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Abstract

Most of the traditional Technicolor-based models are known to be in a strong tension with

the electroweak precision tests. We show that this serious issue is naturally cured in strongly

coupled sectors with chiral-symmetric vector-like gauge interactions in the framework of gauged

linear σ-model. We discuss possible phenomenological implications of such non-standard chiral-

symmetric Technicolor scenario in its simplest formulation preserving the Standard Model (SM)

Higgs mechanism. For this purpose, we assume the existence of an extra technifermion sector

confined under extra SU(3)TC at the energy scales reachable at the LHC, ΛTC ∼ 0.1− 1 TeV, and

interacting with the SM gauge bosons in a chiral-symmetric (vector-like) way. In the framework

of this scenario, the SM Higgs vev acquires natural interpretation in terms of the condensate of

technifermions in confinement in the nearly conformal limit. We study the influence of the lowest

lying composite physical states, namely, technipions, technisigma and constituent technifermions,

on the Higgs sector properties in the SM and other observables at the LHC. We found out that the

predicted Higgs boson signal strengths in γγ, vector-boson V V ∗ and fermion f f̄ decay channels

can be sensitive to the new strongly-coupled dynamics and are consistent with the current SM-like

Higgs boson observations in the limit of relatively small Higgs-technisigma mixing. At the same

time, the chiral-symmetric Technicolor provides us with rich technipion phenomenology at the

LHC, and its major implications are discussed in detail.
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I. INTRODUCTION

A complete experimental verification of the Standard Model (SM), including the discovery
of the Higgs boson and precision tests of its properties, is the most intriguing and challenging
task of high energy particle physics at the moment. Last year, the major LHC collaborations,
ATLAS and CMS [1, 2], have announced the discovery of a new “Higgs-like” particle with
the mass of 125.3± 0.6 GeV, which may become the last yet missing piece predicted within
the SM framework – the Higgs boson. Some evidence for the Higgs boson has been also seen
by CDF and D0 collaborations at the Tevatron [3].

An ultimate proof of the Higgs boson’s existence and understanding of its nature would
only be possible after high precision measurements of its decay parameters which can be
sensitive to details of a particular New Physics scenario. The current situation with the Higgs
boson properties suggests that there are no significant deviations from the SM (within rather
large statistical and systematical uncertainties) as revealed by the full data set collected so
far at the LHC [4] and Tevatron [5] (for the most recent comprehensive studies of the Higgs
boson properties, see e.g. Refs. [6–9]). Even though the room for New Physics contributions
has been greatly reduced [7, 11], it is too early to draw final conclusions about the properties
and nature of the newly discovered particle not only due to large experimental error bars,
but also due to theoretical uncertainties in the SM Higgs production which are rather high
and become dominant [8, 12]. If the branching ratios deviate from predictions of the simplest
one-doublet SM, even slightly, this would require a proper extension of the SM and pose a
serious question about theoretical principles such an extension should be based upon.

Traditionally, ideas of additional to SM strongly-coupled sectors in confinement were re-
alized in the Technicolor (TC) model which was one of the strongest alternatives to the
Higgs mechanism of the spontaneous Electroweak Symmetry Breaking (EWSB) [13]. The
existing Higgs-less TC models with dynamical EWSB (DEWSB) are based upon the idea
that the Goldstone degrees of freedom (technipions) appearing after the global chiral sym-
metry breaking SU(2)L ⊗ SU(2)R → SU(2)W are absorbed by the SM weak gauge bosons
which thereby gain masses. The DEWSB mechanism is then triggered by the condensate of

technifermions in confinement, 〈Q̃ ¯̃Q〉 6= 0. Traditional TC models with DEWSB are faced
with the problem of the mass generation of standard fermions, which was consistently re-
solved in Extended TC scenarios [14]. However, many of the existing TC models have got
severely constrained or even ruled out by the EW precision data [15] (for a detailed review
on the existing TC models, see e.g. Refs. [16, 17]). Generally, in these schemes noticeable
contributions to strongly constrained Flavor Changing Neutral Current (FCNC) processes
appear together with too large contributions to Peskin-Takeuchi (especially, to S) parame-
ters. Further developments of the TC ideas have resulted in the Walking TC model which
succeeded in resolving the above-mentioned problems and remains a viable model of the
DEWSB [18–20].

Very recently, as was shown in Ref. [11] based on the latest LHC data, the 1σ allowed
region of the relative to SM-predicted Higgs-vector-vector fusion HV V coupling is 0.96+0.13

−0.15,
which sets further constraints on the EWSB models alternative to the SM Higgs mechanism,
as well as to composite Higgs models (see also current bounds on the rescaling of the SM
couplings in Ref. [9, 10]). However, even if the newly-discovered particle is indeed the
SM Higgs boson and the Higgs mechanism is experimentally confirmed, all available LHC
and high precision EW data do not completely exclude the existence of a strongly-coupled
fermion sector in confinement, additional to the SM fermion sector, with a confinement
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scale, ∼ 0.1 − 1 TeV, being not very far from the EW scale MEW ∼ 100 GeV. The main
goal of this paper is to prove this statement and to study a new class of viable realistic
models for an extra strongly-coupled sector assisting the conventional SM Higgs mechanism
at accessible energy scales, along with the study of their implications to the ongoing New
Physics searches at the LHC.

An alternative class of TC models usually referred to as bosonic TC scenarios include
both a Higgs doublet H and a new TC sector [21–23], without referring to an origin of the
Higgs doublet. Most recent realization of the bosonic TC is based upon holographic ideas
[24], and allows to explain the existence of recently discovered Higgs-like 125 GeV particle
and its possible non-standard features [25]. In this approach, strongly coupled dynamics
is defined using the AdS/CFT correspondence within the holographic approach allowing
to avoid the EW precision constraints [26–28]. In contrast to conventional (Extended and
Walking) TC models, in bosonic TC models the mechanism of the EWSB and generation of
SM fermions masses is driven by the Higgs vacuum expectation value (vev) in the standard
way, irrespectively of (elementary or composite) nature of the Higgs field itself. Due to linear
source term in the Higgs potential the Higgs field H develops vev which in turn is induced by
the technifermion condensate. This means the Higgs mechanism is not the primary source
of the EWSB, but effectively induced by an unknown TC dynamics at high scales. For more
alternatives on TC and compositeness models, see e.g. Ref. [29].

In this work, we start off with the similar ideas about the existence of an extra Higgs-like
scalar field and TC nature of the SM Higgs vev implemented in the bosonic TC models
and study theoretical and phenomenological opportunities of new possible strongly coupled
sectors with chiral-symmetric (vector-like) gauge interactions. We further develop these ideas
based on the gauged linear σ-model [36–38] and applied it to new TC-induced degrees of
freedom, in a complete analogy with low-energy hadron physics applications. In this model,
which will further be referred to as the Chiral-Symmetric (or Vector-Like) Technicolor (in
short, CSTC) scenario, the oblique (Peskin-Takeuchi) parameters and FCNC corrections
turn out to be naturally very small and fully consistent with the current EW constraints
as well as with the most recent Higgs couplings measurements at the LHC in the limit of
small Higgs-technisigma mixing. Most importantly, this happens naturally in the standard
quantum-field theory framework implemented in rigorous quark-meson approaches of hadron
physics without attracting any extra holographic or other special arguments from unknown
high-scale physics. For simplicity, we adopt the simplest version of the Standard Model
with one Higgs doublet, and the question whether it is elementary or composite is not
critical for further considerations. The new heavy physical states of the model (additional
to those in the SM) are the singlet technisigma σ̃, triplet of technipions π̃a, a = 1, 2, 3, and
constituent technifermions Q̃ which acquire masses via the technifermion condensate as an
external source and the technisigma vev (other composite degrees of freedom are usually
much heavier and decoupled from the considering low-energy limit of the theory). Their
possible phenomenological implications and signatures at the LHC is the subject of our
analysis.

Despite the phenomenological advantages mentioned above, the proposed CSTC scenario,
at least, in its simplest form considered here, does not attempt to resolve the naturalness
problem of the SM, i.e. does not provide a mechanism protecting the Higgs boson mass itself
from becoming arbitrary large. Nevertheless, it points out a promising path towards a con-
sistent formulation of composite Higgs models in extended chiral-gauge theories with vector-
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like UV completion1. Indeed, an existence of composite Higgs-like bosons is often considered
as a primary guideline for Technicolor models. In analogy with hadron physics, composite
bosons can be of two different types: pseudo-Goldstone collective excitations (quantum wave
of correlations between non-perturbative technifermion fluctuations in technivacuum) and
techniquarkonia (a “bubble” of technivacuum stabilized by valence technifermions). After
LHC experiments, the Technicolor models with composite SM-like Higgs bosons have be-
come favorable. The latter means that the SM-like Higgs mechanism is indeed realized in
Nature even though it can be treated as an effective one, i.e. the initial fields of collective
excitations or techniquarkonia should be in the fundamental representation of the EW gauge
group with hypercharge Y = 1/2. In the CSTC model such objects naturally appear if one
extends the technifermion sector. The simplest extension is such that in addition to the EW
doublet of technifermions Q̃ = (U,D) one introduces an extra weak-singlet technifermion S.
Therefore, a new composite scalar field appears H = S̄Q̃ having transformation properties
of the Higgs boson (SU(2)W doublet with Y = 1/2). In this model, the initial classification
(techniflavor) group is the global chiral group SUL(3) ⊗ SUR(3). A further generalization
would be to consider SUL(4)⊗ SUR(4) giving rise to effective two Higgs-doublet model. Of
course, in such extended techniflavor models there appears a plenty of new technihadron
states which require a separate lengthy analysis. In analogy to hadron physics one may
expect, however, that the lightest physical technihadron states which are the most inter-
esting for the LHC phenomenology in the first place are technipions, technisigma and, in
principle, lightest technibaryons. Therefore, in this paper we limit ourselves to considering
initial (presumably, the minimal) techniflavor group SUL(2)⊗ SUR(2) and discuss a simpli-
fied model with gauged vector-like subgroup SU(2)L+R only where the Higgs boson formally
(at the low-energy part of the spectrum of technihadrons) has a status of the fundamen-
tal field, which does not satisfy the naturalness criterium. An extended techniflavor model
SUL(Nf )⊗ SUR(Nf) with Nf > 2 will be studied elsewhere.

The paper is organized as follows. The Section II is devoted to description of theoretical
foundations of the CSTC scenario along with the physical Lagrangian derivation and analysis
of the parameter space. The study of EW constraints (oblique corrections and FCNC) is
performed in Section III. Some basic opportunities for LHC phenomenology, in particular,
in studies of the Higgs sector properties, as well as in searches for new lightest composites,
are discussed in Section IV. Finally, Section V summarizes the basic results of the paper.

II. CHIRAL-SYMMETRIC TECHNICOLOR MODEL

A. Vector-like technifermions vs chiral SM fermions

Historically, the Nambu-Jona-Lasinio (NJL) model [32] based on the global chiral group
SU(Nf )L⊗SU(Nf )R is the first model describing dynamical breaking of chiral symmetry in

1 Also, the model does not provide a mechanism for generation of current (Dirac) technifermion masses

which á priori are arbitrary. In analogy to ordinary QCD, however, we consider the physically interesting

conformal limit of the new strongly coupled dynamics realized in the chiral limit of the theorymU,D ≪ ΛTC

which leads to an unambiguous determination of the Higgs vev in terms of the technifermion condensate.

The latter means that the EW symmetry is broken dynamically via the effective Higgs mechanism in this

limit, which makes it particularly interesting. This statement is stable w.r.t. radiative corrections.
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particles physics (for review on the topic, see e.g. Ref. [33]). A large interest in the gauged
version of the NJL model (or GNJL) initially proposed in Ref. [34] has been stimulated
by its importance for constructing extended TC models and top-quark condensate models
(for an extensive review of the GNJL models and their applications, see Ref. [35]). The
GNJL approach has fewer parameters and significantly reduces ambiguities of corresponding
predictions.

As one of the most successful implementation of the GNJL ideas in hadron physics, the so-
called gauged linear σ-model (GLσM) initially proposed in Ref. [36] and further elaborated
in Refs. [37, 38] was one of the first models with local chiral SU(2)R ⊗ SU(2)L symmetry,
which incorporates the vector ρ and pseudovector a1 mesons as corresponding gauge bosons,
besides lightest pseudoscalar pion π and scalar σ fields. Typically, the local chiral symmetry
is spontaneously broken by the scalar σ vev giving rise to the vector-meson mass terms,
constituent light quark masses [39] and the mass splitting between ρ and a1 mesons.

In what follows, we employ the ideas of the GLσM and consider the global chiral
SU(Nf )L ⊗ SU(Nf )R group in the technifermion sector Q̃ in the simplest case with
Nf = 2, with its subsequent breaking (by the technisigma vev) down to the vector sub-
group SU(2)V≡L+R which is then gauged at energy scales close to the EWSB scale. Such
a “gauging”, however, does not necessarily mean that one should introduce extra gauge
bosons to the existing theory. The “gauging” procedure may also mean that correspond-
ing fundamental technifermions interact with already existing gauge bosons in the SM in
the low-energy effective field theory limit, which is a rather plausible opportunity we wish
to explore here. In analogy with standard QCD and hadron physics, at the scale of the
order of the techniconfinement scale ΛTC technifermions acquire effective non-perturbative
constituent masses due to the chiral symmetry breaking [39]. At lower energies the initial
technifermions condense into technihadron states due to confinement. This scheme is an
analogy of the chiral-invariant QHD-III model [38] where the pseudo-Goldstone technipion
fields π̃a get the same masses (via an external source term linear in σ̃ field) and remain the
physical degrees of freedom, in distinction from many other traditional TC and composite-
ness scenarios.

For the sake of simplicity, we consider a possible scenario of the SM extension by means
of an additional chiral-symmetric (vector-like) technifermion sector confined under SU(3)TC

group, which is analogical to the SU(3)c color group of QCD. Such an assignment is
not unique, of course, but would allow us to use direct analogies with hadron physics2.
The GLσM can therefore be efficiently extended to incorporate constituent technifermion-
technimeson interactions as the simplest way of phenomenological description of the non-

2 For this purpose, one could choose an extension of the gauge and fermion SM sectors motivated by a

reduction from the grand-unified theories (GUT) originating from e.g. superstring-inspired E8⊗E′
8 group

with many appealing features [30]. In the latter case, one of the exceptional groups, say, E′
8 can exist in

confinement and, possibly, consists of a few unbroken subgroups confined at different scales, whereas the

second E8 gets broken down to the SM gauge group GSM ≡ SU(3)c⊗SU(2)W⊗UY(1) in a straightforward

way. As a realistic possibility, one of the SU(3) subgroups of the original E′
8 can be, in principle, identified

with the TC gauge group SU(3)TC, which acts only on new additional technifermion sector, and there

are no any obstacles for it to be confined at relatively low scales being not very far from the EWSB scale

(later it will be shown that the latter condition is not critical for the TC-induced EWSB).

