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Abstract

We calculated the vector, axial-vector, scalar and pseudo-scalar two-point
functions up to two-loop level in the low-energy effective field theory for three
different QCD-like theories. In addition we also calculated the pseudo-scalar
decay constant GM . The QCD-like theories we used are those with fermions in
a complex, real or pseudo-real representation with in general n flavours. These
case correspond to global symmetry breaking pattern of SU(n)L ×SU(n)R →
SU(n)V , SU(2n) → SO(2n) or SU(2n) → Sp(2n). We also estimated the S
parameter for those different theories.
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1 Introduction

The different global symmetry breaking patterns of QCD-like theories with a vector-
like gauge group have been summarized in [1, 2, 3] around 30 years ago. The global
symmetry and its spontaneous breaking depend on whether the fermions live in a
complex, real and pseudo-real representation of the gauge group. For n identical
fermions this corresponds to the symmetry breaking pattern SU(n)L × SU(n)R →
SU(n)V , SU(2n) → SO(2n) and SU(2n) → Sp(2n) respectively. These theories can
be used to characterize some of technicolor models with vector-like gauge bosons.
QCD-like theories are also important in the theory of finite baryon density. Here the
real and pseudo-real case allow to investigate the mechanism of diquark condensate
and finite density without the sign problem. A main nonperturbative tool in study-
ing strongly interacting theories is lattice gauge theory. Numerical calculations are
performed at finite fermion mass and need in general to be extrapolated to the zero
mass limit. In the case of QCD Chiral Perturbation Theory (ChPT) is used to help
with this extrapolation. Our work has the intention of providing similar formulas
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for the QCD-like theories using the effective field theory (EFT) appropriate for the
alternative global symmetry patterns.

These EFT have been used at lowest order (LO) [4] with earlier work to be found
in [5, 6, 7] and some studies at next-to-leading order (NLO) have also appeared
[8, 9, 10]. The former two are the usual QCD case with n flavours. In our earlier
papers [11, 12] we have systematically studied the effective field theory of these three
different QCD-like theories to next-to-next-to-leading order (NNLO). We managed to
write the EFT of these cases in an extremely similar form. We calculated the quark-
antiquark condensates, the mass and decay constant of the pseudo-Goldstone bosons
[11], and meson-meson scattering [12]. In this paper we extend the analysis to two-
point correlation functions. We obtain expressions for the vector, axial-vector, scalar
and pseudo-scalar two-point functions as well as the pion pseudo-scalar coupling GM

to NNLO1 or order p6.
In our earlier work [11, 12], we called the three different cases QCD or complex,

adjoint or real and two-colour or pseudo-real. In this paper we use only the latter,
more general, terminology.

One motivation for this set of work was the study of strongly interacting Higgs
sectors, reviews are [13, 14]. For any model beyond the Standard Model, passing the
test of oblique corrections, or precision LEP observables, is crucial [15, 16]. Over the
years, the impact of the oblique corrections in those models have been studied quite
intensively but in strongly interacting cases mainly an analogy with QCD has been
invoked. Lattice gauge theory methods allow to study strongly interacting models
from first principles. The contributions from these theories to the S-parameter can be
calculated using the two-point functions studied here and our formulas are useful to
perform the extrapolation to the massless case. This was in fact the major motivation
for the present work but we included the other two-point functions for completeness.

The paper is organized as follows. In Section 2 we give a brief introduction to
EFT for the three different cases. Section 3 is the main part of the paper. We define
the fermion currents and the two-point functions in Section 3.1. In Sections 3.2
to 3.5, we present the calculation of vector, axial-vector, scalar, pseudo-scalar two-
point functions. In Section 4, we discuss the oblique corrections and the S-parameter.
Section 5 summarizes our main results and we present the definition.

2 Effective Field Theory

In this section we briefly review the EFT of QCD-like theories, the details can be
found in the earlier paper [11]. The basic methods are those of Chiral Perturbation
Theory [17, 18]. The counting of orders is in all cases the same as in ChPT, we count
momenta as order p and the fermion mass m as order p2.

2.1 Complex representation: QCD and CHPT

The case of n fermions in a complex representation is essentially like QCD. The
Lagrangian with external left and right vector, scalar and pseudos-calar external

1We use LO, NLO and NNLO as synomyms for order p2, order p4 and order p6 calculations even
if the order p2 vanishes.
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sources, lµ, rµ, s and p, is

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM†
ijqRj i, j = 1, 2, ..., n . (1)

The covariant derivative is given by Dµq = ∂µq − iGµq, and the mass matrix M =
s − ip. The sums shown are over the flavour index. The sums over gauge group
indices are implicit.

The Lagrangian (1) has a symmetry SU(n)L × SU(n)R which is made local by
the external sources [8, 18]. The quark-anti-quark condensate 〈q̄q〉 breaks SU(n)L ×
SU(n)R spontaneously to the diagonal subgroup SU(n)V . According to the Nambu-
Goldstone theorem, n2−1 Goldstone Bosons will thus be generated. We add a small
fermion mass m explicitly by setting s = m + s. This mass term explicitly breaks
the symmetry SU(n)L × SU(n)R down to SU(n)V as well and gives the Goldstone
bosons a small mass.

The Goldstone boson manifold SU(n)L × SU(n)R/SU(n)V can be parametrized
by

u = exp

(

i√
2F

πaT a

)

a = 1, 2, ..., n2 − 1 . (2)

The T a are the generators of SU(n) normalized to 〈T aT b〉 = δab. The notation 〈A〉
stands for the trace over flavour indices. u transforms under gL × gR ∈ SU(n)L ×
SU(n)R as u→ gRuh

† = hug†L where h is the “compensator” and is a function of u,
gL and gR. The methods are those of [19], but we use the notation of [20, 21]. We can
construct quantities which transform under the unbroken group H as : O → hOh†

uµ = i[u†(∂µ − irµ)u− u(∂µ − lµ)u
†] ,

∇µO = ∂µO + ΓµO − OΓµ ,

χ± = u†χu† ± uχ†u ,

f±µν = ulµνu
† ± u†rµνu . (3)

The field strengths lµν and rµν are

lµν = ∂µlν − ∂ν lµ − i[lµ, lν ] ,

rµν = ∂µrν − ∂νrµ − i[rµ, rν ] . (4)

The covariant derivative ∇µ contains

Γµ =
1

2
[u†(∂µ − irµ)u+ u(∂µ − lµ)u

†] . (5)

χ contains the matrix M, which is the combination of scalar and pseudo-scalar
sources

χ = 2B0M = 2B0(s− ip). (6)

Using the quantities in (3), we can find the leading order, p2, Lagrangian which is
invariant under Lorentz and chiral symmetry:

L2 =
F 2

4
〈uµuµ + χ+〉 . (7)

The subscript “2” stands for the order of p2. The p4 and p6 Lagrangian will be
explained in Section 2.3.
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2.2 Real and Pseudo-Real representation

The case of n fermions in a real or pseudo-real representation of the gauge group
we can treat in a similar way as the complex case. In the real case, the global
symmetry breaking pattern is SU(2n) → SO(2n), and the number of generated
Goldstone bosons is 2n2 + n− 1. In the pseudo-real case, the symmetry breaking is
SU(2n) → Sp(2n), and the number of generated Goldstone is 2n2 − n− 1. In both
cases anti-fermions are in the same representation of the gauge group and can be put
together in a 2n vector q̂, see [11] for more details.

