrip-
tion of the ingoing and outgoing particles’ states. The theory of strings and world sheets
was exactly equipped with such a holographic behaviour. He argued that black holes
themselves could be viewed as long, highly excited string states, which is a remarkable

2How exactly one measures information and how this is related to the physical notion of entropy, is a far
from trivial problem and has led to the formation of information theory, which since its foundation
by Claude Shannon in the 40’s and 50’s of the last century has developed into a major branch of
applied mathematics.

3For a recent overview article on the holographic principle, see for example [9].
4An interesting anecdote related to the outcome of the black hole information paradox is the Thorne-

Hawking-Preskill bet made 1997 by Stephen Hawking, Kip Thorne, and John Preskill. See for
example [11] or [12] for recent developments.
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feature since it relates strings to classical objects, i.e. black holes. Most importantly,
the black hole information paradox can be solved when using string theory as a way of
describing quantum gravity.

1.3 The AdS/CFT Correspondence

There are not many, but still some, noteworthy applications of the holographic principle.
The best-known is perhaps the AdS/CFT correspondence, first conjectured by Juan
Maldacena in 1997 [1]. It has provided the best, i.e. most accurate, explicit formulation
of the holographic principle so far.5 The original AdS/CFT correspondence states that
there is a correspondence between a weakly coupled gravity theory (type IIB string
theory) on the product of a 5-sphere S5 and a five-dimensional anti de Sitter space AdS5

on the one side and the strongly coupled N = 4 supersymmetric Yang-Mills theory
(SYM) on the four-dimensional boundary of the AdS5, which is a special kind conformal
field theory (CFT), hence the moniker AdS/CFT. Conformal field theories are quantum
field theories exhibiting a high level of symmetry. To be precise, they are invariant under
conformal, i.e. angle preserving transformations, including scale invariance.

Neither is it the aim of this text to explain the mathematical derivation of the cor-
respondence nor is it intended to explore all the implications of such a correspondence.
First of all, this would go far beyond the scope of this work and secondly, conformal field
theories are in general much too special to describe any real physical system. Realistic
field theories like QCD are not conformal. The development since the original conjec-
ture has been twofold. While some researchers have been working on a more precise
mathematical formulation of the correspondence, for which no proof exists so far, others
have started to extend the conjecture to more realistic, non-conformal field theories such
as QCD. (QCD can however be viewed as an approximate conformal field theory in the
limit of high energies.) This generalization is dubbed non-AdS/non-CFT or in specific
AdS/QCD. The latter has been developed and treated extensively during the last five
years. It should be remarked that it is a consequence of the AdS/CFT correspondence
that this extension to QCD implicitely contains the large Nc limit.

The main idea of AdS/QCD is that calculations impossible or hard to do in QCD
directly are in some sense dual to (hopefully simpler) string calculations in a higher
dimensional space. The main problem of calculations in QCD is that strongly interacting
particles, such as quarks, are subject to confinement, which means that their coupling
strengths become large at small energies. (The complementary effect is called asymptotic
freedom and describes the decrease in coupling for high energies or small distances
respectively.) Results from perturbation theory, the usual approach in quantum field
theories, are therefore only valid for QCD at large energies, i.e. asymptotically free
quarks.

5A general overview of the topic can be found in [13].
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1.4 The Anti de Sitter Space

By the above stated correspondence, we should relate our gauge theory to a dual de-
scription in terms of a string theory living on AdS5 × S5. The metric in this space is
given by

ds2 =
u2

L2

(
dt2 − (dx1)2 − (dx2)2 − (dx3)2

)
− L2

u2
du2 − L2dΩ2

5. (1.6)

Here t = x0,x1,x2,x3 represent the usual spacetime coordinates, u is the additional fifth
coordinate (L is some curvature radius of the space), and Ω5 is the five-dimensional solid
angle on the hypersphere. Let us explore the anti de Sitter space a little bit further. In
general we speak of the n-dimensional AdSn space. It is a vacuum solution of Einstein’s
field equations (generalized to n dimensions)

Gµν + Λgµν = 8πTµν (1.7)

(again in geometrized units), where vacuum means that Tµν = 0, with a negative cos-
mological constant Λ. Moreover, we demand that the AdS space is a homogeneous and
isotropic solution.

Without the cosmological constant, the solution can be a perfectly flat space but
with Λ being negative, the AdS space has a constant negative scalar curvature (the
Ricci scalar). A negative curvature corresponds to a hyperbolically curved space, in
contrast to the surface of a sphere, which has a constant positive curvature. Of course,
these pictures stem from the isometric embedding of these spaces as hypersurfaces in
an n+ 1-dimensional space. The Ricci scalar however is an intrinsic property. Roughly,
a negative curvature can be described by the fact that geodesics which are parallel to
begin with start moving away from each other while in a spherical or elliptic space, they
come closer to each other. Mathematical generalizations of the AdS space include more
than one time-like dimension but this is of no physical relevance. So, when speaking of
an n-dimensional AdSn space, one refers to 1 time-like coordinate and n − 1 space-like
coordinates. If we embed the AdS space in a flat space of one additional dimension, it
is possible to visualize it (see Figure 1.1). Its points are then given by the hypersurface
obeying

t2 + τ2 − (x1)2 − . . .− (xn−1)2 = L2 (1.8)

with the infinitesimal distance given by

ds2 = dt2 + dτ2 − (dx1)2 − . . . (dxn−1)2. (1.9)

More interesting in the context of this work is the fact that the AdSn space can be
equipped with a certain coordinate patch (only coverng half of the space). With this
coordinate system, the metric is (now with n = 5)

ds2 =
L2

z2

(
dt2 − (dx1)2 − (dx2)2 − (dx3)2 − dz2

)
. (1.10)
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Figure 1.1: Image of the 1 + 1-dimensional AdS space in a flat 2 + 1-dimensional space,
where the spacelike x-axis is the rotational axis. The additional dimension
is (chosen to be) timelike and expressed by the coordinate τ . τ and t lie
normal to the x-axis and to each other.

It is related to equation (1.6) by the transformation z = 1
u . From this form it is easy

to see that the AdS metric is conformally equivalent to the metric of a flat (half-space)
Minkowski spacetime with one timelike and four spacelike dimensions.

The factor
a(z) =

L

z
, (1.11)

which appears in front of the brackets of equation (1.10), is often referred to as warp
factor. In more general spaces, it can take a different form.

1.5 The AdS5 Metric

The AdS5 space will be the space in which all further calculations will be conducted.
Hence, let us explore the metric given by equation (1.10). There is no general consensus
on the nomenclature but the conventions presented in this text seem to be the most
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common ones. The five coordinates (t, x1, x2, x3, z) = (x0, x1, x2, x3, x5) are labelled
with indices from 0 to 5, leaving out the 4. We can read off the metric tensor gMN form
the infinitesimal distance. By definition6

ds2 =
L2

z2

(
dt2 − (dx1)2 − (dx2)2 − (dx3)2 − dz2

)
=: gMNdxMdxN . (1.12)

In matrix form, the metric tensor is given by

gMN =
L2

z2


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 =:
z2

L2
ηMN . (1.13)

The covariant metric tensor is determined from gMLg
LN = δNM (the Kronecker delta)

and we get

gMN =
z2

L2


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 =:
L2

z2
ηMN . (1.14)

For later convenience, we have defined ηMN = ηMN = diag(1,−1,−1,−1,−1). (These
are not good tensors in the sense that we could raise or lower their indices, especially
ηMN 6= gMM ′gNN

′
ηM ′N ′ .)

It is often convenient to deal with x0, x1, x2, x3 and z separately. For this we will
introduce the convention that a capital roman letter, like M or N , stands for an index
running over 0, 1, 2, 3, 5 whereas lower case Greek letters, like µ or ν, only run over
0, 1, 2, 3. So, for example xµ stands for (t, x1, x2, x3) and ηµν = diag(1,−1,−1,−1) is
the Minkowski metric tensor in four dimensions.

By g we will denote the determinant of gMN , i.e.

g = det(gMN ) =
L10

z10
. (1.15)

The coordinate z corresponds to an energy scale, where low z stands for high and
large z stands for low energies (called UV and IR). This means that a higher energy
(or momentum transfer) QCD physics is dual to the behaviour of fields closer to the
AdS boundary at z = 0. Since z = 1

u is a reciprocal energy scale, z = 0 corresponds to
infinity. This is reflected by the outcome of many calculations where singularities occur
in certain expressions for z = 0. It is therefore often necessary to introduce a UV cutoff
L0 for z. Whenever an expression containing L0 appears, it should always be viewed
in the limit of L0 → 0. When conducting numerical calculations, one has to choose an
L0, which is sufficiently small. Also, in one particular approach, one introduces a IR
cutoff L1, which plays the role of ΛQCD. In these so called hard-wall models, the fifth
dimension is hence compactified, but this will be treated in more detail shortly.

6In this text, the convention will be used that A := B means that A is defined as B. Similarly in
A =: B, B is defined as A.

12



1.6 Working with the Correspondence

Now that the necessary framework has been established, we must learn how exactly the
AdS/QCD correspondence is applied. The general idea is that one has a quantity in
QCD, which one wishes to calculate, such as masses, decay constants, or form factors.
The operators in QCD, whose expectation values give these quantities, are then related
via the correspondence to a field in the AdS5 space. Here, one can make the necessary
calculations and in the end translate the results back into the language of QCD. Because
this process of switching between the two dual descriptions is like translating between
two languages, one speaks of the holographic dictionary.

Let us state a little bit more precisely how this correspondence is applied. The original
AdS/CFT correspondence states that for every operator O(xµ) of the conformal field
theory, there exists a unique φ(xµ, z) field living in the five-dimensional AdS space.
These fields are called bulk fields. They are related to the boundary field (playing the
role of the source) φ0(xµ) on the boundary of AdS5 by the relation

φ(xµ, 0) = z4−∆φ0(xµ), (1.16)

where ∆ is the conformal dimension of the operator O(xµ). Now, let S[φ(xµ, z)] be the
gravity or string action of φ(x, z), then the correspondence takes the form [13]:

exp (S[φ(xµ, 0)]) =
〈

exp
(∫

d4xφo(xµ)O(xµ)
)〉

CFT

. (1.17)

As we will see, this offers a relatively simple way of calculating correlation functions on
the gauge theory side. If we define

Z := exp (S[φ(xµ, 0)]) , (1.18)

then it follows that the n-point correlator can by calculated by taking repeated functional
derivatives of Z with respect to the source, i.e.〈

O(xµ(1)) . . .O(xµ(m))
〉

=
δmZ

δφ0(xµ(1)) . . . δφ0(xµ(m))
. (1.19)

Since QCD is not a conformal field theory, the direct application of the AdS/CFT
correspondence would be meaningless. This problem is fixed by effectively breaking the
conformal symmetry in the 5D bulk, which can be achieved in several ways. The in
many ways simplest approach is to prevent the ability of the fields φ(xµ, z) to penetrate
deeply into the bulk by introducing a hard-wall cutoff at z = L1 (see Figure 1.2).
This gives a hard-wall or IR brane, hence the name hard-wall model for these types of
calculations. L1 can be thought of as being related to the QCD cutoff via L1 ∼ 1

ΛQCD
.

And in the same way, it sets the scale for masses. Hard-wall models are very economic
and computationally simple but produce unphysical Regge trajectories, meaning that
hadronic states, corresponding to eigenmodes of the bulk fields φ(xµ, z), have mass
eigenvalues that behave like

mn ∼ n. (1.20)
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Figure 1.2: Visualization of the hard-wall approach.

This occurs in all models in which one only allows the bulk field to exist up to a limited
depth in the bulk. The behaviour consistent with phenomenology are however Regge
trajectories of the form

m2
n ∼ n. (1.21)

Hard-wall models may be able to make good predictions for ground states but higher
radial excitations cannot be studied meaningfully in the hard-wall approach. This has
led to the development of the soft-wall models. Here, one breaks the conformal symmetry
by introducing a background field Φ(z) (also known as dilaton field), the form of which
is chosen to produce the correct Regge trajectories. The range of z is unbounded. Since
the conformal symmetry is gradually broken by the gravity background, one refers to
these models as soft-wall models. Whilst one indeed produces physical mass spectra,
soft-wall models are considerably more difficult from a computational point of view and
one encounters some finiteness problems. We shall see later what is meant by that and
how to resolve the arising issues.

For the sake of completeness, one should also mention that two different methods of
making use of the correspondence exist. The idea behind the models presented so far
is a bottom-up approach. Here, one starts from four-dimensional QCD and attempts to
construct a higher dimensional dual theory by incorporating QCD phenomenology. So,
for example, one chooses the dilaton field exactly in a way that one obtains correct Regge
trajectories. In contrast to this is the top-down approach, where one starts from a string
theory on the AdSn × K, where K is a compact manifold, e.g. a hypersphere. Then,
one attempts to derive a low-energy, i.e. strongly coupled, theory resembling QCD on
the boundary of the AdSn-space. While the latter approach might be favourable from
a theoretical point of view, it is usually the bottom-up approach which is suitable for
phenomenological analysis wherefore we will only deal with this approach in this text.
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One goal of this text is to derive the equations of motion governing the fields in the five-
dimensional space, find solutions with appropriate boundary conditions, and interpret
the results in terms of QCD quantities. We will first do this in the context of a hard-wall
model, and then afterwards extend our considerations to soft-wall models, for which we
have to overcome some difficulties.

A considerable amount of work will be spent on deriving the equations of motion
for the bulk fields starting from the 5D action. One can then find hadrons, two-point
correlators, decay constants, and form factors from the solutions of these differential
equations. Whenever it is possible, we will try to find analytical solutions but often it
is not. So, a large part of the results are found numerically, especially in the soft-wall
approach. The main idea is to find values for the free parameters of the model leading
to the best agreement with experimental results.

The majority of articles in the field of AdS/QCD work in a flavour symmetric case,
considering only the up and down quark, which are assumed to have equal masses. Fol-
lowing [2], we will also incorporate the strange quark, for which a flavour symmetric
approach certainly would not give good results. Hence, one must allow flavour symme-
try to be broken. Up/down (or isospin) symmetry will be kept and this is in general
considered to be a very good approximation.

The models we will derive allow to calculate the masses of vector, pseudovector (axial
vector), and pseudoscalar mesons, and even strange scalar mesons. Light scalar mesons
are more difficult to obtain, and there is no general consensus on how to treat them.
We will thus also consider techniques how scalar mesons can be explicitly built into the
model. We will do so in the context of a hard-wall and a soft-wall approach.

15



2 Hard-Wall Model

In this chapter, we will build up a hard-wall model describing QCD with equal mass
up and down quarks and also including a strange quark. So we have that the number
of flavours is Nf = 3. We have to begin by incorporating duals in AdS5 to the QCD
operators of interest. These are the current operators JaLµ = q̄Lγµt

aqL and JaRµ =
q̄Lγµt

aqR and the quark bilinear q̄LqR, where

qL,R =

ud
s


L,R

(2.1)

and the ta (a = 1, 2, . . . , 8) are related to the Gell-Mann matrices λa via ta = λa

2 with
Tr[ta, tb] = 1

2δ
ab. (If we had only been considering the case Nf = 2, we would use the

Pauli matrices instead.)
The above QCD operators are related to their dual fields via [14, 15]

JaLµ → LaM (xµ, z) (2.2)

and
JaRµ → RaM (xµ, z) (2.3)

as well as
q̄LqR →

2
z
X(xµ, z). (2.4)

(The factor 2 in front of the X is purely conventional, the 1
z however not.) The two

gauge fields LaM (xµ, z) and RaM (xµ, z) and the scalar field X(xµ, z) will be our main
objects of investigation in this text. There is of course an infinite amount of operators
in QCD and hence also an infinite amount of bulk fields in the AdS5 space. The most
relevant ones in the meson sector are however those three inroduced above. All other
fields will be neglected. The masses of these operators are related via

m2L2 = (∆− p)(∆ + p− 4), (2.5)

where ∆ is the dimension of the QCD (p-form) operator. This results in the masses
shown in Table 2.1.

With this preparation, we can write down the 5D action we will be working with. It
is [14, 15]:

S =
∫

d5x
√
gTr

(
|DMX|2 −m2

X |X|
2 − 1

4g2
5

(
F 2
L + F 2

R

))
(2.6)
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4D: O(xµ) 5D: φ(xµ, z) p ∆ m2L2

q̄Lγµt
aqL LaM (xµ, z) 1 3 0

q̄Lγµt
aqR RaM (xµ, z) 1 3 0

q̄LqR
2
zX(xµ, z) 0 3 -3

Table 2.1: Masses of bulk fields.

or written out

S =
∫

d5x
√
gTr

(
(DMX)†(DMX) +

3
L2
X†X

− 1
4g2

5

(
FLMNF

MN
L + FRMNF

MN
R

))
.

(2.7)

Here the field strength FLMN is defined by

FLMN := ∂MLN − ∂NLM − i[LM , LN ] (2.8)

and FRMN analogously. We will expand the gauge fields in terms of the ta:

LN = LaN t
a, (2.9)

where the coefficients LaN are real numbers. DM is the covariant derivative through
which the scalar field and the gauge fields interact. It is given by

DMX = ∂MX − iLMX + iXRM . (2.10)

In a chirally symmetric world, i.e. if all quark masses are zero, the action has SU(3)L×
SU(3)R symmetry, i.e. it is invariant under

X → X ′ = ULXU
†
R (2.11)

as well as
LN → L′N = ULLN (2.12)

and
RN → R′N = URRN , (2.13)

where UL, UR ∈ SU(3). The quark condensate 〈q̄q〉 spontaneously breaks this symmetry
into the vector subgroup SU(3)V . The corresponding Goldstone Bosons are the pseu-
doscalar mesons (an octet of them). They would in fact be massless if we had chiral
symmetry. However, since quarks have masses to begin with, the SU(3)L×SU(3)R sym-
metry is only an approximate one, thus giving the mesons a mass, which are then referred
to as pseudo-Goldstone bosons. If we restrict ourselves to Nf = 2, the SU(2)L×SU(2)R
is almost exact since the up and down quarks are so light. This results in a very low
pion mass compared to the other mesons. One also says that the quark masses explicitly
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break the chiral symmetry, as opposed to the spontaneous symmetry breaking of the
quark condensate.