5



perturbative effects in technihadron dynamics at low energies. We will further refer to it
below as the gauged linear technisigma model, or GLTσM. In the simplest version of this
model, the non-perturbative effects are accounted for by an effective NJL-type theory of
constituent technifermion interactions with the lightest technihadron states only [39] – tech-
nipions and technisigma. In the context of GLTσM we suggest the following hypothesis,
which will be studied below: the energy scales of the EWSB and techni-confinement have a

common quantum-topological nature and are determined by a non-perturbative dynamics of

the technifermion-technigluon condensate. In particular, we would like to find specific condi-
tions on the model parameters under which the latter hypothesis is validated. As was noted
above, the technipion d.o.f. π̃a are the pseudo-Goldstone fields which are usually considered
as collective fluctuations of the technifermion-technigluon vacuum, while technisigma σ̃ is

the lightest techniglueball state – these states are not usual bound Q̃ ¯̃Q states and thus play
a special role in the GLTσM [36–38].

From the point of view of the GLTσM, the spontaneous breaking of the global chiral
symmetry group in the technifermion sector happens in the chiral-symmetric (vector-like)
way in a complete analogy with the chiral symmetry breaking in GNJL models [35, 38] as
follows

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R ≡ SU(2)W , (2.1)

where the subsequent gauging of the resulting unbroken vector subgroup SU(2)V and its
identification with the weak gauge group of the SM are performed. Such gauging and identi-
fication procedures are not forbidden theoretically and lead to specific properties of the tech-
nifermion sector, which thereby make it to be very different from the chiral-nonsymmetric
SM fermion sectors. It therefore means that after the chiral symmetry breaking in the tech-
nifermion sector the left and right components of the original Dirac technifermion fields can
interact with the SM weak SU(2)W gauge bosons with vector-like couplings, in opposition
to ordinary SM fermions, which interact under SU(2)W by means of their left-handed com-
ponents only. Note, analogous vector-like gauge interactions are rather common and appear
e.g. in the chargino sector of the MSSM.

Note, the above procedure (2.1) should be understood in exactly the same way as is done
in the QCD hadron physics at low energies. There, the fundamental gauge group of color
SU(3)c is vector-like i.e. acts on left-handed qL and right-handed qR quarks in exactly the
same way, which makes it possible to introduce the global chiral group SU(3)L ⊗ SU(3)R.
The latter is typically broken down to the vector-like subgroup SU(3)V≡L+R by the σ-vev. If
one gauges it, one recovers that its properties are identical to the color group SU(3)c in the
low energy limit. This leads to a low-energy effective field theory where interaction properties
of elementary and composite fields are effectively described by the same gauge group with
renormalized local gauge couplings (as limiting values of corresponding form factors valid at
small momentum transfers). Similarly, vector-like weak interactions of technifermions make
it possible to introduce the chiral group whose gauged subgroup has properties identical to
the weak isospin group (2.1). Most importantly, the latter procedure is valid only in the
phenomenologically interesting low energy limit of the theory. When typical momentum
transfers become comparable to the techniconfinement scale or larger Q2 & Λ2

TC the global
chiral symmetry is fully restored, while fundamental EW gauge interactions of technifermions
remain vector-like (similarly to QCD interactions of quarks in perturbative limit).

So, in this scenario the sector of initial (current) technifermions transforms according to
the local gauge SU(2)W ⊗ UY(1) symmetry group, and, therefore, interacts only with SM
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gauge bosons B, W a, a = 1, 2, 3, or with W±, Z0 and γ after the SM symmetry breaking.
Of course, in a complete local chiral SU(2)L⊗SU(2)R theory of technifermion-technimeson-
gauge interactions one would need to include e.g. a mixing of vector technirho ρ̃ with the
elementary SM gauge bosons as is done in local quark-meson interaction theories [38, 40]
(for review on the subject, see also Ref. [41] and references therein). However, in this work
in what follows we neglect the heavier vector and pseudovector technimesons, such that
only elementary gauge B, W a, a = 1, 2, 3 fields remain, and consider only the spectrum of
lightest composite scalar (technisigma σ̃) and pseudoscalar (technipion π̃a) states, relevant
for the LHC measurements. Note, that a reduction scheme to the left-right (LR) symmetric
subgroup SU(2)L+R enables one to introduce current masses of technifermions directly into
the initial Lagrangian without a need in extra fields which is considered to be advantageous.
While the latter freedom may be regarded as a new form of the hierarchy problem as there
must be a symmetry which protects the current up (U) and down (D) technifermion masses
mU,D from becoming very large, we take on the phenomenological approach and consider the
chiral limit of the theory with the current masses being small compared to the techniconfine-
ment energy scale, i.e. mU,D ≪ ΛTC, in a complete analogy with the chiral QCD framework.
Surely, the latter issue should be addressed in a high-scale GUT-like theory which incor-
porates new strongly-coupled fermion sectors, and this certainly goes beyond the scope of
the present analysis. Additionally, chiral (axial) anomalies do not appear in this framework;
it is anomaly-safe automatically. We will further discuss specific consequences of such new
vector-like weak interactions of the additional technifermion sector in confinement.

One should remember that identification of the local vector subgroup of the chiral group
with the SM weak isospin group (2.1) is a purely phenomenological procedure which leads
to correct results in the low energy limit of the theory. In reality, of course, the global
classification techniflavor group SUL(2) ⊗ SUR(2) has nothing to do with the EW gauge
group of the SM. At the first stage, the techniflavor group is used for classification of com-

posite technihadrons and, in particular, predicts the existence of technipions, technisigma
and technibaryons states. At the second stage, one notices that technifermions entering
the composite technihadrons besides technistrong interactions participate also in the funda-
mental EW interactions. One should therefore calculate the EW form factors of composite
technihadrons. The corresponding EW interactions must then be also introduced at the

fundamental technifermion level consistently with those at the composite level technihadron

level. At the third stage, in the phenomenologically interesting low-energy limit of the the-
ory the EW form factors approach the renormalized EW constants (since the technihadron
substructure does not emerge at relatively small momentum transfers). The latter should
be calculated after reclassification of technihadrons under the EW group representations.
This three-fold generic scheme will be used below for description of EW interactions of
technihadrons.

According to the standard quark-meson approaches [39, 41], constituent quark loops
describe non-perturbative effects at relatively small distances, whereas meson loops work at
larger distances. This scheme should be realized in the CSTC model under discussion, in a
complete analogy with the standard quark-meson theories, and is valid up to an energy scale
of typical technihadron states. Following to this analogy, we consider meson (technipions π̃a

and technisigma σ̃) interactions at tree level, and technifermion interactions (with effective
constituent masses) at one-loop level [39]. At much larger energies, one should turn into the
perturbative techni-QCD framework describing technigluon and technifermion (with current
masses) interactions, in analogy with the standard QCD approach.
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This scenario becomes especially interesting from both theoretical and phenomenological
points of view since it predicts the existence of the physical technimeson spectrum with
relatively light pseudoscalar π̃a and scalar σ̃ fields3. Latter has quantum numbers identical
to the SM Higgs boson ones. This leads to a mixing of initial σ̃ and H fields causing a
possible modification of the physical Higgs boson couplings. Additionally, lightest physical
technipion states π̃a enrich LHC phenomenology with possible new observable signatures,
to be studied in detail.

B. Gauged linear technisigma model: initial CSTC Lagrangian

As was shortly discussed in the previous Section, we use the standard structure of the
gauged linear σ-model for low-energy TC phenomenology. Let us formulate the CSTC model
in terms of the lightest composite states based on the local weak isospin symmetry group
SU(2)L+R = SU(2)W acting on the confined technifermion sector. The initial field content
of the CSTC model in its simplest formulation is given by one LR-symmetric doublet of
technifermions

Q̃ =

(

U
D

)

(2.2)

which forms the fundamental representation of the SU(2)W⊗U(1)Y group, the initial scalar
technisigma S field which is the singlet representation, and the triplet of initial technipion
fields Pa, a = 1, 2, 3 which is the adjoint (vector) representation of SU(2)W (with zeroth
U(1)Y hypercharge). Thus, in terms of the fields introduced above the GLTσM part of the
Lagrangian responsible for Yukawa-type interactions of the technifermions reads

LCSTC
Y = −gTC

¯̃Q(S + iγ5τaPa)Q̃ , (2.3)

where τa, a = 1, 2, 3 are the Pauli matrices. By restricting ourselves to considering only one
technifermion doublet (2.2) (the first generation), we imply that other generations, if exist,
are much heavier and split off in the mass spectrum, based on analogy with the SM, even
though such an analogy is not mandatory.

In the SM, the gauge boson interactions with usual hadrons are typically introduced by
means of hadronisation effects (see Fig. 1 (left)). In our case, such an effect is strongly

M1

M2

γ, Z, W±
Q̃, π̃

¯̃Q, π̃

γ, Z, W± Q

Q̄

γ, Z, W±

FIG. 1: An illustration of the interactions of (techni)fermion and (techni)meson fields with the

SM gauge bosons via (techni)hadronisation in hadron physics (left panel) and in the point-like

approximation adopted in the considered CSTC scenario (right panel).

3 It is typically assumed that technibaryons, along with the vector and pseudovector states, are much heavier

and thus likely to be irrelevant for the LHC phenomenology, at least, at the moment. Although if the

techni-confinement scale ΛTC is not very far above the EW scale, technibaryon states might emerge in

LHC data as large missing ET signatures which is a subject for further studies.
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suppressed by large constituent masses of technifermions ∼ ΛTC. Instead, the interactions
of Q̃ and Pa fields with initial SM gauge fields Bµ, V

a
µ can be introduced via the local ap-

proximation which is illustrated in Fig. 1 (right). Generally speaking, these interactions
should be written in terms of nonlocal form factors since both technimesons and dressed
(constituent) technifermions are the objects delocalized at energy scales exceeding the scale
of non-perturbative technigluon fluctuations. We assume, however, that the latter scale is
large compared to the EWSB scale and corresponding effects can be neglected at experi-
mentally accessible energy scales. Thus, in the first approximation one can replace the form
factors by point-like couplings as is usually done in the local quantum-field theory approach4.
The coupling constants of Q̃ and Pa with gauge fields can be taken the same as in the SM,
but calculated via the Renormalisation Group evolution at corresponding scales. Since this
evolution is logarithmic and rather weak, whereas ΛTC is assumed to be in a vicinity of the
EW scale, in the leading-order numerical analysis below we fix all the relevant couplings at
the MZ scale.

The vector-like gauge interactions can be introduced via covariant derivatives over the
local SU(2)W ⊗ U(1)Y group in the same form as the SM gauge interactions, i.e. the
additional (to the SM) kinetic terms have the following form

LCSTC
kin =

1

2
∂µS ∂µS +

1

2
DµPaD

µPa + i ¯̃QD̂Q̃ , (2.4)

where the covariant derivatives of the Q̃ and Pa fields reads

D̂Q̃ = γµ

(

∂µ −
iYQ̃

2
g′Bµ −

i

2
gW a

µτa

)

Q̃, DµPa = ∂µPa + gǫabcW
b
µPc , (2.5)

respectively. Further, we wish to employ analogies with the SM and, in particular, with QCD
as much as possible, so for the sake of convenience and simplicity in actual calculations we
fix the hypercharge of the technifermion doublet (2.2) to be the same as that of the quark
doublet in the SM, i.e. YQ̃ = 1/3, unless noted otherwise. Certainly, the hypercharge YQ̃, the
number of technifermion generations, the respective properties of interactions, etc. should
be ultimately constrained in extended chiral-gauge or grand-unified theories incorporating
extra technifermion sectors, which is a subject of further studies.

In Eqs. (2.4) and (2.5) we notice two key differences of the CSTC scenario from tra-
ditional TC-based models (cf. Ref. [15, 29]) – the existence of physical technisigma and
technipion states, introduced via the GLTσM approach, and the equivalence of left and
right technifermion chiralities in their interactions with weak gauge bosons, following from
the gauging of the initial chiral group of the linear σ model. Along with the absence of chiral
anomalies, the CSTC scenario under discussion can be considered as a solid theoretically
motivated basis for the whole new class of more elaborated TC-based extensions of the SM
and their phenomenological tests.

Next, let us consider the potential part of the CSTC model Lagrangian giving rise to
(pseudo)scalar self-interactions and π̃, σ̃ masses after the chiral symmetry breaking and the
EWSB. As was mentioned in the Introduction, in the simplest formulation of the CSTC

4 In a more rigorous analysis this approximation can be easily lifted by introducing the Pauli form factors,

although in this very first analysis of the CSTC we work in the point-like approximation for the sake of

simplicity.
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model developed in this work we keep the SM Higgs mechanism of the EWSB and the
one-Higgs-doublet SM untouched, and simply add extra technifermion sector (2.2) in con-
finement. As an essential part of the CSTC model, we introduce the interaction terms
between the standard Higgs doublet H, and the new Pa and S states which are allowed
by the local SU(2)W symmetry. As will be demonstrated below, such extra terms lead to
a mixing between the scalar Higgs and technisigma fields. The most general form of the
Lagrangian corresponding to the scalar self-interactions including µ-terms as follows [41]

LCSTC
U, self =

1

2
µ2
S(S

2 + P 2) + µ2
HH2 − 1

4
λTC(S

2 + P 2)2 − λHH4 + λH2(S2 + P 2) , (2.6)

and the extra linear “source” term which appears after averaging over the technifermion
vacuum fluctuations and describes interactions of the scalar singlet S field with scalar modes
of the technifermion condensate, i.e.

LCSTC
U, source = −gTC S 〈 ¯̃QQ̃〉 . (2.7)

The potential part of the GLTσM Lagrangian is then given by

LCSTC
U = LCSTC

U, self + LCSTC
U, source . (2.8)

In Eq. (2.6) we defined P 2 ≡
∑

a PaPa = π̃0π̃0 + 2π̃+π̃−, whereas gauge-Higgs interaction
terms are the same as in the SM.

U, D

W, Z

σ̃ h
U, D W, Z

S, Pa H

HS, Pa

FIG. 2: Typical radiative corrections to the quartic Higgs-TC coupling λ (in particular, giving

rise to the hσ̃-mixing) before the EWSB (left) and after the EWSB (right).

The mixing between the Higgs boson and scalar technisigma fields is governed by the
quartic Higgs-TC coupling λ in Eq. (2.6). Such a mixing is one of the characteristic effects
of the chiral-symmetric Technicolor. In a sense, this effect is indeed one of the motivations
of the model under discussion. It has to be taken into consideration if the precision LHC
measurements uncover possibly small deviations of the Higgs-like 126 GeV boson (especially,
in the γγ decay channel) from the standard Higgs boson. The quartic coupling λ controls
such a mixing and á priori is allowed by the gauge symmetry of the initial Lagrangian,
thus, cannot be identically equal to zero. Indeed, any terms which are allowable by the
initial symmetry of the model, even being equal to zero at the tree level, necessarily appear
in divergent radiative corrections. In order to renormalize such divergencies one has to
introduce corresponding counterterms. So if at a given scale µ0 the coupling λ(µ0) →
0 vanishes it will reappear at another scale. In particular, before the spontaneous EW
symmetry breaking the operator ∼ H2(S2 + P 2) is supported by the two-loop box-box
diagram illustrated in Fig. 2 (left) with incoming initial S and Pa fields and outgoing initial
Higgs field H. This operator thus contributes to remormalization of λ coupling. After
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the EWSB, the resulting physical hσ̃ mixing is renormalized by two-loop triangle-triangle
diagram shown in Fig. 2 (right)5. In extended SUL(Nf ) ⊗ SUR(Nf) models mentioned
above the corresponding quartic Higgs-TC operator which mixes physical h and σ̃ appears
automatically from the main invariant of the linear σ-model and cannot be eliminated.

