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1 Introduction

The Standard Model (SM) has been compared to experiments with great success in the

past decades and finding the Higgs boson is the only missing piece. However, there are still

a few internal problems. The prime example is the so called hierarchy problem: why is

the electroweak (EW) scale much smaller than the Plank scale? Thus, the SM cannot be

seen as a fundamental theory of particle physics, but only as an effective description which

will break down at higher energies, at least at the Planck scale where gravity becomes of

the same magnitude as the gauge forces. The mission of the Large Hadron Collider at

CERN is therefore not only to look for the SM Higgs boson but also for physics Beyond

the Standard Model (BSM).

The general two Higgs Doublet Model (2HDM) was one of the earliest BSM models,

proposed by T.D. Lee [1] already in 1973 as a model with spontaneous CP-violation. The

2HDM itself cannot give any solution to the problems of the SM, such as the hierarchy

problem. On the contrary, it introduces more problems such as tree level flavour-changing-

neutral-currents (FCNC) which are absent in the SM. However, a 2HDM is part of many

other BSM models, especially supersymmetric ones, which require an even number of Higgs

doublets. Therefore it is useful and interesting to study the 2HDM itself, since it can be
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thought of as an effective description of more general models at the TeV scale. One such

example is the Minimal SuperSymmetric Model (MSSM) in the case of heavy superpartners

such that the Higgs bosons only decays to SM particles.

The problem of tree level FCNC can be evaded by introducing an appropriate Z2

symmetry that ensures that each fermion type only couples to one of the Higgs doublets,

which is sufficient in order to avoid tree-level FCNC as shown by Glashow and Weinberg [2].

This is precisely what happens in the MSSM whose Higgs sector at tree-level is a so called

type II 2HDM, meaning that one of the Higgs doublets couples only to down-type fermions

and the other only to up-type ones. By enforcing a Z2-symmetry one also ensures the

absence of tree-level FCNC under renormalization group evolution of the model to other

energy scales.

Recently another way of avoiding the tree-level FCNC, by having the Yukawa couplings

to the two Higgs doublets proportional to each other, has been proposed [3]. This works

fine at a given energy scale but if one evolves the model to another scale then the tree-level

FCNC are reintroduced because the Yukawa couplings in this model do not respect any

Z2 symmetry as shown by Ferreira et al [4]. There has also been some discussion of the

experimental constraints on this model under renormalization group evolution [5–7] and

we will revisit these constraints more carefully below.

More generally, the FCNC at a given energy scale are avoided as long as the Yukawa

couplings are diagonal in the appropriate basis. The constraints on these more general

models from low-energy flavour observables have also been studied [8], but not their prop-

erties under renormalization group evolution. Apart from these schemes, which are set

up in order to avoid tree-level FCNC to a larger or lesser extent, one can also envision a

top-down approach where one assumes a certain texture for the mass matrices and from

this derives the Yukawa coupling matrices. In the present context the prime example is

the Cheng-Sher ansatz [9] which gives a natural suppression of tree-level FCNC from the

hierarchy of quark masses. Some generic properties of these models under renormaliza-

tion group evolution have been studied [10] but not taking experimental constraints into

account.

In this paper we will study the properties of all these types of models taking into

account also experimental constraints on FCNC when evolving them according to the

Renormalization Group Equations (RGE) for the Yukawa couplings. In this way we can

see how stable the various assumptions are under RGE evolution, which in turn gives

a measure of have plausible the assumptions are. A large sensitivity indicates that the

assumptions behind the model are not stable meaning that they are either fine-tuned or

incomplete such that there for example will be additional particles appearing when going to

a higher energy. From this respect we will study both the appearance of a Landau pole as

well as off-diagonal Yukawa couplings leading to FCNC. Strictly speaking, the experimental

constraints on the latter are given at the EW scale. Even so, we can still apply them at a

higher scale as a means of a determining the fine-tuning of the models as argued above. As

an alternative one can also envision to assume a Z2-symmetric starting point at the EW

scale, then evolve up to a high scale where the Z2-symmetry is broken, and finally evolve

down to the EW scale again where the experimental FCNC constraints are then applied.
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The layout of the paper is as follows. We first give a brief introduction to the general

2HDM in section 2 including the Yukawa sector with emphasis on the FCNC problem as

well as some possible solutions and the RGEs for the Yukawa couplings. Section 3 gives

the latest constraints on the non-diagonal Yukawa couplings from neutral meson mixing as

well as the SM input values we use. Then in section 4 we present our numerical analysis

of the running Yukawa couplings. We investigate the limits both from the absence of a

Landau pole as well as from requiring the off-diagonal Yukawa couplings at higher energy

scales to be in accordance with the experimental limits at the EW scale. Finally, in section

5 we present our conclusions.

2 The general 2HDM

2.1 The Scalar Sector

The two Higgs doublet model was introduced in [1] and for a more general overview of its

properties and the constraints that can be put on it, we refer to the recent review [11].

Much of the phenomenology of the 2HDM is also closely related to the SM and MSSM for

which we refer to the reviews by Djouadi [12, 13].

The most general renormalizable scalar potential with two Higgs doublets, Φ1 and Φ2,

can be written as

VΦ = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c)

+
1

2
λ1(Φ1Φ1)2 +

1

2
λ2(Φ2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

{
1

2
λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
(Φ†1Φ2) + h.c

}
. (2.1)

The coupling constants m2
11, m2

22 and λ1,2,3,4 are real, while m12 and λ5,6,7 can be complex

if there are not any further restrictions. In the following we will however set them to be

real such that there is no explicit CP-violation.

The vacuum expectation values (VEVs) of Φi are in general

〈Φ1〉0 =
1√
2
eiθ1

(
0

v1

)
,

〈Φ2〉0 =
1√
2
eiθ2

(
0

v2

)
, (2.2)

and tanβ is defined as the ratio of the vi, tanβ = v2/v1.

