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1 Introduction

Multiparton interactions (MPI) are an unavoidable consequence of colliding hadrons at high
energies. The theoretical description of soft MPI poses particular challenges, due to the
limited understanding of non-perturbative QCD. Unfortunately, it is exactly this physics
which is vital for describing minimum-bias (MB) and underlying events (UE) at hadron
colliders, such as the LHC. To this end, phenomenological models are often introduced, to
provide the best description possible.

The original MPI model, introduced in earlier versions of Pythia, extends the pertur-
bative picture down to very low p⊥ scales, such that one can view all events as containing
one or more interactions [1–3]. These low-p⊥ interactions fill the role of cut Pomerons [4,5],
stretching colour fields longitudinally across an event, which later fragment. Of course,
these colour fields can also stretch to higher-p⊥ partons, giving a smooth transition to
(mini)jets, and a unified picture of MB and UE physics. This model has been updated
in recent times, and forms a part of the interleaved parton shower and MPI framework of
Pythia 8 [6–9].

Many other models for the structure of hadronic events have been formulated, that are all
based on some kind of multiple interactions framework, be it in the form of soft or (semi)hard
interactions, or a mixture thereof [10]. A few implementations are formulated with a view
to be used also for hard-scale physics within and beyond the Standard Model [11], such
as Herwig [12–17] and Sherpa [18, 19]. Others put more emphasis on the soft physics
aspects, including the relations between elastic, diffractive and non-diffractive topologies,
using concepts such as Dual Topological Unitarization [20] and Reggeon Field Theory [21].
Examples thereof include Phojet [22, 23], Dpmjet [24], Epos [25], Sibyll [26], and
Qgsjet [27].

In all of these programs the proton is handled as an extended object. That way an
eikonal description [28] can be used, wherein the probability for an event to be produced
is largest for head-on collisions and decreases for increasing impact parameter. The stan-
dard assumption for most of these scenarios is that the partons are distributed inside the
protons according to a Gaussian, with the same radius for all parton species and momenta.
There is no specific reason for this ansatz, but it makes for simple algebra in going from
a three-dimensional spherical ansatz to a two-dimensional impact-parameter plane, and
for convoluting these distributions for the two colliding hadrons. Other shapes have been
used, e.g. the electromagnetic form factor in Herwig, and some Pythia alternatives to
be described later. A collision-energy-dependent radius is often used, and sometimes two
different radii for soft and hard interactions, but these possibilities still offer fairly little
flexibility. The one notable exception we are aware of is Dipsy [29–31], see further below.

The key objective of the current article will thus be to study the consequences if one
of the conventional constraints is relaxed, namely that high- and low-momentum partons
have the same impact-parameter profile. This should actually be considered as the expected
behaviour, rather than an exotic variant, as follows.

The size of the proton is finite, owing to confinement, but exactly how it should be
defined is ambiguous. Low-energy measurements give a root-mean-squared (RMS) charge
radius ≈ 0.88 fm [32]. Combined with the mass gap of QCD — the lightest free state being
the pion — this leads to a finite proton–proton strong-interaction cross section σpp (while
the electromagnetic one is infinite, the photon being massless).
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This cross section can vary as a function of energy, but its growth is limited by the
Froissart–Martin bound [33, 34]. The intuitive idea underlying this bound is that the pion
Yukawa potential fall-off ge−mπr/r sets the maximum impact parameter bmax of interactions
to be roughly where |g| exp(−mπbmax) = 1, i.e. σ ≃ πb2max ≃ (π/m2

π) ln
2 |g|. Since it can

be shown that |g| can increase at most like a power of the collision energy under general
conditions which should hold for QCD, it follows that σ ∝ ln2 s provides an upper bound.
The numerical prefactor to the bound [35] is far from saturated at current energies, however,
and work to improve on it is ongoing [36, 37].

The experimental observation of an increasing total cross section is reinforced by studies
of the differential elastic cross section [38, 39], from which it is concluded that the proton
gets “blacker, edgier, larger” with increasing energy [40, 41].

By Gribov theory, the high-s behaviour can be related to a low-x one, with the size
of the proton growing proportionally to ln(1/x). Qualitatively (but not quantitatively, see
below) this can be understood as a transverse random walk [42] in a BFKL [43,44] evolution,
where a few initial high-x partons fairly close to the center of the proton emit a cascade of
partons towards lower x scales, and in the process these partons diffuse to be spread over a
larger area. A more formal definition can be obtained by the Balitsky-JIMWLK evolution
equations for hadronic amplitudes [45], which also can be described by the Color Glass
Condensate formalism [46].

Mueller’s dipole cascade model [47, 48] offers a formulation of the BFKL evolution in
transverse coordinate space, and so gives direct access to information on the spread of
partons at different x scales. The Dipsy generator provides a complete implementation,
where effects of energy–momentum conservation, saturation, gluon recombination and the
running of αs are consistently taken into account. One important message that comes out
of the numerical studies is that the Froissart–Martin bound is violated asymptotically in
the evolution equations, unless confinement is also built into the gluon propagator, in which
case the ln2 s behaviour is nicely obtained [49].

The Dipsy generator can also be used to study a number of further issues, such as
diffraction [50] and elliptic flow [51]. So far it has not been used for comparisons with MB
event properties at hadron colliders, however, and is not well suited for UE studies.

Generalized parton distributions offer an alternative approach to explore the transverse
size of the proton [52], and to understand some MPI phenomenology [53]. Again an x
dependence is obtained, where the proton radius vanishes in the limit x → 1 (in part a
natural consequence of a center-of-gravity definition of the origin).

