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Abstract

We study the anti-de Sitter/conformal field theory correspondence (AdS/CFT correspon-
dence) and investigate in a scalar model how n point functions can be calculated through
functional derivatives and how they can be obtained with the use of Witten diagrams
instead.

We also study a previous anti-de Sitter/quantum chromodynamics (AdS/QCD) model
where the mass of the ¢ meson has not been considered. It turns out to be equivalent
to the mass of the p meson. A fact that is not supported experimentally. In an attempt
to obtain better results for the ¢ meson mass we do a slight modification to the existing
model. However our modifications led to computational difficulties and although some
results could be obtained none agreed well with experimental data.
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Chapter 1

Introduction

The foundation for this model was laid by Maldacena when he conjectured the AdS/CFT
correspondence in 1997 . The main aspect of this AdS/CFT correspondence is that it
connects the calculations done in a four-dimensional gauge theory with those of a higher
dimensional string theory .

Since the original conjecture the research has taken two directions. The first one is the
attempts made to formally prove the conjecture, this is beyond the focus of this thesis. The
second is the attempts to expand the conjecture beyond concerning the highly symmetric
conformal field theories to more realistic gauge theories like QCD [2]. It is with this
extended correspondence, AdS/QCD, that we will concern ourselves.

We perform calculations on a classical level in a five dimensional theory and use the
duality to relate the results to observables on the quantum level of a four dimensional
theory. It is done within a already mostly laid framework much of which is present in
an older bachelor thesis by Sven Moéller [3]. The reasons for why this formalism might be
preferable to the standard perturbation calculations of QCD is both that these calculations
may be a simpler way to reach the same results, and that one might obtain results that lie
in an energy region where the results are hard to obtain directly in QCD.

In the previous model the p meson and the ¢ meson get the same masses. This is
however not supported by experimental data. In an attempt to obtain better agreement
with experiments we added two terms to the action. It seems though that calculating
better values for the masses this way is difficult.

In Chapter 2 the AdS/CFT correspondence is presented. It begins with an overview of
the AdS space followed by a section on how the correspondence can be stated. It concludes
with a rather lengthy part on how calculations can be done in a scalar theory using Witten
diagrams. The reason behind this part being so extensive is that the original plan was to
use Witten diagrams to calculate four point functions in the actual model.

In Chapter 3 we present the model. The first part of the chapter presents the previously
used action. We also describe how the calculations are performed and the results that have
been obtained previously. the second part focuses on the terms we add to the action and
what consequences those terms have on the calculations.

In Chapter 4 we present our results. We have results from only fitting the new free
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parameters to the ¢ and K* masses and results from trying to refit all the free parameters
of the model with a number of observables.
In Chapter 5 we present our conclusions and discuss our results.



Chapter 2

The Correspondence

2.1 Anti-de Sitter Space

The metric of the AdS; x S space is given by

U2

45 = (20 — (') — (d22)? — (d2*)) - %d@ﬁ 1240, (2.1)

Where the 2°, 2!, 2% and 23 are the standard four-dimensional spacetime coordinates, u
is the fifth coordinate for the AdSs; and df); is the five-dimensional solid angle on the
corresponding hypersphere and L is the curvature radius.

The calculations we shall perform takes place in AdS5 space and we will ignore the
L2dQ)s part of the metric in the remainder of the report.

With the coordinate transformation v = 1/z the AdSs; metric can be shown to be
conformally equivalent to the flat five-dimensional Minkowski spacetime [2|[3]. The metric
becomes )

45 = T3 (A2 — (dr')? — (@) — (@2*)? — d2?). (2.2)

