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Abstract
We consider central exclusive production of gg dijets in proton-proton (proton-antiproton) colli-

sions at LHC and Tevatron for different intermediate and final gluon polarisations. The amplitude

for the process is derived within the k⊥-factorization approach (with both the standard QCD and

the Lipatov’s effective three-gluon verticies) and is considered in various kinematical asymptotia, in

particular, in the important limit of high-p⊥ jets. Compared to earlier works we include emissions

of gluons from different gluonic t-channel lines as well as emission of quark-antiquark dijets. Ra-

pidity distributions, gluon jet p⊥ distributions and invariant dijet mass distributions are presented.

We explore the competition of the standard diagram with both jets emitted from a single t-channel

gluon and the one with the emission from both t-channel gluons. The second mechanism requires

a special treatment. We propose two different approaches. Including special kinematics and using

properties of off-diagonal gluons at small x and ξ we arrive to correlations in two-dimensional dis-

tributions in rapidity of one and second jet. We find that the second contribution is much smaller

than that known from the literature. The digluon production constitutes an important background

to exclusive Higgs production.
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I. INTRODUCTION

Experimental studies of hard exclusive processes, in particular, the production of dijets
at midrapidities, has been recently performed at Tevatron [1] and will be done at the LHC
in the near future [2, 3].

It is expected that the contribution of the gluon pairs to the exclusive hard dijets produc-
tion dominates over that from quark-antiquark pairs. Martin, Ryskin and Khoze proposed
a QCD mechanism of exclusive digluon production [4]. In certain regions of the phase space,
the process pp→ p(gg)p (similarly to qq̄ production) is dominated by the non-perturbative
region of gluon transverse momenta, and even perturbative ingredients like the Sudakov form
factor are not under full theoretical control [6]. The problem becomes even more pronounced
when considering the irreducible backgrounds in central exclusive production (CEP) of Higgs
boson originating from the direct exclusive bb̄ pair production in a fusion of two off-shell
gluons. In particular, in Ref. [7, 8] it was shown that the central exclusive production of bb̄
jets at the LHC, may noticeably shadow the corresponding signal of the Higgs boson in the
bb̄ decay channel. Along with unknown NLO corrections to the k⊥-dependent hard subpro-
cess amplitude g∗g∗ → jj (in particular, the NLO contribution from the rescattering of the
final state gluons into qq̄ pairs can be potentially important), this may lead to problems in
experimental identification of the Higgs boson.

Recently, it was shown in Ref. [9] that the first LHC measurements of the exclusive dijets
would significantly reduce the theoretical uncertainty for the central exclusive Higgs boson
production. This makes the process under consideration especially important from both
theoretical and experimental points of view.

Such a process has been recently investigated in detail in Ref. [6], and fairly good descrip-
tion of the Tevatron data has been achieved. We would like to extend such an analysis, both
analytically and numerically, by analyzing separate contributions from different final gluon
polarisations, various kinematical regions of the 4-particle phase space, which are important
for future LHC measurements, and the theoretical uncertainties related with different choice
of UGDFs and the factorisation scale. Similarly to Ref. [6], we shall limit ourselves to the
lowest-order QCD calculation, and postpone the analysis of the higher order contributions
for a separate study.

Compared to the previous studies, we would like to perform an estimation of the pro-
cess when one gluon is emitted from a one t-channel gluon of the QCD ladder and the
second gluon is emitted from the other t-channel gluon. This contribution was discussed in
Ref. [6] as potentially sizable. In this work, we present the first numerical calculation of this
contribution.

Recently, the calculation of the exclusive production of quark-antiquark dijets has been
performed for heavy cc̄ [10] and bb̄ [7, 8] pairs. Here, we extend our previous analysis and
present the calculation including both contributions from light (u, d, s) and heavy (c, b)
quark/antiquark jets compared to the one from the gluonic jets.

A high precision measurement of exclusive bb̄ pair production is required for central
exclusive Higgs production measurements [2, 3]. It is, therefore, instructive to estimate the
reducible background for Higgs CEP at LHC coming from misidentification of gluon jets.

Another interesting point, which we would like to investigate here, is the role of the
gluon reggeization in the exclusive gluonic dijets production. For this purpose, we employ
the formalism of the quasi-multi-Regge kinematics (QMRK) with the Lipatov’s nonlocal
vertices for the triple-gluon coupling [11], and perform a numerical comparison with the
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standard pQCD calculation (with standard gluons) [6].
This paper is organized as follows. In the second section, we present the standard exclu-

sive diffractive amplitude when both gluons are produced from the same t-channel gluonic
line as well as the amplitude when one of the gluons is emitted from one line and the
second gluon from the second line. In the third section, we briefly remind formulae for
quark-antiquark dijets with arbitrary quark mass. The fourth section contains discussion of
unintegrated gluon densities and model assumptions. In the Results section, we present pre-
dictions for various differential distributions and compare our results with the available CDF
data as well as discuss corresponding theoretical uncertainties. We also present predictions
for future studies at LHC. Finally, the summary and conclusions close our paper.