The Higgs doublets can be rotated to a basis in which only one of the doublets has a

vacuum expectation value using the angle β. This is called the Higgs basis and is related

to the general basis as

H1 = cosβ Φ1 + sinβ e−iθΦ2 ,

H2 = − sinβ Φ1 + cosβ e−iθΦ2 , (2.3)
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with θ = θ2 − θ1. Hence the VEVs for the doublets in the Higgs basis, with v2 = v2
1 + v2

2,

are

〈H1〉0 =
1√
2
eiθ1

(
0

v

)
,

〈H2〉0 =

(
0

0

)
. (2.4)

We have defined both Φi to have weak hypercharge +1. Doublets with weak hyper-

charge −1 can be constructed out of the complex conjugate fields via

Φ̃i = iσ2Φ∗i . (2.5)

Φ1 and Φ2 consist of 8 real fields in total. Three of them correspond to the Goldstone

bosons to be eaten by the weak gauge bosons W± and Z0 upon spontaneous breaking of

the gauge group SU(2)L × U(1)Y . One of the standard conventions to write the doublets

without the Goldstone bosons is (setting for clarity θ1 = 0)

Φ1(x) =

(
−sβH+

1√
2
(cβv − sαh+ cαH − isβA)

)

Φ2(x) =

(
cβH

+

1√
2
(sβv + cαh+ sαH + icβA)

)
. (2.6)

Here H± is the charged Higgs boson and the angle α (sα = sinα, cα = cosα) is introduced

to diagonalize the CP eigenstates in the neutral sector, which can be divided into two CP

even scalars: (H, h), and a CP odd pseudo-scalar: A.

2.2 The Yukawa Sector

The weak eigenstates of the SM fermions (with massless neutrinos for simplicity) are de-

noted as

QL =

(
UL
DL

)
LL =

(
νL
EL

)
,

UR, DR, ER . (2.7)

The most general Yukawa interaction can then be written as

− LY = QLΦ̃1η
U
1 UR +QLΦ1η

D
1 DR + LLΦ1η

L
1 ER

+QLΦ̃2η
U
2 UR +QLΦ2η

D
2 DR + LLΦ2η

L
2 ER + h.c. . (2.8)

We leave the generation index implicit here, all entities are matrices or vectors in the

three-dimensional generation space. The ηFi are the 3 × 3 matrices of Yukawa couplings

for F = U,D,L.
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In order to show more explicitly the physical content in the Yukawa couplings, we

rotate the Yukawa coupling matrices to the Higgs basis by inverting Eq. (2.3) and inserting

into Eq. (2.8).

− LY = QLH̃1κ
U
0 UR +QLH1κ

D
0 DR + LLH1κ

L
0ER

+QLH̃2ρ
U
0 UR +QLH2ρ

D
0 DR + LLH2ρ

L
0ER + h.c. . (2.9)

The relations between the two sets of Yukawa matrices are

κU0 = cosβ ηU1 + sinβ(e−iθηU2 ) ,

κD0 = cosβ ηD1 + sinβ(e+iθηD2 ) ,

κL0 = cosβ ηL1 + sinβ(e+iθηL2 ) ; (2.10)

and

ρU0 = − sinβ ηU1 + cosβ(e−iθηU2 ) ,

ρD0 = − sinβ ηD1 + cosβ(e+iθηD2 ) ,

ρL0 = − sinβ ηL1 + cosβ(e+iθηL2 ) . (2.11)

The couplings to H1 produce the masses of the fermions. We can go over to the fermion

mass basis by bi-diagonalizing the matrices κF with the unitary matrices V F
L , V

F
R :

κF = V F
L κ

F
0 V

F †
R =

√
2

v
MF

ii (2.12)

ρF = V F
L ρ

F
0 V

F †
R (2.13)

The κF are diagonal, real and positive and are fully determined from the fermion masses

MF
ii with MU

11 = mu etc. ρF is still a general complex matrix whose non-diagonal matrix

elements could cause tree level flavour-changing-neutral-currents. The reason is that we

cannot in general diagonalize two different matrices simultaneously. The flavour changing

charged currents are described by the matrix

VCKM = V U
L V

D†
L . (2.14)

We now can derive the Yukawa interactions in the Higgs and fermion mass basis.

Using the definitions of Eqs. (2.3), (2.6), and (2.10-2.13), the Yukawa interactions (2.9)
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Type UR DR LR ρU ρD ρL

I + + + κU cotβ κD cotβ κL cotβ

II + − − κU cotβ −κD tanβ −κL tanβ

III/Y + − + κU cotβ −κD tanβ κL cotβ

IV/X + + − κU cotβ κD cotβ −κL tanβ

Table 1. The different types of 2HDM with Z2 symmetry. The nomenclature follows [8]. The

Z2 charges for Higgs doublets are odd or −1 for Φ1 and even or +1 for Φ2. The right-handed

fermions have been given different Z2 charges assignment as shown. The Yukawa matrices ρF are

proportional to the κF and thus also diagonal with the relation shown in the last three columns.

become (see e.g. [14])

− LY =
1√
2
D̄
[
κDsβ−α + (ρDPR + ρD

†
PL)cβ−α

]
Dh

+
1√
2
D̄
[
κDcβ−α − (ρDPR + ρD

†
PL)sβ−α

]
DH +

i√
2
D̄(ρDPR − ρD

†
PL)DA

+
1√
2
Ū
[
κUsβ−α + (ρUPR + ρU

†
PL)cβ−α

]
Uh

+
1√
2
Ū
[
κUcβ−α − (ρUPR + ρU

†
PL)sβ−α

]
UH − i√

2
Ū(ρUPR − ρU

†
PL)UA

+
1√
2
L̄
[
κLsβ−α + (ρLPR + ρL

†
PL)cβ−α

]
Lh

+
1√
2
L̄
[
κLcβ−α − (ρLPR + ρL

†
PL)sβ−α

]
LH +

i√
2
L̄(ρLPR − ρL

†
PL)LA

+
[
Ū
(
VCKMρ

DPR − ρU
†
VCKMPL

)
DH+ + ν̄ρLPRLH

+ + h.c.
]
, (2.15)

where PR/L = (1 ± γ5)/2. One can clearly see, that if the Yukawa coupling matrices ρF

are not diagonal, there are flavour-changing-neutral-currents (FCNC) at tree level, which

are absent in the Standard Model and are severely constrained by experiments. Therefore,

either these terms are completely forbidden by certain symmetries or mechanisms, or they

are sufficiently small to avoid the current experimental bounds. An early discussion is the

paper by Glashow and Weinberg [2].