In order to provide the EWSB and the chiral symmetry breaking in the simplest way,
the Higgs H and technisigma S fields get vevs and corresponding physical scalar degrees of
freedom are mixed up, i.e.

H =
1√
2

( √
2iφ−

H + iφ0

)

, H = v + hcθ − σ̃sθ , 〈H〉 = 1√
2

(

0
v

)

,

v =
2MW

g
≃ 246GeV , S = u+ hsθ + σ̃cθ , 〈S〉 = u & v , (2.9)

where MW is the W boson mass, v, u are the Higgs boson and technisigma σ̃ vevs; h, σ̃
are the corresponding physical fields with positively definite masses Mh, Mσ̃, respectively;
cθ ≡ cos θ, sθ ≡ sin θ, and θ is the mixing angle, which diagonalizes the respective scalar
mass form. We therefore end up with the physical Lagrangian which describes new types
of interactions, namely, between Higgs boson, technipions and technisigma, Yukawa tech-
nifermion interactions, as well as mixing effects between the Higgs boson and technisigma
fields, relevant for the LHC phenomenology.

As it is well-known, in the SM framework we deal with two energy scales of a completely
different nature. The first one is the scale of quark-gluon condensate which has a quantum-
topological nature. The second one given by the amplitude of the constant Higgs field
(vev) has classical (non-quantum) origin. In the framework of the CSTC model we suggest
another interpretation of the classical Higgs mechanism in which the nature of all energy
scales (including the Higgs vev) is quantum-topological, in the essence of original TC and
compositeness models of the DEWSB. The simplest way to realize this idea is to introduce
into the scalar potential an “external source” term (the first term in Lagrangian (2.8) linear
in S field) which describes interactions between technifermion condensate with the singlet
scalar S field [41]. As will be demonstrated below, in the framework of the CSTC model
this term leads to a close connection between the Higgs and technifermion condensates. A
possible experimental verification of the CSTC model at the LHC relies on our assumption
that both EW and TC scales are relatively close to each other, within the LHC energy scales.
Indeed, in this case it is natural to assume that the Higgs and technifermion condensates
(v and u, respectively) may have the same origin. Our specific goal is to study possible
observable effects of such a phenomenon related, in particular, to the Higgs boson properties
as well as to lightest technihadron phenomenology at the LHC energy scales.

C. Parameter space of the CSTC model

As was mentioned above, in the framework of CSTC scenario it is assumed that the
EWSB in the SM sector (via ordinary Higgs mechanism by the Higgs vev, v) and the chiral
symmetry breaking in the TC sector (via the scalar technisigma field vev, u) may happen

5 In addition, there is an extra one-loop contribution to the hσ̃-mixing which is going via a technipion loop.

The latter correction exists for non-zeroth tree-level λtree 6= 0 only.
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at energy scales relatively close to each other, i.e. u ∼ ΛTC ∼ 0.1− 1 TeV. In what follows,
we adopt this limiting case where one may expect possible specific signatures of the chiral-
symmetric strongly coupled sectors potentially observable at the LHC.

Minimizing the potential (2.8) using expressions (2.9) one arrives at the set of tadpole
equations for the vacuum expectation values

〈δLCSTC
U /δH〉 = v

(

µ2
H − λHv

2 + λu2
)

= 0 ,

〈δLCSTC
U /δS〉 = u

(

µ2
S −

gTC〈Q̄Q〉
u

− λTCu
2 + λv2

)

= 0 .
(2.10)

The solution of the above equations with respect to scalar fields vevs has the following form

v2 =
λTCµ

2
H + λ(µ2

S +m2
π̃)

λTCλH − λ2
,

u2 =
λH(µ

2
S +m2

π̃) + λµ2
H

λTCλH − λ2
,

(2.11)

where

m2
π̃ = −gTC〈 ¯̃QQ̃〉

u
, 〈 ¯̃QQ̃〉 < 0 , gTC > 0 (2.12)

is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate 〈 ¯̃QQ̃〉, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉

< 0 ,
〈δ2LCSTC

U

δH2

〉

< 0 ,
〈δ2LCSTC

U

δS2

〉

< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H ≪ mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H ≪ mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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In the general case, the mass form of the scalar fields can be diagonalized and represented
in the form

∆LCSTC
sc = −1

2
[m2

π̃(2π̃
+π̃− + π̃0π̃0) +M2

σ̃ σ̃
2 +M2

hh
2] , (2.14)

where the technipion mass squared expressed in terms of vevs and scalar self-couplings is

m2
π̃ = λTCu

2 − λv2 − µ2
S , (2.15)

the technisigma and Higgs boson masses squared are

M2
h =

1

2

[

2λTCu
2 +m2

π̃ + 2λHv
2 −

√

(2λTCu2 +m2
π̃ − 2λHv2)2 + 16λ2u2v2

]

,

M2
σ̃ =

1

2

[

2λTCu
2 +m2

π̃ + 2λHv
2 +

√

(2λTCu2 +m2
π̃ − 2λHv2)2 + 16λ2u2v2

]

,

(2.16)

respectively. Finally, the expression for the hσ̃-mixing angle reads

tan 2θ =
4λuv

2λTCu2 +m2
π̃ − 2λHv2

, (2.17)

whereas the sign of sθ is given by

sign(sθ) = sign
( λuv

2λHv2 −M2
h

)

. (2.18)
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FIG. 3: Dependence of the quartic TC self-coupling λTC on the hσ̃-mixing sθ with dashed, dash-

dotted and solid lines corresponding to (1) gTC = 2, 5, 8, MQ̃ = 300 GeV, mπ̃ = 150 GeV, and

Mσ̃ = 500 GeV; (2) gTC = 8, MQ̃ = 300, 400, 500 GeV, mπ̃ = 150 GeV, and Mσ̃ = 500 GeV; (3)

gTC = 8, MQ̃ = 300 GeV, mπ̃ = 150, 250, 350 GeV, and Mσ̃ = 500 GeV; (4) gTC = 8, MQ̃ = 300

GeV, mπ̃ = 150 GeV, and Mσ̃ = 400, 500, 700 GeV, in each plot from top to bottom and left

to right, respectively. Here and below, Mh = 125 GeV. The coupling λTC is symmetric w.r.t.

sθ → −sθ.
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FIG. 4: Dependence of the quartic Higgs-TC coupling λ on the hσ̃-mixing sθ with dashed, dash-

dotted and solid lines corresponding to (1) gTC = 2, 5, 8, MQ̃ = 300 GeV, and Mσ̃ = 500 GeV;

(2) gTC = 8, MQ̃ = 300, 400, 500 GeV, and Mσ̃ = 500 GeV; (3) gTC = 8, MQ̃ = 300 GeV, and

Mσ̃ = 400, 500, 700 GeV, in each plot from left to right, respectively. It does not depend on mπ̃.

The coupling λ is antisymmetric w.r.t. sθ → −sθ.

In general, the additional sector of the Lagrangian under discussion together with the
modified SM Higgs sector contains seven parameters in total, namely

µ2
H , µ2

S , λH , λTC , λ , gTC , 〈 ¯̃QQ̃〉 . (2.19)

In phenomenological studies, it can be convenient to turn to mathematically equivalent set
of other independent physical parameters, namely,

Mh , Mσ̃ , mπ̃ , MW , MQ̃ , gTC , sθ . (2.20)

where MQ̃ = gTCu is the constituent technifermion mass. For this purpose, the following
relations between scalar self-couplings and physical quantities (2.20) following directly from
Eqs. (2.15), (2.16) and (2.17) can be useful:

2λTCu
2 = −m2

π̃ +M2
σ̃c

2
θ +M2

hs
2
θ ,

2λHv
2 = M2

σ̃s
2
θ +M2

hc
2
θ ,

2λuv = ±(M2
σ̃ −M2

h)cθsθ .

(2.21)

In reality, two mass parameters in Eq. (2.20) can be fixed by the SM phenomenology,
namely, MW ≃ 80.4 GeV and Mh ≃ 125.3 GeV, so effectively only five-dimensional parame-
ter space remains to be analyzed. Apparently, two phenomenologically interesting cases are
possible: the lightest observed scalar particle is indeed the Higgs boson, then Mh < Mσ̃, or
the technisigma is the lightest one Mσ̃ < Mh. In Eq. (2.21) we restrict ourselves to the first
solution for λ, with “plus” sign, and fix cos θ > 0, such that the sign of λ is the same as the
sign of sθ for Mσ̃ > Mh, opposite to the sign of sθ for reversed hierarchy Mσ̃ < Mh. In what
follows, we work with the direct mass hierarchy with the lightest Higgs boson in the scalar
sector of the model Mσ̃ > Mh, unless noted otherwise.

In Fig. 3 we represent dependence of the quartic TC self-coupling λTC on the hσ̃-mixing
angle, or more precisely sθ, over reasonable ranges of gTC, MQ̃, mπ̃ and Mσ̃ parameters.
One notices that λTC vanishes in the maximal hσ̃-mixing limit sθ → 1 for any gTC, MQ̃, Mσ̃

values and for small mπ̃ ∼ 150 GeV. For small mixing angles and rather largeMσ̃ & 700 GeV
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FIG. 5: Dependence of the quartic Higgs boson self-coupling λH on the hσ̃-mixing sθ with

dashed, dash-dotted and solid lines corresponding to Mσ̃ = 400, 500, 700 GeV, respectively. It does

not depend on other free parameters of the CSTC model. The coupling λH is symmetric w.r.t.

sθ → −sθ.

and gTC & 8, it can become very large λTC ∼ 100, where the non-linear non-perturbative
effects turn out to be important, and applicability of the corresponding GLTσM may be
restricted. This has to be taken into consideration in analysis of the available parameter
space of the model and possible phenomenological signatures.

Similarly, the quartic Higgs-TC coupling λ and the quartic Higgs boson self-coupling λH

w.r.t. sθ are given in Figs. 4 and 5, respectively. The λ coupling does not depend on the
technipion mass, and vanish in both limits sθ → 1 and sθ → 0 limits as is seen in figures. The
λH coupling depends only on the sθ and Mσ̃, and both λ and λH are generally constrained
λ, λH . 10.

In our analysis for the sake of simplicity and transparency we wish to employ an analogy
with QCD and hadron physics as long as possible, which is reasonable (even though not
necessary) since the TC confinement group and technifermion hypercharge are assumed to
be the same as for standard quarks. If such an analogy is indeed realized in nature, one
would need to pay attention to other possible similarities e.g. in properties of QCD and
techni-QCD vacuum subsystems. The QCD vacuum at scales ΛQCD ∼ 200 MeV is formed
by gluon and quark condensates [43]:

〈0|αs

π
ĜµνĜ

µν |0〉 = (365± 20MeV)4 ≃ (2ΛQCD)
4 ,

〈0|ūu|0〉 = 〈0|d̄d|0〉 = −lg〈0|
αs

π
ĜµνĜ

µν |0〉 = −(235± 15MeV)3 , (2.22)

where Λ−1
QCD ≃ 10−13 sm is the characteristic hadron size, whereas the correlation length

lg ≃ (1500MeV)−1 is the characteristic length scale of the non-perturbative gluon field
fluctuations. In the meson spectrum, the lightest states are pions with mass mπ ≃ 140 MeV
(the pseudo-Goldstone modes of the quark condensate excitations) and σ-meson σ = f0(500)
with mass mσ ≃ 500 MeV (the lightest glueball as a collective excitation of the gluon
condensate). In the framework of the hypothesis about the technicolor nature of the Higgs
vacuum v ∼ 200 GeV, it is natural to assume that the second techni-QCD vacuum subsystem
is formed by condensate of technigluons and light technifermions at a nearby scale ΛTC & 200
GeV, being therefore, at least, a thousand times higher than ΛQCD scale. Then, a reasonable
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order-of-magnitude estimate leads to

〈0|αTC

π
F̂µνF̂

µν |0〉 ∼ (2ΛTC)
4 ,

〈0|ŪU |0〉 = 〈0|D̄D|0〉 ∼ −lTC(2ΛTC)
4 .

If the current technifermion masses obey the same hierarchy as that of usual quarks, the light-
est technihadron excitations in the bosonic spectrum are technipions π̃0,± and technisigma
meson σ̃, whereas in the fermion spectrum – techninucleons P and N . Such a dynamical
similarity between color and technicolor enables us to estimate characteristic masses of the
lightest technihadrons and constituent technifermions through the scale transformation of
ordinary hadron states via scale factor ζ = ΛTC/ΛQCD & 1000, i.e.

mπ̃ & 140GeV , Mσ̃ & 500GeV , MQ̃ & 300GeV , MP ≃ MN & 1TeV , (2.23)

which imply that mπ̃ > Mh, Mσ̃ > Mh, Mσ̃ > mπ̃, and u & 100 GeV for gTC ≃ 3.
Also, with respect to interactions with known particles at typical 4-momentum squared
transfers Q2 ≪ l−2

TC & 2.3TeV2, the lightest technihadrons behave as elementary particles,
which participate in electroweak interactions only. The technipions are then treated as
being in the adjoint representation of the SU(2)W with hypercharge equal to zero, thus
justifying what was done above, whereas techninucleons can be included as the fundamental
representation of the electroweak group SU(2)W ⊗ U(1)Y with hypercharge YTN = 1 along
with the constituent technifermion doublet (2.2). Heavy techninucleons, however, are likely
to be irrelevant for the LHC phenomenology, but can play an important role in astrophysics
as a plausible candidate for the Dark Matter. The conditions (2.23) following from the
analogy of QCD and techni-QCD will be used below in phenomenological studies in the
CSTC framework.

D. The physical Lagrangian of the CSTC model

In this Section, we consider the principal part of the physical CSTC Lagrangian relevant
for studies of the basic phenomenological processes in the CSTC model e.g. corrections
to EW precision observables, as well as Higgs, technipion and technisigma production and
decays, discussed below.

The vector-like interactions ¯̃QQ̃V of technifermions and gauge bosons V = Z0, W±, γ
are given by

L ¯̃QQ̃V
=

1√
2
gŪγµD ·W+

µ +
1√
2
gD̄γµU ·W−

µ

+
g

cW
Zµ

∑

f=U,D

f̄γµ
(

tf3 − qf s
2
W

)

f + e
∑

f=U,D

qf f̄γ
µAµf , (2.24)

where e = gsW is the electron charge, tf3 is the weak isospin (tU3 = 1/2, tD3 = −1/2),

qf = YQ̃/2+ tf3 is the technifermion charge. As agreed above, we choose YQ̃ = 1/3 in analogy
to the SM, thus qU = 2/3 and qD = −1/3.

The Yukawa-type interactions ¯̃QQ̃h + ¯̃QQ̃σ̃ + ¯̃QQ̃π̃ of constituent technifermions with
scalar (h and σ̃) and pseudoscalar (π0,±) fields are driven by

L ¯̃QQ̃h
+ L ¯̃QQ̃σ̃

+ L ¯̃QQ̃π̃
= −gTC (cθσ̃ + sθh) · (ŪU + D̄D)

−i
√
2gTC π̃+Ūγ5D − i

√
2gTC π̃−D̄γ5U − igTC π̃0(Ūγ5U − D̄γ5D) . (2.25)
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As was advocated above, at relatively low energies ∼ 0.1 TeV close to the MEW scale the
Lagrangians of the technifermion interactions (2.24) and (2.25) should be used in the loop-
induced processes with constituent quarks propagating inside loops only.

