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Abstract

We suggest one of the possible ways to compensate the large negative quantum-topological QCD

contribution to the vacuum energy density of the Universe by means of a positive constant con-

tribution from a cosmological Yang-Mills field. An important role of the exact particular solution

for the Yang-Mills field corresponding to the finite-time instantons is discussed. An interesting

connection of the compensation mechanism to the color confinement in the framework of instanton

models has been pointed out. Besides the ΛQCD scale, this proposal relies on one yet free dimen-

sionless normalisation constant which cannot be fixed by the perturbative QCD theory, and thus

should be fine-tuned for the exact compensation to hold.
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I. INTRODUCTION

Current accelerated expansion of the Universe is commonly attributed to the existence of
the so-called Dark Energy which is confirmed in many cosmological observations so far, e.g.
in studies of the type Ia Supernovae [1], cosmic microwave background anisotropies [2], large
scale structure [3] etc. The Standard Cosmological Model is based on the time-independent
Dark Energy approximation called the cosmological constant, or Λ-term, approximation
which agrees well with current observational data. However, the problem of theoretical
interpretation and prediction of fundamental properties of the Dark Energy (or the Λ-term)
remains one of the major unsolved problem of Theoretical Physics [4]. For a comprehensive
overview of existing theoretical models and interpretations of the Dark Energy, see e.g.
Refs. [5–9] and references therein.

One of the traditional interpretations of the Λ-term is by means of the vacuum energy
density satisfying the equation of state PΛ = −Λ with vacuum pressure PΛ and energy
density Λ. However, individual vacuum condensates known from particle physics e.g. those
which are responsible for the chiral and gauge symmetries breaking in the Standard Model,
contribute to the vacuum energy of the Universe individually exceeding the observable value
of the Λ-term density Λexp = (3.0± 0.7)× 10−35 MeV4 [2] by many orders of magnitude in
absolute value [10]. This situation, which sometimes referred to as the “Vacuum Catastro-
phe” in the literature, requires extra hypotheses about (partial or complete) compensation
of vacuum condensates of different types to the net vacuum energy density of the Universe
(see e.g. Ref. [11]). A dynamical mechanism for such gross cancellations and correspond-
ing major fine-tuning of vacuum parameters is yet not known and is a subject of ongoing
intensive studies (for a review on this topic, see e.g. Ref. [5] and references therein).

Within the general problem of vacuum condensates cancellation, the QCD vacuum con-
tribution has a special status. Various existing cancellation mechanisms refer essentially
to an unknown high-scale physics beyond the Standard Model e.g. to Supersymmetry [5].
However, they cannot be applied for a compensation of the specifically non-perturbative and
low-energy QCD contribution. In this paper, we focus primarily on elimination of this most
“difficult” part of the vacuum energy of the Universe.

In the framework of the popular instanton liquid models [12], the topological (or instan-
ton) modes of the QCD vacuum (which sometimes referred to as the quark-gluon condensate)
are given essentially by the strong non-perturbative fluctuations of the gluon and light sea
quark fields which are induced in processes of quantum tunneling of the gluon vacuum be-
tween topologically different classical states. The topological instanton-type contribution
εvac(top) to the energy density of the QCD vacuum is one of its main characteristics [13] and
can be written as follows (see also Ref. [14])

εvac(top) = − 9

32
〈0| : αs

π
F a
µν(x)F

µν
a (x) : |0〉+ 1

4

[

〈0| : muūu : |0〉+ 〈0| : mdd̄d : |0〉

+ 〈0| : mss̄s : |0〉
]

≃ −(5± 1)× 109 MeV4 , (1.1)

which is composed of gluon and light sea u, d, s quark contributions. Clearly, other contri-
butions of a different physical nature should compensate the topological QCD contribution
(1.1) to the vacuum energy of the Universe since its value by far is not compatible with the
cosmological observations and data on the Λ-term value [2]. This issue triggers the search
for possible cancellation mechanisms, and one such mechanism will be discussed further in
this paper.
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II. CLASSICAL EVOLUTION OF THE COSMOLOGICAL YANG-MILLS FIELDS

Consider one of the possible ways to eliminate the microscopic QCD vacuum contribution
(1.1) to the vacuum energy density of the Universe introducing the hypothesis about the
existence of the cosmological macroscopic Yang-Mills fields in early Universe.