In the current article we will not attempt to trace the evolution of cascades in
x. Rather we will assume that the impact-parameter distribution of partons at any x
can be described by a simple Gaussian, exp(−b2/a2(x)), with a width that grows like
a(x) = a0 (1 + a1 ln(1/x)). The coefficients a0 and a1 are tuned to the parameterised shape
of σpp(s) in the following. The potential overlap between two protons will be described only
in terms of their size at their respective x values. In principle one should also include a
third scale, related to the transverse distance the exchanged propagator particle, normally
a gluon, could travel. This distance should be made dependent on the p⊥ scale of the in-
teraction. For simplicity we will not consider this further complication here, and only take
the propagator distance into account by allowing a finite effective radius also for x → 1.
For minimum-bias studies, the results will be rather insensitive to the behaviour at large x
since, at high energies, the bulk of MPI occurs at small x. This choice will play more of a
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role in the underlying event of hard processes, but is not studied further.
In Section 2, some relevant aspects of the existing MPI model are given, before the

modified impact parameter framework is introduced. Some results are shown in Section 3,
both in comparison to other matter profiles and to data, before a summary and outlook is
given in Section 4.

2 Multiparton interaction framework

The starting point is the hadronic perturbative cross section

dσ

dp2⊥
=
∑

i,j

∫∫

dx1 dx2 fi(x1, Q
2) fj(x2, Q

2)
dσ̂

dp2⊥
, (1)

where dσ̂/dp2⊥ gives the partonic QCD 2 → 2 cross section, and fi and fj the PDF factors
of the two incoming hadrons. In the modelling of soft MPI activity, there are two key
observations that can be made. First, the QCD 2 → 2 cross section contains a 1/p4⊥
divergence in the p⊥ → 0 limit. Second, the total integrated cross section down to some
low-p⊥ limit

σhard(p⊥min) =

∫ s/4

p2
⊥min

dσ

dp2⊥
dp2⊥ , (2)

becomes comparable to the total cross section for p⊥min ≈ 2 − 5GeV at current collider
energies.

The original MPI model addresses these issues as follows [1]. It is observed that σhard

gives the hadron–hadron cross section and not the parton–parton one. If, in one hadron col-
lision, many parton–parton interactions are possible, then 〈n〉(p⊥min) = σhard(p⊥min)/σtot

gives the average number of parton-parton scatterings above p⊥min per event. In deal-
ing with non-diffractive inelastic events only, as in this article, the cross section for
hard interactions, σhard(p⊥min), must be distributed among the σND events, such that
〈n〉(p⊥min) = σhard(p⊥min)/σND.

This is still not a solution to the divergence of the cross section in the p⊥ → 0 limit.
The average ŝ of scatterings decreases slower with p⊥min than the number of interactions
increases, which would lead to an infinite amount of scattered partonic energy. One part of
the solution is the need to include longitudinal correlations, including energy and momen-
tum conservation effects. In the most recent iterations of the model, this is handled using
a model dependent PDF rescaling procedure [6].

This effect alone is too weak, however, and the model additionally introduces the idea
of colour screening to regularise the p⊥ → 0 divergence. The concept of a perturbative
cross section is based on the assumption of free incoming states, which is not the case when
partons are confined in colour-singlet hadrons. One therefore expects a colour charge to be
screened by the presence of nearby anti-charges; that is, if the typical charge separation is
d, gluons with a transverse wavelength ∼ 1/p⊥ > d are no longer able to resolve charges
individually, leading to a reduced effective coupling. This is introduced by reweighting the
interaction cross section such that it is regularised according to

dσ̂

dp2⊥
∝ α2

s (p
2
⊥)

p4⊥
→ α2

s (p
2
⊥0 + p2⊥)

(p2⊥0 + p2⊥)
2
, (3)

3



where p⊥0 (related to 1/d above) is now a free parameter in the model.
This parameter has an energy dependence, and the ansatz used is that it scales in a

similar manner to the total cross section, i.e. driven by an effective power related to the
Pomeron intercept [54], which in turn could be related to the small-x behaviour of parton
densities. This leads to a scaling

p⊥0(ECM) = pref⊥0 ×
(

ECM

Eref
CM

)Epow
CM

, (4)

where Eref
CM is some convenient reference energy and pref⊥0 and Epow

CM are parameters to be
tuned to data.

2.1 Hadronic matter distribution

In the original MPI framework of [1], events are characterised by a varying impact pa-
rameter, b, representing a classical distance of closest approach between the two incoming
hadrons. The hadronic matter is assumed to have a spherically symmetric distribution,
taken to be the same for all parton species and momenta. The time-integrated overlap
between the two incoming matter distributions at an impact parameter, b, is given by

Õ(b) =

∫

dt

∫

d3x ρ(x, y, z) ρ(x, y, z −
√
b2 + t2) , (5)

where the ρ’s give the matter distributions after a scale change to take into account the
boosted nature of the hadrons. There are currently three different matter profiles available:

1) Single Gaussian: a simple Gaussian with no free parameters

ρ(r) ∝ exp(−r2) . (6)

2) Double Gaussian: a core region, radius a2, contains a fraction β of the total hadronic
matter, embedded in a larger hadron of radius a1. The default parameters for this
profile are a2/a1 = 0.4 and β = 0.5

ρ(r) ∝ (1− β)
1

a31
exp

(

−r2

a21

)

+ β
1

a32
exp

(

−r2

a22

)

. (7)

3) Overlap function: Õ(b), rather than ρ(r), is parameterised by a single parameter, p.
When p = 2, this gives the single Gaussian behaviour, while when p = 1, results are
similar to the default double Gaussian behaviour

Õ(b) ∝ exp (−bp) . (8)

In what follows, we relax the assumption that this distribution remains the same for all
momenta, such that the wavefunction for small-x partons is broader in spatial extent than
for large-x ones. In particular, a form

ρ(r, x) ∝ 1

a3(x)
exp

(

− r2

a2(x)

)

, (9)
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a(x) = a0

(

1 + a1 ln
1

x

)