II. DIFFRACTIVE AMPLITUDE OF THE EXCLUSIVE GLUON PAIR PRO-

DUCTION

In this analysis, we apply the QCD mechanism for the central exclusive production,
proposed by the Durham group (referred to below as the KMR approach) in Ref. [12]. In
Fig. 1 we show typical contributions to the exclusive gluon pair production. In the important
limit of high-pt jets, the diagram B is suppressed by an extra hard propagator. Such a limit
has been considered in detail in Ref. [6]. However, at relatively small gluon p⊥’s, the diagram
B may become sizeable and a reliable numerical estimation of its contribution is required.
In this paper, for generality, we would like to calculate both contributions in all potentially
interesting regions of the 4-particle phase space.

k2

k1

p1

p2 p′2

p′1

q0

q1

q2

A B

κ1

κ2

κ3

κ4

FIG. 1: Typical diagrams for the exclusive gluon pair production in exclusive double diffractive

pp scattering through the gluon-gluon fusion subprocess g∗g∗ → gg (A) and the 4-gluon fusion

subprocess g∗g∗g∗g∗ → gg (B).

Momenta of intermediate and final state gluons are given by the following Sudakov de-
compositions in terms of incoming protons momenta p1,2

q1 = x1p1 + q1⊥, q2 = x2p2 + q2⊥, q0 = x′1p1 + x′2p2 + q0⊥ ≃ q0⊥, x′1,2 ≪ x1,2,(2.1)

p3 = β1p1 + α1p2 + k1⊥, p4 = β2p1 + α2p2 + k2⊥ . (2.2)

In forward scattering limit, we then have

t1,2 = (p1,2 − p′1,2)
2 = p′

2
1/2⊥ → 0, q0⊥ ≃ −q1⊥ ≃ q2⊥ . (2.3)

The Mandelstam invariants in the two-gluon fusion in the limit of high-p⊥ gluon jets |k| ≡
|p3| ≃ |p4| ≫ |q0| can be written as [6]

M2
gg ≡ sgg ≃ k2 (β1 + β2)

2

β1β2
, tgg ≃ −k2β1 + β2

β1
, ugg ≃ −k2β1 + β2

β2
. (2.4)

3



Here and below, we use notations for the transverse 2-momenta in bold face style.
Let us first consider the explicit derivation of the diffractive amplitude shown in Fig. 1(A)

as an example. Starting at the parton-level process and applying the cutting rules the
imaginary part of the one-loop partonic amplitude of the gluon pair production with a fixed
color indices b1 and b2 can be calculated in the forward limit as (for similar derivation of
Higgs CEP amplitude, see Ref. [13])

ImMparton
b1b2

= −1

2
· 2 · s

2

1

(2π)2
· τaimτajnτ c1mkτ

c2
nl f

db1c1f db2c2 · (2gs)
4(p1p2)p1ρp2σ · (igs)

2 (2.5)

×
∫

d2q0

q2
0q

2
1q

2
2

dx′1dx
′
2δ((p1 − q0)

2)δ((p2 + q0)
2) · Pρνβ

1 (q1, r1)Pβµσ
2 (r1,−q2) · ǫ∗µ(λ1)ǫ

∗
ν(λ2) ,

where the first factor 1/2 comes from the cutting rule, factor 2 comes due to two identical
contributing diagrams (emission of jets from the first and second t-channel gluon line), factor
s
2

1
(2π)2

comes from the phase space in the loop integration, P1,2 are the effective Reggeon-

Reggeon-gluon (RRG) verticies in the quasi-multi-Regge kinematics (QMRK), corresponding
to the kinematical configuration with β1 ≫ β2, α1 ≪ α2 [11]. Here, we apply the eikonal
approximation for the quark-gluon verticies in the proton defined by 2gsτ

a
ijp1,2δλλ′ , where τa

are the Gell-Mann matricies, gs is the QCD coupling, and δλλ′ appears due to the fact that
soft gluons cannot change quark helicity in an energetic proton.

For the color singlet production (since in- and outgoing protons are in the color singlet
state) there is no color transfer from quark lines between protons, i.e. color indices in initial
and final quarks are the same, i.e. i = k and j = l. Then, the color averaging in each quark
line leads to the substitution

τaimτ
a
jnτ

c1
mkτ

c2
nl → δc1c2

4N2
c

in the diffractive amplitude (2.5). The appearance of δc1c2 here automatically gives rise to
the projection of the produced gg-pair onto the color singlet state.

Further, in order to go over to the hadron level, one has to absorb the factor

CFαs

π
=
N2

c − 1

2Nc

αs

π
, αs =

g2s
4π

(2.6)

into a definition of the unintegrated (q⊥-dependent) gluon distribution function (UGDF)
along each proton line as required by the underlying k⊥-factorisation approach [13]. A reli-
able model for generalized off-diagonal UGDFs used in the current analysis will be discussed
in some detail below.

Due to the gauge invariance and the factorisation property of the hard RRG vertices [11]
we get

p1ρp2σPρνβ
1 (...)Pβµσ

2 (...) =
s

4
n+
ρ n

−
σPρνβ

1 (...)Pβµσ
2 (...) → s

4

Cν
1 (...)Cµ

2 (...)

r21
, r1 = q1 − p3 ,

where n± = p1,2/E
cms
p , Ecms

p =
√
s/2, and Cµ

1,2 are the nonlocal RRG couplings defined as
[11]

Cµ
1 (v1, v2) = pµ1

(

β1 −
2v2

1

sα1

)

− pµ2

(

α1 −
2v2

2

sβ1

)

− (v1⊥ + v2⊥)µ,

Cµ
2 (v1, v2) = pµ1

(

β2 −
2v2

1

sα2

)

− pµ2

(

α2 −
2v2

2

sβ2

)