The interactions of technipions with gauge bosons which will be used in further calcula-
tions are defined as follows

Lπ̃π̃V = igW µ+ · (π̃0π̃−
,µ − π̃−π̃0

,µ) + igW µ− · (π̃+π̃0
,µ − π̃0π̃+

,µ)

+ ig(cWZµ + sWAµ) · (π̃−π̃+
,µ − π̃+π̃−

,µ)

+ g2W+
µ W µ− · (π̃0π̃0 + π̃+π̃−) + g2 (cWZµ + sWAµ)

2 · π̃+π̃− + ... , (2.26)

where π̃,µ ≡ ∂µπ̃. All triple and quartic interactions, which are necessary in calculations of
technipion contributions to the gauge bosons self-energies, are written down here.

The Yukawa interactions f̄ fh+ f̄ f σ̃ of the ordinary fermions get modified compared to
the SM

Lf̄ fh + Lf̄f σ̃ = −g(cθh− sθσ̃) ·
mf

2MW

f̄f . (2.27)

The Lagrangians of the hπ̃π̃ and hWW + hZZ interactions are

Lhπ̃π̃ = −(λTCu sθ − λvcθ) h(π̃
0π̃0 + 2π̃+π̃−) = −M2

h −m2
π̃

2MQ̃

gTCsθ h(π̃
0π̃0 + 2π̃+π̃−) ,

LhWW + LhZZ = gMW cθ hW
+
µ W µ− +

1

2
(g2 + g21)

1/2MZcθ hZµZ
µ .

(2.28)
The Lagrangians of the σ̃π̃π̃ and σ̃WW + σ̃ZZ interactions are

Lσ̃π̃π̃ = −(λTCucθ + λvsθ) σ̃(π̃
0π̃0 + 2π̃+π̃−) = −M2

σ̃ −m2
π̃

2MQ̃

gTCcθ σ̃(π̃
0π̃0 + 2π̃+π̃−) ,

Lσ̃WW + Lσ̃ZZ = −gMW sθ σ̃W
+
µ W µ− − 1

2
(g2 + g21)

1/2MZsθ σ̃ZµZ
µ .

(2.29)
The Lagrangian of quartic scalar-gauge (σ̃/h)2V V interactions is given by

L(σ̃/h)2V V =
1

4
(cθh− sθσ̃)

2 ·
(

g2W+
µ W µ− +

1

2
(g2 + g21)Z

µZµ

)

. (2.30)

E. Nearly conformal limit: the minimal CSTC

In the SM, the arbitrary quadratic terms with “wrong” sign in the Higgs potential are
usually required for the classical (non-quantum) Higgs mechanism of the EWSB. As we
have noticed above, in the framework of the CSTC model there is a possibility for another
interpretation of the Higgs mechanism in which the nature of all energy scales (including
the Higgs vev) is quantum-topological. Let us look into the latter possibility in detail.

In the rigorous QCD framework, there is not any fundamental scalar sector and thus
scalar µ-terms do not appear. In the theory of non-perturbative QCD vacuum all the
scale parameters have quantum-topological nature and are expressed through the gluon
condensate 〈GG〉 and the correlation length lg, whereas the quark condensate 〈qq̄〉 is induced
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by the gluon one (2.22). Clearly, low energy hadron physics based upon the effective GLσM
should reproduce the non-perturbative QCD predictions. On the other hand, it is well-
known that in the limit of small current quark masses mq → 0 (the chiral limit), the QCD
Lagrangian restores the conformal symmetry. Similarly, the σ-model as an effective model of
non-perturbative QCD should obey the conformal symmetry in the chiral QCD limit. In this
case, the µS-term corresponding to the σ field is forbidden by the conformal symmetry. In
a realistic case, the conformal symmetry in QCD is broken due to non-zeroth current quark
masses. However, the current up- and down-quark masses are small compared to the value of
the quark condensate 〈qq̄〉 or, equivalently, the pion mass, i.e. mu,d ≪ mπ, so it is meaningful
to assume that an induced µS-term, if exists, should also be small µS ≪ mπ. In this case,
since 〈GG〉, 〈qq̄〉 and small current masses mu,d ≪ mπ are the only physical parameters in
non-perturbative QCD, the σ vev u ∼ mπ has quantum-topological nature, so it should be
expressed only through these parameters and given by e.g. 〈qq̄〉 or, equivalently, mπ. Of
course, this logic is rather naive since the σ-model does not have status of a fundamental
theory, but rather serves as an effective low-energy phenomenological model with its own
limitations and constraints. Note, a dynamical theory of the QCD vacuum does not exists
yet, and our understanding of non-perturbative effects is very limited and one cannot make
any strong claims here.

The above line of naive arguments can be naturally extended to the technifermion sec-
tor in confinement adopting a direct analogy between non-perturbative QCD and techni-
QCD. Looking at the Eqs. (2.9) we notice that for not very large scalar self-couplings
|λ|, |λTC|, λH ∼ 0.1 − 10 in the potential (2.8), the technisigma vev u can be expressed
through the technifermion condensate, or mπ̃, for small µS ≪ mπ̃ which can be valid in the
nearly conformal limit of chiral techni-QCD mU,D ≪ mπ̃ if and only if the Higgs boson vev
is also small compared to the techni-confinement scale, i.e. µH ≪ mπ̃. The latter means
that both the vacua, the Higgs and technisigma vevs, have the same quantum-topological
nature and completely determined by the technifermion condensate. This theoretically ap-
pealing scenario would be rigorous and strictly valid in the exact chiral techni-QCD limit
with vanishing current technifermion masses mU,D → 0. In the nearly-conformal limit there
is a weak or no running of the strong techni-QCD coupling. This is in accordance with
the analytic QCD (see e.g. Ref. [42]) or other phenomenological approaches predicting a
rather slow bounded or even “frozen” behavior of the strong QCD coupling in the infrared
domain while non-perturbative QCD contributions are strongly dominated over the pertur-
bative ones in the constituent quark-meson interactions at small Q2. To this end, in the
nearly-conformal limit all the µ-terms can be neglected in the Lagrangian (2.8) without
affecting the SM Higgs mechanism itself, which then would be triggered completely by the
technifermion condensate, giving rise to even more restricted parameter space of the model.
Let us look into this non-trivial possibility, which is simply a particular case of the more
general CSTC model described above, in some more detail.

The solutions of the two tadpole equations (2.10) can then be written w.r.t vevs as follows

u =

(

λH

δ

)1/3

ḡ
1/3
TC , v =

(

ξλ

λH

)1/2 (
λH

δ

)1/3

ḡ
1/3
TC , (2.31)

where δ = λHλTC − λ2, ḡTC = gTC|〈 ¯̃QQ̃〉| > 0 and the sign factor ξ = sign(M2
σ̃ − 3m2

π̃) such
that ξλ ≡ |λ| ≥ 0 and λH > 0 always. From relations (2.31) it follows that both vevs (and
hence both the EWSB and the chiral symmetry breaking) are induced by the technifermion

condensate since u, v ∼ |〈 ¯̃QQ̃〉|1/3. So, our choice of the potential part of the TC Lagrangian

18



LU (2.8) provides physically interesting interpretation of the Higgs vacuum condensate as

triggered by the technifermion condensate 〈 ¯̃QQ̃〉 6= 0 at low scales ∼ 0.1 TeV.
It is convenient to redefine yet unknown parameters, the technisigma vev, u, and ḡTC in

terms of the Higgs vev, v, and scalar self-couplings λ, λH, λTC as follows

u = v ·
(

λH

ξλ

)1/2

, ḡTC = v3
(

λHλTC

λ
− λ

)

·
(

λH

ξλ

)1/2

. (2.32)

The technipion mass is given by

m2
π̃ = v2

(

λHλTC

λ
− λ

)

, mπ̃ ∼ v . (2.33)

Note, in the limitMσ̃ →
√
3mπ̃, we have δ ∼ λ → 0, whereas ḡTC ∼ u ∼ MQ̃ ∼ 1/

√

|λ| → ∞
at finite mπ̃ and v. Also, sθ → 0 in this case, so h and σ̃ do not mix (“no hσ̃-mixing” limit).
This peculiar limit physically corresponds to decoupling of the technifermion condensate
(and hence the techniconfinement scale ΛTC) up to very high scales, while providing light
technipions and technisigma in the spectrum and the TC-induced EWSB mechanism in the
usual way. Of course, the formal mathematical singularities corresponding to a very large

techniconfinement scale ΛTC, or equivalently, large u and |〈 ¯̃QQ̃〉| (see Fig. 7 below), should
be regularized by yet unknown high-scale TC physics, and thus vicinities of these special
points are to be excluded from the current consideration. Interestingly enough, the Higgs
boson turns out to be absolutely standard close to the singular points – its properties are not
affected by the extra TC degrees of freedom, since corresponding new TC-induced couplings
vanish in this case at Mσ̃ →

√
3mπ̃. While physically possible, this peculiar situation,

however, is not realized if one adopts the naive scaling between the QCD and techni-QCD
considered in this analysis. Absence of any deviations from the SM in the measured Higgs
boson properties, from the point of view of the minimal CSTC discussed here, would then
mean physically that the “no hσ̃-mixing” scenario is realized in Nature, but this does not
rule out the TC-induced EWSB mechanism (see below).

The mass form of the physical scalars, h and σ̃ fields, can be represented by the following
matrix

Mhσ̃ =





3m2
π̃ + 2λv2 −2v2

√
ξλλH

−2v2
√
ξλλH 2λHv

2



 . (2.34)

The diagonalization of this matrix leads to masses of the physical states scalar states, i.e.

M2
σ̃, h =

1

2
v2

{

(

2λH + 2λ+ 3
m2

π̃

v2

)

±
√

(

2λH + 2λ+ 3
m2

π̃

v2

)2

+ 16λλH

}

(2.35)

Then, the hσ̃-mixing angle is given by

cθ =

(

1 +
(M2

σ̃ −m11)
2

m2
12

)−1/2

, sθ = ξ
√

1− c2θ , (2.36)

where m11 = (Mhσ̃)11, m12 = (Mhσ̃)12 are the elements of the mass matrix (2.34). In
analysis of the parameter space it is again convenient to express free scalar self-couplings
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{λ, λH, λTC} through the physical masses {m2
π̃, M

2
σ̃ , M

2
h}:

λ =
3m2

π̃(M
2
σ̃ +M2

h)−M2
σ̃M

2
h − 9m4

π̃

6v2m2
π̃

, λH =
M2

σ̃M
2
h

6v2m2
π̃

, λTC =
λ

λH

(

λ+
m2

π̃

v2

)

. (2.37)

By fixing the Higgs boson mass to its recently measured value Mh ≃ 125 GeV, one further
reduces the freedom down to three free parameters only, {mπ̃, Mσ̃, MQ̃}, compared to five
parameters in the non-minimal case (cf. Section II.C). Note, the scalar self-couplings and
the mixing angle θ depend only on two parameters {mπ̃, Mσ̃}, whereas MQ̃ can be used to

define gTC or 〈 ¯̃QQ̃〉.
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FIG. 6: Dependence of the hσ̃-mixing sθ and the Higgs/TC self-couplings, λTC, λH , λ, on MQ̃

in the minimal CSTC scenario with dashed, dash-dotted and solid lines corresponding to mπ̃ =

150, 250, 350 GeV, respectively. The “no hσ̃-mixing” limit corresponds to zeros of the curves at

Mσ̃ =
√
3mπ̃.

In Fig. 6 we have presented plots of sine of the mixing angle sθ = sθ(mπ̃, mσ̃), and scalar
self-couplings – Higgs-(pseudo)scalar coupling λ = λ(mπ̃, mσ̃), quartic Higgs self-coupling
λH = λH(mπ̃, mσ̃) and (pseudo)scalar self coupling λTC = λTC(mπ̃, mσ̃). At relatively large
technipion masses mπ̃ & 250 GeV the hσ̃-mixing becomes rather small, sθ . 0.2, while it
does not strongly depend on the technisigma mass, away from “no-mixing” points. As was
noticed above, the condition λ = 0 (or sθ = 0) corresponds to “no-mixing” limit and is
represented by a relation on masses, Mσ̃ =

√
3mπ̃. In the considering ranges of masses, the

values of λ and λH do not exceed a few units, so they are of the order of strong (“fat”)
couplings in usual hadron dynamics (e.g. gρππ ∼ 5 − 6) and gradually increase at large
Mσ̃. The (pseudo)scalar self-coupling λTC can reach larger values ∼ 100 at large values of
Mσ̃ & 800GeV restricting the allowable region of physical parameters and applicability of
the GLTσM under consideration. An experimental information on the scalar self-couplings
λ, λTC would shed light on the true origin of the Higgs mechanism making it possible to
determined which minimal or non-minimal CSTC scenario is realized in Nature.
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FIG. 7: The dimensionless ḡTC/v
3 (left) and σ̃ vev u (right) parameters with respect to

Mσ̃ in the minimal CSTC scenario with dashed, dash-dotted and solid lines corresponding to

mπ̃ = 150, 250, 350 GeV, respectively. The “no hσ̃-mixing” limit corresponds to positions of the

singularities on the curves at Mσ̃ =
√
3mπ̃, vicinity of those are excluded from the plots.

In Fig. 7 we show the dimensionless ḡTC/v
3 (left) and σ̃ vev u (right) parameters with

respect to Mσ̃ for different values of mπ̃ in the minimal CSTC scenario. The technisigma
vev u = u(mπ̃, mσ̃), can be smaller than the Higgs vev v, u . v, almost in all physically
favorable regions of parameter space where mπ̃ ∼ v, except for vicinities of “no hσ̃-mixing”
points Mσ̃ ≃

√
3mπ̃ where u can be larger or even much larger than the Higgs vev v. The

latter case can be interesting both theoretically and phenomenologically in case of absence
of any deviations of Higgs boson properties from the SM predictions at the LHC. Then, the
only source of new information about the TC sector can only come from measurements of
the Higgs boson scalar self-couplings and possible technipion/technisigma phenomenology.

One should notice here that if the small hσ̃-mixing scenario with sθ → 0 and λ → 0 is
realized in Nature, we have the Technicolor decoupling regime with large u ≫ v and hence
ΛTC ∼ MQ̃ ≫ MEW, while the Higgs boson, technipions and technisigma remain at the EW
scale according to the tree-level mass formulae of the model. Remarkably enough, the Higgs
vev is still expressed in terms of the technifermion condensate by Eq. (2.31) for vanishingly
small but non-zeroth λ 6= 0 preserving the dynamical nature of the EWSB (or effective
Higgs) mechanism.

III. ELECTRO-WEAK CONSTRAINTS ON THE CSTC

A. Oblique corrections

The effects of heavy New Physics (NP) particles of various types onto Z0 and W± ob-
servables (e.g. masses, widths) typically emerging through extra loop contributions to Z0,
W± and γ (diagonal and non-diagonal) self-energies can be parameterized by means of the
so-called oblique corrections or Peskin-Takeuchi (PT) parameters [15]. The first three of
these parameters S, T, U are normally introduced in the limiting case of large masses of
new particles compared to the EW scale, i.e. in the limit MEW/MNP ≪ 1 (MNP is the
NP scale). If one relaxes this assumption, the S, T, U parameters get somewhat modified,
and additional three independent parameters denoted as V, W, X are introduced (see e.g.
Refs. [44, 45]). The oblique corrections are rather strongly constrained by the EW precision
measurements [46]

S = 0.00+0.11
−0.10, T = 0.02+0.11

−0.12, U = 0.08± 0.11 (3.1)
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and must be respected by realistic NP models (for existing constraints on higher V, W, X
parameters see e.g. Ref. [47]). The extensive studies of these constraints are very critical
for all existing TC models. In particular, some of the traditional TC scenarios are currently
being ruled out or are in a considerable tension with constraints on S, T, U parameters [15]
(see also Refs. [16, 17]). Let us analyze these constraints in the suggested CSTC scenario.