Cosmological solutions for classical Yang-Mills fields have a long history referring back to
the late seventies, when there was an active search for solutions to the Einstein-Yang-Mills
field equations [15]. Later, the role of non-Abelian gauge fields in the early Universe evolution
has been intensively studied in many different aspects, in particular, in the context of the
Dark Energy [16] and non-Abelian fields driven inflation without a presence of a scalar field
(“gauge-flation”) [17]. Practically, there are no any physical arguments which could forbid
the existence of the homogeneous non-Abelian gauge field with unbroken SU(N) symmetry
at cosmological scales with an isotropic energy-momentum tensor [18], possibly originating
from the inflationary stage of the Universe evolution [17].

Let us now assume that a chromodynamical (gluon) field with unbroken color SU(3)c
symmetry exists as a real physical object filling up the early Universe, and the subject
of our further discussion concerns possible physical states of this field and their real-time
dynamics. For simplicity, we work in the flat Friedmann Universe with conformal metric
gµν = a2(η)gµν(M), where gµν(M) is the Minkowski metric. The Einstein equations with
energy-momentum tensor of classical Yang-Mills fields are [15]

1

κ

(

Rν
µ −

1

2
δνµR

)

=
1

g2YM

1√−g

(

−F a
µλF

νλ
a +

1

4
δνµF

a
σλF

σλ
a

)

,
√−g = a4(η) ,

(

δab√−g
∂ν
√
−g − fabcAc

ν

)

F µν
b√−g

= 0 , F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν . (2.1)

This system is written in the most trivial form without taking into account interactions of
the macroscopic Yang-Mills field with the physical vacuum (no vacuum polarisation effects
are included here) and other forms of matter (i.e. ε = 0). Here and below, raising and
lowering Lorenz indices are done by the Minkowski metric gµν(M) as usual.

Since initial conditions in the early Universe are quite arbitrary, it is meaningful to
start with the study of spatially-homogeneous and isotropic modes of the gluon field [18]. A
specific feature of such modes concerns their distinct topological structure where the isotopic
and spatial indices are mixed up. In the case of Hamiltonian gauge Aa

0 = 0 and homogeneous
and isotropic 3-space we have the following simple structure of these modes:

Aa
i =

{

δai A(η), i, a = 1, 2, 3

0, i = 1, 2, 3; a > 3 ,
(2.2)

with a single non-trivial time-dependent degree of freedom A(η) to be studied in what
follows. In this case, the classical Yang-Mills equations (2.1) read

3

κ

a′2

a4
=

3

2g2YMa
4

(

A′2 + A4
)

, A′′ + 2A3 = 0 , (2.3)

and thus completely determine the conformal time evolution of the spatially-homogeneous
and isotropic Yang-Mills field. The second equation in Eq. (2.3) can be exactly integrated,
and its general solution implicitly corresponds to non-linear oscillations, i.e.

A′2 + A4 = C4,

∫ A

A0

dA√
C4 −A4

= η, (2.4)
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with C, A0 being integration constants. Numerical solution of Eq. (2.3) for the gluon field
potential with initial condition A′(0) = 0 and an arbitrary amplitude A0 = C to a good
accuracy can be approximated by

A(η) ≃ A0 cos

(

6

5
A0η

)

. (2.5)

An essentially non-linear character of oscillations of the classical YM field is thus emerged
in explicit dependence of their amplitude on frequency. According to Eqs. (2.3) and (2.4),
the spatially-homogeneous classical YM field in the isotropic Universe behaves as an ultra-
relativistic medium with energy density εYM ∼ 1/a4 and equation of state pYM = εYM/3
[18].

III. ROLE OF THE VACUUM POLARISATION

Can a classical Yang-Mills field be a component of the cosmological medium in the
radiation-dominated Universe? A simple analysis have shown that the classical spatially-
homogeneous Yang-Mills field cannot exist in the early Universe since the classical Yang-Mills
equations (2.1) are not form-invariant and unstable with respect to radiative corrections.
Such an instability emerges due to the fact that there is no any threshold for vacuum po-
larization of a massless non-linear gauge field, i.e. any infinitesimally small external field
is capable of reconstruction of the classical Yang-Mills vacuum [19]. Due to non-linearity
of initial operator Yang-Mills equations the vacuum polarization of the massless quantum
gluon field by its classical component leads to a modification of classical equations. In prac-
tice, we deal with the Savvidy equations for the Savvidy vacuum fluctuations [19] and look
for their spatially-homogeneous modes. As was also stressed in Ref. [20], similar quantum
effects such as the gluon condensation and the vacuum polarization effects can be important
for generation of an effective cosmological constant with a negative equation of state in the
system of coupled Born-Infeld and gravitational fields in early Universe.

Let us analyze the Yang-Mills equations of motion incorporating the vacuum polarisation
effects. The Lagrangian of the gluon field taking into account the vacuum polarisation in
the one-loop approximation has the following form [19]:

LYM = − 11

128π2

F a
µνF

µν
a√−g

ln

(

J

Λ4
QCD

)

, J =
1

ξ4
|F a

αβF
αβ
a |

√−g
.