The condensate can now be a diquark condensate as well as a quark-antiquark
condensate. Our choice of vacuum corresponds to a quark-anti-quark condensate. In
terms of the 2n fermion vector q̂ they can be written as

Real : 〈q̂TCJS q̂〉+ h.c. JS =

(

0 I
I 0

)

, (8)

Pseudo − Real : 〈q̂αǫαβCJAq̂β〉+ h.c. JA =

(

0 −I
I 0

)

. (9)

Here C is the charge conjugation operator. JS and JA are symmetric and anti-
symmetric 2n×2n matrices, I is the n×n unit matrix. Since JS and JA often appear
in the same way in the expressions, we use J for both cases unless a distinction is
needed.

The generators, T a, of the global symmetry group SU(2n) can be separated
into belonging to the broken, Xa, or unbroken part, Qa. They satisfy the following
relations with J :

JQa = −QaTJ , JXa = XaTJ , (10)

The Goldstone boson manifold can be parametrized with

U = uJuT → gUgT , with u = exp

(

i√
2F

πaXa

)

. (11)

where J = JS and a runs from 1 to 2n2 + n− 1 for the real case and J = JA and a
runs from 1 to 2n2 − n− 1 for the pseudo-real case.

In our earlier paper [11], we constructed quantities similar to those in (3–5)

uµ = i[u†(∂µ − iVµ)u− u(∂µ + iJV T
µ J)u

†] ,

Γµ =
1

2
[u†(∂µ − iVµ)u+ u(∂µ + iJV T

µ J)u
†] .

f±µν = JuVµνu
†J ± uVµνu

† ,

χ± = u†χJu† ± uJχ†u . (12)

The 2n× 2n matrix Vµ includes the left and right-handed external sources

Vµ =

(

rµ 0
0 −lTµ

)

(13)

and Vµν is the field strength

Vµν = ∂µVν − ∂νVµ − i (VµVν − VνVµ) . (14)
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χ include the matrix M̂ via χ = 2B0M̂ [11]. Those quantities behave similarly as
those (3) if we take

− JV T
µ J → lµ , Vµ → rµ . (15)

With this correspondence, the Lagrangian of the real and pseudo-real case has the
same form as the complex one. However one has to remember there are differences
in the generators, external sources, coupling constants,. . . . Anyway, now we can use
the techniques of ChPT to perform the calculations.

2.3 High Order Lagrangians and Renormalization

Using Lorentz and chiral invariance, we can write down the p4 EFT lagrangian [18]
for all three cases using the quantities listed in (3) and (12):

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉

+L4〈uµuµ〉〈χ+〉+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈f+µνu
µuν〉+ 1

4
L10〈f 2

+ − f 2
−〉+H1〈lµνlµν + rµνr

µν〉+H2〈χχ†〉 . (16)

To do the renormalization, we use the ChPT MS scheme with dimensional regular-
ization [18, 8, 21]. The bare coupling constants Li are defined as

Li = (cµ)d−4 [ΓiΛ + Lr
i (µ)] , (17)

where the dimension d = 4− 2ǫ, and

Λ =
1

16π2(d− 4)
, (18)

ln c = −1

2
[ln 4π + Γ′(1) + 1] . (19)

The coefficients Γi for the complex case have been obtained in [8], for the real and
pseudo-real case we have calculated them earlier in [11]. However, there are mistakes
in the coefficients of L9, L10 and H1 in the Table 1 of [11]. These mistakes had no
effects on our previous calculations. We therefore list all the coefficients here again
in Table 1.

The p6 Lagrangian for the complex case and general n has been obtained in [20],
it contains 112+3 terms. The divergence structure of the bare coupling constants Ki

in the p6 can be written as2

Ki = (cµ)2(d−4)
[

Kr
i − Γ

(2)
i Λ2 −

(

1

16π2
Γ
(1)
i + Γ

(L)
i

)

Λ
]

. (20)

The coefficients Γ
(2)
i , Γ

(1)
i and Γ

(L)
i for the complex case have been obtained in [21].

For the real and pseudo-real case, the p6 Lagrangian has the same form as in the
complex case but some terms might be redundant. The divergence structure as given
in (20) still holds but the coefficients are not known. One check on our results that
remains is that all the non-local divergences cancel.

2The Ki have been made dimensionless by including a factor of 1/F 2 explicitly in the order p6

Lagrangian.
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i complex real pseudo-real
0 n/48 (n+ 4)/48 (n− 4)/48
1 1/16 1/32 1/32
2 1/8 1/16 1/16
3 n/24 (n− 2)/24 (n + 2)/24
4 1/8 1/16 1/16
5 n/8 n/8 n/8
6 (n2 + 2)/(16n2) (n2 + 1)/(32n2) (n2 + 1)/(32n2)
7 0 0 0
8 (n2 − 4)/(16n) (n2 + n− 2)/(16n) (n2 − n− 2)/(16n)
9 n/12 (n+ 1)/12 (n− 1)/12
10 −n/12 −(n + 1)/12 −(n− 1)/12
1’ −n/24 −(n + 1)/24 −(n− 1)/24
2’ (n2 − 4)/(8n) (n2 + n− 2)/(8n) (n2 − n− 2)/(8n)

Table 1: The coefficients Γi for the three cases that are needed to absorb the diver-
gences at NLO. The last two lines correspond to the terms with H1 and H2. This is
the same as Table 1 in [11] but with the error for L9, L10 and H1 corrected.

3 Two-Point Functions

3.1 Definition

The effective action of the fermion level theory with external sources is

exp{iZ(lµ, rµ, s, p)} =
∫

DqDq̄DGµ exp
{

i
∫

d4xLQCD(q, q̄, Gµ, lµ, rµ, s, p)
}

(21)

At low energies, i.e. below 1 GeV in QCD, the effective action can be obtained also
from the low-energy effective theory

exp{iZ(lµ, rµ, s, p)} =
∫

DU exp
{

i
∫

d4xLeff(U, lµ, rµ, s, p)
}

. (22)

With this effective action, the n-point Green functions can be easily derived by taking
the functional derivative w.r.t. the external sources of Z(J)

G(n)(x1, . . . , xn) =
δn

inδj(x1) . . . δj(xn)
Z[J ]

∣

∣

∣

∣

J=0
. (23)

Here j stands for any of the external sources lµ, rµ, s, p and J for the whole set of
them.

The vector current vµ and axial-vector current aµ are included via

lµ = vµ − aµ , rµ = vµ + aµ . (24)

In this paper we will calculate the two-point functions of vector, axial-vector,
scalar and pseudo-scalar currents. The fermion currents in the complex case are
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defined as

V a
µ (x) = qiT

a
ijγµqj , (25)

Aa
µ(x) = qiT

a
ijγµγ5qj , (26)

Sa(x) = −qiT a
ijqj , (27)

P a(x) = iqiT
a
ijγ5qj . (28)

T a is an SU(n) generator3 or in addition for the singlet scalar and pseudo-scalar
current the unit matrix which we label by T 0. These currents also exist the for
real and pseudo-real case. In this case also currents with two fermions or two anti-
fermions exist. These can be combined with those above. The generators can then
become SU(2n) generators. All conserved generators are like the vector or scalar
case while the broken generators are like the axial-vecor or pseudo-scalar case. All
those cases are related to the ones with the currents of (25)-(28) via transformations
under the unbroken part of the symmetry group.