The analysis we present further in this Section does not depend on whether one includes
µS,H-terms or not; the difference between these non-minimal and minimal versions of the
CSTC model can only be crucial for processes with (pseudo)-scalar self-couplings, which can
be important e.g. for Higgs and technipion phenomenology.

In the earlier Sections, we have established the phenomenologically reasonable intervals
for masses and couplings of new TC particles (technipions, technisigma and constituent
technifermions) based on analogies with ordinary QCD and hadron physics together with
the relative proximity of the new TC scale ΛTC ∼ 0.1−1 TeV. In what follows, these regions
of parameter space will be tested against the EW precision constraints given by Eq. (3.1).

The generic definitions of the PT parameters are given in terms of corrections to the
vacuum polarization functions δΠXY(q

2) of the gauge bosons (X, Y = W, Z, γ) coming
either from new particles, additional to those in the SM, Πnew

XY (q2), or from a modification
of the SM parameters due to NP effects, ΠSM′

XY (q2), i.e.

δΠXY(q
2) ≡ ΠNP

XY(q
2)− ΠSM

XY(q
2) , ΠNP

XY(q
2) = Πnew

XY (q2) + ΠSM′

XY (q2) . (3.2)

The expressions for the S, T, U parameters in terms of generic polarisation functions
δΠXY(q

2) and their derivatives δΠ′
XY(q

2) = dδΠ/dq2 calculated beyond the linear approxi-
mation in q2 variable read [44, 45]

α

4s2W c2W
S =

δΠZZ(M
2
Z)− δΠZZ(0)

M2
Z

− c2W − s2W
cW sW

δΠ′
Zγ(0)− δΠ′

γγ(0) ,

α T =
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

, (3.3)

α

4s2W
U =

δΠWW (M2
W )− δΠWW (0)

M2
W

− c2W
δΠZZ(M

2
Z)− δΠZZ(0)

M2
Z

− s2W δΠ′
γγ(0)− 2cWsW δΠ′

Zγ(0) .

Note, in the limit ζ = MEW/ΛTC ≪ 1 we have

δΠWW (M2
Z)− δΠWW (0)

M2
Z

=
δΠWW (M2

W )− δΠWW (0)

M2
W

+O(M4
EW/Λ4

TC) , (3.4)

δΠXY(q
2)− δΠXY(0)

q2
= δΠ′

XY(0) +O(q4/Λ4
TC) , (3.5)

which are equivalent to working in the linear order in q2 in power expansions of the polari-
sation functions δΠXY(q

2). In fact, applying approximate relation (3.5) to expressions (3.3)
at q2 = M2

Z and having in mind that δΠZγ(0) = δΠγγ(0) = 0 in a realistic case, one arrives
at the Particle Data Group formulas (see Eq. (10.65b,c) in Ref. [46]). We, however, do not
assume smallness of ζ in calculations (unless noted otherwise) since the new TC scale ΛTC

can be rather close to the electroweak scale MEW since they may have the same physical
nature in the considering CSTC scenario, and therefore rigorous definitions (3.3) should be
applied.
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Other three parameters which appear beyond the linear order in q2 in addition to the
S, T, U are defined as follows [44, 45]

αV = δΠ′
ZZ(M

2
Z)−

δΠZZ(M
2
Z)− δΠZZ(0)

M2
Z

,

αW = δΠ′
WW (M2

W )− δΠWW (M2
W )− δΠWW (0)

M2
W

, (3.6)

αX = −sW cW

[δΠZγ(M
2
Z)

M2
Z

− δΠ′
Zγ(0)

]

.

In the framework of the CSTC model, the new contributions to W, Z and γ vacuum
polarizations come from technipion, constituent technifermions and technisigma loops, i.e.

Πnew
XY (q2) = Ππ̃

XY(q
2) + ΠQ̃

XY(q
2) + Πσ̃

XY(q
2) (3.7)

while the SM modified contributions come only from the Higgs boson due to modified hV V
couplings, Πh

XY(q
2), whereas other SM couplings are not changed in the CSTC model, thus

we have

ΠSM′

XY (q2) = Πh
XY(q

2) . (3.8)

The corresponding diagrams are presented in Fig. 8.

W
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FIG. 8: The additional new (via π̃, Q̃ and σ̃) and modified (via Higgs boson h) contributions to

the gauge bosons Z0, W± and γ vacuum polarisation functions δΠXY(q
2).

Note that the modified Higgs contribution to the gauge bosons polarisation functions
Πh

XY(q
2,M2

h) can be obtained by multiplying the corresponding SM result presented many

times in the literature (see e.g. Ref. [48]), ΠSM,h
XY (q2,M2

h), by a factor of c2θ. Also, the extra
contribution due to σ̃ meson, Πσ̃

XY(q
2,M2

σ̃), can be easily obtained from the Higgs boson
one, Πh

XY(q
2,M2

h), by a replacement cθ → sθ and Mh → Mσ̃ in corresponding polarisation
functions (cf. Eqs. (2.28) and (2.29)). Therefore, the total contribution of the scalar states
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δΠsc
XY(q

2) to the total δΠXY(q
2) defined in Eq. (3.2) reads

δΠXY(q
2) = δΠsc

XY(q
2) + Ππ̃

XY(q
2, m2

π̃) + ΠQ̃
XY(q

2,M2
Q̃
) , (3.9)

δΠsc
XY(q

2) = Πσ̃
XY(q

2,M2
σ̃) + Πh

XY(q
2,M2

h)− ΠSM,h
XY (q2,M2

h)

= s2θ Π
SM,h
XY (q2,M2

σ̃)− s2θ Π
SM,h
XY (q2,M2

h) . (3.10)

Apparently, δΠsc
XY(q

2) → 0 and hence the corresponding contributions to the oblique cor-
rections (3.3) and (3.6) turn to zero in the limit of degenerated σ̃ and h masses, Mσ̃ → Mh.
Also, the function δΠsc

XY(q
2) vanish in the “no σ̃h-mixing” limit, when sθ → 0, so the cor-

responding oblique corrections can be very small and fit the EW precision data without a
significant tension.

Finally, consider the new contributions coming from π̃ and Q̃ loops. For illustration,
below we show analytical results for the limiting “no hσ̃-mixing” scenario and degenerated
technifermions implying that their constituent masses are equal MU = MD ≡ MQ̃, while
forthcoming numerical results and figures will be presented also for the general case with
MU 6= MD and arbitrary mixing angle. Note that if one employs an analogy with hadron
physics, where the non-perturbative QCD contribution to the constituent masses of up
and down quarks is much larger than their current masses, the approximate degeneracy
MU ≃ MD (or, more precisely, ∆MQ̃ ≡ MD −MU ≪ MU , MD) is physically reasonable and
justified.

Then, the technipion and technifermion contributions can be represented in the following
generic form:

Ππ̃
XY(q

2, m2
π̃) =

g2

24π2
KXY Fπ̃(q

2, m2
π̃) , ΠQ̃

XY(q
2,M2

Q̃
) =

g2Nc

24π2
KXY κXY FQ̃(q

2,M2
Q̃
) .(3.11)

where NTC = 3 is the number of technicolors, coefficients KXY and κXY are shown for two
different cases with YQ̃ = 0 and YQ̃ = 1/3 in Table I, and momentum-dependent parts are
defined as

Fπ̃(q
2, m2

π̃) =
1

3
q2 − 2m2

π̃ + 2A0(m
2
π̃) +

1

2
(q2 − 4m2

π̃)B0(q
2, m2

π̃, m
2
π̃) ,

FQ̃(q
2,M2

Q̃
) = −1

3
q2 + 2M2

Q̃
− 2A0(M

2
Q̃
) + (q2 + 2M2

Q̃
)B0(q

2,M2
Q̃
,M2

Q̃
) ,

where A0(m
2) and B0(q

2, m2, m2) are the standard one- and two-point functions [49], re-
spectively. Furthermore, one evaluates these functions and their derivatives for a given set
of arguments and substitutes them into Eq. (3.11) and then to Eq. (3.9). Using the relations

TABLE I: Summary of coefficients KXY and κXY in gauge bosons self-energies X,Y = Z0, W±, γ

coming from π̃ and Q̃ loops (3.11). Two different cases for technifermion hypercharges are considered.

K, κ WW ZZ γγ Zγ

KXY 1 c2W s2W cW sW
κXY, YQ̃ = 0 1 1 1 1

κXY, YQ̃ = 1/3 1 1 + s4W/9c4W 10/9 1− s2W/9c2W
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FIG. 9: The complete S and U parameters in the CSTC scenario (the non-minimal case with µS and

µH included) as functions of (1) cos2 θ for fixed mπ̃ = 150 GeV, MQ̃ ≡ MU = MD = 300 GeV, and

Mσ̃ = 400, 600, 800 GeV, corresponding to dashed, dash-dotted and solid lines, respectively (first

row); (2) Mσ̃ for fixed mπ̃ = 150 GeV, cos2 θ = 0.9, and MQ̃ = 300, 500, 700 GeV, corresponding

to dashed, dash-dotted and solid lines, respectively (second row); and (3) mπ̃ for fixed Mσ̃ = 500

GeV, cos2 θ = 0.9, MQ̃ = 300 GeV and ∆MQ̃ ≡ MD−MU = 0, 5, 10 GeV, corresponding to dashed,

dash-dotted and solid lines, respectively (third row). Also, here and for other PT parameters below

the sine of the mixing angle due to symmetry is chosen to be positive, sθ > 0.

B0(0, m
2, m2) =

A0(m
2)

m2
− 1 , A0(m

2) = m2
(1

ε̄
+ 1− ln

m2

µ2

)

,

it can be checked directly that Fπ̃(0, m
2
π̃) = 0 and FQ̃(0,M

2
Q̃
) = 0 which means that technipi-

ons and degenerated technifermions do not contribute to the T -parameter, i.e. T π̃ = T Q̃ = 0
automatically. The only contribution to the T -parameter comes from the scalar sector of
the theory: σ̃ loops and modified Higgs loops given by Eq. (3.10).

The S and U parameters calculation becomes especially transparent if one works in the
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linear order in q2 power expansion and applies an approximate relation (3.5). For this
purpose, let us consider the simplest case of degenerated technifermion sector with YQ̃ = 0.

Then, having Ππ̃
XY(0, m

2
π̃) = 0 and ΠQ̃

XY(0, m
2
Q̃
) = 0 for any X,Y we observe that the π̃ and

Q̃ contributions to S and U parameters also vanish for YQ̃ = 0 in the linear order in q2.
Indeed, using the corresponding KXY and κXY coefficients from Table I, we explicitly see
that

αSπ̃+Q̃

4s2W c2W
= f(M2

Z , m
2
π̃,M

2
Q̃
) ·

[

c2W − c2W − s2W
cW sW

· cWsW − s2W

]

= 0,

α U π̃+Q̃

4s2W
= f(M2

Z , m
2
π̃,M

2
Q̃
) ·

[

1− c4W − s4W − 2c2Ws2W
]

= 0 ,

where f(m2
1, m

2
2, m

2
3) is some finite regular function of the respective mass scales. We sum-
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FIG. 10: The complete T parameter in the CSTC scenario (the non-minimal case with µS and

µH included) as function of cos2 θ for two different cases: (1) ∆MQ̃ = 0 and Mσ̃ = 400, 600, 800

GeV, corresponding to dashed, dash-dotted and solid lines, respectively (left panel); (2) Mσ̃ = 500

GeV, and ∆MQ̃ ≡ MD−MU = 0, 5, 10 GeV, corresponding to dashed, dash-dotted and solid lines,

respectively (right panel). The T parameter does not depend on degenerated MQ̃ ≡ MU = MD

mass and mπ̃.

marize that the only contribution to the S, T, U parameters (in the simplest scenario with
YQ̃ = 0 and in the linear order in q2) comes from scalar loops given by Eq. (3.10). This result
is different from traditional TC-based scenarios with chiral-nonsymmetric weak interactions,
where S-parameters does not vanish and is equal to a relatively large constant, even in the
limit of infinitely heavy technifermions [15]. In the considering CSTC scenario this problem
does not appear at all.

The calculations in more elaborated case with the SM-like technifermion hypercharge
YQ̃ = 1/3 are less transparent and more cumbersome. Remarkably enough, in this case

Sπ̃+Q̃ and U π̃+Q̃ are not zeroth any longer, but still strongly suppressed. Since in the
first, linear, order in q2 power expansion technipions and technifermions do not contribute
or contribute very little, it is worth to go beyond this approximation, also incorporating
V, W, X parameters into the analysis. Keeping the degeneracy condition ∆MQ̃ = 0, we
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have T π̃+Q̃ = 0, as shown above, and other parameters read

Sπ̃+Q̃ =
2c4W
3π

{1

3
− βπ̃

Z(1− φπ̃
Z) +NTC

(

1 +
s4W
9c4W

)[

−1

3
+ (3 + βQ̃

Z )(1− φQ̃
Z)
]}

,

U π̃+Q̃ =
2

3π

{1

3
(1− c4W )− βπ̃

W (1− φπ̃
W ) + c4Wβπ̃

Z(1− φπ̃
Z)

+ NTC

[

−1

3

(

1− c4W − 1

9
s4W

)

+ (3 + βQ̃
W )(1− φQ̃

W )−
(

c4W +
1

9
s4W

)

(3 + βQ̃
Z )(1− φQ̃

Z )
]}

,

V π̃+Q̃ =
c2W

6πs2W

{

−1

2
M2

Z βπ̃
Z B′

0(M
2
Z , m

2
π̃, m

2
π̃) + (βπ̃

Z + 1)(1− φπ̃
Z)

+ NTC

(

1 +
s4W
9c4W

)[1

2
M2

Z (3 + βQ̃
Z )B

′
0(M

2
Z ,M

2
Q̃
,M2

Q̃
)− (1 + βQ̃

Z )(1− φQ̃
Z )
]}

,

W π̃+Q̃ =
1

6πs2W

{

−1

2
M2

W βπ̃
W B′

0(M
2
W , m2

π̃, m
2
π̃) + (βπ̃

W + 1)(1− φπ̃
W )

+ NTC

[1

2
M2

W (3 + βQ̃
W )B′

0(M
2
W ,M2

Q̃
,M2

Q̃
)− (1 + βQ̃

W )(1− φQ̃
W )

]}

,

X π̃+Q̃ =
c2W
6π

{

−1

3
+ βπ̃

Z(1− φπ̃
Z) +NTC

(

1− s2W
9c2W

)[1

3
− (3 + βQ̃

Z )(1− φQ̃
Z)
]}

,

where

βπ̃
Z,W =

4m2
π̃

M2
Z,W

− 1 > 0 , βQ̃
Z,W =

4M2
Q̃

M2
Z,W

− 1 > 0 ,

φπ̃,Q̃
Z,W =

(

βπ̃,Q̃
Z,W

)1/2

arctan
(

βπ̃,Q̃
Z,W

)−1/2

, B′
0(M

2, m2, m2) =

∫ 1

0

dx
x(1− x)

m2 −M2 x(1− x)
.