The papers concerning the anti-de Sitter space have large differences in notation. There-
fore we briefly state a few definitions used throughout the text. As usual greek letters (i.e.
U, v,...) as indices will run through 0, 1, 2 and 3. Set z = x° and let capital latin letters
(i.e. M, N,...) as indices run through the usual four and the additional fifth. I.e. we can
write the metric as

ds? = gynda™dz™, (2.3)

were we have introduced the metric tensor of the anti-de Sitter space

1 0 0 0 0
0O -1 0 0 0
L? L?
av=210 0 -1 0 o |=En (2.4)
Z z
0 O 0O -1 0
0 O 0 0 -1
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gyvn 18 required to have this form for equations and to be equivalent. This
tensor lowers indices as usual and to its covariant counterpart that raises indices can be
obtained through the identity gyng™* = 6%,. Where the Kronecker delta has the form
6% = diag(1,1,1,1,1). We have also introduced the shorthand notation nyy = nMY =
diag(1,—1,—1,—1,—1), which however is not a proper tensor. Another convention is the
determinant of the metric tensor

10
g = det(gun) = ISR (2.5)

However at many times it is preferable to separate the standard coordinates and the
z-coordinate. In those cases, as stated above, we use the standard conventions with Greek
letters i.e. write the metric as

LQ
ds* = ;(nuydx“dx” —dz?), (2.6)

with the standard flat Minkowski metric 7, = diag(1, -1, -1, —1).

In this model the z-coordinate represents an inverse energy scale . Low z corresponds
to high energy and a high z to low energy. In particular the boundary z = 0 corresponds
to infinite energies. This naturally produces some divergences in the calculations and a
ultraviolet (UV) cut-off Ly has to be introduced. The expressions containing Lg are implied
to be taken in the limit where L, goes to zero.

We are doing these calculations in the so called hard-wall model, in which an Infra-red
(IR) cut-off is introduced in addition to the UV cut-off. This cut-off, L, corresponds to
the IR cut-off in QCD, Agep, and simulates confinement .

2.2 Formulation of the Correspondence

Now it is time to shed light on how the correspondence is applied. To make use of it we need
to have an explicit mathematical formulation. Instead of the previous broad statements
about how the string theory side is related to the gauge theory side, here we will look
closely at exactly which quantities are related.

In QCD we have sought after quantities, e.g. masses, decay constants, form factors.
Within the theory these quantities are given as expectation values of different operators.
However via the correspondence these operators can be related to fields in the the AdSs
space. The calculations can then be performed in 5 dimensions with the fields and the
results are then translated back to the language of QCD.

To make this correspondence explicit we have to assume a field theory operator O(z#)
and its related field ¢(a*, z) in AdSs space. The field is the bulk field, which is related to
the boundary field through

o(x*,0) = 24_A¢0($“). (2.7)

Where A is the conformal dimension of the field.
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Now if we call the string action of the bulk field S[¢(z#, z)] and define the functional
7 = exp(SIo(a",0))), (2.5)

then we can state the correspondence as [2]

7= <Texp / d4:1:¢0(:c“)(9(x“)> | (2.9)

field theory

[.e. from knowing the string action for the fields coupled to the operators we arrive at a
generating functional for the field theory side. We can see from the right hand side that
the boundary fields, ¢(z*), is the acting as the source for the operators, O(z*).

To achieve something useful from this, an expectation value that can be related to a
measurable quantity, we take the repeated functional derivative with respect to the source
field, ¢o(x*). The n-point correlator is given by the n:th functional derivative of Z. We
have

oz
(5¢0(ZE§L>6¢0(I5) = <To<x¥>0(xﬁ>>ﬁeld theory * (210)

To achieve realistic results that are related to QCD we will naturally have to include more
than a single scalar field in our theory. Although first we will look at the example with
a single scalar field to show how to calculate physical observables from the 5 dimensional
theory.

2.3 A Scalar Example

We consider the action for a massive scalar field on AdSs. It is given by [2] (with an overall
constant 1/2 instead of 1/¢g% and L = 1 for simplicity.)

5— [ gLl OuseaOioten) _u i,

- [ rtmele D0etnn)
3

(2.11)
: 2 - 0

Were we use the shorthand notation ¢(z, 2*) = ¢(z, ).