We will also consider the vector and axial vector (pseudovector) fields A and V defined
via L = V +A and R = V −A.

The Vacuum Solution
Let us first determine the vacuum solution X0 := 〈X〉. It is precisely this vacuum
expectation value X0 which spontaneously breaks the (approximate) chiral symmetry
by forming the quark condensate. The vacuum field X0 is determined by turning off
all fields except X0 and solving the equation of motion resulting from the action for a
xµ-independent field. With only the X0(z) field left, the action simplifies to

S =
∫

d5x
√
gTr

(
∂zX

†
0∂

5X0 +
3
L2
X†0X0

)
=
∫

d5x
L5

z5
Tr
(
− z

2

L2
(∂zX0)2 +

3
L2
X†0X0

)
.

(2.14)

Using

Tr(A†A) =
3∑
i=1

3∑
j=1

|aij |2 , (2.15)

we get

S =
3∑

i,j=1

∫
d5x

(
−L

3

z3
(∂zX0ij)2 + 3

L3

z5
X2

0ij

)
. (2.16)

The equation of motion for X0(z) can be derived by making a variational argument.
Since the individual components X0ij of X0 are independent, this can be done for each
of them separately. So, we look at the action for one component

Sij =
∫

d5x

(
−L

3

z3
(∂zX0ij)2 + 3

L3

z5
X2

0ij

)
(2.17)

and look at an infinitesimal displacement δX0ij , which gives

Sij + δSij =
∫

d5x

(
−L

3

z3
(∂z(X0ij + δX0ij))2 + 3

L3

z5
(X0ij + δX0ij)2

)
. (2.18)

After dropping the quadratic terms in δX0ij , one gets

δSij =
∫

d5x

(
−2

L3

z3
∂zX0ij∂zδX0ij + 6

L3

z5
X0ijδX0ij

)
. (2.19)

Partially integrating with respect to z in the first term gives

δSij =
∫

d5x

(
+2∂z

(
L3

z3
∂zX0ij

)
δX0ij + 6

L3

z5
X0ijδX0ij

)
= 2

∫
d5x

(
+∂z

(
L3

z3
∂zX0ij

)
+ 3

L3

z5
X0ij

)
δX0ij .

(2.20)
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Since the action Sij should be extremal, δSij should vanish for all infinitesimal displace-
ments δX0ij . So we can read off the resulting equation of motion. It is

∂z

(
L3

z3
∂zX0ij

)
+ 3

L3

z5
X0ij = 0 (2.21)

for each component of X0.
The general solution to this homogeneous linear second order ordinary differential

equation is given by the polynomial

vij(z) := 2X0ij = Aijz +Bijz
3. (2.22)

(We will always require any normalizable field to vanish in the UV since the integral
over z is due to the metric given by

∫
dz
z , which can only be finite if the integrand tends

to zero for z → 0.) By looking at boundary conditions determined by the AdS/QCD
correspondence, one can relate the coefficients Aij to the mass matrix elements Mij and
the Bij to the quark condensates Σij = 〈q̄iqj〉 [15]. (How to deal with the boundary
conditions explicitly to determine these coefficients, is partly shown in Section 4.2.) One
gets

vij(z) = ζ
Mij

L
z +

1
ζ

Σij

L
z3, (2.23)

where a rescaling parameter7 ζ as advocated in [16] was also introduced. It is given by

ζ =
√
Nc

2π
=
√

3
2π

. (2.24)

(This will also be treated in more detail in Section 4.2.)
We assume up/down (isospin) symmetry and set mq := mu = md. So we get

M =

mq 0 0
0 mq 0
0 0 ms

 (2.25)

and

Σ =

σq 0 0
0 σq 0
0 0 σs

 . (2.26)

Let us then write
vq(z) := ζ

mq

L
z +

σq
ζL
z3 (2.27)

and
vs(z) := ζ

ms

L
z +

σs
ζL
z3. (2.28)

7In the end the mass matrix elements and the quark condensates will be treated as parameters of the
model and fitted to experimental data, which means that the results are the same with or without the
rescaling parameter. The parameters however have a physical meaning themselves and the rescaling
parameter ensures that their values correspond to quark masses and condensates in QCD.
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With this

X0 =
1
2

vq 0 0
0 vq 0
0 0 vs

 . (2.29)

The Expanded 5D Action
The field X can be expanded as [2]

X(x, z) = eiπ
a(xµ,z)taX0(z)eiπ

a(xµ,z)ta , (2.30)

where π = πata is the pion field expressed in terms of Gell-Mann-matrices and X0(z) is
the vacuum field, which we have just derived. With flavour symmetry, X0 would be a
multiple of the unit matrix and the above expression would simplify to X0e

2iπata . Here,
in three-flavour AdS/QCD this is not the case. At this point, we are neglecting the
scalar part of X. We will treat it in Chapter 4.

With the expression for the vacuum field v(z), we can now derive the equations of
motion for the fields L and R, which we trade in for V and A, and X, which we
trade in for π. Hence, we insert the pion field expansion for X into the action (2.7).
The expression involves two matrix exponentials. A matrix exponential is, however, no
object one can easily deal with. Especially, the derivative of such an expression, if the
exponent is not simply linear in the variable differentiated for, becomes a complicated
integral expression. The only chance to derive equations of motions from the action is
to expand it in terms of the fields V , A and π. We will consider terms up to quadratic
order in the fields, which is sufficient to obtain the masses and other observables.

To simplify the resulting expressions, we will explicitly evaluate the sum over the
index a of ta. Doing this, one multiply encounters the expressions Tr

(
[ta, X0][tb, X0]

)
and Tr

(
{ta, X0}{tb, X0}

)
. Thus, a closer investigation of these terms seems appropriate.

One finds that they are zero whenever a 6= b. Hence we define the “masses” Ma
V (z) and

Ma
A(z) via

1
2
Ma
V

2 = −Tr ([ta, X0][ta, X0]) (2.31)

and
1
2
Ma
A

2 = Tr ({ta, X0}{ta, X0}) . (2.32)

Expressing X0 explicitly in terms of vq and vs, we get

Ma
V

2 =


0 a = 1, 2, 3
1
4(vq − vs)2 a = 4, 5, 6, 7
0 a = 8

(2.33)

and

Ma
A

2 =


v2
q a = 1, 2, 3

1
4(vq + vs)2 a = 4, 5, 6, 7
1
3(v2

q + 2v2
s) a = 8

. (2.34)
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These preparations made, one finds that up to quadratic order in the fields π, V , and
A the bulk action is given by

S =
∫

d5x
∑
a

(
− L

4g2
5z

(∂MV a
N − ∂NV a

M )2 +
Ma
V

2L3

2z3
V a
M

2

− L

4g2
5z

(∂MAaN − ∂NAaM )2 +
Ma
A

2L3

2z3
(∂Mπa −AaM )2

)
.

(2.35)

(The complete calculation can be found in Appendix A.1.) We are using a shorthand
notation, where the contraction over ηMN is implicit. This means for example that

(∂MV a
N − ∂NV a

M )2 = ηMM ′ηNN
′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)

=
L4

z4
gMM ′gNN

′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)

=
L4

z4
(∂MV a

N − ∂NV a
M )(∂MV Na − ∂NVMa)

(2.36)

or similarly

(∂Mπa −AaM )2 =
L2

z2
(∂Mπa −AaM )(∂Mπa −AMa). (2.37)

Let us also define

αa(z) =
g2

5M
a
V

2L2

z2
(2.38)

and

βa(z) =
g2

5M
a
A

2L2

z2
, (2.39)

which will simplify many equations. Note that since L appeared to the power −2 in Ma
V

2

and Ma
A

2, αa(z) and βa(z) do not depend on L. More generally, the parameter L has no
influence on the results of the calculations since it is only a choice of scale. By setting
L = 1 one could in principle remove MeV as the last unit. To avoid ambiguities, the
sum over a is marked explicitely with a sigma sign in the above action. This convention
will be kept throughout the text, which means that there is no implicit summation over
a (Einstein notation) unless it is obvious from the context.

Gauge Fixing
We can now take a closer look at the axial sector of the action (2.35), i.e. all the
terms involving A. As a consequence of (2.11-2.13), it is invariant under the gauge
transformation

AaM → A′
a
M = AaM − ∂Mλa

πa → π′
a = πa − λa

(2.40)

This can be seen directly from

∂MA
′a
N − ∂NA′

a
M = ∂M (AaN − ∂Nλa)− ∂N (AaM − ∂Mλa)

= ∂MA
a
N − ∂M∂Nλa − ∂NAaM + ∂N∂Mλ

a

= ∂MA
a
N − ∂NAaM

(2.41)

21



and

∂Mπ
′a −A′aM = ∂M (πa − λa)− (AaM − ∂Mλa)

= ∂Mπ
a −AaM .

(2.42)

We can then for example choose λa in a way that ∂zλa = Aaz , which means that we are
free to set Aaz = 0. We will see, that this has as a consequence that we do not get light
unflavoured scalar mesons, as they vanish due to this gauge transformation.

For the vector sector (i.e. those terms in the action involving V ), the mass term looks
different and hence destroys the gauge freedom. However for a = 1, 2, 3, 8, Ma

V
2 = 0,

which follows from the assumed isospin symmetry. So, at least for those a, we can choose
V a
z = 0 following the same arguments we made for A.

2.1 Vector Sector

Having derived the action (2.35), we can now look at the equation of motion it implies
for the fields. Let us first look at the vector sector. We have

SV =
∫

d5x
∑
a

(
− L

4g2
5z

(∂MV a
N − ∂NV a

M )2 +
αa(z)L

2g2
5z

V a
M

2

)
=
∫

d5x
L

4g2
5

∑
a

(
−1
z

(
ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)
)

+
2αa(z)
z

ηMM ′V a
MV

a
M ′

)
.

(2.43)

Then, one finds using similar techniques as before (see Section A.2 of appendix for full
derivation) that the equation of motion is given by

ηML∂M

(
1
z

(∂LV a
N − ∂NV a

L )
)

+
αa(z)
z

V a
N = 0. (2.44)

The above equation can be written as

ηµλ∂µ

(
1
z

(∂λV a
ν − ∂νV a

λ )
)
− ∂z

(
1
z

(∂zV a
ν − ∂νV a

z )
)

+
αa(z)
z

V a
ν = 0

ηµλ∂µ

(
1
z

(∂λV a
z − ∂zV a

λ )
)

+
αa(z)
z

V a
z = 0.

(2.45)

The vector field V a
ν can be decomposed into a transversal and a longitudinal part

(Helmholtz decomposition or fundamental theorem of vector calculus)

V a
µ (x, z) = V a

µ⊥(x, z) + V a
µ‖(x, z), (2.46)

where the transversal part obeys ηµν∂µVν⊥ = 0 or equivalently ∂µV a
µ⊥ = 0. On the other

hand, the longitudinal part can be written as V a
µ‖ = ∂µξ

a for some ξa. The equation of
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motion then reads

1
z
ηµλ∂µ∂λV

a
ν⊥ − ∂z

(
1
z

(∂zV a
ν⊥)
)

+
αa(z)
z

V a
ν⊥ − ∂z

(
1
z

(∂z∂νξa)
)

+
αa(z)
z

∂νξ
a + ∂z

(
1
z

(∂νV a
z )
)

= 0

1
z
ηµλ∂µ∂λV

a
z +

αa(z)
z

V a
z −

1
z
ηµλ∂µ∂λ∂zξ

a = 0.

(2.47)

To simplify this, we introduce $a and ϕa so that V a
z = −∂z$a and ξa = ϕa−$a. Then

the equation of motion simplifies to

1
z
ηµλ∂µ∂λV

a
ν⊥ − ∂z

(
1
z

(∂zV a
ν⊥)
)

+
αa(z)
z

V a
ν⊥ − ∂z

(
1
z

(∂ν∂zϕa)
)

+
αa(z)
z

∂ν(ϕa −$a) = 0

αa(z)∂z$a + ηµλ∂µ∂λ∂zϕ
a = 0.

(2.48)

It is easier to solve these equations in momentum space. Thus, we apply the Fourier
Transform. Since many different conventions regarding its definition exist, one should
mention that throughout the text the following convention is used: The 4D Fourier
Transform of f(xµ, z) is given by f̂(kν , z) =

∫
d4xeiηνµk

νxµf(xµ, z). Then, by using
the differentiation rules, the above partial differential equations are transformed into
ordinary ones. One obtains

−1
z
k2V̂ a

ν⊥ − ∂z
(

1
z

(∂zV̂ a
ν⊥)
)

+
αa(z)
z

V̂ a
ν⊥ + ikν∂z

(
1
z

(∂zϕ̂a)
)

−iα
a(z)
z

kν(ϕ̂a − $̂a) = 0

αa(z)∂z$̂a − k2∂zϕ̂
a = 0,

(2.49)

where we defined k2 := ηµνk
µkν . If we now multiply the upper equation by kν , all terms

involving V̂ a
ν⊥ will vanish since ∂νV a

ν⊥ = 0. We divide the resulting equation by k2 and
together with the second equation get a pair of equations for the longitudinal part and
the z-component:

∂z

(
1
z

(∂zϕ̂a)
)
− αa(z)

z
(ϕ̂a − $̂a) = 0

αa(z)∂z$̂a − k2∂zϕ̂
a = 0.

(2.50)

It then follows that the transverse terms vanish independently, which gives the equation
for the transverse part:

∂z

(
1
z

(∂zV̂ a
µ⊥)
)

+
k2 − αa(z)

z
V̂ a
µ⊥ = 0. (2.51)

These equations can now be solved independently, as done in the following.
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2.1.1 The Transverse Part

We will begin by solving the differential equation for the transverse part (2.51). De-
pending on the boundary conditions one obtains the bulk-to-boundary propagator or
normalizable hadron modes.

Bulk-to-Boundary Propagator
Let us write the vector field V̂ a

µ⊥ as a product of its UV-boundary value V̂ 0a
µ⊥(kν) and

the bulk-to-boundary propagator (or profile function) Va(kν , z)

V̂ a
µ⊥(kν , z) = V̂ 0a

µ⊥(kν)Va(kν , z), (2.52)

where Va(k2, L0) = 1 by definition. V̂ 0a
µ⊥(kν) acts as the (Fourier transform of the)

source of the 4D vector current operator dual to the bulk field V a
µ⊥. While in this case the

coupling to the source determines the boundary condition in the UV, for hadrons we will
have to choose a different UV boundary condition so that the solution is normalizable.
Va obviously fulfills the same differential equation (2.51) as V̂ a

µ⊥, namely

∂z

(
1
z

(∂zVa)
)

+
k2 − αa(z)

z
Va = 0. (2.53)

To obtain a unique solution we must also add an additional boundary condition. It is
a common assumption in hard-wall models that the derivative with respect to z of any
field should vanish at the IR brane, i.e. ∂zVa(k2, L1) = 0. This guarantees the boundary
terms in the IR to vanish.

Since equation (2.53) is of order two, given two boundary conditions, we can in prin-
ciple solve the given boundary value problem (BVP). In general, if αa depends on z, a
solution to the above differential equation can only be found numerically.

Analytical Solution
If however a = 1, 2, 3, 8, then αa(z) = 0 and thus the differential equation simplifies
and one obtains an analytic solution. The solution can be expressed in terms of Bessel
functions

Va(k2, z) =
z

L0

J1(kz)Y0(kL1)− Y1(kz)J0(kL1)
J1(kL0)Y0(kL1)− Y1(kL0)J0(kL1)

. (2.54)

In the limit L0 → 0 this becomes

Va(k2, z) =
π

2
kz

(
J1(kz)Y0(kL1)

J0(kL1)
− Y1(kz)

)
. (2.55)

The situation for a = 4, 5, 6, 7 is more complicated. Here αa(z) does not vanish. In
general αa(z) is an even polynomial in z of order 4 (αa(z) = A+Bz2+Cz4). In this case,
there exists no analytical solution. If we however assume a certain symmetry, namely
that σq = σs, then αa becomes a constant and the solution can again be written in terms
of Bessel functions. It is

Va(k2, z) =
π

2

√
αa − k2z

(
−I1(

√
αa − k2z)Y0(−i

√
αa − k2L1)

I0(
√
αa − k2L1)

+ iY1(−i
√
αa − k2z)

)
.

(2.56)

24



To work with real arguments only, let us make a case distinction. For k2 > αa we define
k̃ =
√
k2 − αa. Then

Va(k2, z) =
π

2
k̃z

(
J1(k̃z)

Y0(k̃L1)

J0(k̃L1)
− Y1(k̃z)

)
. (2.57)

If on the other hand k2 < αa, then we define K̃ =
√
αa − k2 and get the solution

Va(k2, z) = K̃z

(
I1(K̃z)

K0(K̃L1)

I0(K̃L1)
+K1(K̃z)

)
. (2.58)

One can easily check that the solution for αa = 0 (2.55) is a special case of the solution
for constant αa above, which it has to be if the calculations are correct.

The profile function will be needed later, since it appears in expressions for form
factors.

2.1.2 Longitudinal part

The equation (2.50) for the longitudinal part and the z-component of V a (in momentum
space) is

∂z

(
1
z

(∂zϕ̂a)
)
− αa(z)

z
(ϕ̂a − $̂a) = 0

αa(z)∂z$̂a − k2∂zϕ̂
a = 0,

(2.59)

where we defined V a
µ‖ = ∂µξ

a, V a
z = −∂z$a, and ξa = ϕa −$a.

For a = 1, 2, 3, 8, αa = 0 and we obtain no nonzero solutions at all since ϕ̂a = 0
vanishes because of the differential equation and $̂a = 0 since we could gauge away V a

z

and V̂ a
z = −∂z$̂a. Hence also ξ̂a = ϕ̂a − $̂a vanishes.

