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Abstract The Sudakov veto algorithm for generating emission and no-emission
probabilities in parton showers is revisited and some reweighting techniques are
suggested to improve statistics by oversampling in specific cases.

1 Introduction

Sudakov [1] form factors or no-emission probabilities, are used in all parton shower
(PS) programs, to ensure exclusive final states and, at the same time, to resum
leading (and sub-leading) logarithmic virtual contributions to all orders. The way
these enter into the shower is through the ordering of emissions, typically in trans-
verse momentum or angle. In the standard case we have an inclusive splitting
probability of a parton i into partons j and k given by

dPi,jk(t, z) =
αs

2π
Pi,jk(z)dtdz, (1)

where t = log p2⊥/Λ2
QCD is the ordering variable, z represents the energy sharing

between j and k, and where we have integrated over azimuth angle in the Altarelli–
Parisi splitting function Pi,jk(z). Starting from some maximum scale t0 we then
want to find the exclusive probability of the first emission, which we get from the
inclusive splitting probability by multiplying with the probability that there is no
emission before the first emission,

dPfirst
i,jk (t, z) =

αs

2π
Pi,jk(z)dtdz ×∆(t0, t). (2)

Here, ∆(t0, t) is this no-emission probability, or the Sudakov form factor, given by

∆(t0, t) = exp

(

−

∫ t0

t

dt′dz
αs

2π
Pi,jk(z)

)

. (3)

In principle the Sudakov form factor can be calculated analytically. However,
often the integration region in the z-integral can be non-trivial, and most PS
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programs today prefer to calculate it numerically using the so-called Sudakov veto
algorithm [2]. The trick here is to find a simple function which is everywhere
larger than Pi,jk and which is easy to integrate, and by systematically vetoing
emissions generated according to this overestimated function, a correct no-emission
probability is obtained.

The Sudakov veto algorithm (SVA) is normally used for purely probabilistic
processes, but recently it has been generalized to also be used in cases where the
function being exponentiated is not positive definite [3, 4].

In this article we shall investigate other modifications of the Sudakov veto
algorithm, where we try to increase the statistical precision in some special cases
by oversampling techniques, but we will also briefly discuss the issue of negative
contributions to splitting functions.

In section 3 we will investigate the usage of the SVA in CKKW-like [5, 6]
algorithms, where parton showers are matched with fixed order inclusive matrix
elements (MEs). Here, the SVA is used to make the inclusive MEs exclusive by
multiply them with no-emission probabilities taken from a parton shower. One
problem with this procedure is that every event prduced with the matrix element
generator is either given the weight zero or one, which becomes very inefficient if
the cutoff used in the ME-generation is small. We will find that by introducing
oversampling, a weight can be calculated which is never zero, but nevertheless
will give the correct no-emission probability. In section 3 we will also discuss an
extension of the CKKW algorithm to include next-to-leading order (NLO) MEs [7]
where the SVA is used to extract fixed orders of αs form the parton shower to avoid
double counting of corresponding terms in the NLO calculation.

Then, in section 4 we will consider cases where a parton shower includes dif-
ferent competing processes, where some of them are very unlikely. This is the case
in e.g. the PYTHIA parton shower, where photon emissions off quarks are included
together with standard QCD splittings. Since αEM is much smaller than αs it is
very time consuming to produce enough events containing hard photons to get
reasonable statistics. We shall see that a naive oversampling of the photon emis-
sions has unwanted effects on the total no-emission probability, and that a slightly
more involved procedure is needed. The method presented is different from the
one introduced by Höche et al. in [8], but is equally valid. It turns out that both
these methods can be used to include negative terms in the splitting functions.

But first we shall revisit the derivation of the SVA, as we will use many of the
steps from there when we investigate the different oversampling techniques.