Here, the numerical parameter ξ is not fixed and reflects an ambiguity in normalisation of
the corresponding gauge/Lorentz invariant J . Such a Lagrangian leads to a modified system
of equations for gravitational and Yang-Mills fields in the isotropic Universe with vacuum
polarisation effects incorporated, namely,

1

κ

(

Rν
µ −

1

2
δνµR

)

= T ν
µ
,mat + Λ̄δνµ +

11

32π2

1√−g

[(

−F a
µλF

νλ
a

+
1

4
δνµF

a
σλF

σλ
a

)

ln
e|F a

αβF
αβ
a |

√−g (ξΛQCD)4
− 1

4
δνµ F

a
σλF

σλ
a

]

, (3.1)

(

δab√−g
∂ν
√
−g − fabcAc

ν

)

(

F µν
b√−g

ln
e|F a

αβF
αβ
a |

√−g (ξΛQCD)4

)

= 0 ,
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where e ≃ 2.71 is the base of the natural logarithm; ΛQCD is the QCD energy scale; T ν
µ
,mat =

(ε + p)uµu
ν − δνµp is the energy-momentum tensor of all components of the cosmological

medium except for the macroscopic Yang-Mills field; Λ̄ = Λinst + Λcosm + . . . is the total
contribution to the vacuum energy density which consists of the non-perturbative spatially-
inhomogeneous (topological) quantum fluctuations of the gluon and quark fields (quark-
gluon condensate) of an instanton nature (1.1), Λinst ≡ εvac(top) ≃ −(5 ± 1) × 109MeV4,
an uncompensated contribution from the observable cosmological Λ-term, Λcosm, and dots
represent all other perturbative vacua contributions. The Λ-term value, Λcosm, could have a
different nature, other than topological non-perturbative one in QCD or perturbative ones
in high-energy particle physics, so we explicitly separated it from the rest. Form now on,
we implicitly assume that perturbative components of the net vacuum energy density from
all other microscopic vacuum condensates in particle physics are compensated elsewhere at
high energy scales and do not enter the vacuum energy density of the Universe, so Λ̄ =
Λinst + Λcosm.

The system of equations (3.1) is written in the most general form including all forms of
matter, as well as the uncompensated quark-gluon condensate contribution Λinst and the
observable cosmological Λ-term Λcosm. The components of the energy-momentum tensor for
the homogeneous and isotropic modes specified in Eq. (2.2) have the following generic form:

T 0
0
, tot

= T 0
0
,mat

+ Λ̄ +
33

64π2

1

a4

[

(A′2 + A4) ln
6e|A′2 − A4|
a4(ξΛQCD)4

+ A′2 − A4

]

, T β
0

, tot
= T β

0

,mat
,

T β
α

, tot
= T β

α

,mat
+ Λ̄δβα +

11

32π2

1

a4
δβα

[

−1

2
(A′2 + A4) ln

6e|A′2 − A4|
a4(ξΛQCD)4

+
3

2
(A′2 −A4)

]

(3.2)

In flat and isotropic Universe, trace of the Einstein equations and the equation of motion of
the macroscopic gluon field read, respectively,

6

κ

a′′

a3
= ε− 3p+ 4Λ̄ + T µ

µ
,YM , T µ

µ
,YM =

33

16π2

1

a4
(

A′2 −A4
)

, (3.3)

∂

∂η

(

A′ ln
6e|A′2 − A4|
a4(ξΛQCD)4

)

+ 2A3 ln
6e|A′2 − A4|
a4(ξΛQCD)4

= 0. (3.4)

It is straightforward to show that the (0, 0) Einstein equation

3

κ

a′2

a4
= ε+ Λ̄ +

33

64π2

1

a4

[

(

A′2 + A4
)

ln
6e|A′2 −A4|
a4(ξΛQCD)4

+ A′2 −A4

]

(3.5)

is the exact first integral of the system of equations (3.3) and (3.4), while the exact first
integral of second equation (3.4) is

6e(A′2 − A4)

a4(ξΛQCD)4
= 1 . (3.6)

The latter leads to a considerable simplification of the energy-momentum tensor, namely,

T 0
0
, tot

= T 0
0
,mat

+ Λ̄ +
33

64π2

(ξΛQCD)
4

6e
,

T β
α

, tot
= T β

α

,mat
+

(

Λ̄ +
33

64π2

(ξΛQCD)
4

6e

)