− (v1⊥ + v2⊥)µ . (2.7)
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Finally, the contributions of diagrams Fig. 1 (A) and (B) to the diffractive amplitude
Mgg = MA + MB for the central exclusive gg (with external color indices a and b) dijet
production pp→ p(gg)p read

MA
ab(λ1, λ2) = isA δab

N2
c − 1

∫

d2q0

f off
g (q0, q1)f

off
g (q0, q2) · ǫ∗µ(λ1)ǫ

∗
ν(λ2)

q2
0q

2
1q

2
2

×
[

Cµ
1 (q1, r1)C

ν
2 (r1,−q2)

r21
+
Cµ

1 (q1, r2)C
ν
2 (r2,−q2)

r22

]

, (2.8)

MB
ab(λ1, λ2) = −isA δab

N2
c − 1

∫

d2κ1

f off
g (κ1, κ3)f

off
g (κ2, κ4) · ǫ∗µ(λ1)ǫ

∗
ν(λ2)

κ
2
1κ

2
2κ

2
3κ

2
4

×

Cµ
1 (κ1,−κ2)Cν

2 (κ3,−κ4), (2.9)

where A = 2π2g2s/CF , the minus sign in MB comes from the difference in colour factors,
f off
g (v1, v2) is the off-diagonal UGDF, which is dependent on longitudinal and transverse

components of both gluons with 4-momenta v1 and v2, emitted from a single proton line,
and

r2 = q1 − p4 , κ2 = −(κ1 − p4) , κ4 = −(κ3 − p3) .

Then the matrix element squared for the exclusive diffractive gg production cross section
can be written in the standard way

|M|2 =
∑

a,b

Mab(Mab)
∗ , (2.10)

summing up over all possible color singlet combinations of the final gluons.
The integration in the case of the emission from different t-channel gluon lines (diagram

B in Fig. 1) can be made symmetric with respect to both protons by the following equivalent
transformation of the integral measure

∫

d2κ1 → 1

4

∫

d2κ−d
2
κ+δ

2 (κ+ − p3) , (2.11)

where κ− = κ1 − κ2 and κ+ = κ1 + κ2 have been introduced. In practice, such a transfor-
mation is convenient in numerical calculations below.

When the p⊥’s of the final jets are sufficiently large, the contribution of the diagram B
should vanish much faster than that of the diagram A due to an extra propagator suppression
in the amplitude (see Eq. 2.9). Moreover, the hard transverse momentum flow through the
proton remnant would disturb it too much such that it becomes less likely to combine it back
to an exclusive proton-like state after hadronisation, which should be reflected in an extra
suppression by the UGDFs behavior at large gluon p⊥. Such arguments lead to a conclusion
that the diagram B can be sizeable only at relatively small jet p⊥’s, but the large invariant
mass of the gg dijet system (i.e. at large rapidity difference ∆y = |y1− y2| between two jets
at the edges of the central detector). Numerical estimation of such a contribution could be,
therefore, important when the statistics on diffractive dijets production at LHC becomes
sufficiently large. Potentially, it could even be singled out and its features could be tested if
there is a region in the phase space where it may dominate.

For the emission of both gluons from the same t-channel gluon line (the standard CEP
process given by diagram A in Fig. 1) we have typically: q1⊥ ∼ q2⊥ ≪ p3⊥ ∼ p4⊥. The
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integration over screening gluon transverse momentum is limited to rather small q0⊥ ≃ q1/2⊥
(in the forward limit).

The kinematical situation for the diagram B is different. Typically, in this case either κ1⊥
is large and of the order of p3⊥ and κ2⊥ is small, or vice versa — κ1⊥ is small and κ2⊥ is large
and of the order of p3⊥. The integration over κ− extends to large values, which means that
typical transverse momenta of gluons in the impact factors are large. So, technically, when
using grids for UGDFs we have to do it separately for both situations. Also, the kinematical
structure of UGDFs are very different in diagrams A and B. This issue will be discussed in
detail below.

In Eqs. (2.8) and (2.9), ǫ∗µ(λ1) and ǫ∗ν(λ2) are the polarisation vectors of the final state
gluons with helicities λ1, λ2 and momenta p3, p4, respectively. They can be defined in the
gg rest frame with z axis along the proton beam as

ǫ∗µ(λ1) = − 1√
2

(0, λ1 cos θ cosψ − i sinψ, λ1 cos θ sinψ + i cosψ, −λ1 sin θ) ,

ǫ∗ν(λ2) = − 1√
2

(0, −λ2 cos θ cosψ − i sinψ, −λ2 cos θ sinψ + i cosψ, λ2 sin θ) , (2.12)

such that ǫµ(λ1)ǫ
∗
µ(λ2) = −δλ1,−λ2 and ǫ∗µ(λ1)p

µ
3 = ǫ∗ν(λ2)p

ν
4 = 0. In this frame, momenta of

protons and final-state gluons are

pµ1 =
E1√

2
(1, 0, 0, 1), pµ2 =

E2√
2

(1, 0, 0, −1),

pµ3 = Eg(1, sin θ cosψ, sin θ sinψ, cos θ), (2.13)

pν4 = Eg(1, − sin θ cosψ, − sin θ sinψ, − cos θ),

so that the proton and gluon energies E1,2, Eg and the polar angle of a gluon jet θ w.r.t.
the z-axis are defined as

Eg ≡
√
sgg

2
=
E1√

2
(β1 + β2) =

E2√
2

(α1 + α2), cos θ =
β1 − β2
β1 + β2

, sin θ =
2
√
β1β2

β1 + β2
.