We are interested in the 2-point function in momentum space on the four dimensional
boundary theory. To achieve this we do a expansion in z-independent Fourier modes in
accordance to

d4k —ik-x
o) = [ e l)onh), (2.12)
where ¢y(k) is the Fourier transform of the boundary field. We take the functional deriva-
tive with respect to this boundary field in order to compute n-point functions as shown in
equation ([2.10)).
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The resulting action is

s=3 [ [ o5 [am g |- r ke

— 0. f1(2)0: fr (2) — _fk(z)fk’(2>:| o (k) o (k' )e @ F+K)
- /: dz/ / 1 [ 2fu(2) fr (2) — 0. fi(2)0. fir (2)

(2.13)

27T43

- ;fk(Z)fk/(Z)] 0 ()0 ) 2k + K.

Before we go any further we should look into the equation of motion (EOM) which will
give us an expression for fi(z). The EOM can be found from the original action, equation

EZ11), o0 be
1 m?
[nMLaL <;8M) + >

By dividing M into indices z and p we see that the equation reads

0, 0" 1 m?
[ A az(;"?’z) T
and by applying the four dimensional Fourier transform we arrive at

—k? 1 m?
[7 — 0. (;a ) .

Since ¢g(k) is independent of z we find that fi(z) must solve this equation regardless of
the value of ¢o(k) and we find an equation for fi(z)

¢(z,z) = 0. (2.14)

¢(z,2) =0 (2.15)

Je(2)¢o(k) = 0. (2.16)

V(2) — gf,;(z) + (k:2 — %) fr(z) =0. (2.17)

To proceed we integrate the term containing derivatives with respect to z by parts,
which gives us

: / (gﬂ’; / d4kf5<4><k+k'>¢o<k>¢o<k'>—f‘“’(z>f§f ’“(Z)L

+ k2 fi(z) — T:—jfk(z)} fk/(2)¢o(k)¢o(k’)5(4)(k + K.
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The expression within the square brackets in the second term is 0 by the EOM and thus
the whole term evaluates to 0 and we are left with the boundary term.

To compute the 2-point function we take two functional derivatives of the generating
functional, Z, with respect to the boundary field ¢¢(z). However from the chain rule we
can see that we just get Z times the functional derivative of the action. This expression is
then evaluated at ¢y = 0 giving Z = 1 and it is sufficient to take the functional derivative
of the action. Since we are interested in the 2-point function in momentum space we also
have to Fourier transform the expression.

(o / d'z / dba'e et (O(2)0 () o1
= [t [ e m/p/éij[w;o()])

When we expanded ¢(z”) in Fourier modes the explicit dependence of ¢g(z”) was elim-
inated from the action. However we can treat action as a functional of the the Fourier
transform ¢ (k) which in turn we treat as a functional of ¢g(2”). Then we apply the chain
rule for functional derivatives and get

523[¢o(/€)[¢0(x//)]] B ) 4, 08[o(k)] 60 (q) o (x")]
5o0(2)do(x)  Sdo(x) < / d'q'— (@) 0do(a) ) (2.20)

where the last functional derivative evaluates as

5¢0(q/)[¢0(gj/’)] o J 4_1n —7,q -z 2" = e_iq/_z/
3po(z')  dgo(’) /d do(a") : (2.21)

Using this we get

S0 [ 1, w5 (38[ou(R)l6n(a")]
50 ()00 (') = [ 5%(6]')( 560(x) >

e[y )
= [t e (o)

Where the functional derivative evaluates as

28l o fupd o (20502 ]"
500(0)000(d)  590(0)00(q) | 2 / )" / R L e ]
o 1 4 ’ fq’(z>azfq(z) "
= [W(s()<q+Q)T]LO,

(2.23)
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giving

Ly

528 1) [ qite-idel a1 o (2)0:14(%)
s = [ [ e [Wf“ )™ ] 224

Which we can insert in the expression for the two point correlator to give

< /d4 /d4 //d4 /d4ql€zazqem -q’ za:pez:r:p

» [(%)45< g+ gy IRl >LO

N / dg / d'¢6W(p+ )6 (' + ¢)(2r)° [

L1

_ [(2@45(4) (p+ pf)_fp’(Z”)f;fp(z)

Lo

(2.25)