The definitions of the two-point functions are

ΠV aµν(q) ≡ i
∫

d4x eiq·x 〈0|T (V a
µ (x)V

a
ν (0))

†|0〉 ,

ΠAaµν(q) ≡ i
∫

d4x eiq·x 〈0|T (Aa
µ(x)A

a
ν(0))

†|0〉 ,

ΠSMaµ(q) ≡ i
∫

d4x eiq·x 〈0|T (V a
µ (x)S

a(0))†|0〉 ,

ΠPMaµ(q) ≡ i
∫

d4x eiq·x 〈0|T (Aa
µ(x)P

a(0))†|0〉 ,

ΠSa(q) ≡ i
∫

d4x eiq·x 〈0|T (Sa(x)Sa(0))†|0〉 ,

ΠPa(q) ≡ i
∫

d4x eiq·x 〈0|T (P a(x)P a(0))†|0〉 . (29)

Using Lorentz invariance the two-point functions with vectors and axial-vectors can
be decomposed in scalar functions

ΠV aµν = (qµqν − q2gµν)Π
(1)
V a(q

2) + qµqνΠ
(0)
V a(q

2) . (30)

where Π
(1)
V a(q

2) is the transverse part and Π
(0)
V a(q

2) is the longitudinal part or alter-
natively the spin one and spin 0 part. The same definition holds for the axial-vector
two-point functions. The mixed functions can be decomposed as

ΠSMaµ = qµΠSMa ,

ΠPMaµ = iqµΠPMa . (31)

Using the divergence of fermion currents and equal time commutation relations, we
find that some two-point functions are related to each other by Ward identities. In
the equal mass case considered here, they are

Π
(0)
V a = ΠSMa = 0 ,

q2Π
(0)
Aa = 2mΠPMa ,

q4Π
(0)
Aa = 4m2ΠPa + 4m〈q̄q〉 . (32)

3We have defined here the current with fermion-anti-fermion operators, hence the SU(n) for n
fermions. For the real and pseudo-real case, the unbroken symmetry relates them also to difermion
ot dianti-fermmion operators.
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(1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10) (11)

(12) (13) (14) (15)

Figure 1: The diagrams for the vector two-point function. A filled circle is a vertex
from L2, a filled square a vertex from L4, and an open square a vertex from L6. The
top line is order p4. The remaining ones are order p6.

The vacuum expectation value is the single quark-anti-quark one. We will use the
last relation to double check our results of axial-vector and pseudo-scalar two-point
functions.

The mixed two-point functions, ΠSMa and ΠPMa we do not discuss further since
they are fully given by the Ward identities.

3.2 The Vector Two-Point Function

The vector two-point function is defined in (29). The longitudinal part vanishes for
all three cases because of the Ward identities.

The Feynman diagrams for the vector two-point function are listed in Fig. 1.
There is no diagram at lowest order. The diagrams at NLO are (1–3) in Fig. 1. The
NNLO diagrams are (4–15). The 3-flavour QCD case is known to NNLO [22, 23].

We have rewritten the results in terms of the physical mass and decay constant.
For these we use the notation MM and FM rather than the Mphys and Fphys used in
[11, 12]. Their expression in terms of the lowest order quantities F and M2 = 2B0m
can be found in [11]. We also use the quantities

L =
1

16π2
log

M2
M

µ2
and π16 =

1

16π2
. (33)

The loop integral B22 is defined in Appendix A.1.
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The results up to NNLO for three different cases are listed below, where the first
line in each case is the NLO contributions, the rest are NNLO contributions.

Complex

Π
(1)
V V = − n

q2

[

4B22(M
2
M ,M

2
M , q

2) + 2LM2
M

]

− 4Lr
10 − 8Hr

1

+
1

F 2
M

{(

4M2
M

q2
Ln2 − 16Lr

9n

)

B22(M
2
M ,M

2
M , q

2) +
4n2

q2
[B22(M

2
M ,M

2
M , q

2)]2

+
M4

M

q2
L2n2 − 8q2Kr

115 + 8M2
M(LLr

10n− 4Kr
81 − 4Kr

82n)

}

, (34)

Real

Π
(1)
V V = − 1

q2
(n + 1)

[

4B22(M
2
M ,M

2
M , q

2) + 2M2
ML

]

− 4Lr
10 − 8Hr

1

+
1

F 2
M

{[

4M2
M

q2
L(n+ 1)2 − 16(n+ 1)Lr

9

]

B22(M
2
M ,M

2
M , q

2)

+
4

q2
(n + 1)2[B22(M

2
M ,M

2
M , q

2)]2 +
M4

M

q2
L2(n+ 1)2

−8q2Kr
115 + 8M2

M [LLr
10(n+ 1)− 4Kr

81 − 8Kr
82n]

}

, (35)

Pseudo−Real

Π
(1)
V V = − 1

q2
(n− 1)

[

4B22(M
2
M ,M

2
M , q

2) + 2M2
ML

]

− 4Lr
10 − 8Hr

1

+
1

F 2
M

{[

4M2
M

q2
L(n− 1)2 − 16Lr

9(n− 1)

]

B22(M
2
M ,M

2
M , q

2)

+
4

q2
(n− 1)2[B22(M

2
M ,M

2
M , q

2)]2 +
M4

M

q2
L2(n− 1)2

−8q2Kr
115 + 8M2

M [LLr
10(n− 1)− 4Kr

81 − 8Kr
82n] . (36)

The complex result with n = 3 agrees with [22] when the masses there are set equal.

3.3 The Axial-Vector Two-Point Function

The axial-vector two-point function is defined in (29). Similar to the vector two-point
function, it also can be decomposed in a transverse and longitudinal part.

Πµν
AA = (qµqν − q2gµν)Π

(1)
AA(q

2) + qµqνΠ
(0)
AA(q

2) . (37)

The diagrams contributing at LO are shown in (1–2) in Fig. 2. The LO results
are the same for all three cases. The result is

Πµν
AA(q

2) = 2F

(

gµν − qµqν
1

q2 −M2

)

. (38)

F andM are the LO decay constant and mass respectively. Note that in the massless
limit this has only a transverse part as follows from the Ward identities.

The diagrams at NLO are (3–10) in Fig. 2 and the NNLO diagrams are (11–48)
in Fig. 3.

9



(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10)

Figure 2: The axial-vector two-point function at LO and NLO. The filled circle is a
vertex from L2, The filled square is a vertex from L4, and the open square is a vertex
from L6.
.

Many of the diagrams are one-particle-reducible and at first sight have double
and triple poles at q2 =M2. From general properties of field theory these should be
resummable in into a single pole at the physical mass, q2 = M2

M and a nonsingular
part that only has cuts. The residue at the pole is the decay constant squared. We
must thus find contributions that allow for the last term in (38) the lowest order
F 2,M2 to be replaced by F 2

M ,M
2
M . It turns out to be advantageous to also do this

in the first term. Most of the corrections are already included in this way.
At NLO the remaining part is only from the tree level diagram (3) in Fig. 2 and

is

Π
(1)
AA = 4Lr

10 − 8Hr
1 , Π

(0)
AA = 0 . (39)

So we can express our result up to NNLO as

Πµν
AA(q

2) = 2F 2
M

(

gµν − qµqν
1

q2 −M2
M

)

+ (qµqν − q2gµν)(4Lr
10 − 8Hr

1)

+
1

F 2
M

[

(qµqν − q2gµν)Π̂
(1)
AA(q

2) + qµqνΠ̂
(0)
AA(q

2)

]

. (40)

The Π̂
(0)
AA(q

2) and Π̂
(1)
AA(q

2) are the remainders at NNLO and have no singularity at
q2 =M2

M .
The transverse part can be obtained from the part containing gµν as an overall

factor. So the transverse part cannot come from the one-particle reducible diagrams
and only gets contributions from diagrams (11–16) at NNLO. The sunset integrals
HF and HF

21 appearing in the results are defined in Appendix A.2.
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(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)

(31) (32) (33) (34) (35)

(36) (37) (38) (39) (40)

(41) (42) (43) (44) (45)

(46) (47) (48)

Figure 3: The axial-vector two-point function at NNLO. The filled circle is a vertex
from L2, the filled square is a vertex from L4, and the open square is a vertex from
L6
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The longitudinal part gets at NNLO contributions from all diagrams shown in
Fig 3. In order to rewrite the results into the single pole we need to expand the
integrals around the mass. This introduces derivatives of the sunsetintegrals. These
always show up in the combinations HM and HM

21 defined in Appendix A.2.