When αa is constant and nonzero (i.e. for σq = σs and a = 4, 5, 6, 7), $̂a and ϕ̂a are
just multiples of each other. It is then possible to decouple the above equations and
obtain a single differential equation for ϕ̂a − $̂a = ξ̂a:

∂z

(
1
z

(∂z ξ̂a)
)

+
k2 − αa

z
ξ̂a = 0. (2.60)

This is exactly the differential equation we had for the Fourier transform of the transverse
part. We can then look at the profile function for the longitudinal part Wa(k2, z) given
via the relation

ξa(kµ, z) = ξa0(kµ)Wa(k2, z), (2.61)

which results in exactly the same solution we had for the transverse part (2.57 and 2.58),
so Va =Wa. In general, if σs 6= σq, this does not occur. Then, we must solve the pair of
differential equations (2.59) for ϕ̂a and $̂a. A choice of UV boundary conditions could
be ϕ̂a(k2, L0) = 0, $̂a(k2, L0) = −1, which corresponds to Wa(k2, 0) = 1. In the IR we
have ∂zϕ̂a(k2, L1) = ∂z$̂

a(k2, L1) = 0. In the general case, the solution must be found
numerically.
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2.1.3 Two-Point functions

As explained in the introduction, using the AdS/QCD correspondence, we can easily
calculate two point correlators (also called two-point functions or Green functions). Let
us consider the transverse two point-function function i

∫
d4x eiηλρk

λxρ
〈
Jµa⊥ (x)Jνb⊥ (0)

〉
and its longitudinal counterpart i

∫
d4x eiηλρk

λxρ
〈
Jµa‖ (x)Jνb‖ (0)

〉
. We calculate them by

differentiating the action (2.35) twice with respect to the source V 0
µ after inserting (2.52)

and (2.61). This gives

i

∫
d4x eiηλρk

λxρ
〈
Jµa⊥ (x)Jνb⊥ (0)

〉
= −Pµν⊥ δab

∂zVa(k2, L0)
g2

5L0
(2.62)

and

i

∫
d4x eiηλρk

λxρ
〈
Jµa‖ (x)Jνb‖ (0)

〉
= −Pµν‖ δab

∂zϕ̂
a(k2, L0)
g2

5L0
, (2.63)

where we have defined the transverse projector Pµν⊥ =
(
ηµν − kµkν

k2

)
and the longitudinal

projector Pµν‖ = kµkν

k2 . (How such a calculation is done in principle, can be seen in
Chapter 4.) Comparing the above results with the QCD result to leading order, one can
determine the parameter g5 of the model [14, 15]. One gets

g2
5 =

12π2

Nc
= 4π2. (2.64)

2.1.4 Normalizable Solutions

Let us now look for normalizable modes of the 5D fields. The solutions of the above
derived equations of motion correspond to mesons. Compared to the calculations above
we have to change the boundary conditions to account for that.

Our splitting of the vector field into a transversal and a longitudinal part now has
a concrete physical meaning. Vector mesons we obtain as solutions of the differential
equation for the transverse part (2.51) and scalar mesons as solutions for the longitudinal
part (2.59).

2.1.4.1 Vector Mesons

Let us study the vector mesons in detail. We will denote their wave functions by ψa(z).
In the case where αa is constant, i.e. for σq = σs or a = 1, 2, 3, 8, there is an analyt-
ical solution in terms of Bessel functions. In the other cases one can find the solution
numerically.

We want ψa(z) to be a normalizable solution of the differential equation for the trans-
verse part (2.51). This means we want the integral∫ L1

L0

dz
z
ψa2(z) (2.65)
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to be finite. For this we must impose the boundary condition ψa(L0) = 0. In addition,
we maintain the Neumann boundary condition ∂zψ

a(L1) = 0 so that the boundary
terms vanish. Since the differential equation is linear and the boundary conditions are
homogeneous, every multiple of a solution is again a solution. This arbitrariness can
be removed by specifying another boundary condition like ∂zψa(L0) = c, where c 6= 0.
(The actual value of c is unimportant at this point since we will normalize the solution
anyway.) But this means that the boundary value problem is overdetermined since we
have an order two differential equation, but three boundary conditions. A solution only
exists for certain values of the parameter k2. Since solutions of this kind of differential
equation are in general oscillatory, we get an infinite discrete spectrum of k2 =: Ma

n
2

(n = 1, 2, . . .) for which a solution exists. Ma
n is of course the mass of the corresponding

eigenmode, which we call ψan(z). Higher n correspond to radial excitations.
On can then identify the different vector mesons in the octet for a = 1, . . . , 8. Since

we were assuming up/down symmetry, certain cases of a are identical. For a = 1, 2, 3 we
get an infinite tower of ρ mesons (ρ+,ρ−, and ρ0) and for a = 4, 5, 6, 7 we get K∗ mesons
(K∗+, K∗−, K∗0, and K

∗0)[2].
We normalize the solutions such that the integral (2.65) equals to one. In addition,

the eigenmodes ψan(z) obey an orthogonality relation. Hence∫ L1

L0

dz
z
ψan(z)ψam(z) = δnm. (2.66)

To show this orthogonality, we look at∫ L1

L0

dz
αa(z)−Ma

n
2

z
ψan(z)ψam(z) =

∂zψ
a
n(z)ψam(z)
z

∣∣∣∣L1

L0︸ ︷︷ ︸
=0

−
∫ L1

L0

dz
z
∂zψ

a
n(z)∂zψam(z),

(2.67)
where we used partial integration and the differential equation (2.51) to find that ∂zψan(z)

z

is the primitive of α
a(z)−Ma

n
2

z ψan(z). Then, we can interchange m and n and by symmetry
get ∫ L1

L0

dz
αa(z)−Ma

n
2

z
ψan(z)ψam(z) =

∫ L1

L0

dz
αa(z)−Ma

m
2

z
ψan(z)ψam(z), (2.68)

which implies (using the linearity of the integral)

Ma
n

2

∫ L1

L0

dz
z
ψan(z)ψam(z) = Ma

m
2

∫ L1

L0

dz
z
ψan(z)ψam(z). (2.69)

Since Ma
n 6= Ma

m for n 6= m, this can only mean that∫ L1

L0

dz
z
ψan(z)ψam(z)) = 0 (2.70)

for n 6= m, which was the assertion.
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Analytical solution
We have seen that in many cases, there exists an analytical solution of the differential
equation in terms of Bessel functions, namely if αa is constant, which also includes the
case when it is zero.

If we had not imposed boundary conditions, the general solution to the differential
equation (2.51) with constant αa would have been

ψa(z) = −ic1zI1(
√
αa − k2z) + c2zY1(−i

√
αa − k2z). (2.71)

Imposing the boundary condition that ψa(z) vanishes at the UV boundary, we see that
term containing I1 fulfills this, the term containing Y1 however not, so we have to drop
it. We then rewrite ψa(z) as

ψa(z) = czJ1(
√
k2 − αaz). (2.72)

The Neumann boundary condition in the IR gives the condition

J0(
√
k2 − αaL1) = 0 (2.73)

(using ∂z(zJ1(z)) = zJ0(z)), which generates the discrete mass spectrum k2 = Ma
n

2. If
rn denotes the n-th zero of J0, the masses are given by

Ma
n =

√
r2
n

L2
1

+ αa. (2.74)

Using the approximation of J0 for large z

J0(x) ≈
√

2
πx

cos
(
x− π

4

)
, (2.75)

we find that they are approximately given by√
Ma
n

2 − αa ≈ π

L1

(
n− 1

4

)
(2.76)

(n = 1, 2, . . .). Here, it is important to note that this corresponds to a mass spectrum
of the form M2

n ∼ n2, which is unphysical.
Using the mass condition (2.74) and normalizing the solution, we get

ψan(z) =

√
2zJ1

(√
Ma
n

2 − αaz
)

L1J1

(√
Ma
n

2 − αaL1

) (2.77)

or, using rn,

ψan(z̃) =
√

2z̃
J1(rnz̃)
J1(rn)

, (2.78)
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Figure 2.1: The first four modes of ψan(z̃).

where we introduced z̃ = z
L1

. The four lightest vector meson modes are plotted in
Figure 2.1.

We can explicitly check the orthonormality of the ψan(z):∫ L1

0

dz
z
ψan(z)ψam(z) =

{
rmJ0(rm)J1(rn)−rnJ0(rn)J1(rm)

r2
n−r2

m
= 0 if m 6= n

1− J0(rn)J2(rn)
J2

1 (rn)
= 1 if m = n

}
= δmn. (2.79)

Two-Point Function as a Sum over Meson Modes
Let us turn back to the profile function Va(k2, z). In the analytical case there is a J0(k̃L1)
in the denominator. This creates poles when k̃L1 is a zero of J0, which is exactly the
mass condition. This indicates that we can in general write the profile function as a sum
over meson poles.

To derive this, we first make a general ansatz and write

Va(k2, z) =
∑
n

can(k2)ψan(z). (2.80)

Now we want to calculate the coefficients can(k2). For this we multiply the above equation
by ψam(z)

z and integrate. The orthonormality condition (2.79) yields

cam(k2) =
∫ L1

L0

dz
ψam(z)Va(k2, z)

z
. (2.81)

To evaluate this integral, we make use of the following trick:

cam(k2) =
∫ L1

L0

dz
z
ψam(z)Va(k2, z)

=
1

Ma
m

2 − k2

∫ L1

L0

dz
(αa(z)− k2)− (αa(z)−Ma

m
2)

z
ψam(z)Va(k2, z).

(2.82)
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So we have

(Ma
m

2 − k2)cam(k2) =
∫ L1

L0

dz
αa(z)− k2

z
ψam(z)Va(k2, z)

−
∫ L1

L0

dz
αa(z)−Ma

m
2

z
ψam(z)Va(k2, z)

=
ψam(z)∂zVa(k2, z)

z

∣∣∣∣L1

L0︸ ︷︷ ︸
=0

−
∫ L1

L0

dz
z
∂zψ

a
m(z)∂zVa(k2, z)

− ∂zψ
a
m(z)Va(k2, z)

z

∣∣∣∣L1

L0

+
∫ L1

L0

dz
z
∂zψ

a
m(z)∂zVa(k2, z)

=
∂zψ

a
m(L0)
L0

.

(2.83)

Solving for cam(k2) finally gives

cam(k2) = − 1
k2 −Ma

m
2

∂zψ
a
m(z)
z

∣∣∣∣
L0

. (2.84)

If we define
F an :=

∂zψ
a
n(L0)
g5Lo

, (2.85)

then we can write the profile function as

Va(k2, z) =
∑
n

−g5F
a
nψ

a
n(z)

k2 −Ma
n

2 . (2.86)

In the analytical case, in the limit of L0 → 0 we get

F an =
√

2rn
g5L2

1J1(rn)
(2.87)

One can also identify F an as the decay constant of the n-th KK vector meson [2]. This will
help us later to compare our model to experimental data. By our choice of normalization,
F an has the dimension of a mass squared.

2.1.4.2 Scalar Mesons

If we are looking for normalizable solutions of the longitudinal part corresponding to
scalar mesons, we have to solve the pair of equations (2.59) for ϕ̂an and $̂a

n. When
αa is just a constant, then we have seen that we can instead solve the single equa-
tion (2.60) for ξ̂an. Again, in both cases, the subsecript n indicates a discrete mass
spectrum. Reasonable boundary conditions are ϕ̂an(L0) = $̂a

n(L0) = 0 (or ξ̂an(L0) = 0)
and ∂zϕ̂an(L1) = ∂z$̂

a
n(L1) = 0 (or ∂z ξ̂an(L1) = 0). This would produce exactly the same
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solutions for ξan as the ones we got for ψan in the transverse case, which means that vector
and scalar mesons will have the same mass in the σs = σq limit.

In general we must consider the equation (2.59). This can only be done numerically.
It turns out that this differential equation is identical to the one for the longitudinal
part of the axial sector, which we will discuss in detail in the following Section 2.2. We
will also adopt the normalization discussed in that section.

We argued that for a = 1, 2, 3, 8 the longitudinal modes are unphysical. So, we can
only consider a = 4, 5, 6, 7, which corresponds to a K∗0 (κ) meson.

2.2 Axial Sector

We will now treat the axial sector of the action (2.35) in very much the same way as we
treated the vector part. Using βa(z) the relevant action reads as

SA =
∫

d5x
∑
a

(
− L

4g2
5z

(∂MAaN − ∂NAaM )2 +
βa(z)L
2zg2

5

(∂Mπa −AaM )2

)
. (2.88)

The equation of motion for the axial field A can be derived similarly to the one for
the vector field. One finds

ηML∂M

(
1
z

(∂LAaN − ∂NAaL)
)

+
βa(z)
z

(AaN − ∂Nπa) (2.89)

or equivalently

ηµλ∂µ

(
1
z

(∂λAaν − ∂νAaλ)
)
− ∂z

(
1
z

(∂zAaν − ∂νAaz)
)

+
βa(z)
z

(Aaν − ∂νπa) = 0

ηµλ∂µ

(
1
z

(∂λAaz − ∂zAaλ)
)

+
βa(z)
z

(Aaz − ∂zπa) = 0.
(2.90)

We again introduce the longitudinal and transverse part of Aaµ and write Aaµ‖ = ∂µφ
a.

Then we get

1
z
ηµλ∂µ∂λA

a
ν⊥ − ∂z

(
1
z

(∂zAaν⊥)
)

+
βa(z)
z

Aaν⊥ − ∂z
(

1
z

(∂z∂νφa)
)

+
βa(z)
z

∂νφ
a − βa(z)

z
∂νπ

a = 0

−1
z
ηµλ∂µ∂λ∂zφ

a − βa(z)
z

∂zπ
a = 0,

(2.91)

were we dropped the Aaz terms since we showed that they can be set to zero. Switching
to momentum space gives

−1
z
k2Aaν⊥ − ∂z

(
1
z

(∂zAaν⊥)
)

+
βa(z)
z

Aaν⊥ + ikν∂z

(
1
z

(∂zφa)
)

−ikν
βa(z)
z

φa + ikν
βa(z)
z

πa = 0

k2 1
z
∂zφ

a − βa(z)
z

∂zπ
a = 0.

(2.92)
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Following the same arguments as made for the vector sector, we split this into an
equation for the transverse part and one for the longitudinal part. For the transverse
part, we get exactly the same solutons as in the vector sector (replacing αa by βa),
namely

∂z

(
1
z

(∂zÂaµ⊥)
)

+
k2 − βa(z)

z
Âaµ⊥ = 0, (2.93)

and the solutions are analogous. The equations for the longitudinal part of the axial
field and the π field read:

∂z

(
1
z

(∂zφ̂a)
)
− βa(z)

z
(φ̂a − π̂a) = 0

k2∂zφ̂
a − βa(z)∂zπ̂a = 0.

(2.94)

Note that βa will not simplify to a constant in the case of σq = σs.
One can combine the above pair of coupled equations into a single differential equation

of second order by defining ya(k2, z) = 1
z∂zφ̂

a(k2, z). The above equations then read

− z

βa(z)
∂z (ya) + φ̂a − π̂a = 0

k2z

βa(z)
ya − ∂zπ̂a = 0.

(2.95)

Differentiating the upper equation and inserting the expression for ∂zπ̂a obtained from
the lower equation, one gets

∂z

(
z

βa(z)
∂zy

a(k2, z)
)

+ z

(
k2

βa(z)
− 1
)
ya(k2, z) = 0. (2.96)

Analogously to the longitudinal part of the vector field we use the boundary conditions
φ̂a(k2, L0) = 0, π̂a(k2, L0) = −1 and ∂zφ̂

a(k2, L1) = ∂zπ̂
a(k2, L1) = 0 to obtain the pro-

file function, coupled to the 4D pseudoscalar source. This corresponds to the boundary
conditions ya(k2, L1) = 0 and, using equation (2.94), ∂zya(k2, L0) = βa(L0)

L0
.

An analytic solution cannot be found, but close to the UV cutoff the profile function
can be written as [2]

ya(k2, L0) = βa(L0) log(kL0) + c log(kL0)(kL0)2, (2.97)

where c is some constant.

2.2.1 Normalizable Solutions

Again, normalizable solutions for the transverse and longitudinal part correspond to
hadrons. The transverse modes are pseudovector (axial) mesons. The solutions are
exactly those of the vector mesons with αa replaced by βa.

Longitudinal modes describe pseudoscalar hadrons, i.e. pions (π+, π−, and π0) for
a = 1, 2, 3, and kaons (K+, K−, K0, K0) for a = 4, 5, 6, 7. Let us study these again
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in detail. To do so, we turn back to our original pair of differential equations (2.94)
for the longitudinal part. We will denote the normalizable solutions π̂an(z) and φ̂an(z)
respectively. For them to be normalizable (

∫
dz
z π̂

a2
n and

∫
dz
z φ̂

a2
n are finite), we have to

impose the UV boundary conditions φ̂an(L0) = 0 and π̂an(L0) = 0. In addition we want
that ∂zφ̂an(L1) = 0 and ∂zπ̂an(L1) = 0 (the two last conditions imply each other as can be
easily seen from the differential equation). It is apparent that for any solution, a multiple
of that solution is also a solution of the ODE (including the boundary conditions). So
we have to fix one additional boundary condition, e.g. the derivative of φ̂an in z = L0.
This arbitrariness will vanish when the solutions are normalized.

If all the parameters are known (mq,ms,σq,σs,L1), the above boundary value problem
can be solved numerically and it turns out that (exactly as in the vector case) there is an
infinite but discrete set of values for k2 =: ma

n
2 for which the solutions to the BVP exist,

as was already indicated by the index n. The two first modes are shown in Figure 2.2.

Figure 2.2: Plot of the first two modes of φ̂an(z̃) (left) and π̂an(z̃) (right) in units of L1.
The blue (solid) graphs corresponds to n = 1 and the red (dashed) ones to
n = 2.

We could just as well have studied the second order differential equation (2.96) in-
stead. Normalizable modes (π̂an(z) and φ̂an(z)) correspond to normalizable solutions of
equation (2.96), which we shall call ηan(z). The boundary conditions above can be writ-
ten in terms of ηan. One gets the IR boundary condition ηan(L1) = 0 and, by using
equation (2.94), ∂zηan(L0) = 0 in the UV.