2 The Sudakov Veto Algorithm

Here we follow the derivation found in [2] and [9]. Although we normally have
competing processes, we will first simplify the notation by just considering one
possible splitting function, which we will integrate over z,

Γ (t) =

∫ zmax(t)

zmin(t)

αs(t)

2π
P (z)dz. (4)

The no-emission probability simply becomes

∆(t0, tc) = e
−
∫

t0

tc

Γ (t)dt
. (5)
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If Γ (t) can be integrated analytically, and if the primitive function, Γ̌ has a
simple inverse, it is easy to see that we can generate the t-value of the first emission
by simply generate a random number, R, between zero and unity and obtain

∫ t0

t

dt′Γ (t′)∆(t0, t
′) = R

∫ t0

0

dt′Γ (t′)∆(t0, t
′)

⇒ 1−∆(t0, t) = R (1−∆(t0, 0))

1− exp (Γ̌ (t)− Γ̌ (t0)) = R

⇒ t = Γ̌−1
(

Γ̌ (t0) + log(1−R)
)

, (6)

where we have assumed that Γ (t) is divergent for small t, such that ∆(t, 0) = 0,
an assumption we will come back to below.

Now, in most cases the integration of Γ is not possible to do analytically, and
if it is, the inverse function may be non-trivial. This is the case which is solved by
the SVA. All we need to do is to find a nicer function, Γ̂ , with an analytic primitive
function, which in turn has simple inverse, such that it everywhere overestimates
Γ ,

Γ̂ (t) ≥ Γ (t), ∀t. (7)

With this function we can construct a new no-emission probability

∆̂(t0, tc) = e
−
∫

t0

tc

Γ̂ (t)dt
(8)

which is everywhere an underestimate of ∆(t0, tc), and we can generate the first t
according to it. As in the standard accept–reject method, we now accept the gen-
erated value with a probability Γ (t)/Γ̂ (t) < 1. However, contrary to the standard
method, if we reject the emission, we replace t0 with the rejected t-value before we
generate a new t. Loosely speaking, we have underestimated the probability that
the emission was not made above t, so we need not consider that region again. We
now continue generating downwards in t until we either accept a t-value, or until
the generated t drops below tc at which point we give up and conclude that there
was no emission above tc.

To see how this works more precisely, we look at the total probability of not
having an emission above tc,

Ptot =

∞
∑

n=0

Pn, (9)

where Pn is the probability that we have rejected n intermediate t-values. To start
with, we have

P0 = ∆̂(t0, tc)

P1 =

∫ t0

tc

dtΓ̂ (t)∆̂(t0, t)

[

1−
Γ (t)

Γ̂ (t)

]

∆̂(t, tc)

= ∆̂(t0, tc)

∫ t0

tc

dt
[

Γ̂ (t)− Γ (t)
]

, (10)
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where for P1 we first have the probability that we generate a value t and then
throw it away with probability 1− Γ (t)/Γ̂ (t) and then the probability that we do
not generate anything below t. Similarly we get

P2 =

∫ t0

tc

dt1Γ̂ (t1)∆̂(t0, t1)

[

1−
Γ (t1)

Γ̂ (t1)

]

×

∫ t1

tc

dt2Γ̂ (t2)∆̂(t1, t2)

[

1−
Γ (t2)

Γ̂ (t2)

]

∆̂(t2, tc)

= ∆̂(t0, tc)
1

2

(
∫ t0

tc

dt
[

Γ̂ (t)− Γ (t)
]

)

, (11)

from noting that∆(t0, t1)∆(t1, t2)∆(t2, tc) = ∆(t0, tc) and that the nested integral
can be easily factorized.

This is easily generalized to an arbitrary number of vetoed emissions and we
get

∞
∑

n=0

Pn =

∞
∑

n=0

∆̂(t0, tc)
1

n!