In order to constrain the viability of the CSTC model, let us look at the complete EW
precision PT (S, T, U, V, W, X) parameters in general case, appearing due to both the
modifications in the scalar sector and the new states propagating in loops, as well as at their
dependence on the physical parameters of the model. These are demonstrated in Figs. 9,
10, 11 and 12. In particular, we see that the S-parameter is always restricted by |S| < 0.03,
and can even turn to zero for small mixing angles sin2 θ ∼ 0.2, moderate values of ∆MQ̃ ∼ 5
GeV and large values of MQ̃ & 600 GeV, and this is weakly dependent on Mσ̃ (see Fig. 9).
So, we conclude that in the CSTC there is not such a big issue to satisfy the constraints on
the S parameter (3.1): the predictions fit well with |Sdata| . 0.1 for the whole physically
reasonable parameter space.

Does this fortunate conclusion persist also for other PT parameters? The U parameter
is strongly suppressed too, and never exceeds 0.01, while being rather weakly dependent on
all the physical parameters except for the mixing angle, however, it never turns into zero
exactly U & 0.002 (see Fig. 9). Thus, both S and U parameters cannot be used for an
efficient constraining the model parameter space at the current level of data uncertainties
(3.1). The same holds true for associated oblique corrections beyond the linear q2 power
expansions, given in terms of V, W, X parameters (3.6). In particular, V and W parameters
remain of the same order of magnitude as the S and U parameters. They belong to the
interval 0.002 . V,W . 0.01 and are weakly dependent on physical parameters (see Fig. 11),
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FIG. 11: The complete V and W parameters in the CSTC scenario (the non-minimal case with µS

and µH included) as functions of (1) cos2 θ for fixed MU = MD = 300 GeV, and mπ̃ = 150, 250, 350

GeV, corresponding to dashed, dash-dotted and solid lines, respectively (first row); and (2) mπ̃ for

fixed cos2 θ = 0.9, and MQ̃ = 300, 500, 700 GeV, corresponding to dashed, dash-dotted and solid

lines, respectively (second row). Both V and W parameters do not depend on Mσ̃ and ∆MQ̃.

whereas the X parameter is even stronger suppressed, |X| ∼ 0.001 (see Fig. 12). In general,
this situation is not noticeably affected by having more than one generation of technifermions
or other NTC different from three.

The strongest bounds to the CSTC parameter space actually come from the T parameter
(see Fig. 10). The EW precision constraints to the T parameter encoding the vector isospin
breaking effects (3.1) are satisfied only for a relatively small hσ̃ mixing sin2 θ . 0.3 and a
small splitting between current technifermion masses ∆MQ̃ . 5 GeV. The latter is natural
since similarly the relatively small splitting between the current up and down quark masses
compared to their constituent masses applies also for usual QCD. In the degenerated case
with ∆MQ̃ = 0 and in the “no hσ̃-mixing” limit cos2 θ → 1, the T -parameter vanishes
identically, T → 0. So, the CSTC model has enough room to fit with the EW precision
data, together with tight constraints to the Higgs sector properties.

Note, the S, U, V, W, X parameters are always UV finite. The T parameter is finite in
the degenerated case when MU = MD, whereas in general case it has logarithmic divergence
proportional to the technifermion mass difference, i.e. div(T ) ∼ (MU −MD)

2/ε with a con-
stant coefficient. Note also that the EW constraints put much stronger limits on parameter
space in the case of inverse mass hierarchy in the scalar sector of the theory, i.e. assuming
that technisigma is the lightest scalar particle observed at the LHC Mσ̃ < Mh. In this
case, the hσ̃-mixing angle has to be much closer to being vanished in order to satisfy the
constraints on the corresponding oblique corrections.
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FIG. 12: The X parameter mπ̃ for fixed MQ̃ = 300, 500, 700 GeV, corresponding to dashed,

dash-dotted and solid lines, respectively. It does not depend cos2 θ, Mσ̃ and ∆MQ̃.

B. Qualitative remarks on FCNC constraints

Another source of (less) stringent constraints onto TC models comes from the FCNC-
induced processes (see e.g. Ref. [50]). In particular, here one would be interested in con-
straints coming from such processes as mixing in system of neutral mesons M0 − M̄0, as
well as from rare leptonic decays of neutral mesons M0 → ll̄, etc. The semi-leptonic decays
are presumably more uncertain theoretically due to larger contributions from poorly known
hadronic form factors thus making it rather hard to set definite constraints to NP contri-
butions. The flavor constraints can be very relevant for phenomenological tests of the TC
models with relatively light spin-1 resonances with the same quantum numbers as the SM
gauge bosons. In the considering CSTC model under discussion adopting the QCD-like mass
hierarchy in the technihadron spectrum there are no light spin-1 particles; heavy vector ρ̃
and axial-vector ã1 states are considered to be decoupled from the lightest technipion and
technisigma states and do not participate in processes at low momentum transfers. This is,
of course, a valid approximation motivated by advances of the usual hadron physics. An ex-
tended theory which supposedly includes heavy states should then be quantitatively tested
against the flavor constraints according to Ref. [50], in particular, setting up the low bounds
on masses of heavy (pseudo)vector particles. However, this analysis will only be reasonable
after the lightest (pseudo)scalar states have been discovered experimentally.
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FIG. 13: Typical FCNC contributions in the CSTC model. The rightmost diagrams with scalar

exchanges are the only weakly affected contributions due to a small hσ̃-mixing and additional σ̃

meson, which are however negligibly small (see main text).
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In Fig. 13 we illustrate new contributions (besides those in the gauge bosons polarisations)
to typical FCNC processes (rightmost diagrams), along with the standard part (first two
diagrams on the left hand side). These diagrams describe the short-distance contributions,
which dominate the FCNC observables for heavy flavor mesons (for instance, B0

d , B
0
s ). In

the framework of the CSTC model, an additional effect comes only from the hσ̃-mixing,
whereas technipions and technifermions can only contribute to the gauge bosons polarisation
functions inside the loop propagators.

The qualitative analysis of these contributions reveals that these contributions are
strongly suppressed due to the following arguments:

• the typical contributions from two-loop FCNC effects with the Higgs boson in the t-
channel in neutral mesons M0 − M̄0 mixing is extremely small, and usually neglected
in the SM calculations. An additional (small) mixing with the heavy σ̃ field can not
change this situation noticeably;

• in the case of rare (semi)leptonic decays of the Higgs boson, as well as σ̃ meson, Yukawa
couplings to leptons are usually very small (∼ gml/MW ), and the corresponding con-
tributions are also neglected;

• in all cases the σ̃ contributions are additionally suppressed by a large technisigma mass
compared to vector boson masses, Mσ̃ ≫ MW,Z ;

• an extra (double) suppression in the limit of small hσ̃-mixing by s2θ ≪ 1 factor in the
amplitude;

• the higher-loop effect from the technipions and technifermions contributing only to
the gauge bosons polarisation functions inside the loop propagators vanish at small
loop momentum q2 → 0, but otherwise is expected to be extremely small.

We conclude, that the most stringent constraints on the parameter space in the consider-
ing CSTC scenario come from the T -parameter which sets the upper bound to the hσ̃-mixing
(see previous Section). Now, we turn to a discussion of the phenomenological consequences
of the CSTC.

IV. COLLIDER PHENOMENOLOGY OF THE CSTC

A. Higgs boson production and decay

The properties of the Higgs sector in the SM are the subject of intensive studies and
discussions in the light of the latest data from the LHC [1, 2, 4]. The Higgs couplings are
expected to be rather sensitive to NP contributions, and could therefore serve as a good
probe of physics beyond the SM. However, it is important to notice here that even though
the Higgs boson may look standard according to the latest observations and studies, this
does not totally exclude possible role of NP in the EWSB and, in particular, in its underlined
dynamical reasons. Further in this subsection we will examine basic possible signatures of
the CSTC in Higgs boson observables.

Consider first the simplest s-channel subprocess of the Higgs boson production with
subsequent decay into final states, i.e. ab → h → XY . Typically, the initial states of this
subprocess are ab = gg, ZZ,WW and the final states are XY = f f̄ , WW ∗, ZZ∗, γγ, and
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γZ. As is seen from the physical Lagrangian of the Higgs boson interactions (2.27) and
(2.28), the standard tree-level hV V and hff̄ couplings are modified by a common factor cθ
only caused by a mixing with heavy technisigma state.

For ab = gg, the ggh and ggσ̃ couplings are loop-induced via heavy quarks, and there are
no additional loop diagrams can contribute here in the framework of CSTC. Hence, in the
Higgs boson production amplitude there always comes an extra factor cθ compared to the
corresponding SM amplitude. Further, the first three Higgs decay channelsXY = f f̄ , WW ∗,
ZZ∗ are the tree-level ones, with another factor cθ in the amplitude, so the corresponding
amplitudes V V → h → f f̄ , WW ∗, ZZ∗ can only be different w.r.t. the SM ones by a factor
of c2θ only (or a factor of s2θ in the case of intermediate σ̃ meson). But this is true only if one
considers the s-channel production process far from the resonance, ŝres = M2

h (or ŝres = M2
σ̃

for the intermediate σ̃ meson). However, in the resonance region the modifications of the
SM amplitudes can be different from mere mixing factor multiplication.

-1.0 -0.5 0.5 1.0
sin Θ

0.5

1.0

1.5

Μff,ZZ,WW

FIG. 14: The Higgs boson signal strength in the tree-level f f̄ , ZZ∗ and WW ∗ channels

µfbarf,WW,ZZ as a function of sθ calculated according to Eq. (4.6) for δE = 0 (dotted line),

δE = Γh,SM
tot ≃ 4.03 MeV (dash-dotted line), δE = Γh,SM

tot /2 (long-dashed line), δE = 2Γh,SM
tot (solid

line), and c4θ = (1− s2θ)
2 curve is also shown for reference (dashed line).

In order to calculate the s-channel cross section for the scalar Higgs boson (and σ̃ meson)
production with two-particle final states one starts from the universal factorized formula
which reproduces the well-known narrow-width approximation formula and has been proven
to be exact in the framework of the unstable particles model with smeared mass shell (see
e.g. Ref. [51])

σ(ab → h(q), σ̃(q) → XY ) =
16πkh,σ̃

kakbλ
2
(ma, mb; q)

Γ(h(q), σ̃(q) → ab)Γ(h(q), σ̃(q) → XY )

[q2 −M2
h,σ̃]

2 + [qΓtot
h,σ̃(q)]

2
.(4.1)

where q = pa + pb is the total s-channel 4-momentum, ka = 2Ja + 1 is the number of
polarisation states, and Ja is the spin of particle a (i.e. kh,σ̃=1), and

λ
2
(ma, mb; q) = 1− 2

m2
a +m2

b

q2
+

(m2
a −m2

b)
2

q4
(4.2)

is the normalized Källen function. A good estimate of modifications in h, σ̃ couplings in the
resonance region where q2 ≃ M2

h,σ̃ can thus be obtained from the formula

σ(ab → h, σ̃ → XY ) ≃ 16π

kakbλ
2
(ma, mb;mh,σ̃)M

2
h,σ̃

Br(h, σ̃ → ab) · Br(h, σ̃ → XY ) . (4.3)
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FIG. 15: Typical one-loop contributions to the h, σ̃ → γγ decay channel in the CSTC.

As was mentioned above, the Higgs couplings to SM fermions and vector bosons in the
considering scenario contain extra cθ factor compared to the SM ones, so in the resonance
region we have for decay widths and branching fractions to a good accuracy

Γh,mod
tot

Γh,SM
tot

≃ c2θ,
Brmod(h → XY )

BrSM(h → XY )
≃ 1, XY = f f̄ , WW ∗, ZZ∗ , (4.4)

i.e. for all Born-level Higgs/technisigma decays which strongly dominate in the total decay
width. This reveals the fact that the Higgs branching ratios, in fact, in the SM and in the
considering CSTC scenario are the same. Thus, according to Eq. (4.3) the ratio between
the resonant cross sections in the considering model to the SM one is close to unity

µres
ff̄ , ZZ,WW =

σmod(V V → h(q) → f̄ f, ZZ∗, WW ∗)

σSM(V V → h(q) → f̄f, ZZ∗, WW ∗)
≃ 1, q2 ≃ M2

h . (4.5)

which are essentially the Higgs boson signal strengths in respective channels which were
measured earlier at the LHC and no significant deviations from the SM have been found.

In fact, experimentally one never measures events exactly at the resonance peak position
q2 = M2

h , but one rather has a smearing of the resonance by e.g. detector conditions. In
this case, a more precise estimation of the Higgs boson signal strength is given by the ratio
of the cross sections integrated (or averaged) over the energy resolution of an experiment
δE which can be comparable or exceeds the small Higgs boson decay width in the SM,
δE ≥ Γh,SM

tot ≃ 4.03 MeV (at Mh ≃ 125 GeV) [12], i.e.

µXY(δE) =

∫Mh+δE

Mh−δE
σmod
XY (q)dq

∫Mh+δE

Mh−δE
σSM
XY(q)dq

≃ Γmod(h → ab)Γmod(h → XY )

ΓSM(h → ab)ΓSM(h → XY )

×
∫Mh+δE

Mh−δE
[(q2 −M2

h)
2 + q2(Γh,SM

tot )2]dq
∫Mh+δE

Mh−δE
[(q2 −M2

h)
2 + q2(Γh,mod

tot )2]dq
, (4.6)

whose values have to be compared to the measured ones. The last part of the formula above
is fulfilled approximately and valid to a good accuracy for δE ≫ Γh,SM

tot which is the case in
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FIG. 16: The Higgs boson decay widths in the loop-induced γγ and γZ channels in the non-

minimal CSTC (with scalar µS,H-terms included) as functions of physical parameters of the model.

The corresponding SM predictions are shown for comparison. The parameters in each figure are

set as follows: (top-left) mπ̃ = 200 GeV, c2θ = 0.8, and gTC = 8; (top-left) MQ̃ = 300 GeV,

c2θ = 0.8, and gTC = 8; (bottom-left) MQ̃ = 300 GeV, mπ̃ = 200 GeV, and gTC = 8; (bottom-right)

MQ̃ = 300 GeV, mπ̃ = 200 GeV, and c2θ = 0.8. These results do not depend on Mσ̃, and the

positive sign of the mixing angle, or sθ > 0, is fixed here.

actual measurements. Clearly, the formula (4.6) turns into the Eq. (4.5) in the limit of very

narrow δ-shaped resonance, i.e. when δE ≪ Γh,SM
tot .

In Fig. 14 we show the dependence of the µff̄ ,WW,ZZ(δE) on the mixing sθ for different

values of the peak smearing δE = 0 (short-dashed line), δE = Γh,SM
tot ≃ 4.03 MeV (dash-

dotted line), δE = 2Γh,SM
tot (solid line), and c4θ = (1 − s2θ)

2 curve is also shown for reference
(dashed line). No smearing case with δE = 0 corresponds precisely to the resonance formula
(4.5) with the unit strength, while an increase in the peak smearing quickly approaches to
the off-resonance result with µff̄ ,WW,ZZ ∼ c4θ. Clearly, an influence of the peak smearing
vanishes in the no mixing limit sθ → 0.