, (10)

is chosen, where x represents the momentum fraction of the parton being probed within the
hadron, a0 is a constant to be tuned according to the non-diffractive cross section (detailed
below) and a1 is a free parameter. When a1 = 0, the single Gaussian profile is recovered.
With this matter profile, the time-integrated overlap is given by

Õ(b, x1, x2) =
1

π

1

a2(x1) + a2(x2)
exp

(

− b2

a2(x1) + a2(x2)

)

, (11)

where the normalisation has been chosen such that
∫

Õ(b, x1, x2) d
2b = 1 . (12)

2.2 Impact parameter framework

Within the framework, the number of interactions is assumed to be distributed according
to a Poissonian distribution. If n̄(b) gives the average number of interactions when two
hadrons pass each other with an impact parameter b, the probability that there is at least
one interaction is given by

Pint(b) = 1− e−n̄(b) . (13)

This gives the requirement for an event to be produced in the first place. The average
number of interactions per event at impact parameter b is therefore given by

n̄(b)|n 6=0 =
n̄(b)

Pint(b)
. (14)

When integrated over all impact parameters, the relation 〈n〉 = σhard/σND (Sec. 2) must
still hold, giving

〈n〉 =
∫

n̄(b)|n 6=0 Pint(b) d
2b

∫

Pint(b) d2b
=

∫

n̄(b) d2b
∫

(1− e−n̄(b)) d2b
=

σhard

σND

. (15)

Defining the shorthand X = (x1, x2, p
2
⊥) and dX = dx1 dx2 dp

2
⊥, σhard may now be written

as

σhard =

∫

dX
dσ

dX
=

∫∫

dX d2b
dσ

dX
Õ(b, x1, x2) , (16)

where eq. (12) has been used to associate an impact-parameter profile with each X co-
ordinate. Here, dσ/dX gives the convolution of PDF factors and the (regularised) hard
partonic cross section

dσ

dX
= f1(x1, p

2
⊥) f2(x2, p

2
⊥)

dσ̂

dp2⊥

∣

∣

∣

∣

reg

. (17)

Comparing with eq. (15), this gives the average number of interactions at an impact pa-
rameter b to be

n̄(b) =

∫

dX
dσ

dX
Õ(b, x1, x2) . (18)
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One can now give a geometrical interpretation to σhard and σND

σhard =

∫

n̄(b) d2b , (19)

σND =

∫

Pint(b) d
2b =

∫

(

1− e−n̄(b)
)

d2b , (20)

such that eq. (15) is fulfilled. This determines the value of a0 as follows. Eq. (19) fixes the
total area of n̄(b), within the constraint that it is possible to have either a large width a0 and
a small height n̄(0), or the other way around. In the former case, 1 − exp(−n̄(0)) ≈ n̄(0),
giving σND ≈ σhard. In the latter, strong saturation effects lead to 1− exp(−n̄(0)) ≪ n̄(0),
giving σND ≪ σhard. The saturation corrections increase monotonically with n̄(0) and so a
unique solution for a0 is defined. This is studied further in Sec. 3.1.

2.3 Impact parameter selection

In picking the hardest interaction in an event, p2⊥1, the naive probability for a collision must
be multiplied by the probability that there were no harder ones at scales p2⊥ > p2⊥1. Using
the notation

n̄(b) =

∫

dn̄(b)

dp2⊥
dp2⊥ , (21)

the total probability distribution is now

dPhardest

d2b dp2⊥1

=
dn̄(b)

dp2⊥1

exp

(

−
∫ s/4

p2
⊥1

dn̄(b)

dp2⊥
dp2⊥

)

. (22)

One possible way of generating events according to this distribution is through trial
interactions, similar to e.g. trial showers in CKKW-L [55], in the following way. If the
evaluation of the Sudakov factor is temporarily deferred, then

dPhardest

dp2⊥1

=

∫

d2b
dn̄(b)

dp2⊥1

=

∫∫

dx1 dx2 f1(x1, p
2
⊥1) f2(x2, p

2
⊥1)

dσ̂

dp2⊥1

∣

∣

∣

∣

reg

. (23)

p2⊥1, x1 and x2 may then be picked according to the above distribution, before an impact

parameter b is selected according to Õ(b, x1, x2) d
2b. The scale of a trial MPI interaction,

p2⊥2, may then be generated for this b value, as described in the next section. It is important
to note that the p2⊥2 evolution is started from the kinematical limit, s/4, as for an event
with no previous interaction. If p2⊥2 < p2⊥1, then p2⊥1 and b are accepted, else the selection
procedure must restart from the beginning.

The above provides a prescription for generating an inclusive sample of non-diffractive
events (hereafter referred to as minimum bias), but can also be used to generate the MPI
activity accompanying a pre-given hard process. This is simplest in the case where the hard
process in question is already part of the set of processes contained in dσ/dX . Here, p2⊥1 is
provided by this hard process, and the MPI framework should not generate any interactions
at higher scales, or else one would double count. Given a hard process at a scale p2⊥1, b can

be selected from Õ(b, x1, x2) d
2b, and then retained with a probability equal to the Sudakov

of eq. (22). Again, trial interactions are a possible way to generate this Sudakov factor.

6



When the hard process is not contained in dσ/dX , such as Z0 production, the MPI
framework can begin evolution at the kinematical limit without any risk of double counting.
For this discussion, noting that p⊥ is intended as a measure of hardness, we assume a scale
such as ŝ to be a reasonable choice for this process. One choice that must be made relates
to which interaction is used in selecting the impact parameter for an event. If we decide
that it is always the hardest interaction in an event, it should be remembered that there
is now the possibility that this is an MPI, although this is rather unlikely for a process
already picked to be hard.