(
∫ t0

tc

dt
[

Γ̂ (t)− Γ (t)
]

)n

= ∆̂(t0, tc)e

∫

t0

tc

dt[Γ̂ (t1)−Γ (t)]

= ∆(t0, tc), (12)

which is the no-emission probability we want.
Here we have ignored the additional variables involved in the emissions. It is

easy to see that if we have a simple overestimate of the splitting function

P̂ (t, z) ≥
αs(t)

2π
P (z), ∀t, z (13)

we can construct our Γ̂ as

Γ̂ (t) =

∫ ẑmax(t)

ẑmin(t)

P̂ (t, z)dz (14)

with ẑmax(t) ≥ zmax(t) and ẑmin(t) ≤ zmin(t) overestimates the integration re-
gion in z. For each t we generate, we then also generate a z in the interval
[ẑmin(t), ẑmax(t)] according to the probability distribution

P(z) =
P̂ (t, z)

Γ̂ (t)
(15)

and we then only keep the emission with the probability

αs(t)
2π P (z)Θ(z − zmin(t)Θ(zmax(t)− z))

P̂ (t, z)
. (16)

Although the formulae become more cluttered, it is straight-forward to show, by
going through the steps above that this will give the correct distributions of emis-
sions.
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If we now go back to eq. (6), we there assumed that Γ diverges at zero such
that ∆(t, 0) = 0. This is, of course, not necessarily the case, as pointed out in [3].
However, here we will only concern ourselves with emissions above some cutoff
tc > 0, and we can always add to our overestimate a term which is zero above tc
but which diverges at t = 0. The fact that nowhere in the veto algorithm does
anything thing depend on the form of Γ̂ below tc, means that we do not even need
to specify how it diverges, it is enough to assume that it does.

In parton showers one always have many different emission probabilities. We
typically have several possible emissions for each parton. The SVA is easily ex-
tended to this situation by noting that the no-emission probability factorizes for
the sum of different splittings,

∆(t0, tc) = e
−
∫

t0

tc

∑

a
Γa(t)dt

=
∏

a

∆a(t0, tc). (17)

The first emission is then generated with a t-value given according to

dP =
∑

a

Γa(t)∆(t0, t)dt, (18)

and then randomly selecting one of the processes with weight

Γa(t)
∑

b
Γb(t)

. (19)

It is easily shown that generating one t for each possible splitting according to

dPa = Γa(ta)∆a(t0, ta)dta, (20)

and then selecting the splitting which gave the largest ta, gives the same result.

3 Reweighting in CKKW-like procedures

In CKKW we want to multiply partonic states generated by a ME generator with
Sudakov form factors. We take the partonic state and project it onto a parton-
shower history. An n-parton state is then reconstructed as a series of parton shower
emissions with emission scales {t1, . . . , tn} and the corresponding intermediate
states {S0, . . . , Sn} where Sn is the one generated by the ME. We then want to
multiply by the no-emission factors

∆i(ti, ti+1) = e
−
∫

ti

ti+1

dtΓi(t)
(21)

where Γi is the sum of the splitting functions from the partons in state Si.
What we can do is to simply put the state Si into the parton shower program

and ask it to generate one emission starting from the scale ti. If the generated
emission has a scale t > ti+1 we throw the whole partonic event away and ask the
ME generator to produce a new state. The probability for this not to happen is
exactly ∆i(ti, ti+1) and the procedure corresponds to reweighting the ME state
with the desired no-emission probability.
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The problem is that if the ME state corresponds to very low scales, we will
throw away very many events, which is very inefficient and may result in poor
statistics.

A way to improve this situation is to introduce a boost factor for the splittings
Γi → Γ̃i = CΓi, with C > 1, and multiply the overestimate Γ̂i with the same
factor. As before this just gives a simple overestimate of the splitting function,
which we know how to handle from section 2. But rather than throwing an emission
away with an extra probability 1/C (and not veto the event) we can always reject
the emission but multiply the whole event with a weight 1−1/C. The total weight
of the event will then be the sum of all possible ways we can veto a generated
emission (we here assume that the normal rejection procedure has already been
applied)

〈wi〉 =

∞
∑

n=0

(1− 1/C)n∆̃i(ti, ti+1)
1

n!

(

∫ ti

ti+1

dtΓ̃i(t)

)n

=

∞
∑

n=0

∆̃i(ti, ti+1)
1

n!