Since we can see from the EOM that f, only depends on p? and thus f_, = f,. At the IR

boundary we either have L; = oo and f,(L1) = 0,f,(L1) = 0 or we have a finite L, with

the boundary condition chosen as 0, f,(L1) = 0 to reduce the interference of the boundary.
either way the expression also vanishes at the IR boundary so we get

f (2)0: fp(2)

(O(p)OP)) = —(2m)* 0D (p+ 1) 7= (2.26)

Lo

2.4 Witten Diagrams

The previous example shows how all n-point functions in principle can be derived. It
is however a long and tedious procedure, especially when going to higher n. Even with
some shortcuts that were not taken in the explicit example above the calculations become
gruesome. Luckily the calculations can be simplified with the use of Witten diagrams.
However to understand the underlying principles we must perform a couple more explicit
calculations where we include an interaction. For simplicity only a ¢? term is included.

If we would have used the same procedure as presented here in a four dimensional
theory we would have obtained all tree level Feynman diagrams in the end.

2.4.1 Iterative Solution

Consider now the action where an interaction term has been added

— /d5x\/§|:gMNaM¢(Z,$)8L¢(Z,l') . m2(¢(27x))2 . é(gb(z,x))?) ] (2'27)

2 2 6
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The EOM becomes
1
N/

where we want ¢(Lg, x) = ¢o(x).
We can identify the Laplace operator \/LEGM(QML\/EGL) = V2 and write the equation

Our(9"" /G002 1)) + (=, 2) = ~ (62, 2))" (2.28)

more conveniently
1
(V2 + )z, 7) = —5b(o(z, )" (2.29)
This equation has no simple solution and we will solve it iteratively, as done in [10].

We start with solving
(V2+m?) ¢ (z,2) = 0. (2.30)

with boundary condition ¢'(Lg,x) = ¢o(x). We do so by defining a bulk to boundary
propagator K(z,z,x") which satisfies

(V2 +m?)K(z,2,2') =0, (2.31)
K(Ly,z,2') = 6% (x — 2) (2.32)

and write the solution as
¢ (z,x) = /d4:v’ K(z,x,2")po (). (2.33)

then we insert this solution on the right hand side of the EOM and solve for ¢”(z, x)
2 2\ 111 1 / 2
(V2 m?)of (z,2) = —3b(d/ (2, 2))" (2:34)

with boundary condition ¢”(Lg,x) = 0. To solve this we define a bulk to bulk propagator
G(z,2',x,2") that satisfies

§(z —2)0W(x — 2)
\/§ )
G(Ly, 7, x,2") = 0. (2.36)

(V2 4+ mHG(z, 7, 2,2") = (2.35)

With which we can write the solution as
¢//(Z, SU)
- —g /d5x’\/§G(z, 2w 2 ) (¢ (¢, 7))
b
— _E /d5x/\/§G(Z’Z/’x7 x/) /d4$”K(2/,xl,$//)¢0(x//) /d4x1// K(Zl,x/7x/1/)¢0(x///).
(2.37)
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Now the solution up to O(¢3) can be written as ¢)(z, ) = ¢'(z,z) + ¢ (2, )
In the next iteration we get ¢"(z, ) which solves

b
(V2 +m?)d"(2,0) = =5 (¢'(2,2) + ¢"(2,2))%, (2.38)
with ¢"'(Lo, z) = 0. We can immediately write down the solution as
b
¢"(z,x) = —3 /d5x’\/§G(z,z’,x,x’)(¢’(z,x) +¢"(2,1))? (2.39)

b
— _5 /d5$/\/§G(Z, 2/7:1:’1,/) /d4l‘” K(Z/,ZE,,I'”)gbo(ZL'”) /d4ZEm K(Z,,l‘,,$/,/)¢o($/,/)
+b2/d5x’\/§G(z, z’,m,x')/d4:v"K(z’,1:',a:”)¢0(x”)
% de”’\/ﬁG(z/,z”’,x',a:'")/d4x(4) K(Z”/,x///,$(4))¢0<$(4)) /d4x(5) K(z”’,x’/’,x(S))¢o(x(5))

+ O(¢y).