When the pre-given hard process has a scale above 10−20GeV, the Sudakov of eq. (22)
will be close to unity, meaning that b can be directly selected from Õ(b, x1, x2) d

2b and any
ambiguity will be minor. For hard processes around these scales, the correct procedure is
less clear. One choice would be to retain the selection according to Õ(b, x1, x2) d

2b only,
while another would be to additionally apply a Sudakov weight to the selection.

In the hard process studies that follow, the impact parameter is always selected accord-
ing to the hard process (not necessarily the hardest interaction, as above), and this selection
is not weighted with a Sudakov. As above, for hard processes above 10 − 20GeV, these
choices do not greatly affect the outcome. With the single Gaussian, double Gaussian and
overlap matter profiles, the MPI framework will give exactly the same impact parameter
profile for e.g. a 1TeV Z ′ as for Z0 production. The amount of MPI activity is modified
by longitudinal correlations, however, such that the 1TeV Z ′ will, on average, have less
activity. The new matter profile, with its varying width, instead, dynamically changes to
give more underlying activity for the more massive state, given the differing x values that
enter.

2.4 Subsequent evolution

Once b has been fixed, as in the previous section, the remaining sequence of multiple
interactions must be generated according to

dP

dp⊥i
=

dn̄(b)

dp⊥i
exp

(

−
∫ p⊥i−1

p⊥i

dn̄(b)

dp2⊥
dp2⊥

)

. (24)

This can be achieved through the veto algorithm [3], as follows. Temporarily neglecting the
impact parameter dependence, an overestimate of the form

∫∫

dx1 dx2 f1(x1, p
2
⊥) f2(x2, p

2
⊥)

dσ̂

dp2⊥

∣

∣

∣

∣

reg

≤ N

(p2⊥ + r p2⊥0)
2

(25)

can be used, where r and N are tunable factors; the former to help flatten the correction
ratio, to improve generation efficiency, and the latter to ensure that the overestimate sits
above the cross section over the entire phase space. With the impact parameter dependence
present, an additional factor, giving the maximum of the overlap distribution is introduced

Õ(b, x1, x2) ≤ Õmax(b) =
1

2πa20
exp

(

− b2

2a2max

)

, (26)

amax = a0

(

1 + a1 ln
1

xmin

)

, (27)
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Figure 1: (a) The rise of the total and non-diffractive pp cross section with energy, and (b)
the ratio a0(ECM)/a0(200GeV), over the same energy range, for a set of different a1 values

where the first factor gives the maximum height of the distribution, while the exponential
width is dictated by smallest x values reached. This then gives a total overestimate

dn̄(b)

dp2⊥
≤ N Õmax(b)

(p2⊥ + r p2⊥0)
2
, (28)

giving a uniform overestimation for all x1 and x2

∫

Õmax(b) d
2b =

a2max

a20
. (29)

Eq. (28) is inserted into eq. (24) to pick the next p⊥ scale. The additional acceptance weight
for this interaction is now given by

Õ(b, x1, x2)

Õmax(b)
=

2a20
a2(x1) + a2(x2)

exp

(

b2

2a2max

− b2

a2(x1) + a2(x2)

)

. (30)

In case of failure, the evolution in p⊥ is continued downwards from the rejected p⊥ value.

3 Results

3.1 Growth of the total cross section

In principle, a1, as introduced so far, is a free parameter. If, however, as suggested earlier,
the wider profile of low-x partons is to account for the growth of the total cross section
(or the inelastic non-diffractive one, as in this model), then it can be constrained by the
requirement that a0 should be independent of energy.

The total cross section is taken from a Donnachie-Landshoff parameterisation [54]. It is
also necessary to break this down into elastic, diffractive and non-diffractive components,
which is done based on a parameterisation incorporating empirical corrections such that
the elastic and diffractive cross sections do not exceed the total at higher energies [56]. In
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Figure 2: Root-mean-squared value of (a) n̄ and (b) Pint as a function of the centre-of-mass
energy

all that follows, we will deal explicitly with pp collisions. The assumed rise of the total and
non-diffractive cross sections are shown as a function of centre-of-mass energy in Fig. 1a.

In the calculation of a0, dσ/dX enters, giving a dependence on PDFs and the p⊥0 used
to regularise the cross section. In all that follows, the parameters of Tune 4C [9], a tune
to early LHC data, are used. It is the relative variation of a0 as a function of energy that
is of interest here, and in Fig. 1b the ratio a0(ECM)/a0(200GeV) is shown over the same
range of energies, for a set of different a1 values. A value of a1 = 0.15 gives an a0 that is
relatively stable across this energy range.

As discussed in Sec. 2.2, through the eikonalisation procedure and tuning of the a0
parameter, the width of the matter profile has an absolute meaning, related to the size of
the incoming hadron. As a1 is increased from zero, n̄(b), after integration over x values,
is higher both at small and large b values, and smaller at intermediate b values, such that
the total area is conserved. In some ways the shape is similar to what one would expect
from a double Gaussian matter profile, where the central core of matter would tend to push
the distribution up at small b, while the tail would also have a larger content, due to the
peripheral component.

Before eikonalisation, and given that the form of eq. (9) stretches out to infinity, a
simple measure is given by the RMS value of n̄(b)

〈b2〉 =
∫

b2 n̄(b) d2b
∫

n̄(b) d2b
=

1

σhard

∫

b2 n̄(b) d2b . (31)

The variation of 〈b2〉 with energy is shown in Fig. 2a. The slope slightly decreases with the
rise of a1, dependent on the enhancement of n̄(b) at low b relative to high.

Assuming a single Gaussian matter profile, the width, a, needed to give the same 〈b2〉
is given by a =

√

3〈b2〉/2, noting that the RMS radius is defined in 3 rather than 2
dimensions. This gives values beneath the conventional charge RMS radius. We do not
study this further here, but do note that the eikonalisation procedure used ignores any
contribution from diffractive components, also noted below.