(

∫ ti

ti+1

dt
[

Γi(t)− Γ̃i(t)
]

)n

= ∆i(ti, ti+1) (22)

In this way we get the right weight but we never throw away an event.
In the NLO version of the CKKW-L [7] we also want to calculate the integral of

the splitting function,
∫ ti

ti+1
dtΓ (t)i which is used as a way of subtracting the fixed

first orders result from the exponentiation and then replace it with the correct
NLO result. The way this was done in [7] was similar to the procedure above. The
shower is started, and each emission is vetoed, but the number of emissions above
ti+1 was counted and it was noted that the average number of vetoed emissions is
given by

〈n〉 =

∞
∑

n=0

n∆i(ti, ti+1)
1

n!

(

∫ ti

ti+1

dtΓ (t)i

)n

=

∫ ti

ti+1

dtΓi(t)×

∞
∑

n=1

∆i(ti, ti+1)
1

(n− 1)!

(

∫ ti

ti+1

dtΓi(t)

)n−1

=

∫ ti

ti+1

dtΓi(t) (23)

To factor out other fixed order terms we note also that

〈n(n− 1) · · · (n−m)〉 =
1

m!

(

∫ ti

ti+1

dtΓi(t)

)m

, (24)

which means we can pick out higher-order terms in αs used in the shower.
Again, the statistics can become a bit poor if most events yield the weight

zero (which is the case if for large merging scales when the no-emission probability
is close to unity), and only a few have non-zero values. We can instead again
introduce the boost factor, C, and rather than simply counting the number of
emission we take the weight n/C.
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We note that in general this C need not be a simple constant, it can be a
function of the scale (or any other variable in the splitting.) This is used in the
NLO version of CKKW-L, where the leading order αs term in the expansion of
the no-emission probability is needed at a fixed renormalization scale, µR, while in
the shower we have a coupling running with the transverse momentum. Therefore,
rather than counting the the number of emissions, we sum up ratios of fixed and
running αs for the emissions which are generated and discarded. Introducing

ΓR(t) =

∫ zmax(t)

zmin(t)

αs(µR)

2π
P (z)dz =

αs(µR)

αs(t)
Γ (t) (25)

We then get on the average a weight

〈w〉 =

∞
∑

n=0

∆(t0, tc)

∫ t0

tc

dt1Γ (t1) · · ·

∫ tn−1

tc

dtnΓ (tn)

(

n
∑

i=1

αs(µR)

αs(ti)

)

=

∫ t0

tc

dtΓR(t)×

∞
∑

n=1

∆(t0, tc)
1

(n− 1)!

(
∫ t0

tc

dtΓ (t)

)n−1

=

∫ t0

tc

dtΓR(t), (26)

by working a bit on the symmetrized nested integrals of different functions and
we get what we desired. To obtain higher powers of the integral with fixed αs, it
is easy to show that e.g. the average sum of triplets

∑

i 6=j 6=k

αs(µR)

αs(ti)

αs(µR)

αs(tj)

αs(µR)

αs(tk)
(27)

will give

1

3!

(
∫ t0

tc

dtΓR(t)

)3

. (28)

We also note that for initial-state splittings, the integral over splitting functions
also contain ratios of parton density functions,

fb(x/z, t)

fa(x, t)
, (29)

where a is the incoming parton before, and b is the parton after the splitting.
What is needed in the NLO-version of CKKW-L in this case is the integral for a
given factorization scale, which is obtained by simply changing the αs-weight in
eq. (26) to

αs(µR)

αs(t)

fb(x/z, µF )

fb(x/z, t)

fa(x, t)

fa(x, µF )
, (30)

where z is the energy fraction of the vetoed generated splitting. The derivation in
eq. (26) becomes a bit more cumbersome, but is straight forward.



8

4 Reweighting competing processes

Often we have many different competing splitting processes. The example we shall
use here is the process of a quark radiating a gluon (Γg) competing with the process
of the same quark radiating a photon (Γγ). Since generating the latter much less
likely because of the smallness of αEM as compared to αs, the generation may
become very inefficient if we are interested in observables related to an emitted
photon.