Where we stop at order three since ¢”'(z,z) contains some but not all contributions at
the fourth order. the solution up to third order can now be written ¢ (z,x) = ¢'(z,2) +
¢"(z,x). In general the solution to n:th order is ¢ (z,2) = ¢/'(z,z) + ¢ (z,z) where
#™(z, x) solves

(V2 4+ m)o (2, 2) = —2(0(z,2) + 6z, 2)) (2.40)

with ¢ (Lo, ) = 0.

2.4.2 Relationship Between G and K

To find a relationship between the bulk to bulk propagator and the bulk to boundary
propagator we apply Green’s second identity

/de\/ﬁ(G(z, 2o, ) (VE+mA K (z,2,2") — K(z,2,2")(V?+m*)G(z, 2, x,2"))

= /dSm\/E(G(z,z',x,x’)VQK(z,x,x”) — K(z,7,2")V?G(z, 2, 1,2"))
z=IL1
= /d4x v X [(G(z,z',x,:v’)nMaMK(z,x,x”) — K(z,:B,x”)nM(?MG(z,z',:E,x'))]

z=Lo

(2.41)

where v is the determinant of the boundary metric and n is the unit vector normal to
the boundary and directed outwards. Using the defining equations of the propagators the
left hand side evaluates to

LHS = /dsx\/g(G<Z7Z/7x7x/) x0— K(z,x,x”)

=—K( o 2").
(2.42)

S (z —2")(2 — z’))
V9
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The right hand side vanishes at the IR boundary, L;, and using the defining boundary

values for the propagators it evaluates to

RHS = —/d4x 7 x (0 x nMoy K (2,2, 2") — W (x — 2" )ynM0y Gz, 2, x, x )|Z:LO)(2 43)
= /AnMouG(z, 2, 2" 2")| =1,

Combining this gives the relation

K(Z 2, 2") = —/anMouG(z, 2, 2" 1) | =L, - (2.44)

2.4.3 3 point function

Now we can reinsert the solution into the action to calculate the 3-point function. Before
doing that we shall integrate it by parts to obtain

z=1I1
S:/d4xﬁ{¢(z,x) M28M¢ 2,T ] /d4 /dz\/_{ V3¢ (z x) B m22¢2 - §¢3

z=L

:/d4xﬁ[¢(z,x)nM28M¢(z,x I::M/d%/dzﬂ(i_%) (o(z,2))>.

(2.45)

We only need to expand the action to third order in ¢, since we want the three point
function. The only way to achieve this in the bulk term is to expand each of the three
fields to first order

j(sgzim—b/d4 /dzf(———)
« d4$l¢0 DK Z,SE,:IZ'/ d4x”¢0 INK Z,:C,SC” d4SC”/(Z5 7 Z,:C,SC/” .
[t K ena) [ aa oK zma) [ dla o) K zn,a)
(2.46)

The boundary term is however not quite so straightforward. In the IR boundary it vanishes
but we must still evaluate it in the UV boundary. Using ¢(Lg, x) = ¢o(z) we find that the
other factor involving ¢(z, x) must be expanded to second order in ¢q to give a total order
of three. Using our expansion for ¢(z,z) , equation , gives us

_\/_nMaM¢ z =Lg
:——/d4 '/dz —vAnMon (2, 2w, 2))|,
% /d4$,/(b0(l‘ )K(z,x',x")/d4m"'gz5 ( ///) (2,7.17,,1'”/)

b
= _§/d4x//dZ/{;(<Z/’x7x/)/d4x//¢0<x//) F{<Z/’x/,x//)/d4x///¢ ( ///) (Z I .Z‘///)
(2.47)
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where we used the relation between K(2',z,2’) and G(z, 2/, x,2’). If we insert this in the
boundary term and relabel the variables 2’ <> x and 2z’ ++ z we get the boundary term of
order three in ¢

_ 4 4,1 /
boundary /d /dZ\/_/d l’Qﬁ ‘T SL’,Z) (248)
X /d4x"g250(x VK (2, 2" ,z)/d%’"gb ("K (z, 2", 2).