Complex

Π̂
(1)
AA(q

2) =
n2

2

[

M2
M

q2
HF (M2

M ,M
2
M ,M

2
M , q

2)−HF
21(M

2
M ,M

2
M ,M

2
M , q

2)

]

+M2
M

[

L2n2

6
− 8nLLr

10 − 32 (Kr
102 +Kr

103n+Kr
17 +Kr

18n)

]

−q2(16Kr
109 + 8Kr

115)−
M4

M

q2

(

8Kr
113 +

3

2
n2L2

)

+π16L

[

M4
M

q2

(

13n2

8
+

2

n2
− 2

3

)

+
M2

M

6
n2

]

+π2
16

[

M4
M

q2

(

7

2n2
− 1

8
n2π2 − 17n2

64
− 7

6

)

+M2
Mn

2

(

π2

36
+

1

72

)

+
n2

96
q2
]

, (41)

Π̂
(0)
AA(q

2) =

[

M4
M

(

4

3
− 4

n2

)

− M6
M

2q2
n2

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

−3M4
M

2
n2HM

21 (M
2
M ,M

2
M ,M

2
M , q

2) +
8M4

M

q2
Kr

113

+
M4

M

q2

[

π16L

(

2

3
− n2

8
− 2

n2

)

+ π2
16

(

7

6
− 15n2

64
− 7

2n2

)]

, (42)

Real

Π̂
(1)
AA(q

2) =
n

2
(n+ 1)

[

M2
M

q2
HF (M2

M ,M
2
M ,M

2
M , q

2)−HF
21(M

2
M ,M

2
M ,M

2
M , q

2)

]

+M2
M

[

L2

6
n(n + 1)− 8nLLr

10 − 32(Kr
102 + 2nKr

103 +Kr
17 + 2nKr

18)

]

−q2(16Kr
109 + 8Kr

115)−
M4

M

q2

[

8Kr
113 +

3

2
n(n + 1)L2

]

+π16L

[

M4
M

q2

(

13n2

8
+

1

2n2
+

43n

24
− 1

2n
− 1

6

)

+
M2

M

6
n(n+ 1)

]

+π2
16

[

M4
M

q2

(

−1

8
n2π2 − nπ2

8
− 17n2

64
+

7

8n2
+

5n

192
− 7

8n
− 7

24

)

+M2
Mn(n+ 1)

(

π2

36
+

1

72

)

+
n

96
(n+ 1)q2

]

, (43)

Π̂
(0)
AA(q

2) =

[

−M
6
M

q2
n

2
(n + 1) +M4

M(n− 1)
(

1

n2
− 1

3

)

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

−3

2
M4

Mn(n+ 1)HM
21 (M

2
M ,M

2
M ,M

2
M , q

2) +
8M4

M

q2
Kr

113

12



+π16
M4

M

q2
L

(

−n
2

8
− 1

2n2
− 7n

24
+

1

2n
+

1

6

)

+π2
16

M4
M

q2

(

−15n2

64
− 7

8n2
− 101n

192
+

7

8n
+

7

24

)

, (44)

Pseudo−Real

Π̂
(1)
AA(q

2) =
n

2
(n− 1)

[

M2
M

q2
HF (M2

M ,M
2
M ,M

2
M , q

2)−HF
21(M

2
M ,M

2
M ,M

2
M , q

2)

]

−32M2
M(Kr

102 + 2nKr
103 +Kr

17 + 2nKr
18)− 8q2(2Kr

109 +Kr
115)

−8M4
M

q2
Kr

113 −
M4

M

q2
3n

2
(n− 1)L2 +

M2
M

6
n(n− 1)L2 − 8M2

MnLL
r
10

+π16
LM4

M

q2

(

13n2

8
+

1

2n2
− 43n

24
+

1

2n
− 1

6

)

+ π16LM
2
M

(

n2

6
− n

6

)

+π2
16

[

M4
M

q2

(

−1

8
n2π2 − 17n2

64
+

7

8n2
+
nπ2

8
− 5n

192
+

7

8n
− 7

24

)

+M2
Mn(n− 1)

(

π2

36
+

1

72

)

+ q2
n

96
(n− 1)

]

, (45)

Π̂
(0)
AA(q

2) =

[

−M
6
M

q2
n

2
(n− 1)−M4

M(n+ 1)
(

1

n2
− 1

3

)

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

−3

2
M4

Mn(n− 1)HM
21 (M

2
M ,M

2
M ,M

2
M , q

2) +
8M4

M

q2
Kr

113

+π16
M4

M

q2
L

(

−n
2

8
− 1

2n2
+

7n

24
− 1

2n
+

1

6

)

+π2
16

M4
M

q2

(

−15n2

64
− 7

8n2
+

101n

192
− 7

8n
+

7

24

)

. (46)

The axial two-point function is known in 3-flavour ChPT [22, 24]. We have
checked that our result agrees with the one in [22] in the limit of equal masses.

3.4 The Scalar Two-Point Functions

The scalar two-point function is defined in (29), which contains the unbroken gener-
ator case (T a = Qa) and the singlet case (a = 0).

The Feynman diagrams for both cases are the same as those for the vector two-
point function shown in Figure 1 except that diagrams (2) and (5–7) are absent.
Diagrams (1) and (3) are at NLO, and the diagrams (4) and (8–11) are at NNLO.

3.4.1 Qa case

The scalar two-point functions are similar to the vector two-point functions, the LO
results are zero for all the three cases since the vertex at LO is absent. We have
rewritten again everything in terms of the physical mass and decay constant, M2

M

and FM . The results for the three cases are given below. The first line is the NLO
contribution and the remainder is the NNLO contribution.
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Complex

ΠSS = B2
0

{

8Hr
2 + 16Lr

8 +
1

n

(

n2 − 4
)

B(m2, q2)
}

+
B2

0

F 2
M

{

q2 (8Kr
113 + 32Kr

47) +M2
M

(

192Kr
25 + 64Kr

26n

)

+M2
ML

[

(

64

n
− 32n

)

Lr
8 − 64Lr

7 +
(

n2 − 4
) 16

n
Lr
5

]

+B(m2, q2)
(

n2 − 4
)

[

8q2

n
Lr
5 +M2

M

(

2

n2
L− 16Lr

4 −
32

n
Lr
5 − 32Lr

6 +
64

n
Lr
8

)]

+B(m2, q2)2
(

n2 − 4
)

(

q2

4
− 2M2

M

n2

)}

, (47)

Real

ΠSS = B2
0

{

8Hr
2 + 16Lr

8 +
1

n
(n− 1) (n + 2)B(m2, q2)

}

+
B2

0

F 2
M

{

q2 (8Kr
113 + 32Kr

47) +M2
M

(

192Kr
25 + 128nKr

26

)

+M2
ML

[

(

32

n
− 32− 32n

)

Lr
8 − 64Lr

7 + (n− 1) (n+ 2)
16

n
Lr
5

]

+B(m2, q2) (n− 1) (n+ 2)

[

8q2

n
Lr
5 +M2

M

(

(

−1

n
+

1

n2

)

L− 32Lr
4

−32

n
Lr
5 + 64Lr

6 +
64

n
Lr
8

)]

+B(m2, q2)2 (n− 1) (n + 2)

[

q2

4
+M2

M

(

1

2n
− 1

n2

)