The near-resonance approximation in the s-channel production process (4.5) is valid up to
relatively small loop-induced contributions and higher order correction which may contain
extra loop contributions with technipions, technisigma and technifermions. These extra
contributions can be especially pronounced in the loop-induced γγ and γZ decay channels
(see Fig. 15). Indeed,

µres
γγ =

σmod(h → γγ)

σSM(h → γγ)
≃ 1

c2θ

Γmod(h → γγ)

ΓSM(h → γγ)
≃ 1

c2θ

|AW + Af + Aπ̃ + AQ̃|2
|ASM

W + ASM
f |2 (4.7)
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FIG. 17: Dependence of the Higgs boson signal strength in the resonance given by Eq. (4.7) in the

non-minimal case of the CSTC model (with scalar µS,H-terms included), µres
γγ , on sθ for different

sets of the physical parameters: (top-left) gTC = 8, MQ̃ = 300 GeV, and mπ̃ = 150, 250, 350

GeV, corresponding to dashed, dash-dotted and solid lines, respectively; (top-right) gTC = 8,

mπ̃ = 150 GeV, and MQ̃ = 400, 500, 700 GeV, corresponding to dashed, dash-dotted and solid

lines, respectively; (bottom-left) mπ̃ = 150 GeV, MQ̃ = 500 GeV, and gTC = 2, 8, 15, corresponding

to dashed, dash-dotted and solid lines, respectively. Finally, bottom-right figure corresponds to

smeared µγγ(δE) given by Eq. (4.6) as a function of sθ for fixed mπ̃ = 150 GeV, MQ̃ = 500 GeV,

gTC = 8 and with different smearing parameters: no smearing δE = 0 (dashed line), δE = Γh,SM
tot ≃

4.03 MeV (dash-dotted line), and δE = 1 GeV (solid line). Here and below, YQ̃ = 1/3, unless

noted otherwise.

where AW,f,π̃,Q̃ are the amplitudes given by the SM-like W, f loop diagrams (see Fig. 15 (a),

(b), (c)), as well as by the new technipion π̃ and technifermion Q̃ loop diagrams (see Fig. 15
(c), (d), (e)). An interference effect between these contributions may be important. Notably
AQ̃ ∼ sθ while |Aπ̃| ≪ |AQ̃| in general so the interference effect changes its sign depending
on the sign of sθ possibly giving rise to either enhancement or suppression of the γγ signal,
or to the SM-like h → γγ signal strengths in the case of a small mixing angle sθ ≪ 1 (where
the technipion loop contribution disappears as well). Since the first three diagrams, which
are present in the SM, do not exist at the tree level, their sum is free of divergencies. More
precisely, the divergencies are canceled between diagrams (a) and (b), and the fermion (f
and Q̃) loops are finite individually. We have found that the sum of technipion loops is finite
as well. Also, here it is reasonable to assume that only heavy top quark loops contribute to
the final result; all other fermions are strongly suppressed and thus can be neglected.

A straightforward calculation lead to the following Higgs partial decay width in the γγ
channel

Γmod(h → γγ) =
α2Mh

16π3
· |FW + Ftop + Fπ̃ + FQ̃|2 (4.8)
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FIG. 18: Dependence of the Higgs boson signal strength in the resonance given by Eq. (4.7)

in the minimal CSTC model (with scalar µS,H-terms excluded), µres
γγ , on Mσ̃ for different sets

of the physical parameters: (top-left) gTC = 8, MQ̃ = 300 GeV, and mπ̃ = 150, 250, 350 GeV,

corresponding to dashed, dash-dotted and solid lines, respectively; (top-right) gTC = 8, mπ̃ =

350 GeV, and MQ̃ = 400, 500, 700 GeV, corresponding to dashed, dash-dotted and solid lines,

respectively; (bottom-left) mπ̃ = 350 GeV, MQ̃ = 500 GeV, and gTC = 2, 8, 15, corresponding

to dashed, dash-dotted and solid lines, respectively. Finally, bottom-right figure corresponds to

smeared µγγ(δE) given by Eq. (4.6) as a function of Mσ̃ for fixed mπ̃ = 350 GeV, MQ̃ = 500 GeV,

gTC = 8 and with different smearing parameters: no smearing δE = 0 (dashed line), δE = Γh,SM
tot ≃

4.03 MeV (dash-dotted line), and δE = 1 GeV (solid line).

where α = α(MZ) = 1/127.93 is the fine structure constant adopted in all numerical calcula-
tions, and the individual contributions from W , top-quark, π̃ and Q̃ loops read, respectively,

FW =
1

8
g cθ

Mh

MW

·
[

2 + 3βW + 3βW (2− βW )f(βW )
]

,

Ftop = −4

3
g cθ

m2
top

MhMW

[

1 + (1− βtop)f(βtop)
]

,

Fπ̃ = − ghπ̃
2Mh

[

1− βπ̃f(βπ̃)
]

, ghπ̃ = −2(λTC usθ − λ vcθ) , (4.9)

FQ̃ = −2NTC(q
2
U + q2D) gTC sθ

MQ̃

Mh

[

1 + (1− βQ̃)f(βQ̃)
]

,

where we take the number of technicolors NTC = 3 in numerical calculations below, qU,D are
the techni-up and techni-down fermion charges, and

f(β) = arcsin2 1√
β

βX =
4m2

X

M2
h

, X = W, top, π̃, Q̃ . (4.10)
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The non-minimal case with scalar µ-terms included, the relation

ghπ̃ = −gTCsθ
M2

h −m2
π̃

MQ̃

(4.11)

can be used (cf. Eq. (2.28)), whereas in the special case with µS,H → 0 the relations (2.37)
have to be employed for calculation of the ghπ̃ coupling. In the limit of small hσ̃-mixing, the
constituent technifermion and technipion loop contributions to the Higgs boson width are
suppressed by a factor of s2θ ≪ 1, so the whole expression (4.8) turns to the SM result:

ΓSM(h → γγ) =
α2Mh

16π3
· |F SM

W + F SM
top |2 , (4.12)

where F SM
W,top can be obtained from Eq. (4.9) with cθ = 1.
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FIG. 19: Partial contributions to the µres
γγ in the non-minimal CSTC (with scalar µS,H-terms

included) as functions of sθ with mπ̃ = 150 GeV, MQ̃ = 500 GeV and gTC = 8 (left panel)

and in the minimal CSTC without scalar µS,H -terms as functions of Mσ̃ with mπ̃ = 350 GeV,

MQ̃ = 500 GeV and gTC = 8 (right panel), corresponding to W -loop (dashed lines), top quark

loop × 10 (dash-dotted lines), technifermion loop × 10 (dotted lines), technipion loop × 1000

(short-dashed lines). At the both panels, solid lines correspond to the total Higgs boson signal

(resonant) strengths shown for comparison. The rescaling of the curves is made for better visibility

and comparison.

The Higgs boson decay widths in the loop-induced γγ and also in the γZ channels in
the non-minimal CSTC with scalar µS,H-terms included are shown in Fig. 16 as functions of
physical parameters of the model. This figure covers only sθ > 0 region and is complimentary
to Fig. 18. One notices the regions where the γγ and γZ widths can be very different from
the SM predictions, or close to them, or even turn to zero due to a specific interference
pattern. Also, the relation between γγ and γZ widths strongly depends on parameters. It
is, however, more instructive to look directly at the Higgs signal strengths in the respective
decay channels as functions of parameters, and we will primarily study the γγ channel in
detail here.

In particular, let us investigate to what extent the hσ̃-mixing and the presence of the extra
new π̃ and Q̃ states in loops affects the resonance Higgs signal strength in the γγ channel µres

γγ

and its smearing, given by Eqs. (4.7) and (4.6), respectively. For this purpose, in Fig. 17 we
show the Higgs boson signal strength in the γγ channel in the resonance region µres

γγ (sθ) given
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by Eq. (4.7) in the non-minimal case of the CSTC model with scalar µS,H-terms included.
The µres

γγ (sθ) weakly depends on mπ̃ value. It also turns into zero at some s∗θ > 0, which
increases with MQ̃ and decreases with gTC. Note that there is no symmetry sθ → −sθ. In
general, for sθ < 0, we always have in the resonance µres

γγ (sθ) > 1, while smearing over the
resonance can change this. Also, smearing does not change significantly µres

γγ (sθ) at small
smearing angles sθ → 0. The signal strength is close to unity for two different cases of the
mixing angle: in the no hσ̃-mixing limit sθ → 0 and for sθ ∼ 0.5−0.7, while the latter is much
more fine-tuned do to a sharp behavior of µres

γγ (sθ); the third configuration at negative sθ
appears due to a resonance smearing described above. Note, that any relatively large mixing
configurations with s2θ > 0.4 are excluded by EW precision constraints on T -parameter (see
above).

Q̃
π̃0

h

Q̃

Q̃

h

Q̃
π̃0,±

γ, Z, W±

Q̃

Q̃

Q̃
π̃0,±

Q̃

γ, Z, W±

FIG. 20: Light technipion loop-induced (2- and 3-body) decay modes in the leading order through

constituent technifermion loops.

In Fig. 18 we show the same observable µres
γγ , but in the minimal CSTC scenario without

µS,H-terms, as a function of Mσ̃. In opposition to the non-minimal CSTC, in this case there
is a very strong dependence on mπ̃ parameter. Also, in the no mixing limit sθ → 0 which
corresponds toMσ̃ →

√
3mπ̃, the strength turns to unity µres

γγ → 1, as expected, and smearing
does not affect this. The current LHC data, in fact, prefer relatively large technipion mass
mπ̃ & 250 GeV and the small hσ̃-mixing configuration in the parameter space, and a small
vicinity around the “no hσ̃-mixing” limit is the only region of parameter space which satisfies
the data in the minimal CSTC and the Higgs boson looks as the standard one.

At last, in Fig. 19 we show partial contributions to the Higgs signal strength in the
resonance µres

γγ coming from W -loop (dashed lines), top quark loop × 10 (dash-dotted lines),
technifermion loop × 10 (dotted lines), technipion loop × 1000 (short-dashed lines), where
the rescalings of the curves are made to increase visibility. The shapes of the curves in the
minimal and non-minimal CSTC scenarios are very different, but in both cases there is a
strong interference pattern.

B. Technipion and technisigma phenomenology

1. Technipion decay

Besides the Higgs boson decay properties studied above, another important phenomeno-
logical implication of the CSTC scenario concerns possible technipion and technisigma sig-
natures at the LHC. Since technipions are pseudoscalar particles, at tree level they can be
produced only in pairs π̃+π̃− or π̃0π̃0, which have rather high invariant masses Mπ̃π̃ & 300
GeV, whereas one-technipion production can be loop induced only (see below). In order to
define the phenomenological signatures of technisigma/technipion production at colliders,
one has to study primarily the decay modes of produced technipions. In particular, an iden-
tification of the produced π̃ mesons is important for e.g. studies of the σ̃ meson properties
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at the LHC, Yukawa and gauge couplings as well as constituent masses and degeneration of
the mass spectrum of the technifermions, etc.
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FIG. 21: The technipion decay widths in the loop-induced γγ, γZ, γW , ZZ and ZW channels in

the non-minimal CSTC (with scalar µS,H-terms included) as functions of physical parameters of

the model. The parameters in each figure are set as follows: (left) MQ̃ = 300 GeV, c2θ = 0.8, and

gTC = 8; (middle) MQ̃ = 300 GeV, mπ̃ = 200 GeV, and c2θ = 0.8; (right) mπ̃ = 200 GeV, c2θ = 0.8,

and gTC = 8. These results do not depend on Mσ̃.
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FIG. 22: The neutral and charged technipion branching ratios of the loop-induced γγ, γZ, γW ,

ZZ and ZW channels in the non-minimal CSTC (with scalar µS,H-terms included) as functions of

mπ̃ for fixed MQ̃ = 300 GeV, c2θ = 0.8, and gTC = 8.

It is of special interest for collider phenomenology to study π̃ decays into vector bosons
and, in principle, into a pair Higgs bosons whose diagrams are represented as generic 2- and
3-body technifermion loop-induced processes in Fig. 20. In the case of the mass-degenerated
technifermion doublet, it turns out that in the simplest case with YQ̃ = 0 the 2-body techni-
pion vector boson decay modes are always forbidden by symmetry encoded in the structure
of vertices, whereas allowed for generic YQ̃ 6= 0 cases. The σ̃ decays would manifest them-
selves as multi-lepton final states with a large lepton multiplicity – up to twelve leptons
from technipion pair decay in the case of YQ̃ = 0 or up to eight leptons for YQ̃ = 1/3 in the
final state from technisigma decay (six and four leptons coming from each technipion in the
above cases, respectively), which would be rather challenging but very interesting to study.

In general, one would deal with many possible four-vector V V V V , four-Higgs hhhh or
mixed hhV V final states in order to reconstruct the technisigma mass, and this procedure
gets even more complicated due a very large σ̃ width. If there are no visible deviations of
the Higgs boson properties from the SM ones, the technipion/technisigma phenomenology,
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as well as Higgs-scalar self-couplings and studies of various loop-induced processes with
the Higgs boson participation, even though very challenging, would be the only source of
information about the CSTC sector possibly available at the LHC. The technipion 2-body
decay modes into the on-shell gauge bosons, namely, into the γγ, γZ, γW , ZZ and ZW
final states (above the corresponding thresholds), in the case with YQ̃ = 1/3 are given by:

Γ(π̃0 → γγ) =
α2g2TC

4π3

M2
Q̃

mπ̃
arcsin4

( mπ̃

2MQ̃

)

,
mπ̃

2MQ̃

< 1 ,

Γ(π̃0 → γZ) =
α2g2TC

2π3

M2
Q̃

mπ̃
cot2 2θW

(

1− M2
Z

m2
π̃

)

[

arcsin2
( mπ̃

2MQ̃

)

− arcsin2
( MZ

2MQ̃

)

]2

,

Γ(π̃± → γW±) =
α2g2TC

2π3s2W

M2
Q̃

mπ̃

(

1− M2
W

m2
π̃

)

[

arcsin2
( mπ̃

2MQ̃

)

− arcsin2
(MW

2MQ̃

)

]2

,

Γ(π̃0 → ZZ) =
α2g2TC

16π3
M2

Q̃
m3

π̃ λ̄
3(M2

Z ,M
2
Z , m

2
π̃)C

2
0(M

2
Z ,M

2
Z , m

2
π̃;M

2
Q̃
) ,

Γ(π̃± → ZW±) =
α2g2TC

32π3c2W
M2

Q̃
m3

π̃ λ̄
3(M2

Z ,M
2
W , m2

π̃)C
2
0(M

2
Z ,M

2
W , m2

π̃;M
2
Q̃
) ,

respectively, where the normalized Källen function is defined in Eq. (4.2), and
C0(m

2
1, m

2
2, m

2
3;m

2) ≡ C0(m
2
1, m

2
2, m

2
3;m

2, m2, m2) is the standard finite three-point func-
tion. Note, the π̃0 → WW decay mode is forbidden by symmetry. The complete set of
π̃ decay rates (the π̃0 → hh decay rate which, in principle, exists for heavy technipions
vanishes in the “no hσ-mixing” limit and not included into the analysis) is shown for the
non-minimal CSTC scenario in Fig. 21 as functions of the model parameters. The branching
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FIG. 23: The technisigma tree-level decay widths in the π̃π̃ and hh channels in the non-minimal

CSTC (with scalar µS,H-terms included) as functions of physical parameters of the model. The

parameters in each figure are fixed as mπ̃ = 200 GeV, MQ̃ = 300 GeV, Mσ̃ = 500 GeV, c2θ = 0.8,

gTC = 8, such that in each figure one drops off a variable from this list corresponding to the one

at the respective x-axis while keeping others fixed.
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ratios as functions of mπ̃ at a fixed point in the parameter space as an example are shown
in Fig. 22. Interestingly enough, the total technipion decay width is dominated by the γW±

channel in the π̃± decay, and by the γγ channel in the π̃0 decay, although other decay modes
are not negligible in general.