In the high-p⊥ limit and at central rapidities of jets, the gg dijet rest frame, introduced
above, becomes identical to the initial protons c.m.s. frame, which we use in actual numerical
calculations below. Then the diffractive amplitude (2.8) reduces to the standard expression
with gg → gg hard scattering amplitude initially derived in Ref. [6]

MA
ab ≃ 2iA s

k2

δab
N2

c − 1

∫

d2q0

f off
g (q0, q1)f

off
g (q0, q2)

q2
0q

2
1q

2
2

∑

λ∗

1
λ∗

2

ei(λ
∗

1
−λ∗

2
)φ ×

(−2λ∗1λ
∗
2)|q1||q2|e−iλ∗

1
φ1+iλ∗

2
φ2 ·A(λ∗1λ

∗
2 → λ1λ2) , (2.14)

where φ1,2 and φ are the azimuthal angles of the fusing gluons q1,2 and of the dijet production
plane, respectively, λ∗1, λ

∗
2 are the helicities of fusing gluons with momenta q1, q2, respectively,

and the nonzeroth helicity amplitudes

A(++ → ++) = A(−− → −−) = 1 ,

A(+− → +−) = A(−+ → −+) =
u2gg
s2gg

,

A(+− → −+) = A(−+ → +−) =
t2gg
s2gg

,
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with Mandelstam invariants defined in Eq. (2.4), from which we see that in the QMRK limit
amplitudes A(λ∗1λ

∗
2 → λ1λ2) reduce simply to δλ∗

1
λ1
δλ∗

2
λ2

. In the forward limit, provided by
Eq. (2.3), we have φ2 ≃ φ1 + π, so the integral in Eq. (2.14)

∫

d2q0 e
−i(λ1−λ2)φ1

survives only when λ1 = λ2, i.e. when the gg dijet is produced in the Jz = 0 state, which
corresponds to the well-known Jz = 0 selection rule in the central exclusive production
processes [15]. We will discuss the subleading corrections to this rule below when presenting
the numerical results for different gluon polarizations.

Below, for consistency, in order to see effects of the gluon reggeization and subleading
corrections to the high-p⊥ limit we numerically compare both versions of the diffractive
amplitudes – in the QMRK approximation (2.8) and in the standard approach (2.14), as
well as estimate subleading contribution to the observable signal from the amplitude B with
symmetric gluon couplings (2.9). The bare amplitudes above are subjected to absorption
corrections which depend on collision energy and typical proton transverse momenta. We
shall discuss this issue shortly when presenting our results.

III. QUARK-ANTIQUARK DIJETS PRODUCTION

Let us consider now the contribution of the quark/antiquark pairs to the observable signal
of the exclusive dijets production. The hard subprocess amplitude for the qq̄ pair production
via off-shell gluon-gluon fusion was previously discussed in detail in Refs. [7, 8]. Here we
would like to list the relevant formulae only, which will be used in numerical calculations
below.

The amplitude of the exclusive diffractive qq̄ pair production pp→ p(qq̄)p reads [8]

Mqq̄(λ1, λ2) = i s · 4π2 δc1c2
(N2

c − 1)2

∫

d2q0 V
c1c2
λqλq̄

f off
g (q0, q1)f

off
g (q0, q2)

q2
0q

2
1q

2
2

, (3.1)

Here, the vertex factor V c1c2
λqλq̄

is the production amplitude of a pair of massive quark q and
antiquark q̄ with helicities λq, λq̄ and momenta p3, p4, respectively. It is given by the
following general expression

V c1c2
λqλq̄

= − 2g2

M2
qq̄⊥

√
Nc

δc1c2 ūλq(p3)

(

q̂1⊥q̂1 − 2(p3⊥q1⊥)

q21⊥ − 2(p3q1)
q̂2⊥ − q̂2⊥

q̂1q̂1⊥ − 2(p4⊥q1⊥)

q21⊥ − 2(p4q1)

)

vλq̄(p4).

(3.2)

In analogy with Eq. (2.2), one can introduce the Sudakov expansions for quark momenta
as

p3 = xq1p1 + xq2p2 + p3⊥, p4 = xq̄1p1 + xq̄2p2 + p4⊥ (3.3)

leading to

x1,2 = xq1,2 + xq̄1,2, xq1,2 =
m1⊥√
s
e±y1 , xq̄1,2 =

m2⊥√
s
e±y2 , m2

1/2⊥ = m2
q + |k1/2⊥|2 , (3.4)
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in terms of quark/antiquark rapidities y1, y2 and transverse masses m1⊥, m2⊥. The only
difference of the quark/antiquark fractions xq,q̄1,2 from that of the gluons is that they are
dependent on the quark mass mq.

It is convenient to fix the c.m.s. frame of the qq̄ pair with z axis along the proton beam,
so p3 = −p4 = k and p03,4 = Mqq̄/2. The gluon and quark transverse momenta (with respect
to the proton beam) in the polar coordinates are then defined as

q0⊥ = q⊥(cosψ, sinψ), p3⊥ = −p4⊥ = k⊥(cosκ, sinκ),

respectively, and

k⊥ = Eq

√

γ2(xq1 + xq̄1)
2 − (xq1 − xq̄1)

2

xq1 + xq̄1
, kz = Eq

xq1 − xq̄1
xq1 + xq̄1

, |k| =
√

k2⊥ + k2z = Eqγ . (3.5)

In these notations, the helicity amplitudes g∗g∗ → q(λ1)q̄(λ2) can be written as (for more
detail, see Ref. [8])