One also finds a generalized orthogonality relation for the ηan’s. After normalization,
which for convenience is chosen to depend on the mass, one gets∫ L1

L0

dz
z

βa(z)
ηan(z)ηam(z) =

δmn
ma
n

2
. (2.98)

The calculation is analogous to yet sligtly more complicated than the one we made for
the ψan’s and can be found in Appendix A.3.
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Two-Point Function as a Sum over Meson Modes
We can also try to write ya(k2, z) as a sum over meson poles. Using the orthonormality
relation and partial integration one gets

can(K2) =
ma
n

2

k2 −ma
n

2
ηam(L0) (2.99)

and thus

ya(k2, z) =
∑
n

ma
n

2ηan(L0)ηan(z)
k2 −ma

n
2

. (2.100)

Again, the complete calculation can be found in Appendix A.4. We define again

fan := −∂zφ̂
a
n(L0)
g5L0

=
−ηan(L0)

g5
, (2.101)

which turns out to be the decay constant of the n-th pseudoscalar hadron [2]. In this
case fan has the dimension of a mass.

We can then integrate (2.100) to obtain

φ̂a =
∑
n

−g5m
a
n

2fan φ̂
a
n(z)

k2 −ma
n

2
(2.102)

and

π̂a =
∑
n

−g5m
a
n

2fan π̂
a
n(z)

k2 −ma
n

2
. (2.103)

2.3 Form Factors

Kaon-to-Pion Transition Form Factor
The above considerations give sufficient material to construct further observables based
on them. Since we went through all the trouble of including the strange quark, it suggests
itself that we should consider expressions involving kaons. Thus, let us look at the form
factors of the K`3 transition. It describes a decay K → π`ν. The transition form factors
are defined via〈

π−(k)
∣∣ Jµ∆S=±1

∣∣K0(q)
〉

= f+(K2)(kµ + qµ) + f−(K2)(qµ − kµ), (2.104)

where K2 = (k− q)2 and k and q are the pion and kaon four-momenta. One could have
also defined the form factors based on K+ → π0. Jµ∆S=±1 is the strangeness changing
vector current. One can also define

f0(K2) := f+(K2) +
K2

m2
K −m2

π

f−(K2). (2.105)
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Expressions for f+ and f0 in terms of the fields in our model can be derived [2]8. They
are

f0(K2) =
∫ L1

L0

dz

((
ϕ̂4(K2, z)− $̂4(K2, z)

){1
z
∂zφ̂

1
1∂zφ̂

7
1 +

g2
5vq(vq + vs)

2z3
(φ̂1

1 − π̂1
1)(φ̂7

1 − π̂7
1)

+
K2

2z
φ̂1

1φ̂
7
1 +

g2
5K

2

8z3(m2
K −m2

π)

[
(vs − vq)(3vq + vs)(φ̂1

1 − π̂1
1)(φ̂7

1 − π̂7
1)

− 4vqvsφ̂1
1(φ̂7

1 − π̂7
1) + (vq + vs)(3vq − vs)(φ̂1

1 − π̂1
1)φ̂7

1

]}

+
∂z$̂

4(K2, z)
(m2

K −m2
π)

{
m2
K +m2

π −K2

2z

(
∂zφ̂

1
1 φ̂

7
1 − φ̂1

1∂zφ̂
7
1

)
+
g2

5(vs − vq)(3vq + vs)
8z3

∂z(π̂1
1π̂

7
1)

+
g2

5vq(vq + vs)
2z3

(
π̂1

1∂zπ̂
7
1 − ∂zπ̂1

1 π̂
7
1

)
−
m2
K −m2

π

2z
∂zα

4(z)
α4(z)

φ̂1
1φ̂

7
1

})
(2.106)

and

f+(K2) =
∫ L1

L0

dzV4(K2, z)
[

1
z
∂zφ̂

1
1(z)∂zφ̂7

1(z)

+
g2

5

2z3
vq(vq + vs)

(
φ̂1

1(z)− π̂1
1(z)

)(
φ̂7

1(z)− π̂7
1(z)

)]
.

(2.107)

They might look quite complicated, but they only contain already derived quantities, so
they can be easily computed - numerically of course. The subscript indicates a meson
mode, while without the subscript, the profile function is meant.

The form factor f+(K2) is usually fitted to a quadratic polynomial ([17], p. 717)

f+(K2) = f+(0)

(
1 + λ′+

K2

m2
π

+
1
2
λ′′+

(
K2

m2
π

)2
)

(2.108)

and f0(K2) to a linear one

f0(K2) = f0(0)
(

1 + λ0
K2

m2
π

)
. (2.109)

The observables f+(0), λ′+, λ′′+, and λ0 can then be compared to experimental values.
(It follows directly from equation (2.105) that f+(0) = f0(0).)

Pion Form Factor
Another form factor we can calculate is the pion form factor. Similar to the kaon-to-pion
form factor, it is defined via

〈π(k)| JµV |π(q)〉 = (kµ + qµ)Fπ(K2), (2.110)
8This is the first time, this has ever been done. The derivation involves three-point functions and quite

some experience in using the translation dictionary.
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where JµV is the vector current and again K2 = (k− q)2. In contrast to the kaon-to-pion
form factor, there is only an F+ and no F− part, which is a consequence of the fact that
the pion form factor corresponds to a conserved current.

It can be expressed in our model by [5]9

Fπ(K2) =
∫ L1

L0

dz
z
Va(K2, z)

(
(∂zφ̂a1(z))2 + βa(z)(π̂a1(z)− φ̂a1(z))2

)
, (2.111)

where a = 1, 2, 3. For spacelike momentum transfer (K2 < 0), this is an interesting
observable and we can compare our results to experimental data.

2.4 Results

Having done all the necessary preparations, we are now able to actually compute the
masses, decay constants, and form factors, which we discussed above. The five input
parameters are L1, mq, ms, σq and σs. As mentioned before, the higher radial excitations
(n = 2, 3, . . .) are not well represented in hard-wall models. Calculating them and
comparing them to their experimental values would be a fruitless effort. Thus, we are
restricted to the case n = 1. This still gives us plenty of quantities we can compute.
We will consider two models. Model AI is calculated under the assumption σs = σq
and we will determine the model parameters successively, trying to reproduce certain
exact known observables. This way, we can see very nicely, how the different observables
depend on the input parameters. In Model AII, we work in the general case, where
σs 6= σq, and make a global fit to all observables.

2.4.1 Model AI

Working in the σq = σs limit, we have four parameters left to fix using experimental
data. We will use observables which are known to a very high precision. The ρ mass
Mρ = (775.49 ± 0.34) MeV10 corresponds to Ma

1 for a = 1, 2, 3 in vector sector of
our model. For the π, we use the mass mπ = 139.57 MeV and the decay constant
fπ = (92.4 ± 0.35) MeV corresponding to ma

1 and fa1 for a = 1, 2, 3 in the pseudoscalar
sector. One could have taken the π0 mass instead, but since the mass difference of
about 5 MeV is mainly due to electromagnetic corrections, which are not included in
our model, it does not really play a role. Finally, we use the kaon mass mK = 495.7 MeV
corresponding to ma

1 for a = 4, 5, 6, 7 also in the pseudoscalar sector. Here, since the mass
difference between the K± and the K0 is due to the differing mass of the up and down
quark and we assumed up/down symmetry, we take an average mass (mK0 = 497.6 MeV,
mK± = 493.7 MeV).

Since the ρ mesons do not couple to the vacuum expectation value v(z), their mass
only depends on L1, namely via the mass relation (2.74). From this, one gets L1 =

9The different prefactor compared to their formula comes from different normalization conventions.
10All meson masses and decay constants throughout the whole text are taken from [17] (PDG) if not

noted otherwise.
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r1
Mρ

= (322.47 MeV)−1. Then, since the pion’s mass and decay constant do not depend

on ms, one can determine the parameters mq and σq by matching m1,2,3
1 and f1,2,3

1 with
mπ and fπ. One gets mq = 8.291 MeV and σq = (213.66 MeV)3. Finally, to find ms, we
try to satisfy the mass condition for mK , which now depends on mq, σq = σs and ms.
One finds ms = 188.48 MeV.

Having determined all parameters, one can then put the model to the test by calculat-
ing masses and decay constants for further particles. We will consider the (unconfirmed)
scalar meson K∗0 (800) or κ with mK∗0

= (672± 40) MeV. In our model, this corresponds
to the mass of the first mode of scalar mesons for a = 4, 5, 6, 7. Furthermore, we consider
the K∗± and K∗0 again viewed together as K∗ with MK∗ = 893.8 MeV. In the model,
these are the lightest modes of the vector mesons for a = 4, 5, 6, 7. As pseudovector
mesons, we will consider the a1(1260) with ma1 = (1230± 40) MeV (a = 1, 2, 3) and the
K1(1270) with mK1 = (1272± 7) MeV (a = 4, 5, 6, 7).

The results of the computations are shown in Table 2.2. Capital letters M and F are
used to indicate solutions of transverse parts corresponding to vector and pseudovector
mesons with the normalization of the wave function discussed in Section 2.1.4.1. Lower
case letters m and f indicate solutions of the longitudinal parts corresponding to scalar
and pseudoscalar mesons with the normalization discussed in Section 2.2.1. The masses

Observable Sector a n Model AI [MeV] Measured [MeV]
mπ pseudoscalar 1,2,3 1 (fit) 139.57
fπ pseudoscalar 1,2,3 1 (fit) 92.4± 0.35
mK pseudoscalar 4,5,6,7 1 (fit) 495.7
fK pseudoscalar 4,5,6,7 1 103.8 113± 1.4
mK∗0

scalar 4,5,6,7 1 791.0 672
fK∗0 scalar 4,5,6,7 1 27.6
Mρ vector 1,2,3 1 (fit) 775.49± 0.34√
Fρ vector 1,2,3 1 329.3 345± 8[2]

MK∗ vector 4,5,6,7 1 791.0 893.8√
FK∗ vector 4,5,6,7 1 329.7
Ma1 pseudovector 1,2,3 1 1366.2 1230± 40√
Fa1 pseudovector 1,2,3 1 488.8 433± 13[2]

MK1 pseudovector 4,5,6,7 1 1458.1 1272± 7√
FK1 pseudovector 4,5,6,7 1 511.1

Table 2.2: Comparison of masses and decay constants as calculated in Model AI with
experimental data.

seem to be in a good agreement with experimental data.
We can then also compare our values for f+(0), λ′+, λ′′+ and λ0 to experimental data

and data from lattice gauge theory and chiral perturbation theory. The results are
presented in Table 2.3 and shown in Figure 2.3. These results are also in a good
agreement with experimental data and results from other approaches. One should add

37



Observable Model AI Lattice χPT Data [18]
f+(0) 0.966 0.968(11) [19] 0.961(8) [20]

0.9742(41) [21] 0.978(10) [22]
0.9560(84) [23] 0.984(12) [24]

0.974(11) [25]
λ′+ 0.0249 0.0237(23)(21) [23] 0.0249(11)
λ′′+ 0.00206 0.0016(5)
λ0 0.0122 0.0128(22)(45) [23] 0.0134(12)

Table 2.3: Results for form factors compared to lattice gauge theory, chiral perturbation
theory, and experimental data.

Figure 2.3: Kaon-to-pion transition form factors as calculated in Model AI.

that f+(k2) is almost linear in k2, which results in a rather large numerical uncertainty
for the value of λ′′+.

A general comment about the numerical calculations should be made. Most of this
work involves solving initial or boundary value problems numerically. For this the pa-
rameter L0 is necessary. A value of 10−8 turned out to be a reasonably good choice for
L0 since the computational results did not change significantly when changing L0 from
10−7 to 10−8. Stability problems could occur for even smaller values of L0 depending
on the type of solver used.

Our results confirm the numbers given in [2]. Small differences stem from the exact
numerical method applied, but (except for λ′′+) the deviation is well below 1%, indicating
that the numerics giving the results in this text and theirs were carried out properly.
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In addition, changing the solver or switching to a completely different program never
resulted in a significant change of the results. (Most of our calculations were done in
Matlab using built-in solvers for initial and boundary value problems.)

2.4.2 Model AII

Let us now make a global fit to the observables, to which we have experimental data.
These 14 quantities are mπ, fπ, mK , fK , mK∗0

, Mρ, Fρ, MK∗ , Ma1 , Fa1 , MK1 , λ′+,
λ′′+, and λ0. Allowing σs to differ from σq, we now have five parameters to determine.
These we obtain by making a least square fit, where we try to minimize the sum of
the squares of the relative errors, using a multidimensional minimization algorithm.
This results in the following values for the model parameters: L1 = (342.8 MeV)−1,
mq = 8.077 MeV, ms = 213.7 MeV, σq = (208.3 MeV)3, and σs = (217.9 MeV)3. The
corresponding values for the observables are shown in Table 2.4. We see that σq ≈ σs,

Observable Model AII [MeV] Measured [MeV]
mπ 138.9 139.57
fπ 88.3 92.4± 0.35[17]
mK 532.5 495.7
fK 104.5 113± 1.4[2]
mK∗0

703.1 672
fK∗0 39.2
Mρ 824.4 775.49± 0.34√
Fρ 350.1 345± 8[2]

MK∗ 862.1 893.8√
FK∗ 352.6
Ma1 1288.9 1230± 40√
Fa1 462.0 433± 13[2]

MK1 1440.9 1272± 7√
FK1 501.2

f+(0) 0.954
λ′+ 0.0236 0.0249(11)[18]
λ′′+ 0.0017 0.0016(5)[18]
λ0 0.0144 0.0123(12)[18]

Table 2.4: Comparison of masses, decay constants, and form factors as calculated in
Model AII.

which a posteriori justifies why we chose them to be equal in Model AI. The results are
also in good accordance with those obtained from [2], considering that they fitted to 15
observables (f+(0) additionally) and might have used a different weighting of the errors.
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2.4.3 Pion Form Factor

Finally, let us calculate the pion form factor for spacelike momentum transfer with the
input parameters from Models AI and AII. Especially results in the high

∣∣K2
∣∣ region

are of interest since they are difficult to calculate with other theoretic approaches. The
result and a comparison to experimental data can be seen in Figure 2.4. The form factor

Figure 2.4: Spacelike pion form factor as calculated in Model AI and AII with comparison
to experimental data, which was gathered by [5]. The triangles are data from
DESY, reanalyzed by [26], the diamonds are from Jefferson Lab [27], and the
circles and the star are also from DESY [28, 29].

in our model has the correct shape and is consistently a little bit above the experimental
values. Small changes in the input parameters do not have a significant impact on the
outcome.
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3 Soft-Wall Model

We have now seen how to apply the AdS/QCD correspondence to gain concrete results
for masses and other observables, which agree reasonably well with experiment. We did
so in the context of a flavour-asymmetric hard-wall model. The drawback of hard-wall
models in general is, that their mass spectra have unphysical trajectories, making it
impossible to predict higher radial excitations of the particles we studied above. This
problem can be solved in a soft-wall setting (first proposed by [3]), which we will explore
in the following. The main steps are the same, the only difference is a background field
and an unbounded fifth dimension. The AdS5 metric is the same as before (1.12).

The action is now given by

S =
∫

d5x
√
ge−Φ(z) Tr

(
|DMX|2 +

3
L2
|X|2 − 1

g2
5

(
F 2
L + F 2

R

))
=
∫

d5x
√
ge−Φ(z) Tr

(
(DMX)†(DMX) +

3
L2
X†X

− 1
g2

5

(
FLMNF

MN
L + FRMNF

MN
R

))
.

(3.1)

The field Φ(z) is the background dilaton field. It appears in all integrals over z in
addition to the metric factor 1

z , which we had before. Those integrals are now always
taken from zero (or L0) to infinity.

It is important to know that the way the masses scale with n depends on the exact
choice of the background field. In QCD with linear confinement, one expects a behaviour
m2
n ∼ n [30]. In soft-wall models, correct Regge trajectories can be obtained, if the

background field is of the asymptotic form [3]

Φ(z) z→∞= c2z2, (3.2)

where c now plays the role of ΛQCD and hence we expect it to be about of the same
magnitude as 1

L1
. The easiest field fulfilling that condition, is of course exactly given

by Φ(z) = c2z2. This choice has however a certain well-known drawback, which we will
discuss when looking at the vacuum solution.

We will follow the same steps as before, i.e. we will expand X in terms of its vacuum
solution and the pion field. The z-dependent vacuum solution X0 = 〈X〉 is obtained by
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looking at the action with all fields except X turned off. One gets

S =
∫

d5x
√
ge−Φ(z) Tr

(
∂zX

†
0∂

5X0 +
3
L2
X†0X0

)
=

3∑
i,j=1

∫
d5xe−Φ(z)

(
−∂zX0ij

L3

z3
∂zX0ij + 3

L3

z5
X2

0ij

) (3.3)

(compare to (2.17)).
One again makes a variational argument for the action Sij , which contains all terms

with X0ij . This is done exactly as in the hard-wall case, the only difference being the
factor of e−Φ(z). It does, however, not greatly alter the calculations. One gets

δSij =
∫

d5x

(
+∂z

(
e−Φ(z)L

3

z3
∂zX0ij

)
+ 3e−Φ(z)L

3

z5
X0ij

)
δX0ij . (3.4)

Since the action Sij should be extremal, δSij should vanish independent of the infinites-
imal displacement δX0ij . So we can read off the resulting equation of motion. It is

∂z

(
e−Φ(z)L

3

z3
∂zX0ij

)
+ 3e−Φ(z)L

3

z5
X0ij = 0 (3.5)

for each component of X0.
Assuming that Φ(z) = c2z2, the above equation becomes

z2X ′′0ij(z)−
(
2c2z3 + 3z

)
X ′0ij(z) + 3X0ij(z) = 0. (3.6)

This ODE is closely related to Kummer’s equation and its solution can be expressed as a
sum of two linearly independent hypergeometric functions, namely 1F1, Kummer’s func-
tion (of the first kind), and U , Kummer’s function of second kind (or Tricomi confluent
hypergeometric function). One gets

X0ij = AczU

(
1
2

; 0; (cz)2

)
+B(cz)3

1F1

(
3
2

; 2; (cz)2

)
. (3.7)

The constants A and B are determined by expanding the above expression up to third
order in z. Then one gets an expression with a first and a third order term, which
resembles the vacuum solution in the hard-wall case. The constants will be chosen, such
that we obtain

2X0ij =: vij(z) =
mijz

L
+
σijz

3

L
+O(z5). (3.8)

One easily sees that the constant A must be equal to

mij

Lc
Γ
(

3
2

)
. (3.9)

The problem with the second term in (3.7) is that it diverges too strongly as z goes to
infinity. Hence the integral

∫
dz e

−Φ(z)

z X2
0 (z) does not converge, which means that the
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solution is not normalizable and cannot correspond to a physical quantity. So, we have
to drop the second term. The vacuum solution then reads

vij(z) =
mij

L
Γ
(

3
2

)
zU

(
1
2

; 0; (cz)2

)
. (3.10)

If we look at the expansion of our solution in low z, it now reads as

mijz

L
+
c2mij

2L

(
1 + γ + 2 log

(cz
2

))
z3. (3.11)

One can then again identify the coefficient of the second term with the quark condensate
and establish a proportionality between the quark masses and condensates, which is
unphysical. In reality, spontaneous symmetry breaking also occurs in the chiral limit,
where all quark masses are zero. One cannot hope to achieve reasonable results with a
model that has such a severe shortcoming (and indeed one does not). The parameters
mij and σij responsible for the explicit and spontaneous breaking of chiral symmetry
should be independent in any model that is dual to QCD.