There are different known solutions to the FCNC problem. In this paper we study

three different cases:

• Z2 symmetry

If there is only one Higgs doublet coupling to each type of fermions, the situation

becomes the same as in the standard model. The FCNC couplings vanish completely,

known as naturally vanishing FCNC [2]. An elegant way to achieve this is to impose

a Z2 symmetry on the Lagrangian and set one of the Higgs doublets and some of the

right handed fermions to be Z2 odd. The different cases depending on which fermions

couple to the same doublets are listed in Table 1. We also note that the Higgs sector

of the MSSM is of type II at tree-level.
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• Yukawa Alignment

A more general way to diagonalize the Yukawa matrices simultaneously is the Yukawa

Alignment model [3]. They proposed that the Yukawa coupling matrices ηF1 and ηF2
are proportional to each other. So the rotated Yukawa coupling matrices κF and ρF

are also proportional to each other and can thus be diagonalized simultaneously.

However, other than the models with Z2 symmetry, this alignment may be spoiled

when going to different energy scales and some of the non-diagonal couplings leading

to FCNC may become sizable. Studying limits on the proportionality constants from

this source is one of the purposes of the present paper.

• Cheng-Sher Ansatz

A third possibility is to keep the off-diagonal FCNC elements in the ρF naturally

small. The best known ansatz of this type was proposed by Cheng and Sher [9]

ρFij = λFij

√
2mimj

v
. (2.16)

The mi are the different fermion masses. Since the diagonal elements of the κF

have a hierarchy in size corresponding to the fermion mass hierarchy it is natural to

introduce this also for the ρF . The λF are expected to be of O(1) and should be

small enough to suppress FCNC to the observed level. We discuss these limits below.

One should be aware that there are different parameterizations of the Cheng-Sher

ansatz, some papers do not have the factor of
√

2 in (2.16), e.g. [15].

2.3 RGE for Yukawa Couplings in 2HDM

The variation of couplings and masses with the subtraction scale µ is given by the renor-

malization group equations (RGE). The running of Yukawa couplings in the 2HDM can be

found in many places, e.g. [4, 10, 11]. We have also rederived them using the methods of

[10].

Using the notation D ≡ 16π2d/d(lnµ) the RGEs for the Yukawa couplings in the

general basis are:

DηUk = −AUηUk +

2∑
`=1

Tr
[
Nc

(
ηUk η

U†
` + ηD` η

D†
k

)
+ ηL†k ηL`

]
ηU`

+
1

2

2∑
`=1

[
ηU` η

U†
` + ηD` η

D†
`

]
ηUk + ηUk

2∑
`=1

ηU†` ηU` − 2
2∑
`=1

[
ηD` η

D†
k ηU`

]
,

DηDk = −ADηDk +
2∑
`=1

Tr
[
Nc

(
ηDk η

D†
` + ηU` η

U†
k

)
+ ηLk η

L†
`

]
ηD`

+
1

2

2∑
`=1

[
ηU` η

U†
` + ηD` η

D†
`

]
ηDk + ηDk

2∑
`=1

ηD†` ηD` − 2
2∑
`=1

[
ηU` η

U†
k ηD`

]
,
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DηLk = −ALηUk +
2∑
`=1

Tr
[
Nc

(
ηU†k ηU` + ηDk η

D†
`

)
+ ηLk η

L†
`

]
ηL`

+

2∑
`=1

[
1

2
ηL` η

L†
` ηLk + ηLk η

L†
` ηL`

]
. (2.17)

where AF are given by the gauge couplings as follows

AU = 3
(N2

c − 1)

Nc
g2

3 +
9

4
g2

2 +
17

12
g2

1 ,

AD = AU − g2
1 ,

AL =
15

4
g2

1 +
9

4
g2

2 . (2.18)

with g1 = e/ cos θW , g2 = e/ sin θW , and g3 = gs, sin θW being the weak mixing angle. In

turn the RGEs for the gauge couplings up to one loop level are

D(g1) =

(
1

3
+

10

9
nq

)
g3

1 ,

D(g2) = −
(

7− 2

3
nq

)
g3

2 ,

D(g3) = −1

3
(11Nc − 2nq) g

3
3 . (2.19)

nq is the number of active quarks above energy threshold. In this paper we will always use

nq = 6. We have checked that using the two-loop running for g3 produces only a small

change in our results. We thus expect that the effect of running with nq = 6 from mZ to

the top threshold rather than nq = 5 will not introduce a significant effect.

Finally the RGEs for the fields and thus for the vacuum expectation values eθivi are:

D(eiθkvk) = −
2∑
`=1

Tr
[
Nc

(
ηUk η

U†
` + ηD` η

D†
k

)
+ ηL` η

L†
k

]
eiθ`v`

+

(
3

4
g2

1 +
9

4
g2

2

)
eiθkvk . (2.20)

Note that the running of the Yukawa couplings as given in (2.17) is independent of

the couplings in the Higgs potential (2.1). They only appear at the two-loop level. Thus

we limit ourselves to studying the evolution of the Yukawa sector by itself and do not

include the evolution of the parameters of the Higgs potential. One should keep in mind

that the evolution of the latter could also signal the breakdown of a given model. This

has for example been studied in [16] although only including the top Yukawa coupling. A

complete one-loop treatment of the Higgs sector would require also the inclusion of the

complete Yukawa sector at one-loop. We foresee to include this in future versions of the

2HDMC calculator [17].