V+− = C q
2
⊥

|k|

[

2|k|q⊥
(

|k| cos(ψ − κ) − ikz sin(ψ − κ)
)

+Mqq̄k⊥

(

kz cos(2ψ − 2κ) −

i|k| sin(2ψ − 2κ)
)

]

/

[

M2
qq̄(k

2
⊥ + q2⊥ +m2

q) + 4Mqq̄k⊥q⊥kz cos(ψ − κ) −

2k2⊥q
2
⊥(1 + cos(2ψ − 2κ)) + q4⊥

]

, (3.6)

V++ = −2C e−iκ q
2
⊥mq

|k|

[

k2⊥ cos(2ψ − 2κ) + |k|2
]

/

[

M2
qq̄(k

2
⊥ + q2⊥ +m2

q) +

4Mqq̄k⊥q⊥kz cos(ψ − κ) − 2k2⊥q
2
⊥(1 + cos(2ψ − 2κ)) + q4⊥

]

(3.7)

where mq is the quark mass, and the normalisation factor is C = 2g2δc1c2/
√
Nc. Below, we

will use the expressions (3.6) and (3.7) in calculations of the quark jets contribution to the
central exclusive dijets production at Tevatron and LHC energies of both light (u, d, s) and
heavy (c, b) quarks.

IV. OFF-DIAGONAL UNINTEGRATED GLUON DISTRIBUTIONS

A. Emission from the same t-channel gluon

The off-diagonal unintegrated gluon distribution in Eq. (2.8), where longitudinal momen-
tum fractions satisfy the strong inequality x′ ≪ x, is calculated in the forward scattering
limit q0⊥ ≃ q1/2⊥ according to the Kimber-Martin-Ryskin (KMR) prescription [16, 17]

f off
1/2g(x1,2, x

′, q21/2⊥, q
2
0⊥, µ

2; t) = Rg(x
′)

d

d ln q2⊥

(

x1,2g(x1,2, q
2
⊥)S(q2⊥, µ

2)
)

|q2
⊥
=q2

1/2⊥
·F (t) , (4.1)

which was used e.g. in exclusive dijets studies in Refs. [9] and leads to a reasonable de-
scription of the Tevatron data [1]. In the equation above, x1,2 and q21/2⊥ are longitudinal
momentum fractions with respect to the parent proton and transverse momenta squared of
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the active gluons q1⊥ and q2⊥, respectively, x′ ∼ q0⊥/
√
s and q20⊥ are the same variables

for the screening gluon q0⊥. If we assume that at small x: xg(x) = Ngx
λg the skewedness

parameter can be expressed in terms of the λg as [18]:

Rg =
22λg+3

√
π

Γ(λg + 5/2)

Γ(λg + 4)
. (4.2)

We will take Rg ≃ 1.2 in practical calculations. The function xg(x, q2⊥) in Eq. (4.1) is the
collinear DGLAP gluon distribution, S(q2⊥, µ

2) is the so-called Sudakov form factor and
the nucleon form factor in the forward limit F (t) = exp(bt/2) with the slope parameter
b ≃ 4 GeV−2 [19] describes the coupling of the gluonic ladders to one of the nucleon lines
(see Fig. 1).

The range of the integration over d2q0 is formally limited by the existence of the DGLAP
gluon PDF xg(x, q2⊥). In explicit calculations we use the next-to-leading order CTEQ6
collinear distributions [20] for which xg(x, µ2) parametrization works well down to quite
small µ2

0 ∼ 0.4 GeV2. This way we cut off the region below this starting scale µ2
0. This

has not practical consequences for production of relatively large invariant masses as these
regions are also numerically suppressed by the behavior of the Sudakov form factor for small
q2⊥. In order to exhibite uncertainties of our numerical results related to the collinear PDFs
we also use GRV94 [21], GJR08 [22] and MSTW08 [23] distributions.

The longitudinal momentum fractions of the fusing gluons entering Eq. (4.1) are calcu-
lated as

x1 =
p3⊥√
s

exp(+y3) +
p4⊥√
s

exp(+y4) ,

x2 =
p3⊥√
s

exp(−y3) +
p4⊥√
s

exp(−y4) (4.3)

from the transverse momenta p3/4,⊥ and rapidities y3,4 of the final gluonic jets.

B. Emission from both t-channel gluons

The kinematics of the diagram B in Fig. 1 is different from that for the diagram
A. Here, the off-diagonal unintegrated gluon distributions f off

g (x1, x3,κ
2
1,κ

2
3, µ

2
1, µ

2
2) and

f off
g (x2, x4,κ

2
2,κ

2
4, µ

2
1, µ

2
2) should be evaluated at x1 ∼ x2 and x3 ∼ x4. In general, such

objects are not well known and were not discussed so far in the literature. We calculate the
longitudinal momentum fractions of the fusing gluons in the considered kinematical domain
as follows

x1 ≃
p3⊥√
s

exp(+y3) , x2 ≃
p4⊥√
s

exp(−y3) ,

x3 ≃
p3⊥√
s

exp(+y4) , x4 ≃
p4⊥√
s

exp(−y4) . (4.4)