The same quantity, after the eikonalisation procedure can also be obtained from

〈b2〉eik =
∫

b2 Pint(b) d
2b

∫

Pint(b) d2b
=

1

σND

∫

b2 Pint(b) d
2b . (32)
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The variation of this quantity with energy is shown in Fig. 2b. After eikonalisation, the
component of n̄(b) at large b becomes more important, leading to an increase as a1 grows
from zero, due to the contribution of low-x partons.

A final consistency check is provided by the standard eikonal formulae [28], providing a
relation between the total and inelastic cross sections

σinel =

∫

d2b
(

1− e2χ(b)
)

, (33)

σtot = 2

∫

d2b
(

1− eχ(b)
)

. (34)

From the former equation, we can identify the eikonal function χ(b) = n̄(b)/2. Using the
latter equation to calculate the total cross section, the result is consistently below the total
cross section of Fig. 1a by around 10 − 20%. As noted above, the diffractive component
has been ignored in the above framework, and is a potential source for these deviations,
including the low 〈b2〉 values noted previously.

3.2 Hard processes

In what follows, comparisons are made between the different hadronic matter distributions
(Sec. 2.1). For impact parameter distributions, results are presented in terms of bnormMPI =
b/bavg, where

bavg =

∫

b Pint(b) d
2b

∫

Pint(b) d2b
=

1

σND

∫

b Pint(b) d
2b , (35)

such that the average value is unity for minimum-bias events. Also of interest is the en-
hancement factor associated with each interaction, Õ(b, x1, x2) of eq. (18). This is also
normalised such that the average is unity for the hard process in minimum-bias events,
enormhard = Õ(b, x1, x2)/eavg, where

eavg =

∫

n̄(b)Pint(b) d
2b

∫

n̄(b) d2b
=

1

σhard

∫

n̄(b)Pint(b) d
2b , (36)

compensating for the fact that the average number of interactions is raised by removing
the sample with no interactions.

As discussed in Sec. 2.3, those processes with final states which cannot be produced
by the MPI framework will begin their p⊥ evolution at the kinematical limit. Due to this,
their impact parameter profiles will be picked directly according to Õ(b, x1, x2) d

2b, with
no Sudakov weighting. This offers a direct way to examine the effects of the new matter
profile in comparison to previous ones.

3.2.1 Z0 production

In this section, the MPI accompanying Z0 (with no γ∗ interference) production is studied.
The following matter profiles are compared:

SG: single Gaussian,

DG: double Gaussian with default parameters a2/a1 = 0.4 and β = 0.5,

Overlap: overlap function with p = 1.5,

Log: logarithmically x-dependent Gaussian with a1 = 0.15.
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Figure 3: Z0 production in pp collisions at 7TeV. (a) The impact parameter distribution,
(b) enhancement factor of the hard interaction, (c) number of MPI and (d) inclusive p⊥
spectrum of MPI per event. The ratio plot in (d) is normalised to the single Gaussian result

This process is studied in pp collisions at
√
s = 7TeV. To study only the effects of the MPI

model, parton showers are switched off. This does affect some longitudinal correlations;
initial-state radiation, in particular, is in competition with MPI for momentum from the
beams.

Fig. 3a shows the impact parameter distributions for these matter profiles. As outlined
previously, in Z0 production, they are picked unmodified from Õ(b, x1, x2) d

2b, but shown
normalised such that the average value would be unity for minimum bias events. Noting
that d2b ∝ b db, it is possible to study the general features of Õ(b, x1, x2) itself. In the
double Gaussian profile, relative to the single Gaussian, the central core of hadronic mat-
ter dominates at small b, giving larger overlap values, although with a faster fall-off. The
peripheral Gaussian component then slows this fall-off, giving contributions out to larger
b values. The overlap scenario sits roughly between the single and double Gaussian dis-
tributions. The log profile is now an average of single Gaussian overlap functions, whose
widths are determined by the combination of x1 and x2 values that contribute. These x
values give a narrower distribution than the single Gaussian case. At larger values of a1,
this distribution would become even more narrow. It is these features which directly give
rise to the form of the impact parameter profile, shown in the figure. In particular, the log
scenario is peaked at smaller values than the single Gaussian, but without a large tail out
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to high b values, unlike the double Gaussian.
In Fig. 3b the distribution of the enhancement factor, Õ(b, x1, x2), is shown, again nor-

malised such the average value would be unity for minimum bias events. It is noted that this
distribution gives the overlap for those events where b has already been selected according
to Õ(b, x1, x2) d

2b. Formally, this is stated by dN/dÕ(b, x1, x2) = dN/db∗db/dÕ(b, x1, x2),
where dN/db ∝ b Õ(b, x1, x2). For the single Gaussian, where also dÕ(b, x1, x2)/db ∝
b Õ(b, x1, x2), the enhancement is flat. It stretches from 0 to π, as determined by the
normalisation of eq. (11). The log profile is again an average of single Gaussians. The
upper cutoff is determined by the combination of x values that gives the lowest possible
a2(x1)+a2(x2). The width and shape of the fall-off is related to the range and relative rate of
these x combinations, respectively. The shape for the overlap scenario can similarly be cal-
culated. For an overlap Õ(b) = k exp(−b1.5), this is given by dN/dÕ(b) ∝ − ln1/3(k/Õ(b)).
It is not so easily calculated for the double Gaussian, but the shape of the distribution can
be understood as its peripheral Gaussian component, stretching out to large b, giving the
peaking behaviour as enormhard → 0.