In principle we could again consider introducing a boost factor C > 1 and
replace Γγ(t) with Γ̃γ(t) = CΓγ(t) and do the same with the overestimate Γ̂γ . As
long as Γ̃γ(t) ≪ Γg(t) we can reweight each event containing n photons with a
factor 1/Cn and get approximately the correct results for the observables. How-
ever this only gives the right emission probability, not the correct no-emission
probability.

Instead we adopt different procedure. Every time we generate a photon emis-
sion (accepted with probability Γγ/Γ̂γ), we veto it anyway with a probability 0.5.
If we veto it, we also reweight the whole event with a factor 2− 2/C, while if we
keep it, we reweight the whole event with a factor 2/C. Clearly the emissions will
still be correctly weighted, 0.5× 2/C, but now we also get the correct no-emission
probabilities1. Loosely speaking we are half the time reweighting the event to com-
pensate for the boosting of the emission, and half the time compensating for the
corresponding underestimate of the no-emission probability.

To see this, we again look at all possible ways of not emitting anything between
two scales, given by the modified no-emission probability

∆̃(t0, tc) = ∆g(t0, tc)∆̃γ(t0, tc), (31)

where

∆̃γ(t0, tc) = e
−
∫

t0

tc

Γ̃γ(t)dt
(32)

and the product of weights from all intermediate photon emissions which have
been vetoed (with probability 1/2, assuming we have already taken care of the
acceptance factor Γγ/Γ̂γ):

〈w〉∆̃(t0, tc) =

∞
∑

n=0

(2−
2

C
)n∆̃(t0, tc)

1

n!

(
∫ t0

tc

dt
1

2
Γ̃γ(t)

)n

= ∆̃(t0, tc)
1

n!

(
∫ t0

tc

dt
[

1−
1

C

]

Γ̃γ(t)

)n

= ∆̃(t0, tc)
1

n!

(
∫ t0

tc

dt
[

Γ̃γ(t)− Γγ(t)
]

)n

= ∆(t0, tc) (33)

We note that we could, of course have replaced the probability one half with any
b, vetoing the emissions with probability b and reweighting with (1−1/C)/b, while
reweighting with 1/((1− b)C) if not vetoed, and still obtain the correct result.

1Note that the whole procedure in principle can be implemented in PYTHIA8 in a non-intrusive
way, by artificially increasing αEM and implementing the reweighting and extra rejection in a
UserHooks class.
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We also note that while solving the same problem as was addressed in [8], the
solution is technically different. In that algorithm, only the standard overestimate
Γ̂γ is multiplied by a factor C, while the acceptance of a generated emission at
scale t is still done with probability Γγ(t)/Γ̂γ(t) and a rejected emission instead
reweights the event by a factor

Γ̂γ(t)− Γγ(t)/C

Γ̂γ(t)− Γγ(t)
. (34)

The end result is the same as the method presented here. In fact, if one could
choose2 a Γ̂γ = 2Γγ and let C → C/2, the reweighting of the events would be
exactly the same.

While we gain in efficiency for the emissions, we will also lose in precision for
the no-emission probability due to fluctuating weights. It is easy to calculate the
variance in the weights, but it is maybe more instructive to look at a real example.

As an illustration we let PYTHIA8 generate standard LEP event, with photon
emission included in the shower, and we compare the default generation with
weighting the photon emission cross section with a factor C. We show for different
C the effect of using the full reweighting procedure (proper weighting), but also
show for comparison the case of just using event weights with a factor 1/Cnγ

(naive weighting).

In figure 1a we show the transverse momentum distribution of the most en-
ergetic photon in an event using C = 1 (i.e. the default), C = 2 for the naive,
and C = 4 for the proper weighting3. The error bands indicates the statistical
error using 108 events, and the results are shown as a ratio to the result from a
high statistics run (3 · 109 events) with PYTHIA8. We see that the statistical error
is somewhat reduced in the reweighted samples, but we also see what seems to
be a systematic shift in the naive reweighting, due to the mistreatment of the
no-emission probability. This shift becomes very pronounced if we increase C, as
seen in figure 1b, where we use C = 32 for the naive and C = 64 for the proper
reweighting. Here we see that the statistical errors are very much reduced for
both reweightings, but the naive procedure is basically useless due to the large
systematic shift.