As a first approximation, one could try to use a symmetric factorized prescription for the
off-diagonal UGDFs, which was successfully used before for the exclusive production of χc

mesons in Ref. [24]

f off
g (x1, x3,κ

2
1,κ

2
3, µ

2
1, µ

2
2; t) =

√

fg(x1,κ2
1, µ

2
1)fg(x3,κ

2
3, µ

2
2) · F (t1) ,

f off
g (x2, x4,κ

2
2,κ

2
4, µ

2
1, µ

2
2; t) =

√

fg(x2,κ
2
2, µ

2
1)fg(x4,κ

2
4, µ

2
2) · F (t2) . (4.5)
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Above unintegrated diagonal distributions include Sudakov form factors in the same way as
in the KMR UGDF (4.1). Since for the jet production in the diagram B p3⊥ > κ1⊥, κ2⊥
and p4⊥ > κ3⊥, κ4⊥ in most cases, so a physically reasonable choice of scales in the scale-
dependent UGDFs would be µ1 = p3⊥ and µ2 = p4⊥ or µ1 = µ2 = Mjj. We adopt these
simplest choices since we do not know the exact evolution of the Sudakov form factor in the
considered kinematical domain (see, also a discussion of this issue in Ref. [6]). In this case,
when the gluon q⊥ becomes bigger than the scale µ, we take simply S(q2⊥, µ

2) = 1.
Our prescription in Eq. (4.5) does not use the fact that in the considered process both

gluons are outgoing (emitted). In the collinear approach this corresponds to the ERBL
kinematical region [25] where

|x| < |ξ|, x =
x1 + x2

2
, ξ =

x1 − x2
2

.

In our case of central dijet production typically both x1 and x2 are small that is also x
and ξ are small. In this region the collinear off-diagonal distributions H(x, ξ, µ2, t) can be
estimated in a model independent way [18].

The discussion above suggests therefore another prescription for UGDFs in this special
kinematical case:

f off
g (x, x′, k2t , k

′2
t , µ

2, t) = Rcoll(x, x
′;µ2, t = 0) ·

√

fg(x̄, k2t , µ
2)fg(x̄, k′

2
t , µ

2) · F (t) , (4.6)

where x̄ = x+x′

2
, µ2 = µ2

1 ≃ µ2
2 and fg are standard diagonal unintegrated distributions as in

e.g. Ref. [16, 17]. Here Rcoll is the ratio of collinear off-diagonal distributions in ERBL to
DGLAP region:

Rcoll(x1, x2;µ
2, t = 0) =

HERBL
g (x, ξ;µ2, t = 0)

HDGLAP
g (x, ξ;µ2, t = 0)

. (4.7)

Assuming that at small x: xg(x) = Ngx
−λg in the limit of small x and ξ the off-diagonal

distribution Hg(x, ξ, t) can be expressed in terms of λg as:

Hg(x, ξ, t) = Ng
Γ(λg + 5/2)

Γ(λg + 2)

2√
π

∫ 1

0

ds[x+ ξ(1 − 2s)]

(

4s(1 − s)

x+ ξ(1 − 2s)

)λg+1

. (4.8)

For our estimates here λg is a crucial parameter which is not completely well known. In the
double logarithm approximation at small values of x:

λg =

√

αs(µ2)

π
log

(

1

x

)

log

(

µ2

µ2
0

)

. (4.9)

However, the gluon distribution at x < 10−4 and small factorization scales is poorly known
(see e.g. a discussion in [7]). In consequence applicability of the double logarithmic formula
(4.9) is not obvious and not well justified. Therefore we will treat λg as a free parameter.
In general, it can be dependent on the scale of the problem (transverse momentum of the
jet). To demonstrate uncertainties we shall show results for λg = 0.2, 0.4, 0.6 and 0.8.

In Fig. 2 we show the ratio Rcoll for different values of λg. The ratio strongly depends on
the value. We observe a strong enhancement on the diagonal. The larger λg the stronger the
ratio. The ratio quickly drops off diagonal. This have consequences for rapidity distributions
of jets, in particular their correlations, as is discussed in the next section.
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FIG. 2: The ratio from Eq.(4.7) as a function of x1 and x2 for different λg = 0.2, 0.4, 0.6, 0.8.

V. RESULTS

Let us start presentation of our results. Having the amplitude M for the pp → p(jj)p
where j = g, q(q̄), defined in Eqs. (2.8), (2.9) and (3.1), we can calculate the corresponding
2 → 4 cross section as

σpp→pjjp =

∫

d3p1
(2π)3

d3p2
(2π)3

d3p3
(2π)3

d3p4
(2π)3

(2π)4 δ(4)(p1 + p2 + p3 + p4 − pa − pb) |Mjj|2 . (5.1)

In what follows, we adopt a convenient choice of the phase space variables of the integration
relevant for exclusive diffractive processes elaborated in Ref. [26].

Before we go to the description of experimental data and presentation of all contributions
let us concentrate for a while on the contribution of the diagram B mechanism of hard
digluon production. In Fig. 3 we show distributions of the gluonic jets in pseudorapidity
and transverse momentum of the jet. The results have been performed for different values of
λg using formula (4.6) with Rcoll based on Hg from formula (4.8). The rapidity distribution
strongly depends on the value of λg. The dependence is stronger for smaller transverse
momenta, i.e. smaller x’s.