]}

, (48)

Pseudo−Real

ΠSS = B2
0

{

8Hr
2 + 16Lr

8 +
1

n
(n+ 1) (n− 2)B(m2, q2)

}

+
B2

0

F 2
M

{

q2 (8Kr
113 + 32Kr

47) +M2
M

(

192Kr
25 + 128nKr

26

)

+M2
ML

[

(

32

n
+ 32− 32n

)

Lr
8 − 64Lr

7 + (n + 1) (n− 2)
16

n
Lr
5

]

+B(m2, q2) (n+ 1) (n− 2)

[

8q2

n
Lr
5 +M2

M

(

(

1

n
+

1

n2

)

L− 32Lr
4

−32

n
Lr
5 + 64Lr

6 +
64

n
Lr
8

)]

+B(m2, q2)2 (n+ 1) (n− 2)

[

q2

4
+M2

M

(

− 1

2n
− 1

n2

)

]}

. (49)

The definition of the one-loop function B(m2, q2) can be found in Appendix A.1.
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3.4.2 Singlet case

We have also calculated the singlet case. This is the quark-antiquark combination
that shows up in the mass term.

We write the expression up to NNLO as:

Complex

Π0
SS = B2

0

{

8nHr
2 + 32n2Lr

6 + 16nLr
8 + 2(n2 − 1)B(m2, q2)

}

+
B2

0

F 2
M

{

8q2
(

nKr
113 + 4nKr

47 + 4n2Kr
48

)

+ 192M2
M

(

nKr
25 + n2Kr

26 + n3Kr
27

)

+M2
ML

(

n2 − 1
)

(32nLr
4 + 32Lr

5 − 64nLr
6 − 64Lr

8)

+B(m2, q2)
(

n2 − 1
)

[

16q2 (nLr
4 + Lr

5)

+M2
M

(

4

n
L+ 64 (2Lr

8 + 2nLr
6 − Lr

5 − nLr
4)
)

]

+B(m2, q2)2
(

n2 − 1
)

(

nq2 − 2M2
M

n

)}

, (50)

Real

Π0
SS = B2

0

{

16nHr
2 + 128n2Lr

6 + 32nLr
8 + 2(2n2 + n− 1)B(m2, q2)

}

+
B2

0

F 2
M

{

16q2
(

nKr
113 + 4nKr

47 + 8n2Kr
48

)

+ 384M2
M

(

nKr
25 + 2n2Kr

26 + 4n3Kr
27

)

+M2
ML

(

2n2 + n− 1
)

(64nLr
4 + 32Lr

5 − 128nLr
6 − 64Lr

8)

+B(m2, q2)
(

2n2 + n− 1
)

[

16q2 (2nLr
4 + Lr

5)

+M2
M

((

−2 +
2

n

)

L+ 64(2Lr
8 + 4nLr

6 − Lr
5 − 2nLr

4)
)

]

+B(m2, q2)2
(

2n2 + n− 1
)

[

nq2 +M2
M

(

1− 1

n

)]

}

, (51)

Pseudo−Real

Π0
SS = B2

0

{

16nHr
2 + 128n2Lr

6 + 32nLr
8 + 2(2n2 − n− 1)B(m2, q2)

}

+
B2

0

F 2
M

{

16q2
(

nKr
113 + 4nKr

47 + 8n2Kr
48

)

+ 384M2
M

(

nKr
25 + 2n2Kr

26 + 4n3Kr
27

)

+M2
ML

(

2n2 − n− 1
)

(64nLr
4 + 32Lr

5 − 128nLr
6 − 64Lr

8)

+B(m2, q2)
(

2n2 − n− 1
)

[

16q2 (2nLr
4 + Lr

5)

+M2
M

((

2 +
2

n

)

L+ 64(2Lr
8 + 4nLr

6 − Lr
5 − 2nLr

4)
)

]
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+B(m2, q2)2
(

2n2 − n− 1
)

[

nq2 +M2
M

(

−1 − 1

n

)]

}

. (52)

We also written the result in term of physical M2
M and FM . Notice that all loop

diagrams are proportional to the number of Goldstone bosons in each case, i.e. n2−1,
2n2 + n− 1, 2n2 − n− 1 for the complex, real and pseudo-real case respectively.

3.5 The Pseudo-Scalar Two-Point Functions

The pseudo-scalar two-point function is defined in (29). Just as in the case of the
axial-vector two-point function there are one-particle-reducible diagrams. The dia-
grams are the same as those for the axial-vector two-point function with the axial-
vector current replaced by a pseudo-scalar current. These are shown in Figure 2 and
3. There is also no vertex with two pseudo-scalar currents at LO so the equivalent of
diagrams (1) and (7) in Figure 2 and (13–15) in Figure 3 vanish immediately. Just
as in the scalar case, one should distinguish here between two cases: The adjoint
case for the complex representation case which generalizes to the broken generators
for the real and pseudo-real case, and the singlet operator with T a in (28) the unit
operator.

In Section 3.3 we could simplify the final expressions very much by writing the
final expression with the single pole at the meson mass in terms of the decay constant.
The same happens here if we instead rewrite the result in terms of the meson pseudo-
scalar decay constant GM . So we first need to obtain that quantity to NNLO.

3.5.1 The meson pseudo-scalar decay constant GM

The decay constant of the pseudoscalar density to the mesons, GM is defined4 simi-
larly to FM :

〈0|q̄iγ5T aq|πb〉 = 1√
2
δabGM (53)

The calculation of GM is very similar to FM , the diagrams are exactly those shown
in Figure 2 in [11] with one of the legs replaced by the pseudo-scalar current. There
is here also a contribution from wave-function renormalization. In [11] we reported
all the quantities M2

M , FM and 〈q̄q〉 as an expansion in the bare or lowest order
quantities F and M2 = 2B0m. We therefore do the same here. We therefore use the
quantity

L0 =
1

16π2
log

M2

F 2
(54)

instead of L as in the other sections of this paper.
This quantity has been calculated to NLO in two-flavour ChPT in [18] and was

called Gπ there. We have checked that our NLO result agrees with theirs.
At leading order, all the three case have same expression:

GM = G0 = 2B0F . (55)

4The
√
2 is included in the definition to have the same normalization as [18].
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We express the full results up to NNLO in terms of the LO meson mass M2 and
decay constant F as

GM = 2B0F

(

1 +
M2

F 2
aG +

M4

F 4
bG

)

(56)

At NLO and NNLO, the coefficients aG and bG are

Complex

aG =
(

1

n
− n

2

)

L0 + 4(−nLr
4 − Lr

5 + 4nLr
6 + 4Lr

8)

bG = −64(Lr
5 + nLr

4)(L
r
8 + nLr

6) + 24(Lr
5 + nLr

4)
2

−8n2Kr
22 + 48n2Kr

27 − 32Kr
17 − 8Kr

19 − 8Kr
23 + 48Kr

25 + 32Kr
39 − 32nKr

18

−8nKr
20 − 8nKr

21 + 48nKr
26 + 32nKr

40

+L0

[

− (32− 22n2)
(

Lr
4 +

1

n
Lr
5

)

+ (4− 8n2)(Lr
1 + 4Lr

6)

+
(

80

n
− 48n

)

Lr
8 +

(

12

n
− 10n

)

Lr
3 −

(

8 + 2n2
)

Lr
2 +

(

12

n
− 4n

)

Lr
0

]

+π16

[

(2− n2)
(

8

n
Lr
8 + 8Lr

6 −
4

n
Lr
5 − 4Lr

4 −
1

n
Lr
3

)

+n2Lr
2 + 2Lr

1 + 2
(

n− 1

n

)