Adding this up with the bulk term gives the total third order contribution

8(3 S(B'Lzlk + Sboundary
:__/d4 /dz\/_/dA‘ //d4 ///d4 '"Kx :L“ Z) (249)
X K(x,2", 2)K(x, 2", 2)do(x o(z").

The three point function is now obtained by taking three functional derivatives of the
action with respect to ¢q

53S
0o (21)00(w2)d¢0(3) (2.50)
= —b/d4 /dz\/_K x, 1, 2)K(x, 29, 2) K (2, 23, 2),

(T'(O(21)O(22)O(x3))) =

where the factor 1/6 goes away since there are 6 ways to match up ', ", " with 1, xo, x3.
This result can however be directly obtained from the diagram in figure [2.1]

¢0($2)

(2, 2) Po(x3)

bo(1)
Figure 2.1: Witten diagram for the three point function

by

1. multiply a bulk to boundary propagator for each line that ends at the boundary (with
a dot).

2. multiply a bulk to bulk propagator for each line with both ends in the bulk (none
present here).
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3. add a factor —b for each vertex.
4. integrate over vertex positions with [ d5x\/§.

We are however often interested in the momentum space n point function, by which we
mean momentum space for the first four coordinates and position space for z. To obtain
these there are analogous rules for the diagrams in momentum space. To show an example
we Fourier transform the three point function

(Op)O(p2)O(ps)) = / dta, / da, / Qe P G0 (T(O(a) O (1) Oz3))

= —b/d4 /dz\/_/d4x1/d4x2/d4x P11 giP2-T2 P33

X K(x,21,2)K(x, 29, 2)K(x, 23, 2
(2.51)

This may not seem straightforward at first to evaluate, but the bulk to boundary prop-
agators only depend on the distance between its two x arguments so with the right
variable substitution the integrals are easily evaluated.

(O(p1)O(p2) = —b/d4 /dz\/_/d4x1/d4x2/d4x iP1°T1 ip2-T2 ip3-T3

X K(x; —2,2)K(xg — z,2)K(x3 — x, 2)
U=1a, —
= v=a9—7

w=x3—1
— —b/d4 /dZ/d4 /d4 /d4w6w} (p1+p2+p3) 7,p1u ngv ngw
X /9K (u, z)
— —b(2m)!60 (1 + +p3> / A2 /3K (2) K () (2),
(2.52)
If we define the Fourier transform of K (u, z) as
K,(z) = /d4ueip'“K(u, 2). (2.53)
This expression can be found from the diagram in figure

with the rules

1. multiply a momentum space bulk to boundary propagator for each line that ends at
the boundary (with a dot).

2. multiply a momentum space bulk to bulk propagator for each line with both ends in
the bulk (none present here).
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b0 (pQ)

Z Po(ps3)

®o (pl)

Figure 2.2: Witten diagram for the three point function in momentum space

3. add a factor —b for each vertex.
4. add a factor (27)*6™ (3, pi)
5. integrate over vertex positions in the z-direction with [ dz\/g.

To evaluate this expression further we need to find the momentum space bulk to bound-
ary propagators. It can of course be done by taking the long route and finding the ex-
pression in position space and Fourier transforming. However it is easier to transform the
equation it satisfies and solve directly in momentum space. Since the bulk to bulk propa-
gator satisfies almost the same equation we will also find its equation in momentum space
with only a little more effort.

Note that equation can be written as

[—2%0.0. + 320, + 2%0,0" + m*|K (w, z) = 0. (2.54)
Fourier transforming the left hand side gives us
LHS = /d4weip'w[—z2(3z(9z + 320, + z28#8“ +m? K (w, 2) (2.55)
= [-2%0.0. + 320, — 2°p* + m*| K, (2),

while the right hand side is still 0 after a transform. The right hand side for equation
(2.35)) is however nonzero. by taking the transform we get