Several approaches of how to include both parameters independently into the soft-wall
model have been studied. In [5], a model is proposed, where the vacuum expectation
value is chosen in a way that it behaves asymptotically (both in the UV and the IR) as
the vacuum solution above, but has M and Σ as two independent parameters, ignoring
the fact that the vacuum solution is then not an exact solution of the vacuum equation
of motion anymore.

Another approach is studied in [4]. They consider an additional quartic term in the
potential term in the action. The dilaton field is modified to be consistent with the
choice of the vacuum expectation value. The quartic term is needed to obtain the
required asymptotic behaviour for v(z) and Φ(z). (Very recently [31] also have extended
this model with a modified metric in the UV region.)

In the following, we will study both of the approaches and also try to extend them to
the Nf = 3 case.

3.1 Modified Action Model

The action will be complemented by a quartic potential term and now reads

S =
∫

d5x
√
ge−Φ(z) Tr

(
|DMX|2 +

3
L2
|X|2 + κ |X|4 − 1

g2
5

(
F 2
L + F 2

R

))
. (3.12)

The differential equation for vij(z) = 2X0ij(z) then becomes

∂z

(
e−Φ(z)

z3
∂zvij(z)

)
+
e−Φ(z)

z5

(
3vij(z) +

κL2

2
v3
ij(z)

)
= 0, (3.13)

which can be easily seen by analogy to the case without a quartic term. This differential
equation is not linear anymore. In the case κ = 0, we are back to the original case
studied above.
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We will now turn the tables and start with a vacuum expectation value (for the up
and down quark) fulfilling certain asymptotic behaviour requirements. The dilaton field
is then determined via

∂zΦ(z) =
z3

L3∂zvq(z)

(
∂z

(
L3

z3
∂zvq(z)

)
+ 3

L3

z5
vq(z) +

L5

z5

κ

2
v3
q (z)

)
, (3.14)

which follows from the differential equation (3.13) above. This determines the dilaton
field Φ(z) uniquely up to a constant, which means e−Φ(z) will be determined up to a
constant factor. For consistency, we however demand that e−Φ(0) = 1, i.e. Φ(0) = 0.

Unfortunately it turns out that it is not possible - at least not without further ado
- to extend this model to the flavour non-symmetric case, since the dilaton field would
also have to obey equation (3.14), with vq replaced by vs.

We already know what the small-z behaviour of vq should be. We want

vq(z)
z→0=

mqζ

L
z +

σq
ζL
z3. (3.15)

In [4] another constraint is added, which is derived from phenomenology. When we look
at the solution we had in the unmodified case, this was given by vij(z) = mij

L Γ
(

3
2

)
zU
(

1
2 ; 0; (cz)2

)
.

This solution approaches a constant as z → ∞. While this of course has the necessary
finiteness property we demand from the vacuum solution, it leads to a restoration of chi-
ral symmetry in the mass spectrum for large n, which is not a feature of QCD. One rather
observes that the highly excited mesons exhibit parallel trajectories, which means that
chiral symmetry is not restored, since the mass difference between two different mesons
stays the same rather than tending to zero. In [4], it is argued that this can only be the
case if vq(z) is a linear function for large z, i.e.

vq(z)
z→∞=

γ

L
z. (3.16)

One simple way of writing a vq(z), which fulfills the above constraints is by making
the ansatz

vq(z) =
z

L

(
A+B tanh(Cz2)

)
. (3.17)

This gives
Lvq(z)

z→0= Az +BCz3 (3.18)

and
Lvq(z)

z→∞= (A+B)z. (3.19)

Inserting this into the expression for the dilaton field gives in the limit of large z (with
Φ(0) = 0):

Φ(z) z→∞=
κ

4
(A+B)2z2, (3.20)

which was the required form to produce correct Regge trajectories.
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By matching the coefficients A, B, C, and γ with the constraints, one gets

γ =

√
4λ
κ
, (3.21)

A = ζmq, (3.22)

B = γ −A, (3.23)

and
C =

σq
ζB

. (3.24)

Here, λ is - as we will see soon - the average slope of the radial trajectories of the mesons,
which is approximately the same for all mesons. The parameter κ has unlike the other
ones no direct physical analogue but can be given a concrete meaning, as shown below.

Once, one has all the parameters determined, one has the vacuum solution vq(z) and
the dilaton field Φ(z) fixed. However, so far we have only included the up and the
down quark, which we assumed to have equal mass. One drawback of this model is that
the strange quark cannot easily be included. Of course, now that Φ(z) is known one
could try to find vs as solution to the vacuum equation of motion. One has however the
constraints dictated in the IR by ms and in the UV by γ. In principle, one could hope
to find a solution to a second order boundary differential equation with two constraints.
Here, this is not the case since by choosing the condition in the IR, the value at the
UV boundary is uniquely determined if one in general imposes a finiteness condition
in the UV. So, we will have to accept that we can only model strangeless mesons in
this approach. This will still give us a lot of observables to work with. Especially, in
comparison to the hard-wall model, we can consider higher radial excitations.

So now, let us assume, we have our vq. Then

X0 =
1
2

(
vq 0
0 vq

)
. (3.25)

We do not need to make all the calculations again in the two-dimensional case (using
Pauli matrices instead of Gell-Mann matrices), we can just define Ma

V
2, Ma

A
2, αa(z), and

βa(z) exactly as we did before and restrict ourselves to a = 1, 2, 3. (Since we will study
a soft-wall model where we can include the third quark in the next section, we will also
consider a = 4, 5, 6, 7, 8 in the following calculations.)

The action can be expanded in the same way as done in the hard-wall approach and
one gets up to second order in π, A, and V :

S =
∫

d5xe−Φ(z)
∑
a

(
− L

4g2
5z

(∂MV a
N − ∂NV a

M )2 +
Ma
V

2L3

2z3
V a
M

2

− L

4g2
5z

(∂MAaN − ∂NAaM )2 +
Ma
A

2L3

2z3
(∂Mπa −AaM )2

)
.

(3.26)
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The only difference to the hard-wall action is a factor of e−Φ(z). The quartic term does
not appear here explicitly, but is of course hidden in the dependence of αa(z) and βa(z)
on the vacuum solution, which in turn depend on the quartic term.

Again, Aaz can be chosen to be zero and so can V a
z for a = 1, 2, 3, 8.

3.1.1 Vector Sector

The vector sector of the action is

SV =
∫

d5xe−Φ(z)
∑
a

(
− L

4g2
5z

(∂MV a
N − ∂NV a

M )2 +
αa(z)L

2g2
5z

V a
M

2

)
=
∫

d5xe−Φ(z) L

4g2
5

∑
a

(
−1
z

(
ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)
)

+
2αa(z)
z

ηMM ′V a
MV

a
M ′

)
.

(3.27)

The equation of motion for V can then be derived and is

ηML∂M

(
e−Φ(z)

z
(∂LV a

N − ∂NV a
L )

)
+ e−Φ(z)α

a(z)
z

V a
N = 0. (3.28)

We can split this up and get

ηµλ∂µ

(
e−Φ(z)

z
(∂λV a

ν − ∂νV a
λ )

)
− ∂z

(
e−Φ(z)

z
(∂zV a

ν − ∂νV a
z )

)
+ e−Φ(z)α

a(z)
z

V a
ν = 0

ηµλ∂µ

(
e−Φ(z)

z
(∂λV a

z − ∂zV a
λ )

)
+ e−Φ(z)α

a(z)
z

V a
z = 0.

(3.29)

Making a decomposition of V a
µ into a transversal and a longitudinal part, writing the lon-

gitudinal part as V a
µ‖ = ∂µξ

a, writing the z-component as V a
z = −∂z$a, and introducing

ϕa = ξa +$a, we get

e−Φ(z)

z
ηµλ∂µ∂λV

a
ν⊥ − ∂z

(
e−Φ(z)

z
(∂zV a

ν⊥)

)
+ e−Φ(z)α

a(z)
z

V a
ν⊥

−∂z

(
e−Φ(z)

z
(∂ν∂zϕa)

)
+ e−Φ(z)α

a(z)
z

∂ν(ϕa −$a) = 0

αa(z)∂z$a + ηµλ∂µ∂λ∂zϕ
a = 0.

(3.30)

Taking the Fourier transform, this gives

∂z

(
e−Φ(z)

z
(∂zV̂ a

µ⊥)

)
+ e−Φ(z)k

2 − αa(z)
z

V̂ a
µ⊥ = 0 (3.31)
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for the transverse part and

∂z

(
e−Φ(z)

z
(∂zϕ̂a)

)
− e−Φ(z)α

a(z)
z

(ϕ̂a − $̂a) = 0

αa(z)∂z$̂a − k2∂zϕ̂
a = 0

(3.32)

for the longitudinal part.
As the reader may have noticed, the general form of the differential equations has not

changed compared to the hard-wall model. The only difference is that e−Φ(z) appears at
various places in the equations. Furthermore, αa and βa will certainly never simplify to
a constant, except for those cases, when αa = 0. As a consequence, unless αa = 0, there
exist only numerical solutions.

3.1.1.1 Vector Mesons

We are again looking for normalizable solutions of the differential equation for the trans-
verse part.

Approximate Solution
To gain a little bit more understanding about the solutions, we will first study the case,
where a = 1, 2, 3 (ρ mesons), so that αa = 0 and we will use the original simple dilaton
field Φ(z) = c2z2. (This is in fact a very good approximation, especially for higher radial
excitations.) In this case, we can find analytical solutions.

The general solution to the somewhat simplified equation (3.31) is given by (writing
again ψa and later ψan for the normalizable modes)

ψa(z) = Ac2z2
1F1

(
1− k2

4c2
; 2; c2z2

)
+Bec

2z2
U

(
k2

4c2
; 0;−c2z2

)
. (3.33)

In the above form the second term gives complex values, but its imaginary part is just
a multiple of the first term, so we can restrict ourselves to the real part of the second
term. We want the modes to be normalizable. That means the integral∫ ∞

0
dz
e−Φ(z)

z
(ψa(z))2 (3.34)

has to converge. One condition for that is, that the value of ψa has to vanish at z = 0.
If one evaluates the above expressions, one gets

c2z2
1F1

(
1− k2

4c2
; 2; c2z2

)∣∣∣∣
z=0

(3.35)

and

ec
2z2
U

(
k2

4c2
; 0;−c2z2

)∣∣∣∣
z=0

=
(

Γ
(

1 +
k2

4c2

))−1

6= 0. (3.36)
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So we have to drop the second term. What is left, is

ψa(z) = Ac2z2
1F1

(
1− k2

4c2
; 2; c2z2

)
. (3.37)

The integral of this expression does not converge in general, where the problem now lies
in the large-z region. There is however a discrete set of values for k2, such that the
integral converges. One finds

Ma
n

2 := k2 = 4nc2, (3.38)

for n = 1, 2, 3, . . ., which is a Regge trajectory of the desired form. After normalization
to unity, one gets

ψan(z) =
√

2nc2z2
1F1

(
1− n; 2; c2z2

)
, (3.39)

which can be explicitly written as a polynomial of degree 2n in z:

ψan(z) =
√

2n
n−1∑
k=0

(1− n)k(c2z2)k+1

(2)kk!
, (3.40)

where (n)k is the Pochhammer symbol and defined as

(n)k =
Γ(n+ k)

Γ(n)
. (3.41)

It is interesting to note that while in the hard-wall model we had to impose a somewhat
artificial boundary condition at the IR boundary to get a mass spectrum, in soft-wall
models this comes naturally as a condition for normalizability.

General Case
In general, the (unsimplified) dilaton field has a very complicated algebraic form. One
has to find the solution numerically, but apart from that, the idea of how to find the
meson modes is the same as presented above. One uses ψa(L0) = 0 and ∂zψa(L0) = c 6= 0
as initial values. The choice of c is arbitrary and will not affect the normalized solution,
since the differential equation is linear. One then has to find those k2, for which the
solution is normalizable.

One can also show that the solutions in general obey an orthogonality relation and
because of the normalization it holds:∫ ∞

L0

dz
e−Φ(z)

z
ψan(z)ψam(z) = δmn. (3.42)

(To prove this one can look at the proof of the same relation in the hard-wall case and
replace every 1

z by e−Φ(z)

z and similarly for the reciprocal.)

3.1.1.2 Scalar mesons

Due to the gauge freedom, we only had scalar mesons for a = 4, 5, 6, 7 in the hard-wall
case. The same happens for the soft-wall model. Since we only included a = 1, 2, 3, our
model will not give any scalar mesons. (There are however other ways of including the
scalar mesons, discussed in Chapter 4.)
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3.1.2 Axial Sector

The action for the axial sector is given by

SA =
∫

d5xe−Φ(z)
∑
a

(
− L

4g2
5z

(∂MAaN − ∂NAaM )2 +
βa(z)L
2zg2

5

(∂Mπa −AaM )2

)
. (3.43)

The equation of motion becomes

ηML∂M

(
e−Φ(z)

z
(∂LAaN − ∂NAaL)

)
+ e−Φ(z)β

a(z)
z

(AaN − ∂Nπa). (3.44)

Decomposing Aaµ into its transversal and longitudinal part, writing Aaµ‖ = ∂µφ
a, and

dropping Aaz since it can be gauged away, one gets

e−Φ(z)

z
ηµλ∂µ∂λA

a
µ⊥ − ∂z

(
e−Φ(z)

z
(∂zAaν⊥)

)
+ e−Φ(z)β

a(z)
z

Aaν⊥

−∂z

(
e−Φ(z)

z
(∂z∂νφa)

)
+ e−Φ(z)β

a(z)
z

∂νφ
a − e−Φ(z)β

a(z)
z

∂νπ
a = 0

−e
−Φ(z)

z
ηµλ∂µ∂λ∂zφ

a − e−Φ(z)β
a(z)
z

∂zπ
a = 0.

(3.45)

We then perform the Fourier Transform and split this up in an equation for the transverse
part and in a pair of equations for the longitudinal part. We get

∂z

(
e−Φ(z)

z
(∂zÂaµ⊥)

)
+ e−Φ(z)k

2 − βa(z)
z

Âaµ⊥ = 0 (3.46)

(transverse part) and

∂z

(
e−Φ(z)

z
(∂zφ̂a)

)
− e−Φ(z)β

a(z)
z

(φ̂a − π̂a) = 0

k2∂zφ̂
a − βa(z)∂zπ̂a = 0

(3.47)

(longitudinal part).

3.1.2.1 Pseudovector Mesons

Pseudovector mesons we get as solution of the equation for the transverse part. The
equation is identical to the one for the transverse part of the vector sector (vector
mesons) and can be solved numerically using the same boundary conditions. We will
use the same normalization as for the vector mesons.
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3.1.2.2 Pseudoscalar Mesons

Normalizable solutions to the pair of differential equations for the longitudinal part of the
axial field correspond to pseudoscalar mesons. By defining ya(k2, z) = e−Φ(z)

z ∂zφ̂
a(k2, z)

we can transform the two equations into a single equation for ya:

∂z

(
z

βa(z)e−Φ(z)
∂zy

a

)
+

z

e−Φ(z)

(
k2

βa(z)
− 1
)
ya = 0. (3.48)

The normalizable solutions of this equation we will denote by ηan(z) and they will be
related to a discrete mass spectrum k2 = ma

n
2. Again we get an orthogonality relation

and due to our choice of normalization we get:∫ ∞
L0

dz
z

βa(z)e−Φ(z)
ηan(z)ηam(z) =

δmn
ma
n

2
. (3.49)

3.1.3 Results

We have four parameters for our model, namely mq, σq, λ, and κ. These we want to
determine by matching the model, which we shall call Model B, to phenomenology.

Let us start with λ. The ρ mesons (vector mesons) do not couple to the vacuum solu-
tion (αa = 0). This suggests, that the ρ mesons are a good starting point to determine
the parameter λ. We have seen that if we assume the background field to be simply
Φ(z) = c2z2, then we get an exact mass spectrum of the form M2

ρ = 4nc2. On the other
hand, our modified dilaton field behaves for large z as Φ(z) z→∞= κ

4 (A + B)z2 = λz2.
Since the modified field only differs from the original, simple one in the small z region and
higher modes are more concentrated in the higher z region, it is a reasonable assumption
that for large n, the results with the simple and modified dilaton field coincide. This is in
fact the case. So, for n large, the ρ mesons will lie on a trajectory M2

ρ = 4nλ. By using
experimental data, we can hence fix our parameter λ. We use the radial excitations up
to n = 7, but exclude n = 1, 2 since they obviously deviate from the linear behavior.
We then determine λ = 0.187 GeV2, which corresponds to c = 432.5 MeV (compare to
(L1)−1 in the hard-wall case). The result is shown in Figure 3.1.

Our next goal is to fix the parameter κ, which is essentially responsible for the mass
splitting between the vector (ρ) and pseudovector (a1) mesons. To see this, we solve the
differential equations for the transverse part in the vector and the axial sector for k2,
which becomes the mass. For the vector mesons, we get

M2
ρ,n = − 1

ψan

z

e−Φ(z)
∂z

(
e−Φ(z)

z
∂zψ

a
n(z)

)
+ αa(z)︸ ︷︷ ︸

=0

(3.50)

ans similarly

M2
a1,n = − 1

ψan

z

e−Φ(z)
∂z

(
e−Φ(z)

z
∂zψ

a
n(z)

)
+ βa(z) (3.51)
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Figure 3.1: First seven ρ masses and linear fit to the last five.

for the pseudovector mesons. For large n this gives

∆(M2) = lim
n→∞

(M2
a1,n −M

2
ρ,n) = lim

z→∞
(βa(z)− αa(z)) =

4g2
5λ

κ
. (3.52)

Hence, we should determine κ from the squared mass difference in the limit of large n
(see Figure 3.2). One gets that ∆(M2) = 1.54 GeV2, which gives κ ≈ 19.2. Only the
last three masses (n = 3, 4, 5) were used to determine ∆(M2) since we said that the
mass difference becomes constant for large n.