2. Technisigma decay

The tree-level 2-body σ̃ decay widths into π̃π̃, f f̄ , ZZ andWW are given by the following
expressions:

Γ(σ̃ → π̃π̃) =
3g2σ̃π̃
8πMσ̃

√

1− 4m2
π̃

M2
σ̃

, gσ̃π̃ = −λTC ucθ − λ vsθ ,

Γ(σ̃ → f̄ f) =
g2s2θ
32π

Mσ̃

M2
f

M2
W

(

1−
4M2

f

M2
σ̃

)3/2

,

Γ(σ̃ → ZZ) =
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16π
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Z
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2
W

(

1− 4M2
Z

M2
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)1/2

·
[

1 +
(M2

σ̃ − 2M2
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2

8M4
Z

]

,

Γ(σ̃ → WW ) =
g2s2θ
8π

M2
W

Mσ̃

(

1− 4M2
W

M2
σ̃

)1/2

·
[

1 +
(M2

σ̃ − 2M2
W )2

8M4
W

]

,

respectively, while the loop-induced σ̃ decay widths in the γγ and γZ channels can be
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FIG. 24: The technisigma tree-level decay widths in the fermion (tt̄, bb̄) and gauge boson (γγ, γZ,

ZZ and WW ) channels in the non-minimal CSTC (with scalar µS,H -terms included) as functions

of physical parameters of the model. The set-up of parameters is the same as in Fig. 23.

obtained from that of the Higgs boson by a replacement cθ → sθ, Mh → Mσ̃, and thus
are not shown here explicitly. The (pseudo)scalar (hh and π̃π̃) decay modes are shown
for the non-minimal CSTC scenario in Fig. 23 as functions of the model parameters, while
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fermion (tt̄, bb̄) and gauge boson (γγ, γZ, ZZ and WW ) decay channels are given in Fig. 24.
One notices that the technipion modes of the σ̃ decay strongly dominate the total σ̃ decay
width, and can be as large as a few hundreds GeV being comparable to Mσ̃. Certainly, σ̃
is a highly unstable and unusually broad state, for which one cannot use the narrow width
approximation, and it is an open question how to identify it experimentally.

3. One-technipion production

As has been mentioned above, one technipion can be produced only at the loop level.
Let us look into this possibility in more detail since this channel is especially important for
understanding the discovery potential of Technicolor at the LHC, even in the absence of
any deviations the Higgs boson signal strengths from the SM predictions. Corresponding
typical partonic 2 → 3 hard subprocess of Higgs boson and π̃ production in high energy
hadron-hadron collisions via intermediate vector boson fusion (VBF) mechanism is shown
in Fig. 25. The Higgs boson VBF production channel (left panel) shown for comparison with

Q̃
π̃0,±

γ, Z, W±

Q̃

Q̃

q

q′

h

Z, W±

q

q′

FIG. 25: Typical production channels of the Higgs boson at tree level (left) and technipion via a

triangle technifermion loop (right) via gauge boson fusion in the quark-(anti)quark scattering.

the technipion channel (right panel) is one of the key production modes recently studied at
the LHC which allowed for clear discrimination of the Higgs signal and large backgrounds [1,
2]. The Higgs boson has also other production modes e.g. via gluon-gluon fusion mechanism
and the Higgsstrahlung off gauge bosons and heavy flavor. In opposite to the Higgs boson,
one technipion can only be produced via heavy technifermion triangle loop in the VBF
mechanism. In numerical estimations, it is explicitly assumed that the incoming quark q and
(anti)quark q′ loose only a small fraction of their initial energy taken away by intermediate
vector bosons. In this kinematics, the final-state quarks are seen as forward-backward hard
jets, and by measuring their momenta one accurately reconstructs the invariant mass of
the produced state. An overall one-technipion production rate is expected to be strongly
suppressed compared to the Higgs boson production rate, which along with extremely narrow
technipion resonance makes it rather hard to measure experimentally but not impossible.

In Fig. 26 we show the one-technipion production cross sections via the VBF mechanism
at the parton level for different incoming and outgoing quark q and (anti)quark q′ states.
Both parton-level and hadron-level cross sections at the LHC with

√
s = 14 TeV in the

relevant kinematics and mass ranges along with corresponding Higgs boson cross sections
in respective channels are presented (here and below, CTEQ5LO quark PDFs [52] were
used in calculations). Only up and down quarks with at least one valence quark as well as
contributions with maximal Cabibbo-Kobayashi-Maskawa mixing terms are included here.
We have not applied any detector cuts or hadronisation corrections here, which would be
the next crucial step in phenomenological studies of the CSTC model. All the numerical
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estimates here are done for the first time in order to understand the potential of the suggested
model. Even for a rather large technifermion-technipion coupling gTC = 8 we observe that
the hadronic cross sections of the technipion production (middle panel) by about two orders
of magnitude smaller than those for the Higgs boson (right panel) in the same masse range.
This suppression will be even stronger for smaller gTC coupling and does not depend on
other CSTC model parameters. The respective production mechanism is thus one of the
“golden” channels for technipion and, in general, new strongly-coupled sector searches at
the LHC in measurements with high statistics.
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FIG. 26: The one-technipion (T-pion) production cross sections via the VBF mechanism at the

parton level for different incoming and outgoing quark q and (anti)quark q′ states as functions of

qq′ invariant mass, or c.m.s. energy Eqq
c.m.s. =

√
ŝ (left), corresponding total hadron level cross

sections of one technipion production for given incoming qq′ states in picobarns (before cuts) at

the maximal LHC energy
√
s = 14 TeV as a function of the technipion mass mπ̃ (middle), and

corresponding VBF hadronic cross sections of the Higgs boson as functions of its mass Mh shown

for comparison. Here, gTC = 8 and MQ̃ = 300 GeV are fixed, and the results do not depend on

other CSTC parameters. In calculations of the hadronic cross sections in this paper we have used

quark CTEQ5LO PDFs [52].

The discovery potential depends also on the subsequent decay modes and branching ratios
of technipions. As was demonstrated above, the decay modes of the neutral technipion are
similar to the vector-boson decay modes of the Higgs boson including γγ, ZZ and γZ
channels, however, π̃0 → W+W− mode is forbidden by symmetry. In the range of relatively
small mπ̃ . 200 GeV the strategy for searches of technipions will be similar to that in the
Higgs boson searches. Moreover, for light technipions it turns out that the γγ signals from
the Higgs boson and technipion can be comparable with each other due to a very small γγ
branching ratio of the Higgs boson BR(h → γγ) ≃ 10−3, while corresponding technipion
branching is relatively large BR(π̃ → γγ) ≃ 0.5−1.0 (see Fig. 22). The issue with detection
of such light technipions in the γγ or γZ channels can arise, however, due to a very narrow
technipion resonance since in the mass range ∼ 150 GeV the total technipion decay width
amounts to . 0.1 MeV (see Fig. 21). Such an extremely narrow resonance, in principle, can
be missed in the Higgs-type searches at the LHC, and an additional investigation of this
possibility is necessary. Also, a possibility of a relative proximity or even an overlap of the
Higgs resonance and extremely narrow technipion resonance is not completely excluded, and
remains to be an interesting opportunity. Further, a more elaborate analysis and the search
for light technipions in the existing LHC data is required.

At last, heavier technipions mπ̃ & 200 GeV can be searched for in the γγ, γZ and ZZ
decay channels which have comparable branchings. The dominant modes for the heavy
Higgs boson searches are typically WW and ZZ ones with large branchings, whereas γγ,
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γZ branchings of the Higgs decay are practically zeroth. The only common channel for tech-
nipion and Higgs boson in the high mass range is the ZZ one. However, having comparable
branchings, the technipion production rate is strongly suppressed compared to that of the
Higgs boson (see above). So, the current LHC statistics may not be enough for establish-
ing significant constraints onto the CSTC model parameter space for the higher technipion
masses, and further studies are certainly needed.

4. Technipion pair production

Typical leading-order (tree-level) processes of the π̃-pair production in f f̄ and vector
boson fusion at the LHC are shown in Fig. 27. Besides rather high π̃π̃ pair invariant mass
Mπ̃π̃ & 300 GeV, an additional suppression in V V and f f̄ production channels appear due
to rather weak couplings g and g2 in π̃π̃V and π̃π̃V V vertices respectively (cf. Eq. (2.26)), as
well as due to a large off-resonant suppression in s-channel subprocesses with intermediate
Higgs and gauge bosons, which are much lightest than Mπ̃π̃.
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V
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W, Z π̃

π̃
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V
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V

V

W, Z

FIG. 27: Typical technipion production channels in the leading order, relevant for collider phe-

nomenology. Here, V = Z, W, γ in appropriate places. The ggh and ggσ̃ couplings are heavy

quark loop-induced ones in the leading order.

Thus, one may naively assume that the largest contribution to the π̃+π̃− and π̃0π̃0 pro-
duction rates comes essentially from the intermediate technisigma resonance with the π̃π̃σ̃
coupling

gπ̃π̃σ̃ = −gTCcθ
M2

σ̃ −m2
π̃

2MQ̃

(4.13)

which is not suppressed in the small mixing limit (for not very heavy technifermions). How-
ever, in the latter case one encounters more sources of suppression. Firstly, the production
rate of the σ̃ itself in the SM-like channels most likely to be suppressed by a small mixing
angle, i.e. by the s2θ ≪ 1 factor in the cross section, compared to the Higgs boson production
rate with c2θ ∼ 1 (see the previous Section). Secondly, the σ̃ total decay width dominated
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by the technipion channel (in analogy to hadron physics) is typically large, of the order of
a few hundreds of GeV, which means that there will be no any resonant enhancement in
the π̃π̃ production rate associated with the technisigma channel. Thus, overall rates of the
tree-level σ̃ and π̃π̃ production are expected to be rather small, similarly to the loop-induced
one technipion rates calculated above. Moreover, in the small mixing or “no hσ̃-mixing”
scenario the only possible σ̃ production channel is through the gauge boson fusion through
the technifermion and technipion triangles since the Q̃Q̃σ̃ coupling (2.25) is finite

gQ̃Q̃σ̃ = −gTC cθ , (4.14)

and can be rather large due to the “fat” TC coupling gTC > 1. Besides the dominant
technisigma decay mode, the π̃π̃ pair may also be produced at one loop level via Q̃ box
diagrams. These details of the lightest technihadron dynamics would make the search for
new technipion/technisigma states to be rather challenging at the LHC, but not impossible.
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FIG. 28: The one-technipion (T-pion) pair production cross sections via the VBF mechanism at

the parton level for different incoming and outgoing quark q and (anti)quark q′ states as functions

of qq′ invariant mass, or c.m.s. energy Eqq
c.m.s. =

√
ŝ (left), corresponding total hadron level cross

sections of the technipion pair production for given incoming qq′ states in picobarns (before cuts)

at the maximal LHC energy
√
s = 14 TeV as a function of the technipion mass mπ̃ (right). Here,

gTC = 8, c2θ = 0.8, Mσ̃ = 600 GeV and MQ̃ = 300 GeV are fixed.

For illustration, in Fig. 28 we present the π̃+π̃− pair production cross sections at the
parton level in the VBF mechanism as functions of the qq′ center-of-mass energy for differ-
ent initial and final quarks (left) and the corresponding hadron-level cross sections at the
LHC (

√
s = 14 TeV) as functions the technipion mass (right). The quark-antiquark fusion

mechanism going via h or σ̃ resonance is assumed to be negligible in the forward/backward
jets kinematics considered here and was not included in this calculation. In opposite to
the one-technipion production cross sections shown in Fig. 26, the parton-level π̃+π̃− pair
production cross sections increase at higher qq′ c.m.s. energies (or larger quark fractions x)
and can reach the same magnitudes as the one-technipion cross sections at Eqq

c.m.s. & 700
GeV. The hadronic π̃+π̃− cross sections drop faster than corresponding one-technipion cross
sections and have similar order-of-magnitude values for the light π̃ mass range. This means
that both one- and two-technipion processes should be studied on the same footing. The lat-
ter, however, would be more difficult to identify experimentally due to a larger multiplicity
of leptons and tiny widths of the technipions.
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V. SUMMARY

To summarize, in this work we have constructed and investigated in major details the
chiral-symmetric (vector-like) Technicolor scenario, according to which a new sector of tech-
nifermions in confinement interacts with the SM gauge bosons by means of vector-like gauge
couplings. Our analysis is based upon the gauged linear σ-model with initially global chiral-
gauge SU(2)L ⊗ SU(2)R group broken down to the local LR-symmetric SM weak isospin
symmetry SU(2)L+R≡W group in the technifermion sector.

The Higgs boson in this scenario is considered as a separate (fundamental or composite)
scalar state and introduced in the same way as in the one-doublet SM. Nevertheless, we
have shown that the electro-weak symmetry breaking at the scale MEW ∼ 100 GeV can
be initiated dynamically by the presence of the confined vector-like technifermion sector,
namely, it is triggered by the technifermion condensate at the techniconfinement scale, ΛTC &
MEW, together with the chiral symmetry breaking. This thus leads to the effective SM Higgs
mechanism of dynamical electro-weak symmetry breaking.

Remarkably, this model is well consistent with both EW precision constraints and, si-
multaneously, with the recent SM-like Higgs boson observations at the LHC in the small
Higgs-technisigma mixing limit. At the same time, the model predicts the existence of extra
new lightest technihadron states, namely, physical technipions π̃ and technisigma σ̃, at the
LHC energy scales, giving rise to rich Technicolor phenomenology at the LHC. Detection
prospects for these new states have also been discussed, and the most phenomenologically
important decay modes of π̃ and σ̃, as well as technipion production cross sections, were
quantified over physically reasonable regions of parameter space.

In the absence of noticeable deviations from the SM predictions in the Higgs signal
strengths, the suggested scenario is capable of explaining of what triggers the SM Higgs
mechanism, the nature of the Higgs vev in the nearly-conformal limit of the new strongly-
coupled dynamics. The proposed vector-like Technicolor scenario, in its simplest form con-
sidered here, does not attempt to resolve the naturalness problem of the SM, i.e. does
not provide a mechanism protecting the Higgs boson mass itself from becoming arbitrary
large. Nevertheless, this minimal realization of the TC ideas preserving the effective Higgs
mechanism of the SM opens up new prospects for more elaborated scenarios with extended
chiral-gauge groups possibly predicting the light composite Higgs boson(s) with well-defined
vector-like ultraviolet completion, which is the subject of our further analysis. At last, as
a specific prediction of this class of models, the lightest neutral heavy weakly-interacting
technibaryon state gives rise to a suitable Dark Matter candidate making it to be especially
attractive opportunity for astrophysical New Physics searches, and a corresponding analysis
is planned for future studies.
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