Using the definitions (2.3), (2.10) and (2.11), the RGEs can be rewritten in the Higgs

basis. The vacuum expectation value v, the phase difference between the two vacuum
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expectation values θ and the angle β relating the general basis and the Higgs basis satisfy

the following RGEs:

D
(
v2
)

= −2Tr
[
Nc

(
κU0 κ

U†
0 + κD0 κ

D†
0

)
+ κL0 κ

L†
0

]
v2 +

[
3

2
g2

1 +
9

2
g2

2

]
v2 ,

D(tanβ) = − 1

2 cos2 β
Tr

[
Nc

(
ρU0 κ

U†
0 + κU0 ρ

U†
0 + κD0 ρ

D†
0 + ρD0 κ

D†
0

)
+κL0 ρ

L†
0 + ρL0 κ

L†
0

]
,

D(θ) =
1

i sin(2β)
Tr

[
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)]
. (2.21)

Finally the Yukawa couplings in the Higgs basis, in other words the matrices κF0 and ρF0
satisfy:

D
(
κU0
)

= −AUκU0 + Tr
[
Nc

(
κU0 κ

U†
0 + κD0 κ

D†
0

)
+ κL†0 κL0

]
κU0

−1

2
tanβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
κU0

+

{
1

2

[
ρU0 ρ

U†
0 + ρD0 ρ

D†
0 + κU0 κ

U†
0 + κD0 κ

D†
0

]
κU0 + κU0

[
ρU†0 ρU0 + κU†0 κU0

]
−2ρD0 κ

D†
0 ρU0 − 2κD0 κ

D†
0 κU0

}
, (2.22)

D
(
κD0
)

= −ADκD0 + Tr
[
Nc

(
κU0 κ

U†
0 + κD0 κ

D†
0

)
+ κL0 κ

L†
0

]
κD0

+
1

2
tanβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
κD0

+

{
1

2

[
ρU0 ρ

U†
0 + ρD0 ρ

D†
0 + κU0 κ

U†
0 + κD0 κ

D†
0

]
κD0 + κD0

[
ρD†0 ρD0 + κD†0 κD0

]
−2ρU0 κ

U†
0 ρD0 − 2κU0 κ

U†
0 κD0

}
, (2.23)
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D
(
κL0
)

= −ALκL0 + Tr

{
Nc

(
κU†0 κU0 + κD0 κ

D†
0

)
+ κL†0 κL0

}
κL0

+
1

2
tanβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
κL0

+
1

2

(
ρL0 ρ

L†
0 + κL0 κ

L†
0

)
κL0 + κL0

(
ρL†0 ρL0 + κ†L0 κL0

)
, (2.24)

D(ρU0 ) = −AUρU0 + 2Tr
[
Nc

(
ρU0 κ

U†
0 + κD0 ρ

D†
0

)
+ κL0 ρ

L†
0

]
κU0

+Tr
[
Nc

(
ρU0 ρ

U†
0 + ρD0 ρ

U†
0

)
+ ρL0 ρ

L†
0

]
ρU0

−1

2
cotβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
ρU0

+

{
1

2

[
ρU0 ρ

U†
0 + ρD0 ρ

D†
0 + κU0 κ

U†
0 + κD0 κ

D†
0

]
ρU0 + ρU0

[
ρU†0 ρU0 + κU†0 κU0

]
−2ρD0 ρ

D†
0 ρU0 − 2κD0 ρ

D†
0 κU0

}
, (2.25)

D(ρD0 ) = −ADρD0 + 2Tr
[
Nc

(
κU0 ρ

U†
0 + ρD0 κ

D†
0

)
+ ρL0 κ

L†
0

]
κD0

+Tr
[
Nc

(
ρU0 ρ

U†
0 + ρD0 ρ

D†
0 + ρL0 ρ

L†
0

)]
ρD0

+
1

2
cotβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
ρD0

+

{
1

2

[
ρU0 ρ

U†
0 + ρD0 ρ

D†
0 + κU0 κ

U†
0 + κD0 κ

D†
0

]
ρD0 + ρD0

[
ρD†0 ρD0 + κD†0 κD0

]
−2ρU0 ρ

U†
0 ρD0 − 2κU0 ρ

U†
0 κD0

}
, (2.26)
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DρL0 = −ALρL0 + 2Tr

{
Nc

(
κU0 ρ

U†
0 + ρD0 κ

D†
0

)
+ ρL0 κ

L†
0

}
κL0

+Tr

{
Nc

(
ρU0 ρ

U†
0 + ρD0 ρ

D†
0

)
+ ρL0 ρ

L†
0

}
ρL0

+
1

2
cotβ Tr

{
Nc

(
κU0 ρ

U†
0 − ρ

U
0 κ

U†
0

)
−Nc

(
κD0 ρ

D†
0 − ρ

D
0 κ

D†
0

)
−
(
κL0 ρ

L†
0 − ρ

L
0 κ

L†
0

)}
ρL0

+
1

2

(
ρL0 ρ

L†
0 + κL0 κ

L†
0

)
ρL0 + ρL0

(
ρL†0 ρL0 + κ†L0 κL0

)
. (2.27)

Before ending this section we note that the tanβ dependent terms in the evolution

equations for the Yukawa couplings disappear in the real case. In the CP-violating case ρ

is no longer basis-independent and therefore there is a residual dependence on tanβ in this

case. For a thorough discussion of basis independent quantities in the CP-violating case

we refer to [18].

3 Constraints and SM input

3.1 Low-energy constraints on λFij

In the recent review of 2HDM [11], the authors have given a comprehensive overview on

the latest constraints on the λFij . The most stringent ones are in the quark sector, coming

from the neutral meson mixing, and we will therefore limit ourselves to these constraints

in the following.

The master formula for F 0 − F̄ 0 mixing mediated by tree level Higgs scalars in the

vacuum insertion approximation can be found in [19]:

∆MF =
|ρFij |2

MF

[
SF

(
c2
β−α
m2
h

+
s2
β−α
m2
H

)
+
PF
m2
A

]
(3.1)

SF =
1

6
BF f

2
FM

2
F

[
1 +

M2
F

(mi +mj)2

]
PF =

1

6
BF f

2
FM

2
F

[
1 +

11M2
F

(mi +mj)2

]
Here MF and ∆MF are the mass and mass difference of the neutral mesons respectively,

and fF is the corresponding pseudo-scalar decay constant. The parameter BF is defined

as the ratio of the actual matrix element compared to its value in the vacuum insertion

approximation [19]. The numerical values of the parameters we use are listed in Table 2.