In Fig.4 we show similar distributions for the dijet invariant mass (left panel). There is
a stronger dependence on λg at small invariant masses. In the region of the Higgs boson
invariant mass of Mjj = 120 GeV there is a factor three uncertainties of the cross section.
For comparison we show result (dashed line) obtained from a naive prescription (4.5). When
the naive prescription gives large cross sections at large invariant masses the improved
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FIG. 3: Distribution in pseudorapidity (left panel) and transverse momentum (right panel) of

gluonic jets for the contribution of diagram B. We present results for different λg = 0.2, 0.4, 0.6,

0.8. The results strongly depend on the value of λg. For comparison we show result (dashed line)

obtained from the naive prescription (4.5).

prediction drops quickly with invariant mass. For completeness in the right panel we show
disitrbutions in rapidity difference between jets. While the distribution obtained with naive
prescription extends up to large ηdiff , the distribution obtained with improved calculations
is concentrated at small values of ηdiff .
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FIG. 4: Distribution in dijet invariant mass (left panel) and in pseudorapidity difference between

jets (right panel) for the contribution of diagram B. We present results for different λg = 0.2, 0.4,

0.6, 0.8. The results strongly depend on the value of λg. For comparison we show result (dashed

line) obtained from the naive prescription (4.5).

Now we shall include and discuss all contributions. First we shall discuss numerical results
obtained at the Tevatron energy and we wish to compare our results to the existing CDF
collaboration data [1]. This means that in the following we include the CDF experimental
cuts. In Fig. 5 we show the integrated cross section as a function of lower cut on ET .
Following Ref. [6], we assume the relation between ET and the jet transverse momentum p⊥
as ET = 0.8 p⊥. This approximate relation could be checked in the future by performing
full simulation of jets including hadronization. We show results for the digluon diagram
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A (solid curves), as well as for the diagram B (left panel, long dashed curve) and for the
quark-antiquark jets (right panel, dash-dotted line). The contribution of the diagram A is
somewhat bigger than presented in the literature in particular when using CHID matrix
elements (left panel, short dashed line). The main reason is that in the literature (see e.g.
Ref. [9]) rather large lower cuts on screening gluon transverse momentum q⊥ are imposed
(1 – 2 GeV). Here we use gluon distributions which allow to decrease the lower cut on the
gluon transverse momenta in the amplitude down to qmin

⊥ ≃ 0.4 GeV2 which is consistent
with the Tevatron data on exclusive production of χc data [24]. Having such a low cut in
the case of dijets production, we rather overestimate the experimental cross section.

The contribution corresponding to diagram B turns out to be much smaller than that
for diagram A known from the literature. In addition, it falls much steeper with minimal
ET,min. In the case of quark-antiquark dijets we present the contribution of uū, dd̄, ss̄, cc̄ and
bb̄. In the first three cases, we put the quark masses to zero, and in the last two cases we
take explicit masses known from the phenomenology (1.5 GeV and 4.75 GeV, respectively).
The sum of all quark-antiquark contributions is shown in the right panel by the dash-dotted
curve. We conclude that the quark-antiquark jet contribution is smaller by more than two
orders of magnitude than the digluon one. However, as shown in Ref. [8], the bb̄ contribution
can be essential e.g. as a background for Higgs searches in exclusive pp scattering.
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FIG. 5: The total cross section as a function of Et,min. The experimental data points are taken

from Ref. [1]. Left panel: digluon contribution for diagam A with our matrex element (solid line)

and CHID matrix element (short-dashed line), for diagram B (long-dashed line). Right panel:

quark-antiquark (dash-dotted line) contribution.

The exceptional dominance of digluon jets over quark-antiquark jets found here offers
extraordinary conditions for increased glueball production in gluon fragmentation [27]. In
order to investigate it more one needs to study a contamination of central diffractive com-
ponents where the proportions of digluonic to quark-antiquark jets are less favourable.

Similarly to Ref. [9], we present model uncertainties due to the choice of PDF (Fig.6) and
due to the choice of the scale (µF = µR) in the left panel of Fig. 7 for jet Emin

T dependence
and for dijet mass distribution in the right panel where we show separately uncertainties for
diagam A and B. We observe that they are much smaller for diagram B. In the latter case the
lower curve corresponds to µ2 = M2

jj and the upper curve corresponds to µ2 = (p23⊥+p24⊥)/2.
The smaller uncertainty for diagram B can be explained as follows. The gluon propagators
cause that in a typical situation when two gluons coming from the same proton line are
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FIG. 6: Uncertainties due to the choice of PDF.

hard and the other two are soft. This is different compared to diagram A where typically
all gluons are rather soft (or semi-hard).
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FIG. 7: Uncertainties due to the choice of the scales. Left panel: jet ET distribution for diagram

A, right panel: invariant mass distributions for both diagrams. Details are explained in the text.

In Fig. 8 we show pseudorapidity distributions of one of the gluonic jets (left panel) and
distribution in jet pseudorapidity difference (right panel) for the fixed lower cut on ET . The
distribution for naively calculated diagram B is flatter than that for diagram A. The same is
true in rapidity difference where the two contributions are almost identical for large rapidity
differences where, however, the cross section is rather small. The corresponding distributions
for improved method for calculation of diagram B are quite different than those for naive
calculation. The contribution of quark-antiquark jets (dash-dotted curve) is negligible. The
rapidity distributions were not presented by the CDF collaboration in Ref. [1].

In the left panel of Fig. 9 we show in addition the corresponding distributions in jet
transverse momentum. The contribution of diagram B becomes negligible at large jet trans-
verse momenta (or transverse energy). In the right panel we show the distribution in dijet
invariant mass. At large invariant masses, naive calculations of diagram B give cross sections
which are similar to the leading contribution from diagram A. However, the contribution of
diagram B from improved prescription is sizeable only at small invariant masses and does
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not have any meaning in the important for Higgs searches large Mjj region.
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FIG. 9: The distribution in jet transverse momentum (left panel) and in dijet invariant mass (right

panel).