δβα . (3.7)
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Now we can observe an interesting possibility to eliminate the microscopic negative QCD

contribution to the vacuum energy, Λinst, by means of the constant positive contribution

from the spatially-homogeneous mode of macroscopic gluon field. A small non-compensated
remnant – the observable Λ-term, Λcosm – can, in principle, have a different nature which will
be discussed in our forthcoming publication. The corresponding condition for the Λinst ≃
−2654MeV4 compensation

33

64π2

(ξΛQCD)
4

6e
+ Λinst = 0, ΛQCD ≃ 280MeV , (3.8)

however, is not fully automatic; it is satisfied for a certain value of the normalisation pa-
rameter only, ξ ≃ 4, which should be constrained in a complete theory of the QCD vac-
uum. Therefore, in principle, one succeeds to eliminate the huge negative contribution from
spatially-inhomogeneous non-perturbative quantum fluctuations of the gluon field by means
of a positive contribution from fluctuations of spatially-homogeneous macroscopic gluon field.
This is achieved by fixing the remaining freedom in normalization of the Yang-Mills invariant
J in the Lagrangian (3.1). As we will see below, both mutually compensating contributions
to the vacuum energy density of the Universe have a common instanton nature.

IV. COSMOLOGICAL EVOLUTION OF FINITE-TIME INSTANTONS

Together with the compensation condition (3.8) and the first integrals (3.5) and (3.6),
the resulting system of equations (3.3) and (3.4) is dramatically reduced to the following
simple form:

3

κ

a′2

a4
= ε+ Λcosm, (4.1)

A′2 − A4 = a4
(ξΛQCD)

4

6e
. (4.2)

Notice that under the exact cancellation condition (3.8) the cosmological (macroscopic)
evolution of the Friedmann Universe given by the scale factor a = a(η) is now completely
decoupled from the microscopic evolution of the gluon field A = A(η). The physical time
scale for the cosmological evolution is of the order of the Universe age tcosm ∼ 1/H (in terms
of the Hubble parameter H), while the typical time scale for the Yang-Mills field evolution
is of the order of the hadronisation time thadr ∼ 1/ΛQCD. So at present epoch the right hand
side of Eq. (4.2) can be taken to be constant in time to a good accuracy, or more precisely,
given by a classical solution of the Friedmann equation (4.1). In practice, this means that
the dynamical cancellation under the condition (3.8) and, hence, the decoupling of the QCD
vacuum fluctuations from the hot cosmological plasma have effectively happened at the end
of the hadronisation epoch in the early Universe evolution.

For convenience, let us rewrite the Yang-Mills equation (4.2) in terms of dimensionless
time and gauge field as follows

(

dÃ

dη̃

)2

− Ã4 = 1 , Ã = A
(6e)1/4

ξΛQCD
≃ A

2ΛQCD
, η̃ = η

ξΛQCD

(6e)1/4
≃ 2ΛQCD η , (4.3)

for ξ ≃ 4. For simplicity, we have chosen the initial values of the Yang-Mills field and the
scale factor as follows:

Ã(η̃0 = 0) ≡ Ã0 = 0, a(η̃0 = 0) ≡ a0 = 1 . (4.4)
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We can see now that, indeed, the time scale of the Yang-Mills field fluctuations is essentially
microscopic and corresponds to the ΛQCD energy scale. The equation (4.3) can then be
easily integrated, and its general solution can be written in the following implicit form:

∫ Ã

Ã0

dÃ
√

1 + Ã4
= η̃ , (4.5)

where Ã0 is an integration constant. Notably, the analytical solution (4.5) taking into
account the QCD vacuum polarisation, in fact, differs from the classical Yang-Mills solution
(2.4) by sign in front of Ã4 under the square root only, having though a significant effect
on its time dependence. Moreover, since the solution (4.5) was obtained under the exact
cancellation condition (3.8), it corresponds to the minimal energy of the QCD system in the
ground state of the Universe and, hence, is physically preferable.

For the initial conditions given by Eq. (4.4) (independently on a particular ȧ0 value), the
solution for Ã(η̃) (4.5) obeys the following properties:

• Symmetry: Ã(−η̃) = −Ã(η̃).

• Periodicity: Ã(η̃ ± T ) = Ã(η̃).

• Continuous intervals and singularities: Ã(η̃ → ±T/4) = ±∞ .

Most importantly, it is continuous only at a finite microscopically-small time interval
T ∼ 1/ΛQCD and corresponds to spatially-homogeneous pulses of the gluon field potential
with a constant energy-density. An analogous effect in a modified Maxwell-F (R) gravity was
observed in Ref. [7] where the large-scale magnetic fields are generated due to the breaking of
the conformal invariance of the electromagnetic field through its non-minimal gravitational
coupling.