To calculate the limits on λFij , we require that the sum of the SM and 2HDM theoretical

predictions for ∆MF does not exceed the experimental value by more than 2 standard

deviations:

∆MSM
F + ∆M2HDM

F ≤ ∆M expt
F + 2σ (3.2)
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Meson MF (GeV) BF fF (GeV)

K0 (ds̄) 0.4976 [20] 0.75± 0.026 [21] 0.1558± 0.0017 [21]

D0 (ūc) 1.8648 [20] 0.82± 0.01 [22] 0.165 [22]

B0
d (db̄) 5.2795 [20] 1.26± 0.11 [21] 0.1928± 0.0099 [21]

B0
s (sb̄) 5.3663 [20] 1.33± 0.06 [21] 0.2388± 0.0095 [21]

Table 2. Parameters of the neutral mesons K0, D0,B0
d and B0

s .

where σ =
√
σ2

expt + σ2
SM is a combination of the experimental and theoretical uncertain-

ties. For the K0 − K̄0 and D0 − D̄0 mixing, the non-perturbative interactions make the

SM calculation very difficult. Here we therefore simply assume that the 2HDM contribu-

tion is not larger than the experimental value by more than 2 standard deviations. This

corresponds to setting the SM contribution to zero in Eq. (3.2) as was done in [15]. The

experimental and SM values we thus use are listed below.

1. K0 − K̄0:

∆M expt
K0 = (3.483± 0.006)× 10−15 GeV [20]

∆MSM
K0 = 0

2. D0 − D̄0:

∆M expt
D0 = 1.57+0.39

−0.415 × 10−14 GeV [20]

∆MSM
D0 = 0

3. B0
d − B̄0

d :

∆M expt
Bd

= (3.344± 0.0197± 0.0197)× 10−13 GeV [20]

∆MSM
Bd

= 3.653+0.48
−0.30 × 10−13 GeV [23]

4. B0
s − B̄0

s :

∆M expt
Bs

= (116.668± 0.270± 0.171)× 10−13 GeV [24]

∆MSM
Bs

= 110.6+17.1
−9.9 × 10−13 GeV [23]

The 2HDM contribution is then calculated using Eq. (3.1). We note that the quark

masses appearing in Eq. (3.1) are the low energy ones defined more or less at the scale of

the respective meson masses. For internal consistency we use the following values from ref.

[25] (in GeV):

mu(2 GeV) = 2.2× 10−3 , mc(mc) = 1.25 ;

md(2 GeV) = 5.0× 10−3 , ms(2 GeV) = 0.095 , mb(mb) = 4.2 .
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However, the impact of the actual quark masses used is very small since the masses ap-

pearing in |ρFij |2 and the dominant pseudo-scalar matrix elementM2
F /(mi +mj)

2 essentially

cancel, and we get similar results using the masses defined at mZ instead.

From Eq. (3.1) we can see that the main uncertainty of this estimate is due to the

unknown masses of the CP-even and CP-odd Higgs bosons. It is also clear that the con-

tribution to the mixing from the CP-odd exchange is much larger due to the extra factor

11 in PF for the dominant pseudo-scalar matrix element. We will consider three different

representative cases. We also remind the reader that in some cases there is no factor of
√

2

in the definition of λFij . With all this in mind we get the following constraints on λFij :

• mh = mH = mA = 120 GeV

λuc . 0.13 ,

λds . 0.08, λdb . 0.03, λsb . 0.05 .

• mh = mH = mA = 400 GeV

λuc . 0.44 ,

λds . 0.27 , λdb . 0.12 , λsb . 0.18 .

• mh = mH = 120 GeV mA = 400 GeV

λuc . 0.30 ,

λds . 0.20 , λdb . 0.08 , λsb . 0.12 .

The first and second cases are examples of typical low and intermediate masses for

the Higgs bosons, whereas the last case illustrates that the main restriction comes from

the exchange of the CP-odd Higgs. All in all we conclude from these different cases that

a representative value for these constraints is given by λFi 6=j . 0.1 and this is the generic

value we will use when analyzing the effects of Z2 breaking in the running of the Yukawa

couplings in the next section.

3.2 General input

For the RGE evolution towards high scales we need a set of input parameters at the low

scale µ = mZ = 91.186 GeV. The experimental input we have are the masses and the

measured parameters of the CKM-mixing matrix as well as the gauge couplings. We have

neglected constraints coming from the neutrino sector. The quark and charged lepton

masses at the scale mZ we take from Ref. [25], their values are (in GeV)

mu = 1.29× 10−3 , mc = 0.619 , mt = 171.7 ;

md = 2.93× 10−3 , ms = 0.055 , mb = 2.89 ;

me = 0.487× 10−3 , mµ = 0.103 , mτ = 1.746 .
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For the 3× 3 CKM matrix we use the PDG [20] phase convention

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.3)

where sij = sin θij and cij = cos θij . We will also use this convention for the phases at the

high scale. The values for the angles and the phase follow from [20]

s21 = λ , s23 = Aλ2 ,

s13e
iδ =

Aλ3 (ρ̄+ iη̄)
√

1−A2λ4

√
1− λ2 [1−A2λ4 (ρ̄+ iη̄)]

. (3.4)

with

λ = 0.2253 , A = 0.808 , ρ̄ = 0.132 , η̄ = 0.341 . (3.5)

There is of course still a large freedom in how one chooses the remaining freedom at

the weak scale mZ . We chose to put the CKM-mixing always in the down quark sector

and have thus at the EW scale

V U
L = V U

R = I

V D
L = V †CKM V D

R = I

V L
L = V L

R = I .

The last two are a consequence of our neglecting neutrino masses and mixings. The Yukawa

couplings at the EW scale are thus:

(κU0 )ij = κUij =

√
2mi

v
, (ρU0 )ij = ρUij (i, j = u, c, t)

(κD0 )ij = VCKM κDij = VCKM

√
2mi

v
, (ρD0 )ij = VCKM ρDij (i, j = d, s, b)

(κL0 )ij = κLij =

√
2mi

v
, (ρL0 )ij = ρLij (i, j = e, µ, τ)

At any energy higher than the EW scale, the Yukawa couplings κ0 and ρ0 in general

become non-diagonal and complex. Thus they need to be transformed to the mass eigen-

states by the bi-diagonalization defined in Eq. (2.13) in order to give κ and ρ. The latter

can then be used together with the diagonal elements of the former to calculate λFi 6=j . When

performing the bi-diagonalization we always keep to the PDG conventions for how to write

the CKM matrix.