Lr
0

]

+π2
16

(

113n2

256
− 13

24
+

13

8n2

)

− π16L0

(

55n2

96
− 1 +

7

2n2

)

+L2
0

(

3n2

16
− 3

2
+

9

2n2

)

, (57)

Real

aG = −
(

n

2
+

1

2
− 1

2n

)

L0 + (−8nLr
4 − 4Lr

5 + 32nLr
6 + 16Lr

8)

bG = −64(Lr
5 + 2nLr

4)(L
r
8 + 2nLr

6) + 24(Lr
5 + 2nLr

4)
2

−32Kr
22n

2 + 192Kr
27n

2 − 32Kr
17 − 8Kr

19 − 8Kr
23 + 48Kr

25 + 32Kr
39

−64Kr
18n− 16Kr

20n− 16Kr
21n+ 96Kr

26n+ 64Kr
40n

+L0

[

(−16 + 16n+ 22n2)
(

2Lr
4 +

1

n
Lr
5

)

+ (4− 8n− 16n2)Lr
1

+16(1− 3n− 4n2)Lr
6 −

(

40− 40

n
+ 48n

)

Lr
8 −

(

6− 6

n
+ 10n

)

Lr
3

−
(

8 + 2n+ 4n2
)

Lr
2 −

(

6− 6

n
+ 4n

)

Lr
0

]

+π16

[

(1− n− n2)
(

8

n
Lr
8 + 16Lr

6 −
4

n
Lr
5 − 8Lr

4 −
1

n
Lr
3

)

+(n+ 2n2)Lr
2 + 2Lr

1 +
(

1− 1

n
+ 2n

)

Lr
0

]

+π2
16

(

113n2

256
+

443n

768
− 13

96
− 13

32n
+

13

32n2

)
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−π16L0

(

55n2

96
+

67n

96
− 3

8
− 5

8n
+

7

8n2

)

+L2
0

(

3n2

16
+

13n

16
− 1

8
− 3

2n
+

9

8n2

)

, (58)

Pseudo−Real

aG = −L0

(

n

2
− 1

2
− 1

2n

)

+ (−8nLr
4 − 4Lr

5 + 32nLr
6 + 16Lr

8)

bG = −64(Lr
5 + 2nLr

4)(L
r
8 + 2nLr

6) + 24(Lr
5 + 2nLr

4)
2

−32Kr
22n

2 + 192Kr
27n

2 − 32Kr
17 − 8Kr

19 − 8Kr
23 + 48Kr

25

+32Kr
39 − 64Kr

18n− 16Kr
20n− 16Kr

21n+ 96Kr
26n + 64Kr

40n

+L0

[

(−16− 16n+ 22n2)
(

2Lr
4 +

1

n
Lr
5

)

+ (4 + 8n− 16n2)Lr
1

+16(1 + 3n− 4n2)Lr
6 +

(

40 +
40

n
− 48n

)

Lr
8 +

(

6 +
6

n
− 10n

)

Lr
3

−
(

8− 2n+ 4n2
)

Lr
2 +

(

6 +
6

n
− 4n

)

Lr
0

]

+π16

[

(1 + n− n2)
(

8

n
Lr
8 + 16Lr

6 −
4

n
Lr
5 − 8Lr

4 −
1

n
Lr
3

)

+(−n + 2n2)Lr
2 + 2Lr

1 +
(

−1− 1

n
+ 2n

)

Lr
0

]

+π2
16

(

113n2

256
− 443n

768
− 13

96
+

13

32n
+

13

32n2

)

−π16L0

(

55n2

96
− 67n

96
− 3

8
+

5

8n
+

7

8n2

)

+L2
0

(

3n2

16
− 13n

16
− 1

8
+

3

2n
+

9

8n2

)

. (59)

3.5.2 Xa case

The pseudo-scale two point functions are similar to the axial-vector ones in the
diagrams as described above. The LO result is the same for all the three cases:

Πa
PP = −1

2

G2
0

q2 −M2
. (60)

The superscript “a” indicates the case with T a in (28) an SU(n) generator. For the
real and pseudo-real case this is related by the conserved part of the symmetry group
also to a number of diquark currents.

Subtracting the pole contribution in terms of the physical mass and decay con-
stants, M2

M , FM and GM , absorbs the major part of the higher order corrections.
The final results are thus much simpler when written in this way. The remaining
part at NLO is

Πa
PP = B2

0(8H
r
2 − 16Lr

8) . (61)
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Thus we can define the full NNLO results as

Πa
PP = −1

2

G2
M

q2 −M2
M

+B2
0(8H

r
2 − 16Lr

8) +
B2

0

F 2
M

Π̂a
PP , (62)

where the Π̂PP is the remainder at NNLO. Its expression for the three different cases
is:

Complex

Π̂a
PP = −3

2
n2q4HM

21 (M
2
M ,M

2
M ,M

2
M , q

2)

+

[

(

4

3
− 4

n2

)

q4 − n2

2
M2

Mq
2

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

+8q2Kr
113 + 64M2

M(Kr
17 + nKr

18 −Kr
39 − nKr

40)

+L2M2
M

(

−n
2

2
− 6

n2
+ 2

)

+ LM2
M

(

64Lr
6 + 32nLr

8 −
64Lr

8

n

)

+π16L

[

M2
M

(

−8

3
− n2

12
+

8

n2

)

+

(

2

3
− n2

8
− 2

n2

)

q2
]

+π2
16

[

M2
M

(

5

3
− 85n2

96
− 5

n2

)

+ q2
(

7

6
− 15n2

64
− 7

2n2

)]

, (63)

Real

Π̂a
PP = −3

2
q4n(n + 1)HM

21 (M
2
M ,M

2
M ,M

2
M , q

2)

+
[(

− 1

n2
− n

3
+

1

n
+

1

3

)

q4 − 1

2
M2

Mq
2n (n + 1)

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

+8q2Kr
113 + 64M2

M(Kr
17 + 2nKr

18 −Kr
39 − 2nKr

40)

+M2
ML

2

(

−n
2

2
− 3

2n2
− n+

3

2n
+

1

2

)

+ 32M2
ML

(

2Lr
6 + Lr

8n− Lr
8

n
+ Lr

8

)

+π16L

[

M2
M

(

−n
2

12
+

2

n2
+

7n

12
− 2

n
− 2

3

)

+ q2
(

−n
2

8
− 1

2n2
− 7n

24
+

1

2n
+

1

6

)]

+π2
16

[

M2
M

(

−85n2

96
− 5

4n2
− 125n

96
+

5

4n
+

5

12

)

+q2
(

−15n2

64
− 7

8n2
− 101n

192
+

7

8n
+

7

24

) ]

, (64)

Pseudo−Real

Π̂a
PP =

3

2
q4n(1− n)HM

21 (M
2
M ,M

2
M ,M

2
M , q

2)

+
[(

− 1

n2
+
n

3
− 1

n
+

1

3

)

q4 +
1

2
M2

Mq
2n(1− n)

]

HM(M2
M ,M

2
M ,M

2
M , q

2)

+8q2Kr
113 + 64M2

M(Kr
17 + 2nKr

18 −Kr
39 − 2nKr

40)

+M2
ML

2

(

−n
2

2
− 3

2n2
+ n− 3

2n
+

1

2

)

+M2
ML

[

64Lr
6 + 32

(

n− 1

n
− 1

)

Lr
8

]

+π16L

[

M2
M

(

−n
2

12
+

2

n2
− 7n

12
+

2

n
− 2

3

)

+ q2
(

−n
2

8
− 1

2n2
+

7n

24
− 1

2n
+

1

6

)]
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+π2
16

[

M2
M

(

−85n2

96
− 5

4n2
+

125n

96
− 5

4n
+

5

12

)

+

(

−15n2

64
− 7

8n2
+

101n

192
− 7

8n
+

7

24

)

q2
]

. (65)

The loop integrals HM and HM
21 are defined in Appendix A.2.