It is perhaps the number of MPI accompanying Z0 production and their p⊥ spectrum
that are of more interest, since they directly influence physical observables. The distribution
of the number of MPI per event is shown in Fig. 3c. For the single Gaussian, double
Gaussian and overlap scenarios, the enhancement factor of the hard process is retained for
the remaining sequence of MPI. Before taking into account energy-momentum conservation,
the average number of MPI per event is directly proportional to the enhancement factor,
with the actual number fluctuating around this mean value. The PDF rescaling then
suppresses the high tail of this distribution, pushing events to smaller NMPI. This does
affect the overall shape of the curves, but it remains true that the widths of the NMPI

distributions are essentially dictated by the widths of enormhard . For the double Gaussian and
overlap scenarios, the peaking behaviour as enormhard → 0 gives a similarly peaked distribution
as NMPI → 0.

For the log profile, the narrower impact parameter gives rise to fewer events with small
numbers of MPI. The tail, however, does not go out much beyond the single Gaussian, as
the double Gaussian and overlap profiles do. This can be explained by the fact that the
enhancement factor for the sequence of MPI is no longer fixed to the hard enhancement
factor, but varies as a function of the x values of each individual interaction.

The dominant process in MPI is t-channel gluon exchange. The parton-level process
has no suppression at large-x values, but is affected by PDF factors. Given the requirement
that τ = x1x2 < 4p2⊥/s, as p⊥ falls, the minimum τ also falls, opening up new regions
of allowed x values. From the small-x peaking of the PDFs, one would expect that, on
average, the x values will fall as p⊥ does. This, in turn, would lead to lower enhancement
factors, as the partons become more smeared out in the proton.

The result of the above is visible in Fig. 3d, where the increase in the inclusive p⊥ spectra
of MPI is flat for the double Gaussian and overlap profiles, relative to the single Gaussian,
but falls off towards low p⊥ for the log scenario. The slope of this fall-off is affected by
the impact parameter distribution, which, in turn, is determined by the x values of the
hard process. There are also additional PDF rescaling effects at play, but checks show that
these are small. The change in shape of the absolute distributions at ∼ 2GeV is due to the
freezing of the PDFs. Overall, then, the changing enhancement factor of MPI regulates the
amount of MPI, affecting the tail of the log profile in Fig. 3c.

12



 0

 5

 10

 15

 20

 25

-6 -5 -4 -3 -2 -1

(1
 / 

N
) 

dN
 / 

dl
og

10
(τ

)

log10(τ)

DY
Z0

Z’

Figure 4: The τ distribution of low mass Drell-Yan (DY), Z0 and Z′ events in pp collisions
at

√
s = 7TeV

3.3 Low mass Drell-Yan, Z0 and Z′ production

The next step of our comparisons is to include other processes, again where there is no
Sudakov involved, but for which the log profile will dynamically produce variations in
the distributions. In particular, the following processes are used as templates to explore
different well-defined x ranges:

DY: low mass Drell-Yan (10.0 < m̂ < 12.5GeV),

Z0: as in the previous section,

Z′: a 1TeV Z′ resonance.
Again, we note that parton showers are not switched on here, which also take momentum
from the beams, affecting PDF rescaling. For the log profile, it is the combination of x1

and x2 together in eq. (9) that is important. In Fig. 4, the τ = x1x2 distribution of the
three processes is shown, with each contained in a well defined region.

In Sec. 2.3, some discussion was given relating to the choice of impact parameter in
hard processes, when its scale is in regions where the Sudakov of eq. (22) begins to vary
away from unity, and where the chance of having a harder MPI also grows. The Drell-Yan
process used here will be affected by these issues. We side step them here; this comparison is
designed to highlight the effects of the log profile in certain x-ranges, without the additional
complications of the Sudakov factor. We retain the decision to pick impact parameters
according to the hard process and without any Sudakov weighting.

Fig. 5 shows the (a) impact parameter and (b) enhancement factor in the hard process
per event, this time comparing the processes given above. These are also compared to
the single Gaussian profile, which, as noted previously, gives the same results for these
distributions for all three processes. In Fig. 6, the number of MPI is shown for (a) low-
mass Drell-Yan, (b) Z0 and (c) Z′. Fig. 7 shows the ratio of the inclusive p⊥ spectrum of
MPI for the log profile to the single Gaussian result for the three processes.

All the features in these distributions can be understood in terms of the previous discus-
sion of Z0 events. As expected, the impact parameter distributions become narrower as the
τ range in question increases, leading to a wider distribution for the enhancement factor in
the hard process. The Drell-Yan process gives very similar results to the single Gaussian
for the impact parameter, hard enhancement factor and number of MPI distributions. The
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Figure 5: Low-mass Drell-Yan, Z0 and Z′ production in pp collisions at
√
s = 7TeV. (a)

The impact parameter distribution and (b) enhancement factor of the hard interaction per
event. The single Gaussian distributions are identical between the three processes
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Figure 7: Ratio of the inclusive p⊥ spectrum of MPI for the log profile to the single Gaussian
result for the three different processes

x values that contribute, in some sense, correspond to an average “hardness”, with the
same amount of activity above and below. All three processes have a similar endpoint in
NMPI, due to PDF rescaling. The even narrower impact parameter for Z′ events further
suppresses events with low NMPI, relative to Z0 production. The p⊥ ratios of Fig. 7 all
show an enhancement of high-p⊥ activity relative to low, as expected. As the x values of
the hard process get larger, and the impact parameter profile narrower, the slope becomes
steeper.

3.4 Minimum bias

We now move on to minimum-bias events. Here, there are additional correlations to con-
sider, relative to the hard processes of the previous section. In particular, once a hard
process has been selected, the subsequent MPI evolution will begin from this scale, mean-
ing that high-p⊥ events are likely to have more MPI, given the larger p⊥ evolution range
they have available. Low-p⊥ events will also be biased towards larger impact parameters
relative to high-p⊥ ones, given the Sudakov weighting of eq. (22).