The last step is to determine mq and σq by matching the experimental values of mπ

and fπ with our model. We find mq = 9.31 MeV and σq = (205.5 MeV)3.
Finally, we can calculate the masses of the π, ρ, and a1 mesons. The results are shown

in Table 3.1. The results are in good agreement but at least for the a1 and the ρ this
should not surprise since we determined the constants such that we match their mass
trajectories for large n.

We can also determine the decay constants of the π, ρ, and a1. They are determined
exactly as in the hard-wall case. The results are shown in Table 3.2.

Finally, let us calculate the pion form factor Fπ(k2) in this model. In the soft-wall
setting it is given by [5]

Fπ(k2) =
∫ ∞
L0

dz
z
e−Φ(z)Va(k2, z)

(
(∂zφ̂a1(z))2 + βa(z)(π̂a1(z)− φ̂a1(z))2

)
, (3.53)
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Figure 3.2: Mass differences between ρ and a1.

where a = 1, 2, 3. Va(k2, z) is again the bulk-to-boundary propagator of the transverse
part in the vector sector. It is obtained from the differential equation with the boundary
condition Va(k2, L0) = 1 in the IR and a finiteness condition in the UV. The results can
be seen in Figure 3.3. One sees that the soft-wall result is slightly more off than the
hard-wall result.

One remark about the numerics should be made. While for the hard-wall computations
a simple and quick BVP solver could be used, this is not possible in the soft-wall case.
The problem is that instead of a real boundary value at a real IR boundary, we only have
a vague finiteness condition at infinity. The only method in question is hence a shooting
method, where one tries to minimize the function values at some right endpoint. This is
a far from trivial procedure and automation often fails, especially when one tries to find
higher radial states. However it is exactly done, it turns out to be more time-consuming
than for the hard-wall model.

3.2 Approximate Vacuum Solution Model

Another idea to overcome the difficulties of the soft-wall model concerning the vacuum
expectation value was proposed by [5]. We will now extend their model to the broken
flavour symmetry case. Here, one also writes down the vacuum solution explicitly but one
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Meson n Model B [MeV] Measured [MeV]
π 1 (fit) 139.57

2 1530.0 1300± 100
3 1819.6 1816± 14
4 2031.8
5 2217.5

ρ 1 488.8 775.5± 1
2 1157.2 1282± 37
3 1448.4 1465± 25
4 1694.9 1720± 20
5 1906.9 1909± 30
6 2096.2 2149± 17
7 2269.3 2265± 40

a1 1 1128.7 1230± 40
2 1541.7 1647± 22
3 1832.7 1930+30

−70

4 2043.1 2096± 122
5 2226.8 2270+55

−40

Table 3.1: Comparison of masses as calculated in Model B with experimental data.

Meson Model B [MeV] Measured [MeV]
π (fit) 92.4± 0.35[17]
ρ 225.1 345± 8[2]
a1 360.0 433± 13[2]

Table 3.2: Comparison of decay constants as calculated in Model B with experimental
data.

keeps the simple dilaton field Φ(z) = c2z2. Of course v(z) will not really be the vacuum
solution anymore, but it is chosen in a way that it is similar to the exact vacuum solution
(let us call it v0(z) from now on), which was of the form

v0(z) =
ζm

L
Γ
(

3
2

)
zU

(
1
2

; 0; (cz)2

)
. (3.54)

We already stated that this is finite for z →∞. We will now construct a function, which
is similar to v0, both in the IR and in the UV region. In addition, we will explicitly
include the parameter σ, such that the asymptotic IR behaviour is like mζ

L z + σ
Lζ z

3. A
good choice is [5]:

v(z)L =
(
mζz +

σ

ζ
z3

)(
1− e−

A
c4z4

)
+Be−

3
4c2z2 . (3.55)
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Figure 3.3: Spacelike pion form factor as calculated in Model B with comparison to
experimental data [26, 27, 28, 29] and Model AII (hard-wall).

It has the correct behaviour in the IR and for large z has the asymptotic formB exp(− 3
4c2z2 ),

which is the same as the one of v0 if we set

B =
m
√
πζ

2c
. (3.56)

The parameter A determines the intermediate behaviour of v(z). Let us for simplicity
reasons put A = 1.

Of course, the vacuum solution is not really a solution to the vacuum equation of
motion any more but it has the correct behaviour in the IR and the UV. The hope
is that the intermediate behaviour does not greatly affect the results. An a posteriori
justification of the above choice would be reasonably good results of the model when
trying to reproduce experimental data. It might very well be possible that the parameters
we achieve in the end differ from the ones in the previous models, but this should not
surprise too much. Note that all the derivations in the preceding chapter are still valid,
Φ(z) and vq(z) have simply changed. Moreover it is now no problem at all to include
the strange quark.

3.2.1 Results

The mass relation
M2
ρ,n = 4c2n (3.57)
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we derived in the previous chapter for the ρ meson is now exact since we are working with
the simple form of the dilaton field and the ρ does not couple to the vacuum solution vq.
This allows us to determine the parameter c directly by looking at the (higher) radial
states of the ρ meson, as we did before in Model B to determine λ. The result is of course
the same and we get c = 432.5 MeV. Then, we can determine mq and σq by matching
mπ and fπ. We get mq = 4.45 MeV and σq = (265.2 MeV)3. We can then calculate
the masses of the a1 and higher π masses as well as decay constants for what we call
Model C. For the sake of simplicity, let us assume again that σq = σs. Then we can
determine ms by matching the Kaon mass mK . Once all parameters are determined, we
can calculate all the different meson masses and decay constants. The results are shown
in Table 3.3.

Surprisingly, most of the calculated masses are quite close to the experimental values,
with a few exceptions. The same can be said about the decay constants. Allowing
σq 6= σs and making a global fit, also leaving A and B free parameters should give even
better results. This is however not easy to implement for the reasons mentioned earlier
in this chapter.
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Observable n Model C [MeV] Measured [MeV]
mπ 1 (fit) 139.57

2 1646.7 1300± 100
3 1862.0 1816± 14

fπ 1 (fit) 92.4± 0.35[17]
mK 1 (fit) 495.7

2 1652.4 ∼ 1460
3 1871.3 ∼ 1830

fK 1 101.7 113± 1.4[2]
mK∗0

1 998.7 672± 40
2 1363.5 1425± 50
3 1634.1 1945± 30

fK∗0 1 15.6
Mρ 1 865.0 775.5± 1

2 1223.3 1282± 37
3 1498.3 1465± 25
4 1730.1 1720± 20
5 1934.3 1909± 30
6 2118.9 2149± 17
7 2288.7 2265± 40√

Fρ 1 290.2 345± 8[2]
MK∗ 1 868.8 893.8

2 1225.3 1414± 15
3 1499.9 1717± 27√

FK∗ 1 289.0
Ma1 1 1222.6 1230± 40

2 1480.4 1647± 22
3 1638.6 1930+30

−70

4 1815.8 2096± 122
5 2005.3 2270+55

−40√
Fa1 1 170.3 433± 13[2]

MK1 1 1246.7 1272± 7
2 1513.7 1403± 7
3 1675.7 1650± 50√

FK1 1 147.0

Table 3.3: Comparison of masses and decay constants as calculated in Model C with
experimental data.
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4 Scalar Mesons

We have seen in the calculations of the preceding two chapters that scalar mesons were
a little bit tricky to handle. In fact, for Nf = 2, we did not obtain scalar mesons at all.
The following chapter is an overview, how one can deal with scalar mesons, both in the
context of a hard-wall and of a soft-wall model. Furthermore, we will explicitly calculate
expressions like two-point correlators and will also pay closer attention to the boundary
conditions.

4.1 Soft Wall

We begin by studying scalar mesons in a soft-wall approach. As it turns out the short-
coming of the simple dilaton field

Φ(z) = (cz)2, (4.1)

which caused problems when dealing with the vacuum expectation value, does not affect
our calculations concerning scalar mesons, so we use this form for simplicity reasons.

For convenience, we repeat the 5D action

S = d5x
√
ge−Φ(z) Tr

(
|DMX|2 +

3
L2
|X|2 − 1

g2
5

(
F 2
L + F 2

R

))
(4.2)

and the vacuum solution

2X0(z) = v(z) =
Mζ

L
Γ
(

3
2

)
zU

(
1
2

; 0; c2z2

)
. (4.3)

4.1.1 Scalar Mesons

A scalar field S can be built in explicitly by writing [6]

X = eiπ(X0 + S)eiπ. (4.4)

We insert this into our action (4.2) and look at quadratic terms in S. A straightforward
calculation gives

SS =
1
2

∫
d5x
√
ge−Φ(z)

(
gMN∂MS

a∂NS
a +

3
L2
SaSa

)
, (4.5)

where we expanded
S = Sata. (4.6)
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(One could in principle also have included the scalar singlet.) The equation of motion
is derived exactly as we derived the equation of motion for X0 with the difference that
the solution is now also xµ-dependent. Since the steps are the same, we need not repeat
it here. The result is analogous:

− ηMN∂M

(
e−Φ(z)L

3

z3
∂NS

a

)
+ 3e−Φ(z)L

3

z5
Sa = 0 (4.7)

Again, we switch over to momentum space by taking the Fourier transform. This gives

k2L
3

z3
e−Φ(z)Ŝa + ∂z

(
e−Φ(z)L

3

z3
∂zŜ

a

)
+

3L3

z5
e−Φ(z)Ŝa = 0 (4.8)

This differential equation can be somewhat simplified by introducing Y a with

Ŝa = Y ae
c2z2+3 log(cz)

2 . (4.9)

Then after a few simplification steps we have(
3

4z2
+ 2c2 − k2 + c4z2

)
Y a − ∂2

zY
a = 0. (4.10)

After introducing z̃ = cz and rearranging the terms, this gives a Schrödinger-like equa-
tion

− ∂2ezY a + V (z̃)Y a =
k2

c2
Y a, (4.11)

where
V (z̃) = z̃2 + 2 +

3
4z̃2

. (4.12)

This differential equation can be solved analytically. The general solution is only nor-
malizable if

m2
n := k2 = c2(4n+ 2) (4.13)

for n = 1, 2, 3 . . .. Then the solution is given by

Y a ∝ e−
ez2
2 z̃

3
2L1

n−1(z̃2), (4.14)

where L1
n−1 is a generalized (or associated) Laguerre polynomial. Substituting this back

into the expression for Ŝa and normalization to unity gives

Ŝan(z̃) =

√
2
n
z̃3L1

n−1(z̃2). (4.15)

We have therefore shown that the scalar mesons lie on a trajectory of the form m2
n ∼ n,

which they had to because of the choice of the dilaton field. We can compare the result
to the vector mesons, for which we had

M2
n = c24n. (4.16)
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Hence scalar mesons are always heavier than vector mesons, which is consistent with
phenomenology. To see, how good the trajectory for the scalar mesons is in agreement
with experimental data, we fit the mass to the radial excitations of the (flavourless)
scalar mesons. For definiteness let us choose the f0. It turns out that the model fits
the data very well if we exclude the lowest scalar f0(600). Since for light scalar mesons,
mixing with scalar glueballs or other states occurs, it could be argued that there has
been a misidentification of the lightest state. Moreover, if we assume that a0(980) and
f0(980) are in the same octet and noting that a0(980) is the lightest of its kind, we could
argue the same. With this, we get a value for c of c = 408.3 MeV, which is in good
agreement with previous results.

Figure 4.1: Calculated masses of the scalar f0 mesons and measured values.

4.2 Hard Wall

Scalar mesons can of course also be treated in a hard-wall setting, as we will do in the
following. On this occasion we will see, how to deal with the boundary conditions to
fix the coefficients of the vacuum solution and we will calculate the scalar two-point
correlator.

For convenience, let us consider a differently normalized action:

S =
∫

d5xL5 =
∫

d5x
√
g
M5

2
Tr
(
|DMX|2 +

3
L2
|X|2 − 1

2
(
F 2
L + F 2

R

))
. (4.17)

This can be brought into the form of the action we have been using so far by a redefinition
of fields and constants.
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4.2.1 Vacuum Solution

We have already derived the vacuum equation of motion (now v(z) := 〈X〉)

∂z

(
L3

z3
∂zX0

)
+ 3

L3

z3
X0 = 0. (4.18)

and the general solution
v(z) = c1z + c2z

3 (4.19)

in Chapter 2. The coefficient matrices c1 and c2 depend on the boundary values v(L0)
and v(L1). We will just regard them as constants and give them their physical meaning
later, when we have expressions we can compare to QCD. We set

M̃q :=
L

L0
v(L0), (4.20)

which corresponds to v′(0) in the limit L0 → 0, and

ξ = Lv(L1). (4.21)

Expressing the coefficients c1 and c2 in terms of the boundary values gives

c1 =
M̃qL

3
1 − ξL2

0

LL1(l21 − L2
0)

(4.22)

and

c2 =
ξ − M̃qL1

LL1(L2
1 − L2

0)
. (4.23)

We already know that a nonzero M̃q (or c1) corresponds to the explicit breaking of chiral
symmetry, while c2 corresponds to the spontaneous breaking of the chiral symmetry.

This tells us, that we obtain the value of ξ by dynamically minimizing the action. So
we plug in our vacuum solution (4.19) into the 5D action (4.17) and integrate over z.
This gives

S =
∫

d5x
L5

z5
M5

1
2

Tr
(
− z

2

L2
(c1 + 3c2z

2)2 +
3
L2

(c1z + c2z
3)2

)
=
∫

d4xL3M5

∫ L1

L0

dzTr
(
c2

1

z3
− 3c2

2z

)
= −

∫
d4xM5LTr

(
−M̃2

qL
6
1 − 4M̃qL

3
1ξL

2
0 − ξ2L4

0 + 3L2
0L

2
1ξ

2 + 3M̃2
qL

4
1L

2
0

2L2
1(L2

1 − L2
0)L2

0L
2
1

)
.

(4.24)

Taking the limit L0 → 0 we get

S = −
∫

d4xM5LTr

(
−
M̃2
q

2L2
0

− 2
ξM̃q

L3
1

+
3
2
ξ2

L2
1

+
3
2
M̃2
q

L4
1

)
. (4.25)
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In the chiral limit, this would lead to c2 = 0 and hence give no spontaneous symme-
try breaking. To avoid this, we add a potential term on the IR boundary to the 4D
Lagrangian of the form [15]

LIR = −L
4

z4
V (X)|L1

, (4.26)

where
V (X) = −1

2
m2
b Tr |X|2 + λTr |X|4 (4.27)

with parameters λ and mb. This yields an effective 4D action

Seff = −
∫

d4xTr

(
M5L

(
−
M̃2
q

2L2
0

− 2
ξM̃q

L3
1

+
3
2
ξ2

L2
1

+
3
2
M

2
q

L4
1

)

+
L4

L4
1

(
−1

2
m2
b

(
ξ

L

)2

+ λ

(
ξ

L

)4
))

.

(4.28)

Minimizing this with respect to ξ gives

ξ2 =
1

4λ
(
m2
bL

2 − 3M5L
)

+O(M̃q). (4.29)

We now have a five-dimensional model depending on five parameters: M̃q, M5, L1, ξ
and λ. Let us then redefine ξ → ξ1 + O(M̃q), so we treat ξ as scalar parameter from
now on.

4.2.2 Scalar Two-Point Correlator

We again include the scalar field by writing

X = eiπ(X0 + S)eiπ, (4.30)

where we are again working in the flavour symmetric case. Inserting the expression for
X above in the action and selecting the quadratic terms in S, we get

SS = −M5

2

∫
d5x

L3

z3
Tr
(
ηMN∂MS∂NS +

3
z2
S2

)
, (4.31)

which using partial integration can be cast in the form

SS = −M5L
3

2

∫
d5xTr

(
1
z3
Sηµν∂µ∂νS − S∂z(

1
z3
∂zS)− 3

z5
S2

)
. (4.32)

We also have to consider boundary terms for the 4D Lagrangian, which occur when
we plug in the expression for X in terms of X0 and S and integrate by parts with respect
to z. This gives the boundary term

−
∫

d4x
M5

2
L3

z3
Tr (S∂zS + 2S∂zv)

∣∣∣∣L1

L0

. (4.33)
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We must not forget the potential (4.27) on the IR-boundary, which, using the expres-
sion (4.29) to replace m2

b up to O(M̃q), reads

LIR = −L
4

L4
1

Tr
(
−1

2
m2
b |X|

2 + λ |X|4
)

= −L
4

L4
1

Tr
(
−1

2

(
4λξ2

L2
+

3M5

L

)
|X|2 + λ |X|4

)
=
(

2L2λξ2

L4
1

+
3M5L

3

2L4
1

)
Tr(v2 + 2vS + S2)− L4λ

L4
1

Tr(v4 + 4v3S + 6v2S2 + 4vS3 + S4),

(4.34)

where v is evaluated at the IR boundary. Keeping only the terms involving S, this gives

LIR =
((

2L2λξ2

L4
1

+
3M5L

3

2L4
1

)
2
ξ

L
− L4λ

L4
1

4
ξ3

L3
1

)
TrS

+
((

2L2λξ2

L4
1

+
3M5L

3

2L4
1

)
− L4λ

L4
1

6
ξ2

L2

)
TrS2 +O(S3)

=
3M5L

2ξ

L4
1

TrS −
(

4L2λξ2

L4
1

− 3M5L
3

2L4
1

)
TrS2 +O(S3).