3.5.3 Singlet case

In the singlet case with a = 0, there is no contribution with poles. Only the one-
particle-irreducible diagrams contribute. As a consequence, there is no order p2

contribution and at order p4 there is only a tree level contribution from the equivalent
of diagram (3) in Figure 2. At order p6 or NNLO only the one-particle-irreducible
diagrams contribute and since there is no order p2 vertex with two pseudo-scalar
currents only diagram (11–12) and (16) in Figure 3 contribute.

Since there is no single pole contribution, there is also no need here to expand in
the integrals around the meson mass. The integral HF is defined in Appendix A.2.

The singlet pseudo-scalar two-point function we write as

Π0
PP = B2

0Π
0
PP +

B2
0

F 2
M

Π̂0
PP . (66)

The results for the three cases are

Complex :

Π
0
PP = 8nHr

2 − 16nLr
8 − 32n2Lr

7 ,

Π̂0
PP = − 2

3n

(

n2 − 1
) (

n2 − 4
)

HF (M2
M ,M

2
M ,M

2
M , q

2)

+q2
(

8Kr
113n− 32Kr

46n
2
)

− 64M2
M

(

Kr
39n+Kr

40n
2 +Kr

41n
2 +Kr

42n
3
)

+L2M2
M

1

n

(

n2 − 1
) (

n2 − 4
)

+ 64LM2
M(n2 − 1)(nLr

7 + Lr
8)

+M2
Mπ

2
16

1

n

(

n2 − 1
) (

n2 − 4
)

(

π2

6
+ 1

)

, (67)

Real :

Π
0
PP = 16nHr

2 − 128n2Lr
7 − 32nLr

8 ,

Π̂0
PP = − 2

3n

(

2n2 + n− 1
) (

n2 + n− 2
)

HF (M2
M ,M

2
M ,M

2
M , q

2)

+q2
(

16Kr
113n− 128Kr

46n
2
)

− 128M2
M

(

nKr
39 + 2n2Kr

40 + 2n2Kr
41 + 4n3Kr

42

)

+L2M2
M

1

n

(

2n2 + n− 1
) (

n2 + n− 2
)

+ 64M2
ML(2n

2 + n− 1)(2nLr
7 + Lr

8)

+M2
Mπ

2
16

1

n

(

2n2 + n− 1
) (

n2 + n− 2
)

(

π2

6
+ 1

)

, (68)

Pseudo−Real :

Π
0
PP = 16nHr

2 − 128n2Lr
7 − 32nLr

8 ,

Π̂0
PP = − 2

3n

(

2n2 − n− 1
) (

n2 − n− 2
)

HF (M2
M ,M

2
M ,M

2
M , q

2)
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Figure 4: The one-loop oblique correction to LEP process e+ + e− → q + q̄.

+q2
(

16Kr
113n− 128Kr

46n
2
)

− 128M2
M

(

nKr
39 + 2n2Kr

40 + 2n2Kr
41 + 4n3Kr

42

)

+L2M2
M

1

n

(

2n2 − n− 1
) (

n2 − n− 2
)

+ 64M2
ML(2n

2 − n− 1)(2nLr
7 + Lr

8)

+M2
Mπ

2
16

1

n

(

2n2 − n− 1
) (

n2 − n− 2
)

(

π2

6
+ 1

)

. (69)

Notice that just as for the scalar singlet two-point function, all loop contributions
are proportional to the number of Goldstone bosons.

3.6 Large n

As one can see from all the explicit formulas, many of the expressions become equal
for the different cases in the large n limit .

4 The Oblique Corrections and S-parameter

The physical process at the CERN LEP collider is e+ + e− → q + q̄. There are
three types of one loop correction to this process: vacuum polarization corrections,
vertex corrections, and box corrections. The vacuum polarization contribution is
independent of the external fermions and it dominates the contributions from physics
beyond SM. For the light fermions, the other two corrections are suppressed by
factor ofm2

f/m
2
Z . That’s why the vacuum polarization corrections are called “oblique

corrections,”, and the vertex and box corrections are called “nonoblique corrections.”
The oblique polarization only affect the gauge bosons propagators and their mix-

ing. The vacuum polarization amplitude can be defined as

gµνΠXY + (qµqν terms) = i
∫

d4x eiq·x 〈0|T (Jµ
X(x)J

ν
Y (0))|0〉 . (70)

The influence of new physics to the oblique corrections can be summarized to three
parameters: S, T and U . One can find their definition in Ref. [15]. These parameters
are chosen to be zero at a reference point in the SM. In the past 20 years, they have
been studied intensively in many models beyond the Standard Model physics.

For a beyond the Standard Model with strong dynamics at the TeV scale, there
will in general be many resonances and other nonperturbative effects. At low mo-
menta one can use the EFT as described above for these cases. In this paper, we will
estimate the S parameter contribution from pseudo-Goldstone Boson sector within
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the EFT. The parameter T and U vanish because of the exact flavor symmetry, i.e.
we work in the equal mass case.

The S parameter can be written as5 [15]

S = −2π
[

Π′
V V (0)− Π′

AA(0)
]

= 2π
d

dq2

(

q2Π
(1)
V V − q2Π

(1)
AA

)

q2=0
. (71)

Π′
V V (0) and Π′

AA(0) are the derivatives of the vector and axial-vector two-point func-
tions at q2 = 0. One should keep in mind that S is defined to be zero at a particular
place in the standard model, as discussed at the end of section V in [15]. Our formulas
are the equivalent of (5.12) in that reference.

The result can be written as

S = S +
πM2

M

F 2
M

Ŝ , (72)

with

Complex :

S = −16πLr
10 −

2nπ

3
(L+ π16) ,

Ŝ = 64 (Kr
102 −Kr

81 +Kr
17 + nKr

103 − nfKr
82 + nKr

18) +
n2

3
L2

+16n (Lr
9 + 2Lr

10)L− π16
11n2

9
L+ π2

16n
2
(

85

108
− 5

27
ψ̃
)

(73)

Real :

S = −16πLr
10 −

2(n+ 1)π

3
(L+ π16) ,

Ŝ = 64 (Kr
102 −Kr

81 +Kr
17 + 2nKr

103 − 2nfKr
82 + 2nKr

18) +
n(n + 1)

3
L2

+16 [(n+ 1)Lr
9 + (2n+ 1)Lr

10]L− π16
11n(n+ 1)

9
L

+π2
16n(n + 1)

(

85

108
− 5

27
ψ̃
)

, (74)

Pseudo− real :

S = −16πLr
10 −

2(n− 1)π

3
(L+ π16) ,

Ŝ = 64 (Kr
102 −Kr

81 +Kr
17 + 2nKr

103 − 2nfKr
82 + 2nKr

18) +
n(n− 1)

3
L2

+16 [(n− 1)Lr
9 + (2n− 1)Lr

10]L− π16
11n(n− 1)

9
L

+π2
16n(n− 1)

(

85

108
− 5

27
ψ̃
)

. (75)

The quantity ψ̃ is

ψ̃ = 6
√
3Cl2

(

2π

3

)

= 7.0317217160684 . (76)

5Our two point functions are normalized differently from those in [15].
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Figure 5: The S-parameter for the values of Lr
9 and Lr

10 given in the text for the
complex case. (a) n = 2 (b) n = 4.
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Figure 6: The S-parameter for the values of Lr
9 and L

r
10 given in the text for the real

case. (a) n = 2 (b) n = 4.