Again, we begin with the (a) impact parameter, (b) enhancement factor in the hard
process and (c) number of MPI per event, now shown in Fig. 8, for the same four matter
profiles used in Z0 production. The differences here are somewhat smaller than for the hard
processes, so the ratios of the double Gaussian, overlap and log matter profiles to the single
Gaussian are also given.

Both the impact parameter and enhancement factor distributions are now fixed, so that
they have an average value of unity for all the different profiles. Any increase or decrease
of these distributions over a given range must be compensated elsewhere. The shape of the
impact parameter distributions are now directly dictated by n̄(b). For the log profile, it
contains all the correlations brought about by the x-dependent width. Relative to the single
Gaussian, the other three profiles show the same features; larger contributions at small and
large b values and a region of intermediate b where it sits below. For the log profile, this is
consistent with the shape of n̄(b) described in Sec. 3.1. Fig. 8a shows that the variation of
the log profile, relative to the single Gaussian, is smaller than for the double Gaussian and
overlap scenarios.
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Figure 8: Minimum-bias events in pp collisions at
√
s = 7TeV. (a) The impact parameter

distribution, (b) enhancement factor of the hard interaction and (c) number of MPI per
event. Ratio plots are normalised to the single Gaussian results

The overall shape of the enormhard distributions is given by the effect of the impact parameter
profiles, which now vary as a function of the p⊥ of the hard process, as noted above. Low-
p⊥ events, which dominate, will be biased to higher impact parameters, giving the increase
at low enhancement factors. Relative to the single Gaussian, the three other profiles all
show the same features; there is an increase at low enormhard , followed by a decrease, before the
tails continue out beyond where the single Gaussian cuts off. These changes are a direct
consequence of the changed impact parameter distributions.

For the NMPI distributions, the overall shape is now due to the correlation between p⊥
and the number of MPI. On average, the more numerous low-p⊥ events have less range
of evolution, and therefore fewer MPI. The variation of the log profile, relative to the
single Gaussian is small, but follows those of the double Gaussian and overlap; there is an
increase at low NMPI, followed by a decrease, before again increasing in the tails. Again,
these changes follow directly from the differences of the impact parameter distributions.

Finally, in Fig. 9, the p⊥ distribution (a) of the hard process and (b) inclusive for
subsequent MPI are shown. For the hard process, relative to the single Gaussian, the other
three profiles give more activity at low p⊥, relative to high. It becomes easier to have
peripheral interactions involving small-x partons, with the event containing no further
activity. In the high-p⊥ tails, the overlap is essentially saturated. There is a sharp rise as
p⊥ → 0 for the log profile. This change in shape is due to the freezing of the PDFs; in

16



 0.8
 1

 1.2
 1.4

 0  2  4  6  8  10  12  14

R
at

io

p⊥   [GeV]

 10-2

 10-1

dN
M

P
I /

 d
p ⊥ 

 / 
N

  [
G

eV
-1

]

(a)

SG
DG

Overlap
Log

 0.8
 1

 1.2
 1.4

 0  2  4  6  8  10  12  14

R
at

io

p⊥   [GeV]

 10-3

 10-2

 10-1

 100

dN
M

P
I /

 d
p ⊥ 

 / 
N

  [
G

eV
-1

]

(b)

SG
DG

Overlap
Log

Figure 9: p⊥ distribution (a) of the hard process and (b) inclusive for subsequent MPI in
minimum bias events. Ratio plots are normalised to the single Gaussian result

these low-p⊥ bins, there is no penalty to pay for taking higher x values, up to this freezing
point, resulting in extra contributions here. The inclusive p⊥ spectra for the subsequent
MPI now give exactly the opposite results to those of the hard process, such that, when
they are summed together, they give back the unmodified p⊥ spectrum of eq. (17), as they
must.

3.5 Minimum-bias and underlying-event studies

We can examine the effect of this new matter profile on minimum-bias and underlying
event studies. In particular, Tune 4C, used also in the previous studies, offers an attractive
starting point. This tune is based on a modification to a Tevatron tune, such that it is able
to describe early LHC data. One of the features of this tune is a single Gaussian matter
profile, which gives a reasonable match to both the rise of the underlying event as well as
the width of charged multiplicity distributions in minimum-bias events.

In Fig. 10, the results of this tune are shown for (left-to-right, top-to-bottom):

1) ATLAS (|η| < 2.5, p⊥ > 500MeV) INEL>0 minimum-bias dataset. Charged rapid-
ity distribution in minimum-bias events at

√
s = 900GeV and 7TeV [57, 58]. The

900GeV data is taken from the online HEPDATA database, while the 7TeV data is
taken from the corresponding reference.

2) As (1), but showing the charged multiplicity distributions. Errors are not included
for the 7TeV data.

3) ATLAS (|η| < 2.5, p⊥ > 500MeV) charged track based underlying event at
√
s =

900GeV and 7TeV [59]. A charged track of p⊥ > 1GeV in the η acceptance is required
to trigger an event. Data and errors have been read off from the corresponding
reference. Charged particle number density in the toward region.

4) As (3), but showing the sum-p⊥ density in the toward region.

5) As (3), but showing the charged particle number density in the transverse region.
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Figure 10: Tune 4C compared against early LHC data. Further details are given in the
text

6) As (3), but showing the sum-p⊥ density in the transverse region.

Where errors are shown, they represent the systematic and statistical errors summed in
quadrature. Although the rise of the underlying event is too steep in the toward region, and
activity in the transverse region is slightly too low, overall it gives a reasonable description
of data.