If we require two photons in each event, the gain from the reweighting becomes
more obvious. In figure 2 we show the distribution in invariant mass of the two
most energetic photons in an event. Here the gain in statistics is significant also
for the case of modest boost factors (a), and for the large boost factors in (b) the
gain in statistics is enormous, while, again, the naive reweighting suffers a large
systematic shift.

To isolate the effect on the no-emission probability, figure 3 shows the inclusive
thrust distribution for the same runs as before. Here we see that especially with
forceful proper reweighting the statistical error is increased because of the fluctu-
ating weights, and we see again that the naive reweighting will give a systematic
shift due to the mistreatment of the no-emission probability.

2Note that one need to choose a Γ̂ which is everywhere some factor higher than Γγ since
otherwise the denominator in eq. (34) could tend to zero, giving wildly fluctuating weights.
3The proper reweighting has a twice as high boost factor, to get the same weighting of the
emissions.
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Fig. 1 The transverse momentum (w.r.t. the thrust axis) of the most energetic photon, given
as a ratio to the result of a high statistics run with default PYTHIA8 result (see text).
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Fig. 2 The invariant mass of the two most energetic photons, given as a ratio to the result of
a high statistics run with default PYTHIA8 result (see text). In (b) the ratio is w.r.t. the result
for the proper C = 64 reweighting as even with 3 · 109 events, the statistical error from the
default PYTHIA8 run is too large in comparison.

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

R
at

io
 to

 C
=

1 
(H

S
)

1-Thrust

(a)

C=1
naive C=2

proper C=4  0.96

 0.98

 1

 1.02

 1.04

 0  0.05  0.1  0.15  0.2  0.25  0.3

R
at

io
 to

 C
=

1 
(H

S
)

1-Thrust

(b)

C=1
naive C=32

proper C=64

Fig. 3 The inclusive thrust distribution, given as a ratio to the result of a high statistics run
with default PYTHIA8 result (see text).
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So far we have implicitly assumed that C > 1, since we motivated the whole
procedure by the desire to increase the number of rare splittings. Note, however,
that the proof of the procedure does not at all depend on the size of C. In fact it
can even in some cases be taken negative.

Consider a case where there are negative contributions to the total splitting
probability. One of the most simple cases is the emission of a second gluon in a
final-state dipole shower in e+e−-annihilation into jets. Once a gluon has been
radiated from the original qq̄ pair, it can be shown that the distribution of a
second gluon is well described by independent emissions from two dipoles, one
between the quark and the first gluon and one between the gluon and the anti-
quark. However, examining the e+e− → qggq̄ matrix element one finds that there
is a colour-suppressed negative contribution corresponding to emissions from the
dipole between the q and q̄. This contribution is normally ignored completely in
parton showers, mainly because it is difficult to handle in a probabilistic way in
the SVA. It may even result in a no-emission probability above unity.

In the reweighting scheme introduced here we can easily include the negative
contribution to the splitting functions, and apply a boost factor of C = −1 for
the qq̄-dipole. If a gluon emission is generated from such a dipole, it is then either
accepted and the event is given a negative weight, or it is rejected, in which case the
event weight is multiplied by a factor four. We note that in this way it is in principle
conceivable to implement a parton shower which includes all possible interference
effects. We will, of course, have even larger issues with statistics, compared to the
photon emission case above, as we now have potentially large weights that must
cancel each other, but this procedure could still be an interesting alternative to
the ones presented in [3] and [4] (an extension of [8] to negative weights).

5 Conclusions

This article does not claim to present innovative new physics results. Rather it
presents a number of methods collected by the author during a couple of decades
working with parton showers in general and with the Sudakov veto algorithm in
particular. They are presented here in the hope that they may come in handy
for the community now that more and more efforts are put into the merging and
matching parton showers with matrix element. Especially in the case of matching
with next-to-leading order matrix elements (and beyond), a thorough understand-
ing of how parton showers work and knowledge of how to manipulate them is
necessary, and these kinds of methods may become increasingly important.
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