(4.35)

If we define
V (S)|L1

:= m2
S TrS2

∣∣
L1

+O(S3) (4.36)

with

m2
S :=

4λξ2

L2
− 3M5

2L
+O(M̃q), (4.37)

the term reads as

LIR = − L4

z4
V (S)

∣∣∣∣
L1

+
3M5L

2ξ

L4
1

TrS|L1
. (4.38)

If we now look at the second term in (4.33) and evaluate it at the upper boundary we
get

−M5L
3

L3
1

Tr S∂zv|L1
= −M5L

3

L3
1

Tr (c1 + 3c2z
2)S
∣∣
L1

= −M5L
3

L3
1

(
−ξL2

0

LL1(L2
1 − L2

0)
+ 3

ξ

LL1(L2
1 − L2

0)
L2

1

)
Tr S|L1

L0�L1= −M5L
3

L3
1

3
ξ

LL3
1

L2
1 Tr S|L1

= −3M5L
2ξ

L4
1

Tr S|L1
,

(4.39)

so it cancels with the second term in the potential term (4.38), resulting in a total
boundary term in the 4D Lagrangian for S of

Lbound =
−M5

2
L3

z3
TrS∂zS

∣∣∣∣L1

L0

− L4

z4
V (S)

∣∣∣∣
L1

+ M5
L3

z3
TrS∂zv

∣∣∣∣
L0

. (4.40)

If we want the quadratic terms on the IR-boundary to cancel out, we must impose the
boundary condition (

M5∂z + 2
L

z
m2
S

)
TrS

∣∣∣∣
L1

= 0. (4.41)
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Let us now solve the equation of motion for S, which we derive from the action SS
(4.32). This gives

L3

z3
ηµν∂µ∂νS − ∂z(

L3

z3
∂zS)− 3

L3

z5
S = 0. (4.42)

In momentum space, this reads

−
(

3
z2

+ k2

)
Ŝ(kµ, z) +

3
z
∂zŜ(kµ, z)− ∂2

z Ŝ(kµ, z) = 0, (4.43)

where we again defined k2 = ηµνk
µkν .

The general solution can be expressed using Bessel functions of the first and second
kind:

Ŝ(kµ, z) = a1(kµ)z2J1(kz) + a2(kµ)z2Y1(kz) (4.44)

Next, we fix a1 and a2 by using the boundary conditions on the UV- and the IR-
boundary. For the IR-boundary we have(

M5∂z + 2
L

z
m2
S

)
Tr Ŝ

∣∣∣∣
L1

= 0, (4.45)

following from (4.41). The UV boundary value, we determine by relating Ŝ
∣∣∣
L0

to the

source coupled to the QCD operator, which we call s:

Ŝ
∣∣∣
L0

= α
L0

L
s, (4.46)

where the proportionality factor α will be determined later by matching the expres-
sions we receive to QCD. With these two boundary conditions, we can determine the
coefficients a1 and a2, which are quite complicated expressions.

Then, we insert our solution for the scalar field S (or Ŝ) into the action. Since S
obeys the equation of motion (4.42), the 5D Lagrangian (4.32) vanishes and does not
contribute. So, we are only left with the boundary term (4.40). Since we chose a1 and
a2 so that the quadratic terms on the IR-boundary cancel, we are left with

S =
∫

d4x
M5L

3

2z3
Tr (S∂zS + 2M5S∂zv)

∣∣∣∣
L0

(4.47)

(neglecting terms of order ≥ 2 in S).
Our goal is to calculate the two-point correlator

ΠS = −
∫

d4xeiηµνk
µxν 〈JS(xµ)JS(0)〉 , (4.48)

where JS = q̄q, which is the operator dual to S. As explained in the beginning, the
correlator can be obtained from our action S by taking the functional derivative twice
with respect to the source s

ΠS =
δ2S
δs2

. (4.49)
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As we can see from equation (4.47), Ŝ and hence s appear up to quadratic order (higher
orders we neglected) in S. Therefore

L =
1
2

ΠS Tr(s2) + ΓS Tr(s). (4.50)

So let us insert our solution for Ŝ into the action and collect the terms with quadratic
order in s. We begin by writing S in terms of Ŝ in (4.47):

S = Tr
∫

d4x
M5a

3

2

∫
d4k

(2π)4
eiηµνk

µxν Ŝ(kµ, z)
(∫

d4k

(2π)4
eiηµνk

µxν∂zŜ(kµ, z) + 2M5∂zv

)∣∣∣∣
L0

.

(4.51)
We can ignore the v-term as is cannot produce quadratic terms in s. So we get

S =
∫

d4x
M5L

3

2z3
Tr
∫

d4k

(2π)4

∫
d4k′

(2π)4
eiηµνk

µxν Ŝ(kµ, z)eiηµνk
′µxν∂zŜ(k′µ, z)

∣∣∣∣
L0

=
∫

d4k

(2π)4

∫
d4k′

(2π)4

∫
d4xeiηµν(kµ+k′µ)xν M5L

3

2z3
Tr
(
Ŝ(kµ, z)∂zŜ(k′µ, z)

)∣∣∣∣
L0

=
∫

d4k

(2π)4

∫
d4k′

(2π)4
(2π)4δ(kµ + k′µ)

M5L
3

2z3
Tr
(
Ŝ(kµ, z)∂zŜ(k′µ, z)

)∣∣∣∣
L0

= Tr
∫

d4k

(2π)4

M5L
3

2z3
Ŝ(kµ, z)∂zŜ(−kµ, z)

∣∣∣∣
L0

= Tr
∫

d4k

(2π)4

M5L
3

2L3
0

α
L0

L
s∂zŜ(kµ, z)

∣∣∣∣
L0

.

(4.52)

Now we have to evaluate ∂zŜ using the values of a1 and a2 we determined earlier.
Inserting this in the above formula and identifying the term in front of s2, we get (using
a computer algebra system)

ΠS = α2M5L

(
1
L2

0

+
k

L0

J0(kL0) + b(k)Y0(kL0)
J1(kL0) + b(k)Y1(kL0)

)
(4.53)

with

b(k) := −
kL1J2(kL1)− 8λξ2

M5L
J1(kL1)

kL1Y2(kL1)− 8λξ2

M5L
Y1(kL1)

. (4.54)

Let us study the correlator in the limit L0 → 0. The Bessel functions have the well-
known approximations for small argument (0 < x�

√
β + 1)

Jβ(x) ≈ 1
Γ(β + 1)

(x
2

)β
(4.55)

and

Yβ(x) ≈

{
2
π

(
log(x2 ) + γ

)
if β = 0

−Γ(β)
π

(
2
x

)β if β > 0
, (4.56)
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where γ is the Euler-Mascheroni constant. With this we get

k

L0

J0(kL0) + b(k)Y0(kL0

J1(kL0) + b(k)Y1(kL0)
≈ k

L0

1 + b(k) 2
π

(
log(kL0

2 ) + γ
)

kL0
2 −

b(k)
π

2
kL0

≈ k

L0

1 + b(k) 2
π log(kL0

2 )
b(k)
π

2
kL0

≈ πk2

2b(k)
+ k2 log(

kL0

2
)

≈ πk2

2b(k)
+

1
2
k2 log(k2L2

0)

(4.57)

and so

ΠS(k2) ≈ α2M5L

(
1
L2

0

+
1
2
k2 log(p2L2

0) +
πk2

2b(k)

)
. (4.58)

The term 1
L2

0
is divergent for L0 → 0 but can be absorbed in a bare mass and a bare

kinetic term for s [15]. This renormalization makes the correlator finite.
If we now look at the case of large momentum, i.e. pL1 � 1, we have

ΠS(k2) ≈ α2M5L

2
k2 log(k2). (4.59)

This we can match with the case of large momentum in QCD

ΠQCD
S (k2) ≈ NC

π2
k2 log(k2) (4.60)

and get by comparison

α2M5L =
Nc

4π2
. (4.61)

From other calculations [32] it can be found that

M5L =
Nc

12π2
=: ÑC , (4.62)

which gives α =
√

3. Since the value of the quark masses are related to the vacuum
expectation value of X on the UV-boundary, we can then obtain the relation

M̃q = αMq =
√

3Mq, (4.63)

which gives us the correct normalization of the quark masses. The expression (4.61) is
exactly the square of ζ, which we introduced in Chapter 2, and 1

M5L
corresponds to the

value of g2
5.

ΠS can also be approximated for small momentum k. For this we look at

b(k) : = −
kL1J2(kL1)− 8λξ2

M5L
J1(kL1)

kL1Y2(kL1)− 8λξ2

M5L
Y1(kL1)

≈ −
kL1

1
2

(
kL1

2

)2
− 8λξ2

M5L
kL1

2

−kL1
1
π

(
2
kL1

)2
+ 8λξ2

M5L
1
π

2
kL1

≈
8λξ2

M5L
kL1

2

−kL1
1
π

(
2
kL1

)2
+ 8λξ2

M5L
1
π

2
kL1

.

(4.64)
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So

α2M5L
πk2

2b(k)
≈ α2M5L

πk2

2

−kL1
1
π

(
2
kL1

)2
+ 8λξ2

M5L
1
π

2
kL1

8λξ2

M5L
kL1

2

= α2M5L
πk2

2

(
− 2
π

M5L

8λξ2
+

1
π

)(
2
kL1

)2

= 3ÑC

(
2
L2

1

− ÑC

2λξ2L2
1

) (4.65)

and thus

ΠS(k2) ≈ 3ÑC

(
2
L2

1

− ÑC

2λξ2L2
1

)
+O(k2) (4.66)

is the two-point correlator in the limit of small momentum k.
Going back to the equation (4.58) we observe that for b(k) = 0 the correlator becomes

infinite. This happens for infinitely many, discrete values of k, which correspond to the
masses of scalar mesons.11 The masses can be determined by finding the roots of b(k).
This has to be done numerically. We have to insert some values for our parameters. We
found that 1

L1
≈ 320 MeV and ξ should be taken as ξ ≈ 4 [32]. λ is still undetermined.

So we will have to see how the results behave in dependence of λ. For the mass of the
first resonance we find that MS1 = 0 MeV for λ→ 0 and MS1 = 1226 MeV for λ→∞.
The masses of the first two resonances are pictured in Figure 4.2. We can then compare
them to experimental values of the scalar resonances, say a0(980) and a0(1450).

We can also derive an approximate analytic expression for the zeros of b(k). First note
that

xJ2(x) + xJ0(x) = 2J1(x) (4.67)

and so b(k) = 0 simplifies to

kL1J0(kL1) +
(

8λξ2

M5L
− 2
)
J1(kL1) = 0. (4.68)

For not too small arguments (x�
∣∣β2 − 1

4

∣∣) the Bessel functions behave like

Jβ(x) ≈
√

2
πx

cos
(
x− (2β + 1)

π

4

)
(4.69)

and so we get
kL1

2− 8λξ2

M5L

= tan
(
kL1 −

π

4

)
. (4.70)

11We did not explicitly calculate the scalar meson modes in this Model, but we could in principle do
this as we did in the soft-wall case. This would then lead to eigenmodes with exactly these masses
as eigenvalues.
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Figure 4.2: The first two resonances S1 and S2 as functions of λ with comparison to
a0(980) and a0(1450).

The solutions of this transcendental equation can be approximated by

kn =
(
n− 1

4

)
π

L1
, (4.71)

where the error goes to zero as n → ∞. The constant 2 − 8λξ2

M5L
does not appear in the

solution, but influences how fast the errors become small. So, as for the other mesons
in a hard-wall approach (Chapter 2), we get unphysical Regge trajectories of the form
m2
n ∼ n2. Figure 4.3 shows b(k) for some values of λ together with the approximate

zeros of b(p).

Figure 4.3: b(k) for some values of λ. The black circles mark the approximate zeros.
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5 Summary and Conclusions

We have treated the extension of the hard-wall AdS/QCD model to the case Nf = 3
with a broken flavour symmetry. We essentially confirmed the results of [2] concerning
masses and decay constants of the ground states and the K`3 form factor. In addition,
we calculated the pion form factor, which was a little bit higher than it is supposed to
be, but not worse than other AdS/QCD results. All masses and decay constants were
well within 20% of the experimental data.

We then worked in a soft-wall approach, first in an exact model for Nf = 2 and
then in an approximate model for the flavour-asymmetric case. The main difference to
the hard-wall model was that we were able get reasonably good results for higher radial
modes. Again most of the masses and decay constants differed from the measured values
by about 10% to 20%. The results for the decay constants in the approxmate model are
questionable, but the results for the masses were good. Here, results could be improved
by making a global fit as we did in the hard-wall case.

Alltogether, the results we obtained and those from other articles seem quite promising
considering that this field of research is quite new. Many more observables can be and
have been calculated with similarly good results.
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Appendices

A.1 The 5D Action

We want to expand the 5D action

S =
∫

d5x
√
gTr

(
DMX

†DMX +
3
L2
X†X − 1

4g2
5

(
FLMNF

MN
L + FRMNF

MN
R

))
(A.1)

up to quadratic order in the fields π, A, and V . We will consider the kinetic term
DMX

†DMX, the mass term X†X, and the field strength term FLMNF
MN
L + FRMNF

MN
R

separately.

A.1.1 The Kinetic Term

We want to expand

DMX
†DMX =

(
∂MX

† + iX†LM − iRMX†
) (
∂MX − iLMX + iXRM

)
= ∂MX

†∂MX︸ ︷︷ ︸
=:(1)

−i∂MX†LMX + i∂MX
†XRM + iX†LM∂

MX − iRMX†∂MX︸ ︷︷ ︸
=:(2)

+X†LMLMX −X†LMXRM −RMX†LMX +RMX
†XRM︸ ︷︷ ︸

=:(3)

.

(A.2)

It is convenient to split up the first term into

(1) = ∂MX
†∂MX = ∂µX

†∂µX + ∂zX
†∂5X. (A.3)

To evaluate these terms we first have to expand ∂µX and ∂zX. We get12

∂µX = ∂µ
(
eiπX0e

iπ
)

= ∂µ

((
I + iπ − 1

2
π2

)
X0

(
I + iπ − 1

2
π2

))
= ∂µ

(
X0 + iX0π + iπX0 −

1
2
X0π

2 − πX0π −
1
2
π2X0

)
= iX0∂µπ + i∂µπX0 −

1
2
X0∂µππ −

1
2
X0π∂µπ

− ∂µπX0π − πX0∂µπ −
1
2
∂µππX0 −

1
2
π∂µπX0.

(A.4)

12In the following calculations, i.e. throughout this section, we will use “=” as a symbol meaning that
the trace of the left and the right hand side is identical up to second order in π, A, and V . Since this
gives an equivalence relation, the use of the “=”-sign is justified.
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For ∂zX we get the same terms, but in addition also terms involving ∂zX0, namely(
I + iπ − 1

2
π2

)
∂zX0

(
I + iπ − 1

2
π2

)
= ∂zX0 + i∂zX0π + iπ∂zX0 −

1
2
∂zX0π

2 − π∂zX0π −
1
2
π2∂zX0.

(A.5)

Together this gives

∂zX = iX0∂zπ + i∂zπX0 −
1
2
X0∂zππ −

1
2
X0π∂zπ

− ∂zπX0π − πX0∂zπ −
1
2
∂zππX0 −

1
2
π∂zπX0

+ ∂zX0 + i∂zX0π + iπ∂zX0 −
1
2
∂zX0π

2 − π∂zX0π −
1
2
π2∂zX0.

(A.6)

Then we can calculate ∂µX†∂µX. We get

∂µX
†∂µX = (−i∂µπX0 − iX0∂µπ) (iX0∂

µπ + i∂µπ)

= ∂µπX
2
0∂

µπ + i∂µπX0∂
µπX0 +X0∂µπX0∂

µπ +X0∂µπ∂
µπX0

= {∂µπ,X0} {∂µπ,X0} = {∂µπata, X0}{∂µπbtb, X0}

= ∂µπ
a∂µπb{ta, X0}{tb, X0} =

∑
a

Ma
A

2

2
∂µπ

a∂µπa.

(A.7)

The expression for ∂zX†∂5X is more complicated. We get the same terms we already
had for ∂µX†∂µX (those quadratic in X0) plus terms quadratic in ∂zX0 as well as mixed
terms containing both X0 and ∂zX0. The terms quadratic in X0 are

∂zπ
a∂5πb{ta, X0}{tb, X0} =

∑
a

Ma
A

2

2
∂zπ

a∂5πa. (A.8)

The terms quadratic in ∂zX0 are

∂zX0∂
5X0 + i∂zX0∂

5X0π + i∂zX0π∂
5X0 − iπ∂zX0∂

5X0 − i∂zX0π∂
5X0

+ π∂zX0∂
5X0π + π∂zX0π∂

5X0 + ∂zX0π∂
5X0π + ∂zX0π

2∂5X0

− 1
2
∂zX0∂

5X0π
2 − ∂zX0π∂

5X0π −
1
2
∂zX0π

2∂5X0

− 1
2
π2∂zX0∂

5X0 − π∂zX0π∂
5X0 −

1
2
∂zX0π

2∂5X0

= ∂zX0∂
5X0,

(A.9)
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where the equally coloured terms cancel each other. Finally, the mixed terms are

− i∂zπX0∂
5X0 + ∂zπX0∂

5X0π + ∂zπX0π∂
5X0

− iX0∂zπ∂
5X0 +X0∂zπ∂

5X0π +X0∂zππ∂
5X0

+ i∂zX0X0∂
5π + π∂zX0X0∂

5π + ∂zX0πX0∂
5π

+ i∂zX0∂
5πX0 + π∂zX0∂

5πX0 + ∂zX0π∂
5πX0

− 1
2
π∂zπX0∂

5X0 −
1
2
∂zππX0∂

5X0 − πX0∂zπ∂
5X0 − ∂zπX0π∂

5X0

− 1
2
X0π∂zπ∂

5X0 −
1
2
X0∂zππ∂

5X0 −
1
2
∂zX0X0∂

5ππ − 1
2
∂zX0X0π∂

5π

− ∂zX0∂
5πX0π − ∂zX0πX0∂

5π − 1
2
∂zX0∂

5ππX0 −
1
2
∂zX0π∂

5πX0

= 0.

(A.10)

We conclude that

∂zX
†∂5X = ∂zX0∂

5X0 +
∑
a

Ma
A

2

2
∂zπ

a∂5πa. (A.11)

With this, the term (1) = ∂MX
†∂MX is given by

∂MX
†∂MX =

∑
a

Ma
A

2

2
∂µπ

a∂µπa + ∂zX0∂
5X0 +

∑
a

Ma
A

2

2
∂zπ

a∂5πa

= ∂zX0∂
5X0 +

∑
a

Ma
A

2

2
∂Mπ

a∂Mπa.