The real purpose of (73)-(75) is to be able to study the S-parameter in more gen-
eral theories than just scaling up from QCD. However to provide some feeling about
numerical results we choose parameters as if they are scaled up from QCD/ChPT.
We change Fπ = 0.0922 MeV to FM = 243 GeV and the subtraction scale from
0.77 GeV to 2 TeV. We set the Kr

i = 0 and keep Lr
9 = 0.00593 and Lr

10 = −0.00406
at their values from ChPT [25, 26].

In Figures 5, 6 and 7 we have shown the results for our three cases complex, real
and pseudo-real for n = 2 and n = 4. Shown are the full p4 and p6 contributions
as well as the p4 part proportional to Lr

10 only. The latter is what is the usual
contribution to S corrected for the pieces that go into the reference point at p4. We
cannot do the same for the full result since that depends on how one treats the extra
pseudo-Goldstone bosons that occur in the other models.
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Figure 7: The S-parameter for the values of Lr
9 and Lr

10 given in the text for the
pseudo-real case. (a) n = 2 (b) n = 4.

5 Conclusion

In this paper, we have calculated the two-point correlation functions of vector, axial-
vector, scalar and pseudo-scalar currents for QCD-like theories.

In the beginning of the paper, we gave a very brief overview of the QCD-like
theories and their EFT treatment as developed earlier.

We then gave the analytic results of those two-point functions up to NNLO. The
results are significantly shortened by using the physical meson mass M2

M and decay
constants FM and GM when rewriting the pole contributions.

The main use of these formulas is expected to be in extrapolations to zero fermion
mass of technicolour related lattice calculations. We have therefore also included
precisely the combination needed for the S-parameter.
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A Loop integrals

We use dimensional regularization and MS scheme to evaluate the loop integrals,
d = 4− 2ǫ.
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A.1 One-loop integrals

The loop integral with one propagator is

A(m2) =
1

i

∫

ddq

(2π)d
1

q2 −m2

=
m2

16π2

{

λ0 − ln(m2) + ǫ

[

C2

2
+

1

2
+
π2

12
+

1

2
ln2(m2)− C ln(m2)

]}

+O(ǫ2) . (77)

Here

C = ln(4π) + 1− γ λ0 =
1

ǫ
+ C

The extra +1 in C is the ChPT version of MS.
The loop integrals with two propagators are

B(m2
1, m

2
2, p

2) =
1

i

∫ ddq

(2π)d
1

(q2 −m2
1)((q − p)2 −m2

2)
,

Bµ(m2
1, m

2
2, p) =

1

i

∫

ddq

(2π)d
qµ

(q2 −m2
1)((q − p)2 −m2

2)
(78)

= pµB1(m
2
1, m

2
2, p

2) ,

Bµν(m2
1, m

2
2, p) =

1

i

∫

ddq

(2π)d
qµqν

(q2 −m2
1)((q − p)2 −m2

2)

= pµpνB21(m
2
1, m

2
2, p

2) + gµνB22(m
2
1, m

2
2, p

2) .

The two last integrals can be reduced to simpler integrals A and B via

B1(m
2, m2, p2) =

1

2
B(m2

1, m
2
2, p

2) ,

B22(m
2, m2, p2) =

1

2(d− 1)

[

A(m2) +
(

2m2 − 1

2
p2
)

B(m2, m2, p2)
]

,

B21(m
2, m2, p2) =

1

p2

[

A(m2) +m2B(m2, m2, p2)− dB22(m
2, m2, p2)

]

. (79)

We quote here only the equal mass case results relevant for this paper. The explicit
expression for B is

B(m2, m2, p2) =
1

16π2
λ0 +B(m2, p2) +O(ǫ) ,

B(m2, p2) =
1

16π2

(

−1 −m2 log
m2

µ2

)

+ J̄(m2, p
2) ,

J̄(m2, p2) = − 1

16π2

∫ 1

0
dx ln

(

m2 − x(1− x)p2

m2

)

, (80)

The function J̄(m2, p2) is

J̄(m2, p2) =



















2 + σ ln
(

σ−1
σ+1

)

, p2 < 0,

2− 2
√

4
x
− 1 · arccot

(√

4
x
− 1

)

, 0 ≤ p2 < 4m2,

2 + σ ln
(

1−σ
1+σ

)

+ iπσ, p2 > 4m2,
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σ(x) =

√

1− 4

x
, x =

m2

p2
/∈ [0, 4]. (81)

Taking derivatives w.r.t. p2 at p2 = 0 is most easily done in the form with the
Feynman parameter integration explicit.

A.2 Sunset integrals

The sunset integrals are done with the methods of [22, 28]. They are defined as

〈〈X〉〉 = 1

i2

∫ ddq

(2π)d
ddr

(2π)d
X

(q2 −m2
1) (r

2 −m2
2) [(q + r − p)2 −m2

3]
, (82)

The various sunset integrals with Lorenz indices are

H(m2
1, m

2
2, m

2
3; p

2) = 〈〈1〉〉 ,
Hµ(m2

1, m
2
2, m

2
3; p

2) = 〈〈qµ〉〉 = pµH1(m
2
1, m

2
2, m

2
3; p

2) , (83)

Hµν(m2
1, m

2
2, m

2
3; p

2) = 〈〈qµqν〉〉
= pµpνH21(m

2
1, m

2
2, m

2
3; p

2) + gµνH22(m
2
1, m

2
2, m

2
3; p

2) .

and

〈〈rµ〉〉 = pµH1(m
2
2, m

2
1, m

2
3; p

2) ,

〈〈rµrν〉〉 = pµpνH21(m
2
2, m

2
1, m

2
3; p

2) + gµνH22(m
2
2, m

2
1, m

2
3; p

2) ,

〈〈qµrν〉〉 = 〈〈rµqν〉〉 ,
〈〈qµrν〉〉 = pµpνH23(m

2
1, m

2
2, m

2
3; p

2) + gµνH24(m
2
1, m

2
2, m

2
3; p

2) , (84)

The function H is fully symmetric in m2
1, m

2
2 and m2

3, while H1, H21 and H22 are
symmetric under the interchange of m2

2 and m2
3. The relation between the above 3

functions

p2H21(m
2
1, m

2
2, m

2
3; p

2) + dH22(m
2
1, m

2
2, m

2
3; p

2) =

m2
1H(m2

1, m
2
2, m

2
3; p

2) + A(m2
2)A(m

2
3) , (85)

allows to express H22 in terms of H21.
Similar to the integral B and B1, there is also a relation between H and H1 which

in the equal mass case becomes

H1(m
2, m2, m2; p2) =

1

3
H(m2, m2, m2; p2) . (86)

The other functions, H23 and H23, can be written in term of H , H1 and H21 by using
relations derived from redefining the momenta and masses in its definition [22].

The full sunset integral expressions and the definition for finite part HF
i =

{HF , HF
1 , H

F
21} can be found in the appendix of [22]. In our case we take m1 =

m2 = m3 = m.
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In order to eliminate the extra poles in the expressions, sometimes we need to
expand the HF

i (m
2, m2, m2; q2) around the pseudoscalar mass m2, and we define

HM
i (m2, m2, m2; q2) =

1

(q2 −m2)2

[

HF
i (m

2, m2, m2; q2)−HF
i (m

2, m2, m2;m2)

−(q2 −m2)HF ′
i (m2, m2, m2;m2)

]

, (87)

where

HF ′
i (m2, m2, m2;m2) =

∂HF
i (m

2, m2, m2; q2)

∂q2

∣

∣

∣

∣

∣

q2=m2

. (88)
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