For the electroweak VEV we use v2 = 1/(
√

2GF ) with GF = 1.16637 · 10−5 GeV−2

from PDG [20] and for the phase difference between the two VEVs we start from θ = 0 such

that there is no spontaneous CP-violation. For the gauge couplings we use the PDG [20]

values: α = 1/127.91, αs = 0.118 and for the weak mixing angle we use the on-shell value

sin2 θW = 0.2233.
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Type λUii λDii λLii
I 1/ tanβ 1/ tanβ 1/ tanβ

II 1/ tanβ − tanβ − tanβ

III/Y 1/ tanβ − tanβ 1/ tanβ

IV/X 1/ tanβ 1/ tanβ − tanβ

Table 3. The diagonal λFii in 2HDM models with Z2 symmetry.

4 RGE analysis

We have implemented the RGE equations in the Higgs basis given above in three different

computer codes. The matrix operations have been performed with either the C++ template

library Eigen [26] or the GNU Scientific Library (GSL)[27] and the in total 114 ordinary

differential equations are handled by the ODE-solver in GSL using the explicit Runge-

Kutta-Fehlberg (4,5) method. The programs have been tested against each other and also

by comparing with the results from [10].

In this section we will start by briefly exploring the behavior of Z2-symmetric models

and then study a number of Z2-breaking models in more detail.

4.1 Z2-symmetric models

From table 1 and the definitions of κF and ρF , we get the diagonal elements of λFii in

terms of tanβ for the four different 2HDM types as shown in table 3. Since in this case

the Yukawa couplings are given by tanβ it is a real physical parameter. In addition the

evolution of the Yukawa couplings will only depend on the initial value of tanβ.

Since the Z2-symmetry is enforced the Yukawa couplings stay diagonal and the only

thing that can happen during the evolution is that one or more of the Yukawas will blow

up due to the presence of a Landau pole. This signals the breakdown of the perturbative

description and calls for a new theory at the corresponding energy scale. The position of

the Landau pole will depend on the initial value of tanβ and which of the four types we

are considering.

In Fig. 1 we show the position of the Landau pole as a function of the input tanβ.

For the lower limits, the results are almost the same for all types, and the lines are more

or less on top of each other. This is natural since in this regime the evolution is essentially

driven by λtt, which is the same in all types. For the upper limits, on the other hand,

there are some differences. First of all there is no upper limit on tanβ in the type I model,

which means there is no Landau pole below 1016 GeV if the input tanβ > 1.1. For the

other types, the upper limits are shown in the right panel of Fig. 1. The differences can be

understood from whether the evolution is driven by λbb (type III), λττ (type IV) or both

(type II).

4.2 Z2-breaking models

Before starting to analyze the Z2-breaking models we note that, as shown by [4], the Z2-

symmetry of the RGE’s is still preserved if all the λF ’s for the different types are rescaled
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Figure 1. The starting value of tanβ as a function of the position of the corresponding Landau

pole (ΛLandau−pole) in the different 2HDM types. There are lower limits on tanβ for all four types

(left), but only type II, type III/X and type IV/Y have an upper limit of tanβ (right).

with a factor x for the cotβ ones and 1/x for the tanβ ones. In addition, when tanβ is no

longer related to the Yukawa couplings it does not have any physical meaning, since it only

reflects the basis choice for the general 2HDM. In the following we will only be considering

cases with ρ real at the starting scale. This means that the only source of CP-violation

is from the CKM-matrix. Thus the CP-violating effects will be small and therefore the

dependence on tanβ very limited. We have verified this numerically for a number of cases

and in the following we set tanβ = 1.

In this subsection, we will also explore the non-diagonal elements of FCNC Yukawa

couplings. We know that in the Z2 symmetric case, the tree level FCNC couplings will

remain equal to zero (up to the numerical precision) up to arbitrarily high energy scales

since they are protected by the symmetry. However once we break the Z2 symmetry in

some way, this protection is not effective anymore and the off-diagonal elements λFi 6=j may

start to grow.

The actual values of the non-diagonal FCNC Yukawa couplings ρFi 6=j at different energy

scales will depend on how much we break the Z2 symmetry. We can thus use the size of the

λFi 6=j as a measure of how severe different types of Z2 symmetry breaking are. Of course

we do not know how large the λFi 6=j can be at higher scales. Still it is reasonable to assume

that the values should not be widely different from the ones at the EW scale. Thus we will

use a generic value of λFi 6=j ≤ 0.1 as a limit on how much Z2 symmetry breaking should be

allowed and see at which energy scale this limit is reached.

The argument behind this is essentially that we can use the RGE evolution to analyze

the stability of the assumptions underlying different 2HDMs under variations of the scale

where the model is defined. A large sensitivity indicates that the assumptions behind the

model are not stable meaning that they are either fine-tuned or incomplete such that there

for example will be additional particles appearing when going to a higher energy. From
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this respect we will thus study both the appearance of a Landau pole as well as off-diagonal

Yukawa couplings leading to FCNC larger than experimentally allowed at the EW scale.

We also note that as will become clear below there is a small dependence on at which

scale we apply the above argument. Requiring stability up to 103 GeV gives very similar

constraints on the amount of Z2-breaking that is allowed as when using 1015 GeV.

As an alternative way of assessing the amount of Z2-breaking that is allowed by the

experimental constraints from FCNC at the EW scale we have also considered a set-up

where the Z2-symmetry is broken at a high scale. In this set-up we start from a Z2-

symmetric model at the EW scale and then evolve it to the high scale of interest. The

resulting model is then used as the starting point for exploring different ways of breaking

the Z2 symmetry. Once the Z2-breaking has been introduced the different models are then

evolved down to the EW scale for comparison with the experimental constraints. We have

verified that in representative cases the results obtained in this way are very similar to the

first approach and therefore we will not go into any more details.

There are many possibilities to break the Z2 symmetry and in the following we will

consider three ways: aligned, diagonal and non-diagonal λFij as defined below. In most

cases we will concentrate on the effects of breaking the symmetry starting from a type I or

type II model. The reasons for this is on the one hand that these models are the most well

studied cases in the literature and on the other hand that it is in the quark sector that we

have the most stringent constraints on the FCNC Yukawa couplings. Thus the breaking of

the Z2 symmetry in the lepton sector will typically have small effects.

In order to be able to separate the effects of breaking the Z2 symmetry in different

ways we will limits ourselves to breaking the symmetry in one specific way at a time.