(A.12)

Next, let us turn to the expression (2) in (A.2). We want to express the fields L and
R by the fields V and A. One gets:

− i∂MX†LMX + i∂MX
†XRM + iX†LM∂

MX − iRMX†∂MX
= −i∂MX†(VM +AM )X + i∂MX

†X(VM −AM )

+ iX†(VM +AM )∂MX − i(VM −AM )X†∂MX

= −i∂MX†VMX + i∂MX
†XVM + iX†VM∂

MX − iVMX†∂MX
− i∂MX†AMX − i∂MX†XAM + iX†AM∂

MX + iAMX
†∂MX.

(A.13)

Let us first treat the terms involving the V -field. Again, we should split up ∂M into ∂µ
and ∂z. Beginning with ∂µ, we get:

− i∂µX†V µX + i∂µX
†XV µ + iX†Vµ∂

µX − iVµX†∂µX
= −X0∂µπV

µX0 − ∂µπX0V
µX0 −X0∂µπX0V

µ + ∂µX
2
0V

µ

−X0Vµ∂
µπX0 −X0VµX0∂

µπ + VµX0∂
µπX0 + VµX

2
0∂

µπ

= 0.

(A.14)

71



Naturally, for ∂z the expression is a bit more complicated. We get:

− i∂zX†V 5X + i∂zX
†XV 5 + iX†V5∂

5X − iV5X
†∂5X

= −X0∂zπV
5X0 − ∂zX0πV

5X0 − π∂zX0V
5X0 − ∂zπX0V

5X0

− i∂zX0V
5X0 + ∂zX0V

5πX0 + ∂zX0V
5X0π

+X0∂zπX0V
5 + ∂zX0πX0V

5 + π∂zX0X0V
5 + ∂zπX

2
0V

5

+ i∂zX0X0V
5 − ∂zX0πX0V

5 − ∂zX0X0πV
5

−X0V5∂
5πX0 −X0V5π∂

5X0 −X0V5∂
5X0π −X0V5X0∂

5π

+ iX0V5∂
5X0 +X0πV5∂

5X0 + πX0V5∂
5X0

+ V5X0∂
5πX0 + V5X0π∂

5X0 + V5X0∂
5X0π + V5X

2
0∂

5π

− iV5X0∂
5X0 − V5X0π∂

5X0 − V5πX0∂
5X0

= 0.

(A.15)

So altogether the terms involving V in (A.13) vanish. Let us then do the same calcula-
tions with A. Starting again with ∂µ, we get:

− i∂µX†AµX − i∂µX†XAµ + iX†Aµ∂
µX + iAµX

†∂µX

= −X0∂µπA
µX0 − ∂µπX0A

µX0 −X0∂µπX0A
µ − ∂µπX2

0A
µ

−X0Aµ∂
µπX0 −X0AµX0∂

µπ −AµX0∂
µπX0 −AµX2

0∂
µπ

= −2∂µπaAµb
(
X0t

atbX0 + taX0t
bX0 +X0t

aX0t
b + taX2

0 t
b
)

= −2∂µπaAµb{ta, X0}{tb, X0} = −
∑
a

Ma
A

2∂µπ
aAµa.

(A.16)

For ∂z we get:

− i∂zX†A5X − i∂zX†XA5 + iX†A5∂
5X + iA5X

†∂5X

= −X0∂zπA
5X0 − ∂zX0πA

5X0 − π∂zX0A
5X0 − ∂zπX0A

5X0

− i∂zX0A
5X0 + ∂zX0A

5πX0 + ∂zX0A
5X0π

−X0∂zπX0A
5 − ∂zX0πX0A

5 − π∂zX0X0A
5 − ∂zπX2

0A
5

− i∂zX0X0A
5 + ∂zX0πX0A

5 + ∂zX0X0πA
5

−X0A5∂
5πX0 −X0A5π∂

5X0 −X0A5∂
5X0π −X0A5X0∂

5π

+ iX0A5∂
5X0 +X0πA5∂

5X0 + πX0A5∂
5X0

−A5X0∂
5πX0 −A5X0π∂

5X0 −A5X0∂
5X0π −A5X

2
0∂

5π

+ iA5X0∂
5X0 +A5X0π∂

5X0 +A5πX0∂
5X0

= −2∂zπaA5b
(
X0t

atbX0 + taX0t
bX0 +X0t

aX0t
b + taX2

0 t
b
)

= −2∂zπaA5b{ta, X0}{tb, X0} = −
∑
a

Ma
A

2∂zπ
aA5a.

(A.17)
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So together the terms involving A in (A.13) are

−
∑
a

Ma
A

2
(
∂µπ

aAµa + ∂zπ
aA5a

)
= −

∑
a

Ma
A

2∂Mπ
aAMa (A.18)

which gives for expression (2) in (A.2)

(2) = −
∑
a

Ma
A

2∂Mπ
aAMa. (A.19)

Finally, let us evaluate expression (3) in (A.2). It is given by

X†LML
MX −X†LMXRM −RMX†LMX +RMX

†XRM

= X0LML
MX0 −X0LMX0R

M −RMX0L
MX0 +RMX0X0R

M

= X0VMV
MX0 +X0VMA

MX0 +X0AMV
MX0 +X0AMA

MX0

−X0VMX0V
M +X0VMX0A

M −X0AMX0V
M +X0AMX0A

M

− VMX0V
MX0 − VMX0A

MX0 +AMX0V
MX0 +AMX0A

MX0

+ VMX
2
0V

M − VMX2
0A

M −AMX2
0V

M +AMX
2
0A

M

= −[VM , X0][VM , X0] + {AM , X0}{AM , X0}
= −V a

MV
Mb{ta, X0}{tb, X0}+AaMA

Mb[ta, X0][tb, X0]

=
∑
a

(
Ma
V

2

2
V a
MV

Ma +
Ma
A

2

2
AaMA

Ma

)
.

(A.20)

Now we can add up the terms (1) - (3) to get the whole expression for the kinetic
term. We get

DMX
†DMX = (1) + (2) + (3) = ∂zX0∂

5X0 +
∑
a

Ma
A

2

2
∂Mπ

a∂Mπa

−
∑
a

Ma
A

2∂Mπ
aAMa +

∑
a

(
Ma
V

2

2
V a
MV

Ma +
Ma
A

2

2
AaMA

Ma

)
= ∂zX0∂

5X0 +
∑
a

(
Ma
A

2

2
(∂Mπa −AaM )(∂Mπa −AMa) +

Ma
V

2

2
V a
MV

Ma

)
= ∂zX0∂

5X0 +
∑
a

(
Ma
A

2z2

2L2
(∂Mπa −AaM )2 +

Ma
V

2z2

2L2
V a
M

2

)
,

(A.21)

where the square implies contraction over ηMN .

A.1.2 The Mass Term

Let us see how the mass term X†X in the action (A.1) can be simplified. We get

X†X = e−iπX0e
−iπeiπX0e

iπ = e−iπX2
0e
iπ = X2

0 . (A.22)
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A.1.3 The Field Strength Term

The field strength term is

FLMNF
MN
L + FRMNF

MN
R

= (∂MLN − ∂NLM − i[LM , LN ])
(
∂MLN − ∂NLM − i[LM , LN ]

)
+ (∂MRN − ∂NRM − i[RM , RN ])

(
∂MRN − ∂NRM − i[RM , RN ]

)
= (∂MLN − ∂NLM )

(
∂MLN − ∂NLM

)
+ (∂MRN − ∂NRM )

(
∂MRN − ∂NRM

)
= (∂M (VN +AN )− ∂N (VM +AM ))

(
∂M (V N +AN )− ∂N (VM +AM )

)
+ (∂M (VN −AN )− ∂N (VM −AM ))

(
∂M (V N −AN )− ∂N (RM −AM )

)
= ∂MVN∂

MV N + ∂MVN∂
MAN − ∂MVN∂NVM − ∂MVN∂NAM

+ ∂MAN∂
MV N + ∂MAN∂

MAN − ∂AVN∂NVM − ∂MAN∂NAM

− ∂NVM∂MV N − ∂NVM∂MAN + ∂NVM∂
NVM + ∂NVM∂

NAM

− ∂NAM∂MV N − ∂NAM∂MAN + ∂NAM∂
NVM + ∂NAM∂

NAM

+ ∂MVN∂
MV N − ∂MVN∂MAN − ∂MVN∂NVM + ∂MVN∂

NAM

− ∂MAN∂MV N + ∂MAN∂
MAN + ∂AVN∂

NVM − ∂MAN∂NAM

− ∂NVM∂MV N + ∂NVM∂
MAN + ∂NVM∂

NVM − ∂NVM∂NAM

+ ∂NAM∂
MV N − ∂NAM∂MAN − ∂NAM∂NVM + ∂NAM∂

NAM

= 2
(
∂MVN∂

MV N − ∂MVN∂NVM − ∂NVM∂MV N + ∂NVM∂
NVM

)
+ 2

(
∂MAN∂

MAN − ∂MAN∂NAM − ∂NAM∂MAN + ∂NAM∂
NAM

)
= 2(∂MVN − ∂NVM )(∂MV N − ∂NVM )

+ 2(∂MAN − ∂NAM )(∂MAN − ∂NAM )

= 2(∂MV a
N − ∂NV a

M )(∂MV Nb − ∂NVMb)tatb

+ 2(∂MAaN − ∂NAaM )(∂MANb − ∂NAMb)tatb

= (∂MV a
N − ∂NV a

M )(∂MV Na − ∂NVMa)

+ (∂MAaN − ∂NAaM )(∂MANa − ∂NAMa)

=
z4

L4
(∂MV a

N − ∂NV a
M )2 +

z4

L4
(∂MAaN − ∂NAaM )2.

(A.23)
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A.1.4 The Complete Action

Combining the results of the previous three subsections we are able to write down the
expression for the action up to quadratic order in π, V , and A. We get

S =
∫

d5x
√
gTr

(
(DMX)†(DMX) +

3
L2
X†X − 1

g2
5

(
FLMNF

MN
L + FRMNF

MN
R

))
=
∫

d5x

(
L5

z5
Tr(∂zX0∂

5X0) +
∑
a

(
Ma
A

2L3

2z3
(∂Mπa −AaM )2 +

Ma
V

2L3

2z3
V a
M

2

)

+
3L3

z5
Tr(X2

0 )−
∑
a

L

4zg2
5

(
(∂MV a

N − ∂NV a
M )2 + (∂MAaN − ∂NAaM )2

))
.

(A.24)

The terms that only involve X0 or its derivative give (using the equation of motion)∫
d5xTr

(
−L

3

z3
∂zX0∂zX0 +

3L3

z5
X2

0

)
=
∫

d5xL3 Tr
(
∂z

(
1
z3
∂zX0

)
X0 +

3
z5
X2

0

)
= 0

(A.25)
plus a constant boundary term. We can split the action into an axial (A-dependent) and
a vector (V -dependent) part. This gives

S =
∫

d5x
∑
a

(
− L

4g2
5z

(∂MV a
N − ∂NV a

M )2 +
Ma
V

2L3

2z3
V a
M

2

− L

4g2
5z

(∂MAaN − ∂NAaM )2 +
Ma
A

2L3

2z3
(∂Mπa −AaM )2

) (A.26)

A.2 Vector Equation of Motion

We want to derive the equation of motion for the vector sector with the action

SV =
∫

d5x
L

4g2
5

∑
a

(
−1
z

(
ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)
)

+
2αa(z)
z

ηMM ′V a
MV

a
M ′

)
.

(A.27)

Since the V a are independent of each other for different a, we can look at each V a

separately. Furthermore, an overall constant factor in the action is irrelevant. So we
have to look at

Sa =
∫

d5x
1
z

(
−ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)

+ 2αa(z)ηMM ′V a
MV

a
M ′

)
.

(A.28)
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Then if δS = S[V + δV ]− S[V ], we get (dropping quadratic terms in δV ):

δSa =
∫

d5x
1
z

(
−ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′δV a

N ′ − ∂N ′δV a
M ′)

+ 2αa(z)ηMM ′V a
MδV

a
M ′

)
+
∫

d5x
1
z

(
−ηMM ′ηNN

′
(∂MδV a

N − ∂NδV a
M )(∂M ′V a

N ′ − ∂N ′V a
M ′)

+ 2αa(z)ηMM ′δV a
MV

a
M ′

)
= 2

∫
d5x

1
z

(
−ηMM ′ηNN

′
(∂MV a

N − ∂NV a
M )(∂M ′δV a

N ′ − ∂N ′δV a
M ′)

+ 2αa(z)ηMM ′V a
MδV

a
M ′

)
,

(A.29)

where we used the symmetry of ηMN in the last step. We can expand the bracket term
in the middle and do partial integration to remove the derivative from δV . This gives

δSa = 2
∫

d5x

(
ηMM ′ηNN

′
(
∂M ′

(
1
z

(∂MV a
N − ∂NV a

M )
)
δV a

N ′

−∂N ′
(

1
z

(∂MV a
N − ∂NV a

M )
)
δV a

M ′

)
+ 2

α(z)a

z
ηMM ′V a

MδV
a
M ′

)
= 4

∫
d5x

(
−ηMM ′ηNN

′
∂N ′

(
1
z

(∂MV a
N − ∂NV a

M )
)
δV a

M ′ +
α(z)a

z
ηMM ′V a

MδV
a
M ′

)
= 4

∫
d5xηMM ′

(
ηNN

′
∂N ′

(
1
z

(∂NV a
M − ∂MV a

N )
)

+
α(z)a

z
V a
M

)
δV a

M ′ .

(A.30)

We can then read of the equation of motion

ηNN
′
∂N ′

(
1
z

(∂NV a
M − ∂MV a

N )
)

+
α(z)a

z
V a
M = 0. (A.31)

A.3 Orthogonality Relation for the ηan(z)

We want to show that ∫ L1

L0

dz
z

βa(z)
ηan(z)ηam(z) = 0, (A.32)
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whenever m 6= n. We use partial integration and equation (2.96) to get∫ L1

L0

dz
z

βa(z)
ηan(z)ηam(z) =

1
ma
n

2

(
φ̂an(z)− z

βa(z)
∂zη

a
n(z)

)
ηam(z)

∣∣∣∣L1

L0︸ ︷︷ ︸
=0

−
∫ L1

L0

dz
1

ma
m

2

(
φ̂an(z)− z

βa(z)
∂zη

a
n(z)

)
∂zη

a
m(z)

= − 1
ma
n

2

 φ̂an(z)ηam(z)
∣∣∣L1

L0︸ ︷︷ ︸
=0

−
∫ L1

L0

dzηan(z)ηam(z)−
∫ L1

L0

dz
z

βa(z)
∂zη

a
n(z)∂zηam(z)


=

1
ma
n

2

∫ L1

L0

dz
(

z

βa(z)
∂zη

a
n(z)∂zηam(z) + ηan(z)ηam(z)

)
.

(A.33)

By symmetry we also get∫ L1

L0

dz
z

βa(z)
ηan(z)ηam(z) =

1
ma
m

2

∫ L1

L0

dz
(

z

βa(z)
∂zη

a
n(z)∂zηam(z) + ηan(z)ηam(z)

)
.

(A.34)
Since only the mass factor differs and ma

n 6= ma
m for m 6= n, the integral has to be zero.

A.4 Writing ya as a Sum over Meson Poles

We want to write ya(k2, z) as a sum over meson poles. For this we make the general
ansatz

ya(k2, z) =
∑
n

can(k2)ηan(z). (A.35)

Multiplying by z
βa(z)η

a
m(z), integrating and using the orthogonality relation (2.98) one

gets

cam(k2)
ma
m

2
=
∫ L1

L0

dz
z

βa(z)
ηam(z)ya(k2, z) =

1
ma
m

2

(
φ̂am(z)− z

βa(z)
∂zη

a
m(z)

)
ya(k2, z)

∣∣∣∣L1

L0︸ ︷︷ ︸
=0

−
∫ L1

L0

dz
1

ma
m

2

(
φ̂am(z)− z

βa(z)
∂zη

a
m(z)

)
∂zy

a(k2, z)

= − 1
ma
m

2

∫ L1

L0

dzφ̂am(z)
(

1
z
∂zφ̂

a(z)
)

+
1

ma
m

2

∫ L1

L0

dz
z

βa(z)
∂zη

a
m(z)∂zya(k2, z).

(A.36)
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The second term gives∫ L1

L0

dz
z

βa(z)
∂zη

a
m(z)∂zya(k2, z)

=
z

βa(z)
∂zy

a(z)ηam(k2, z)
∣∣∣∣L1

L0

+
∫ L1

L0

dzz
(

k2

βa(z)
− 1
)
ya(k2, z)ηam(z)

=
z

βa(z)
∂zy

a(z)ηam(k2, z)
∣∣∣∣L1

L0

+ k2 c
a
m(k2)
ma
m

2
−
∫ L1

L0

dz∂zφ̂a(k2, z)
1
z
φ̂am(z)

=
z

βa(z)
∂zy

a(z)ηam(k2, z)
∣∣∣∣L1

L0

+ k2 c
a
m(k2)
ma
m

2
− φ̂am(z)

1
z
∂zφ̂

a(k2, z)
∣∣∣∣L1

L0︸ ︷︷ ︸
=0

+
∫ L1

L0

dzφ̂am(z)∂z

(
1
z
φ̂a(k2, z)

)
.

(A.37)

On sees that the third term and the first term in the last row of (A.36) cancel and one
gets

cam(k2)
ma
m

2
=

1
ma
m

2

z

βa(z)
∂zy

a(z)ηam(k2, z)
∣∣∣∣L1

L0

+
k2

ma
m

2

cam(k2)
ma
n

2
(A.38)

or

cam(k2) =
ma
m

2

ma
m

2 − k2

z

βa(z)
∂zy

a(z)ηam(k2, z)
∣∣∣∣L1

L0

=
ma
m

2

k2 −ma
m

2
ηam(L0). (A.39)

This result yields

ya(k2, z) =
∑
n

ma
n

2ηan(L0)ηan(z)
k2 −ma

n
2

. (A.40)
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