In Fig. 10 we show separately contributions for different helicity combinations. Being
fully consistent with the Jz = 0, we see the dominance of the ++ = −− contributions over
+− = −+ ones. However, our helicities are in the proton-proton center-of-mass system so
the relation to the Jz = 0 rule is only approximate and strictly valid in the high-p⊥ jets
limit.

We show similar distributions at nominal LHC energy
√
s = 14 TeV in Fig. 11 and 12.

The situation is qualitatively similar as for the Tevatron case. Here the distributions in jet
transverse momentum and dijet invariant mass are somewhat flatter. At the LHC energy,
the contribution of diagram B is much smaller than for diagram A in the whole range of
kinematical variables considered here.

Finally, we wish to discuss correlations in rapidity between gluonic jets. In Fig.13 we
show distribution for diagram A (left panel), naively calculated contribution of diagram B
(middle panel) and contributions of diagram B calculated as proposed above (right panel).
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(right panel) for different dijet helicity states. Only diagram A is included here.
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FIG. 11: The distribution in jet pseudorapidity (left panel) and in pseudorapidity difference (right
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The correlation for the first and second case is similar. The two gluonic jets are only
weakly correlated in these variables. It is completely different for the contribution of diagram
B calculated using the ratio of collinear off-diagonal gluon distributions (see Eq.(4.7)). We
observe a strong ridge along the diagonal y3 = y4. This ridge is a consequence of the ratio
defined in Eq.(4.7).

In Ref.[7] we have studied in detail irreducible exclusive bb̄ background to exclusive Higgs
boson production. The gluonic jets can be misidentified as b-quark jets [28]. If both gluonic
jets are misidentified then such a misidentified event can contribute to a background to
exclusive Higgs boson production. In Fig.14 we illustrate the situation. We show both the
Higgs signal (hatched area) including experimental resolution [29, 30] as well as diffractive
bb̄ continuum, QED bb̄ continuum as well as formally reducible digluon contribution. In the
calculation we have assumed that jet misidentification probability is 1.3% (which corresponds
to the ATLAS misidentification factor with a b-tagging efficiency of 60% [28]), i.e. we have
multiplied the dijet cross section by a quite small number 0.0132. The obtained contribution
is even larger than the bb̄ one and overlays the Standard Model Higgs signal. In the case of
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FIG. 12: The distribution in jet transverse momentum (left panel) and in dijet invariant mass

(right panel).
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FIG. 13: dσ/dy3dy4 for diagram A (left panel), for diagram B, naive prescription (middle panel)

and for diagram B calculated in the way proposed in this paper (right panel).

exclusive production of Higgs boson beyond the Standard Model the situation can be better
(see e.g. Refs. [28, 31, 32]).

VI. CONCLUSIONS

In the present paper we have discussed the exclusive production of dijets (both digluon
and quark-antiquark ones). We have included the contribution, previously known from the
literature, when both gluons are emitted from the same t-channel gluon line, as well as
new contributions when the gluons are emitted from different t-channel gluon lines (see
Fig. 1). We have presented corresponding formulae with simple prescriptions for the unin-
tegrated gluon distributions relevant for these two cases. For both contributions, we made
predictions for various differential distributions at Tevatron (1.96 TeV) and LHC (14 TeV)
energies, including an analysis of different gluon polarisation contributions and theoretical
uncertainties.

The diagram B contribution turned out to be much smaller than the one (diagram A)
known from the literature. They become comparable only for large rapidity differences of
both jets where the cross section is rather small or when the jet transverse momenta are
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small. The latter case can be, therefore, very important for the central diffractive production
of pions. This will be discussed elsewhere.

We have found that jets corresponding to the mechanism of diagram B are strongly
correlated in their rapidities. This is a consequence of a specific behavior of off-diagonal
gluon distributions in the ERBL region where |x| < |ξ| ≪ 1.

We have compared our results with the CDF collaboration data. Our cross sections are
somewhat larger than those obtained in the literature. Compared to those calculations, we
have performed integration starting from smaller lower limit for screening gluon transverse
momenta and with the choice of scale in the Sudakov form factor as advocated by Coughlin
and Forshaw [3]. Our observation may mean e.g. that the gap survival probabilities are
smaller than usually assumed for this process. Clearly, further work on this issue is required.

We have discussed also the dijet reducible background to the central exclusive Higgs boson
production. In the framework of the same model, we have calculated the contribution of the
quark-antiquark jets CEP. We have found that this contribution is much smaller than that for
the gluon-gluon dijets in the whole phase space. However, the quark contribution, especially
the bb̄ one, is very important, as it constitutes an irreducible background for exclusive
production of the Higgs boson. On the other hand, the gluonic jets can be misidentified as
the bb̄ jets and in this sense they also contribute to a background for exclusive production
of the Higgs boson.

If both gluonic jets are misidentified as b or anti-b quark jets, then this leads to an extra
background to exclusive Higgs boson production when the Higgs boson is observed in the
bb̄ decay channel. This extra contribution can be even more important than the irreducible
bb̄ contribution. When the realistic ATLAS misidentification factor is included one obtains
the total background which significantly exceeds the Higgs signal. This observation suggests
that the experimental observation of the exclusive Standard Model Higgs production may be
very challenging. The situation may be better for beyond the Standard Model Higgs boson
production though, but corresponding detailed analysis including a Monte-Carlo simulation
of backgrounds still needs to be done.
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