We stress also that once the compensation condition (3.8) has been satisfied at a particular
moment in time, it holds true for any later times, and the YM fields and large negative Λinst

disappear from the resulting equations and do not participate in the Universe evolution
any longer. We, therefore, arrive at quasistationary regime when the Universe evolution is
completely determined by usual matter and uncompensated cosmological Λ-term only.

What is the physical interpretation of the result (4.5)? Obviously, such a solution with
regular singularities does not have a quasiclassical interpretation (except for a vicinity of
the midpoints of the continuous intervals where the gluon field potential is small and slowly
changing). In practice, we deal with a sequence of quantum fluctuations of the YM field in
time, or, in fact, with the finite-time instantons. The creation and annihilation of such finite-
time instantons should have essentially quantum nature like the QCD instantons. In order to
regularize singularities in the quasiclassical solution (4.5) one needs to turn into a complete
quantum theory taking into account quantum corrections due to e.g. fermion-antifermion
pair creation and annihilation processes in the early Universe.

V. CONCLUSION

From the group theory point of view, our proposal is analogical to the standard instantons
theory in QCD [12]. In both these cases one deals with the mapping of 3-space onto SU(2)
subgroup elements, so the analogy between the resulting instanton solutions is rather close.

7



Indeed, based on the quasiclassical result (4.5) only, one can naively conjecture that the

cosmological evolution of the YM field emerges a sequence of quantum tunneling transitions

through the time barriers represented by the regular singularities in the solution (4.5). We
have observed that the positive constant energy density of spatially-homogeneous finite-time
instantons in the early Universe can be cancelled with the negative constant QCD contri-
bution from spatially-inhomogeneous gluon field fluctuations induced by a similar quantum
tunneling of the gluon field, but through spatial (not time!) topological barriers between
different classical vacua. This exhibits a remarkable similarity and interplay between instan-
tons of different types in the early Universe evolution. Besides the ΛQCD scale parameter, a
degree of such a cancellation at the moment relies on one yet free dimensionless normalisa-
tion constant ξ which cannot be fixed by known perturbative QCD theory, and thus should
be fine-tuned for the exact compensation to hold. This freedom must be eventually fixed by
non-perturbative QCD dynamics.

At the level of the Einstein equations, we have explicitly shown that an arbitrary SU(2)
configuration of the cosmological Yang-Mills field leads to a color neutral (“white”) contri-
bution to the energy-momentum tensor which is represented in the form of Lorentz-invariant
Λ-term. Thus, there is no any danger that the cosmological Yang-Mills field leading to ex-
plicitly “white” observables upon averaging over all stochastic SU(2) configurations would
violate well-known symmetries of the QCD theory, and quark fields cannot affect this picture.

From the point of view of quantum tunneling, the chain of quantum fluctuations in a
certain approximation can be considered as non-linear oscillations. In order to regularize
the infinite end-points of the continuous time intervals within the quasiclassical approach,
one could therefore consider a continuous smearing of the resulting fluctuations by means
of a non-linear continuous parameterization such as

Ãappr(η̃) =
1

a sin(ωη̃) + b
cos2(ωη̃)

sin(ωη̃)

(5.1)

with adjustable parameters a, b and ω. This approximation has been qualitatively compared
to the exact quasiclassical solution (4.5) and approaches it in the limit of small a → 0, while
the classical non-linear solution (2.4) is reached in the limit a → b (up to an arbitrary
initial phase) with ω being dependent on the initial amplitude. Thus, the parameterization
(5.1) represents a simple continuous interpolation between the classical and quasiclassical
solutions, and can be used in practical calculations in the quasiclassical limit of the theory.

To summarize, the space-time dynamics of colored quarks and gluons has to be considered
from the QCD confinement point of view. One should emphasize that a formal singularity
in the gluon field potential (4.5) simply means that a quark (and a gluon) in the Universe
cannot experience free motion in 3-space during the time periods larger than the typical
time scale of confinement, ∼ Λ−1

QCD. In this sense, our solution (4.5) reflects the “time”
aspect of confinement. Besides the extremely small Λ-term problem, the exact compensation
mechanism, proposed above, can be viewed as a manifestation of the QCD confinement
since there are practically no non-zeroth gluon fields propagating at the length scales larger
than the typical hadron scale ∼ 1 fm, and they certainly disappear at macroscopically
large cosmological scales typical for modern Universe. The perturbative higher order QCD
corrections which affect the QCD β-function are typically small and do not change the
qualitative picture described above. A deeper theoretical investigation of these aspects is
essential for both non-perturbative QCD and Cosmology, and is planned for further studies.
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