We start by noting that in the Z2 symmetric models at least two of the λF are always

equal whereas the third one is the same as the other two in type I and the negative inverse

of them in the other types. When going to the aligned models we will therefore keep two of

the sectors in fulfillment with the Z2-symmetry and only break the symmetry through the

relation to the third sector. In other words either setting λDii = λLii, λ
U
ii = λLii, or λUii = λDii

and letting λFii of the third sector vary independently of the other two.

Another way of breaking the Z2-symmetry is by keeping the λFij diagonal but letting

the individual diagonal elements be non-equal as has been studied by Mahmoudi and

St̊al [8]. We will analyze the effects of this type of breaking in the up and down sectors

separately again starting from the Z2-symmetric cases with either λDii = λLii = λtt or

λDii = λLii = −1/λtt. In other words using the type I or II Z2-symmetries as starting point.

The third way of breaking the Z2-symmetry that we will consider is by setting the

non-diagonal elements of λFij nonzero already at the starting scale. Again we will consider

setting the up-sector and down-sector non-diagonal elements non-zero separately and apply

the type I or type II symmetries for the diagonal elements.

4.2.1 Aligned models

We start by analyzing the three different versions of Aligned models with λU , λD, and λL

pairwise equal. Based on the similarities with the Z2-symmetric models we call them I/II,

III, and IV respectively and their free parameters are as follows
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Figure 2. The energy scale at which the Landau pole is encountered as a function of pairwise

combinations of the starting values for λUii , λ
D
ii , and λLii as indicated in the figure for the three

different versions of aligned models explained in the text. The areas inside a given contour are

allowed by the requirement of not having a Landau pole. The different contours are as follows

starting from the center: 1015, 1010, 105, 103, and 300 GeV.

• Aligned I/II: λUii , λDii = λLii

• Aligned III: λDii , λUii = λLii

• Aligned IV: λLii, λUii = λDii

First we consider the effects of requiring that there is no Landau pole encountered

when evolving to higher scales. We therefore plot in Fig. 2 the scale at which the Landau

pole is reached as a function of the starting values for pairs of λU , λD, and λL. This means

that for a given energy scale the points inside the corresponding contour is allowed by this

requirement. As can be seen from the figure, the position of the Landau poles is very
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Figure 3. Same as Fig. 2 but also applying the constraints from the non-diagonal λFi6=j . The plot

shows the results for λLii = λDii , but the same results are also obtained for λLii = λUii .

similar to the situation for the Z2-symmetric cases and there is only a small correlation

between the values of the aligned Yukawas where the Landau pole is reached.

Applying also the condition that the off-diagonal elements of should respect the limits

given by the meson mixing constraints also at higher scales has a potentially large impact

on the allowed regions. This is the case for the aligned models of type I/II and III, where

λL is set equal to λD and λU respectively, as can be seen in Fig. 3. In fact, within the

parameter region displayed in the figure (note the difference in scale compared to Fig. 2)

there is no difference between the two cases and therefore we only show one of them.

However, as may also have been expected, there are no additional constraints in the case

when λD and λU are set equal since the off-diagonal lepton Yukawas are always small as a

consequence of the small lepton masses and the limited cross-talk between the quarks and

leptons. In other words breaking the Z2 symmetry between the quarks and leptons has no

effect in this respect.

For reference we have also included lines corresponding to the Z2 symmetric relations

in Fig. 3. Along these lines it is the Landau pole that gives the limit but in the other regions

the limit comes from the off-diagonal elements. We also note that the plot is symmetric

under inversion through the origin (x, y) → (−x,−y), which follows since the evolution

equations for ρF0 are all even under ρF0 → −ρF0 as long as the imaginary parts of κF0 and

ρF0 are small.

It is also interesting to compare the results for non-equal λD and λU with the con-

straints on λbb and λtt obtained from b → sγ in [8]. Applying the conditions of stability

when evolving to higher scales and that the non-diagonal Yukawas should stay small es-

sentially removes the regions |λtt| & 1 including the fine-tuned regions where λbb and λtt
are both large (& 2) and have the same sign.
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Figure 4. The constraints on the starting values of ξ = λDii /λ
U
ii (left) and ξ = −λDiiλUii (right) as

a function of the renormalization scale where the off-diagonal elements reaches 0.1 in the Aligned

models of type I and type II respectively for the representative values λUii = 0.02 and 0.5.

As special cases we also show in Fig. 4 the results for λUii = 0.02, 0.5 and either λDii =

λLii = ξλUii (type I) or λDii = λLii = −ξ/λUii (type II). From these plots it is clear that for

λUii = 0.5, the off-diagonal elements puts strong constraints on the Z2-symmetry breaking

parameter ξ = λDii /λ
U
ii ( ξ = −λDii λUii ) with typical values being ξ . 3− 10 (2− 5) for type

I (II). For λUii = 0.02 on the other hand the constraints are very mild in a type I set-up

with ξ . 100 − 1000 allowed, whereas in a type II setup only ξ values very close to 1 or

ξ . 0.05− 0.1 are allowed. The two possibilities corresponds to two distinct regions in the

λDii , λ
U
ii plane. The first one where λDii ≈ −1/λUii and the second one where λDii is small

(. 2− 5). For comparison we recall that the Landau pole constrains λDii . 70− 200 more

or less irrespectively of λUii . So the constraints on ξ are more or less trivial in this case.

4.2.2 Diagonal models

Next we consider in more detail models with Z2-breaking in either the up or the down

sector. To make the discussion more clear we only consider models where λtt and λbb are

related in a Z2 symmetric way and since we have seen that the effects of the lepton sector

is small we always set λLii = λbb. (If λtt and λbb are not related in a Z2 symmetric way then

we are more or less back in the aligned models since these two are the dominant Yukawas).

In other words we only partially break the alignment.

Thus we start with considering Z2-breaking in the up-sector with λD = λtt (type I) or

λD = −1/λtt (type II). For simplicity we also set λuu = λcc.

First of all, as we show in Fig. 5, the Landau pole gives the restriction λcc . 400− 500

both for type I and II, again more or less independently of the value of λtt. We also want

to emphasize that even though it is not really discernable from the figure, there is also a

lower limit on λtt & 0.01 from the Landau pole for λbb for type II.