The first step is to replace the single Gaussian with the logarithmically x-dependent
matter profile with a1 = 0.15. This change is made just in the non-diffractive component,
while that used in diffractive framework for now remains a single Gaussian. Diffraction
primarily impacts the low bins of the charged multiplicity distribution, and will not greatly
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Figure 11: Tune 4C, using the log profile, and with a raised p⊥0 in the MPI framework,
compared against an overlap profile with p = 1.6, also with a raised p⊥0, and LHC data

affect the results shown here. Just this change leads to a rise in the tail of the charged
multiplicity distributions, with an increase in activity in all regions of the underlying event,
as expected from the considerations of the previous sections. This behaviour is most closely
matched by an overlap function with p = 1.6, against which we can compare the results.
The simplest way to remove this excess activity is a retuning of the p⊥0 parameter of the
MPI framework, in this case achieved by raising pref⊥0 = 2.085 → 2.15GeV. This rise does
not greatly affect the relative slope of a0, as constrained in Sec. 3.1. The results are shown
in Fig. 11 for the same distributions as Fig. 10.

After this retuning, the log profile shows some promise. For the charged multiplicity
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Figure 12: Charged number and sum-p⊥ density in the transverse region of the underlying
event in Drell-Yan

distribution, the tail now sits above the data with the overlap profile, while the match is
improved with the log. This effect has already been seen in Fig. 8c, where the overlap and
double Gaussian profiles “shoot up” in the tails, while the log profile gives a more gradual
rise. The rise of the underlying event is almost exactly the same in the two different profiles.
In the toward region, the rise is still too fast, and slightly worse than the unmodified tune.
The log profile, here, does have slightly higher tails, consistent with a narrower matter profile
in higher bins of plead⊥ , that do suggest a slightly better shape overall. The description in the
transverse region is, in fact, improved, although a further decrease in activity, for example
to improve agreement in the toward region, would likely push activity lower here, similar
to the unmodified tune.

3.6 Underlying event in Drell-Yan

Studies can also be made on the underlying event in Drell-Yan processes. Here, a CDF
study [60] is used, where a leading Z0 is reconstructed from the lepton pair. For simplicity,
we stay with Tune 4C and the modified version of it, using the new matter profile, but
noting that it has been shown to give too much activity at the Tevatron. Tune 2C, also
introduced in [9], is a tune based only on Tevatron data. It describes minimum-bias and
jet-based underlying event studies well, but gives only limited agreement with the Drell-Yan
results. In particular, the charged particle number and sum-p⊥ densities in all regions are
too low.

The results from Pythia are run through the Rivet analysis of this study [61]. The
charged particle number and sum-p⊥ densities in the transverse region, as a function of
p⊥(Z

0), are shown in Fig. 12. At first glance, it appears that Tune 4C does not do too badly,
but, as above, it is known to give too much activity at the Tevatron. As expected from
previous sections, the log profile, then, gives an increase in activity, which also occurs in the
toward and away regions. It should be noted that the increase of the sum-p⊥ density, relative
to the charged number density, is dependent on other factors, such as colour reconnection,
which differ between Tunes 4C and 2C. Given this, the conclusions we can draw from this
study are limited, but the x-dependent matter profile appears to be a step in the right
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direction.

4 Summary and outlook

There is both theoretical and experimental evidence suggesting that the wave function of
high-x partons should be narrower than that of low-x ones. In this article, we have not
tried to examine the underlying mechanism for this, but instead have modelled the effect
using a simple Gaussian shape with a width that varies logarithmically with the x-value of
the parton being probed. This is introduced as a new matter profile in the MPI framework
of Pythia 8.

The framework, outlined in Sec. 2, is additionally formulated in terms of a physical size
of the proton. Although introduced with a free parameter, a1, regulating the importance of
the logarithmic component, it can be fixed if it is assumed that the variation should account
for the growth of the total cross section. For this to be the case, this parameter should lie
in the region of a1 = 0.15. In the studies made here, it has been considered a fixed quantity
rather than a free parameter. The estimates of the proton size come out somewhat below
current low-energy measurements, but as noted, the eikonalisation procedure neglects the
diffractive components of the cross section.

The model gives a matter profile which in some ways is similar to the double Gaussian
scenario. There is an increase in the matter at both small and large impact parameters,
arising naturally due to the form of the eq. (9). The results are further changed, however,
by the varying enhancement factors in the subsequent chain of MPI. An early tune to LHC
data has been used to quantify the effects of this profile on minimum-bias and underlying-
event distributions. In particular, although the physical results are somewhat similar to
an intermediate overlap profile, there are differences which give some indication that this
profile could give rise to a viable tune to LHC data.

The case of MPI activity accompanying hard processes which do not contain final-state
particles which can be created in MPI, such that the evolution covers the entire phase space,
is interesting both in its own right, and as an illustration of the features of the model. The
previous matter profiles give exactly the same impact parameter distribution, regardless of
whether the underlying process is a Z0 or a 1TeV resonance. The new profile changes this
situation. The x dependence now leads to a situation where the higher-mass resonance will
give rise to a narrower impact parameter profile, leading to changes in both the number
of MPI and their p⊥ spectrum. In comparisons to data, it leads to extra activity in the
underlying event description of Drell-Yan processes, which appears to be a step in the right
direction, in terms of describing Tevatron data.

The results, then, are promising. A more general tuning to data would help ascertain
more clearly if this profile can improve the overall description, relative to the other profiles
available. Future LHC studies on the underlying event in Drell-Yan processes would be a
welcome addition, in order to further test the model. The framework will be released in
the upcoming Pythia 8.150 version, along with the modified Tune 4C, where we hope it
will be studied further by a wider community.

21



Acknowledgments

This work was supported by the Marie Curie Early Stage Training program “HEP-EST”
(contract number MEST-CT-2005-019626), the Marie Curie research training network
“MCnet” (contract number MRTN-CT-2006-035606), and the Swedish Research Council
(contract number 621-2010-3326).

References
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[2] H.-U. Bengtsson and T. Sjöstrand, Comput. Phys. Commun. 46 (1987) 43.
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