The figure also shows that the impact of constraining the off-diagonal elements to be

less than 0.1 is limited for the type I set-up. In fact for λtt = 0 there is not additional
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Figure 5. The energy scale where the Landau pole is reached (upper panels) together with the

scale where one of the non-diagonal λFi 6=j = 0.1 (lower panels) as a function of the input values λcc
and λtt. In the left (right) panels λD = λL = λtt(−1/λtt).

constraint from the off-diagonal elements. In the type II set-up the constraints are more

severe but even so quite mild.

To get a better picture of the range of the amount of Z2-breaking allowed we also give

in Fig. 6 the constraints on the ratio λcc/λtt in type I and II set ups for our standard values

λtt = 0.02 and 0.5. From the plots it is clear that this ratio can be as large as ∼ 1000

without generating off-diagonal λF ≥ 0.1 all the way up to the GUT scale.

Next we consider Z2-breaking in the down-sector with λbb = λUii (type I) or λbb =

−1/λUii (type II). Similarly to the up-sector we set λdd = λss for simplicity. Also in this case

the constraints from the Landau pole are similar for the two set-ups with λss . 400− 700

in both cases with a small correlation with the value of λUii and λbb for a set up of type

I and type II respectively as can be seen from Fig. 7 (upper panels). However, contrary
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Figure 6. The constraints on the input values ξ = λcc/λtt as a function of the renormalization

scale where the off-diagonal elements reaches 0.1 in the diagonal models of type I (left) and type II

(right) for the representative values λtt = 0.02 and 0.5.

to the up-sector the figure (lower panels) also shows that the effects from requiring the

off-diagonal Yukawas to be small are quite severe. In the type II case one can even see a

mild preference for solutions with λss ≈ λbb.
To get a more quantitative picture of the constraints we show in Fig. 8 the ratio

ξ = λss/λbb for type I and type II using the values λUii = 0.02 and 0.5. In the type II set-up

the constraints are especially restrictive with ξ . 4−10 for λUii = 0.02. In the type I set-up

the constraints are less severe but even so stronger than the corresponding ones from the

up-sector.

4.2.3 Non-diagonal models

Finally we consider the case of breaking the Z2-symmetry from having non-zero non-

diagonal elements in the up- or down sectors. As starting point we again use the Z2

symmetric models of type I or II for the diagonal elements and then set either λUi 6=j = 0.1

or λDi 6=j = 0.1 at the EW scale in order to break the Z2 symmetry.

Quite unexpectedly the additional constraints from requiring the off-diagonal elements

to stay small are limited. The corresponding plots for the case of only considering the

Landau pole are essentially straight vertical lines. Thus we do not show the effects of

applying the two constraints separately. In fact it is only in case II with λDii = λLii = −1/λUii
and λUi 6=j = 0.1 that the requirement of having λUi 6=j(µ) ≤ 0.1 gives any discernable effect

and then only for small λUii . 0.2. On the other hand, in this case the constraints are

very strong as also illustrated in Fig. 10. It is interesting to note that it is actually the

off-diagonal elements in the down-sector that become large whereas the ones in the up-

sector remain in accord with the limit λUi 6=j(µ) ≤ 0.1. This means that even though there

are presently no direct experimental constraints on λct and λut they are in this case highly

constrained from the link to the down-sector through the RGE evolution. This is then the

case in the MSSM, the prime example of a type II 2HDM, for large tanβ. To see more
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Figure 7. The energy scale where the Landau pole is reached (upper panels) together with the

scale where one of the non-diagonal λFi 6=j = 0.1 (lower panels) as a function of λss and λbb. In the

left (right) panels λU = λbb(−1/λbb) and in all cases λL = λbb.

clearly what happens we show also in Fig. 10 the RGE evolution of the relevant off-diagonal

elements for the input values λUii = 0.02 and λUi 6=j = 0.001, λDi 6=j = 0.

5 Conclusion

We have seen that the RGE evolution is a useful tool to analyze the stability of the as-

sumptions underlying different versions of the 2HDM under variations of the scale where

the model is defined. A large sensitivity indicates that the assumptions behind the model

are not stable meaning that they are either fine-tuned or incomplete such that there for

example will be additional particles appearing when going to a higher energy. From this re-

spect we have studied both the appearance of a Landau pole as well as off-diagonal Yukawa

couplings leading to FCNC larger than experimentally allowed at the EW scale.
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Figure 8. The constraints on the input values ξ = λss/λbb as a function of the renormalization

scale where the off-diagonal elements reaches 0.1 in the diagonal models of type I (left) and type II

(right) for the representative values λtt = 0.02 and 0.5.

Based on our studies we have seen that the constraints from avoiding a Landau-pole

are in general the same irrespective of the Z2-symmetry. They appear as soon as the

magnitude of one of the Yukawa couplings becomes of order 1.

The constraints from the off-diagonal elements on the other hand depend on the details

of how the Z2-symmetry is broken:

• breaking the Z2 relation between λD and λU as in the Aligned models is highly

constrained with λD/λU . 10 or −λDλU . 10 unless λD and λU are both . 2,

• breaking it instead in the up-sector by having λcc and λtt non-equal gives a small

difference compared to the constraints coming from the Landau pole with ratios

λcc/λtt > 1000 allowed,

• in the down sector the constraints can be much stronger, but also more dependent

on the relation between λbb and λtt, ranging from λss/λbb . 10 for λbb = 50 and

λtt = −0.02 to λss/λbb . 10000 for λbb = λtt = 0.02,

• in the non-diagonal case the constraints are weak when starting from λD,Ui 6=j = 0.1

except in the case λbb = −50 and λtt = 0.02 where we find λUi 6=j . 0.001. In all cases

it is the λDi 6=j that become large.

From this we can conclude that starting from a type I Z2 symmetry there is quite a

lot of room for breaking the symmetry as long as one does not encounter a Landau pole

except that λD/λU . 10 has to be respected. In the type II case however, the room for

breaking the symmetry is much smaller for large λbb. This is natural since in the latter

case κtt and ρbb are both large. It is also interesting to note that this corresponds to the

situation in the MSSM with large tanβ. Finally we conclude that there is little hope to
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Figure 9. The constraints from the Landau pole and the off-diagonal elements as a function of λUii
and the off-diagonal elements λUi 6=j (up) or λDi 6=j (down) at the input scale for the type I (left) and

type II (right) relations for the diagonal elements.

see effects of non-diagonal Yukawa couplings in the top system in a type II model such as

MSSM if tanβ is large.
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