RHS = /d4weip'wz55(4)(w)(5(z — ) =2°0(z — 2). (2.56)
giving us the two equations in momentum space as
3 o, 1 5
= 0.0, + -0, —p~+ m” | Kp(2) =0 (2.57)
z z

and 5 .
{ — 0,0, + ;az —-p*+ ;mQ] Gp(2,2) = 2°0(2 — 2'), (2.58)



2.4. WITTEN DIAGRAMS 15

where G,(z, 2’) is the Fourier transform of G(w, 2, 2’). The boundary conditions can also

be transformed, which gives
K,(Ly) =1 (2.59)

and
G,(Lo,2") = 0. (2.60)



Chapter 3

The Model

The action we are going to work with here is defined to correlate to a three flavoured
version of QCD. First we will present the action used in and some results obtained
from it. Then we will add a couple of terms and work out the consequences in an attempt
to improve the results.

To build up this theory we must incorporate some relevant operators. we start with
defining a left /right-handed vector containing the three lightest quark flavours: up, down
and strange.

SN

qL7R: (31)

S) LR

This together with the matrices T related to the Gell-Mann matrices A* through 7% = \*/2
allows us to express the relevant operators. These matrices naturally share the following
two properties with the Gell-Mann matrices

Tr(T*T) = %5“*’ (3.2)
and
[T, T") = i feeTe. (3.3)

We are interested in the current operators Jy, = q17,T"qr and Jg, = qry,T"qr. We
also want the quark bilinear grqr. To make use of the correspondence we need the fields
in AdS5 space related to these operators. These are found to be the following

Ji, > Ly (2, 2), (3.4)

g, > Ry(a", 2) (3.5)
and )

drqr <— ;X(m“, ). (3.6)

16
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With these fields we can write down the action that was used in . They used the
following action with a 5 dimensional SU(3), ® SU(3)g local flavour symmetry

S = / A’z /g Tr {(DMX)T(DMX) + 5 XX - @(FM\,F(%N + Fy AN (3.7)
where we have to keep in mind that the curvature radius, L, is 1 in .
To explain the action we start with the definitions for the field strengths

FI = 0y Ly — On Ly — i L, L] (3.8)
and similarly -
FMN = (9MRN — GNRM — Z[RM, RN] (39)

where L), and Rj; are related to the fields dual to the operators through

Ly =T°LS, (3.10)
and

Ry =T"RSy,. (3.11)

It is also important for the future to state the relations between left /right-handed and the
vector, V), and axial, A, fields. We will follow and use

Ly = Vi + Ay (3.12)

and
Ry = Vi — Ay (3.13)

They are not of great importance right now, but will come in handy when discussing
the equations of motion. The change from left /right-handed to vector and axial makes it
possible to separate the equations of motion in an axial part and a vector part. Something
that is not possible for the left and right handed fields. These are also the combinations
that will give the mass eigenstates.

To completely understand the action we must also have the expression for the covariant
derivative Dj; which is the source of the interactions between the scalar field X and the
gauge fields Ly, and Ry,. It is given by

Dy X = 0uX —iLyX +iX Ry (3.14)

With this foundation laid down it is time to investigate the equations of motions.

3.1 The Vacuum Solution
The X field can be expanded as [4]

X(at, z) = ei“a(x“’z)TaXo(z)e”a(x“’z)Ta, (3.15)
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where we have introduced the pion field 7 = 77, In a flavour symmetric world the Xy(z)
is a multiple of the unit matrix. Hence it would commute with the exponential functions
and X could be written as

X(2t, z) = 2™ @ AT X (7)., (3.16)

This form has sometimes been used anyway ﬂ@, but we will follow and not let X
commute with the exponential. We will however keep isospin symmetry i.e. the up and
down quark masses are interchangeable.

The vacuum expectation value is the solution to the EOMs with all fields but X(z)
set to zero. By setting all fields but Xy(z) in the action, equation (3.7, we arrive at

S = / dx\/g Tr {(GZXO)T@ZXO) + %ngo . (3.17)

This can then be divided into separate equations of motions for the for the different elements
of Xo(2) referred to as Xo;;(z). The EOMs can be solved yielding [3,4]

1
2X0ij(z) = ’Uij(Z) = CMWZ + ZEijz3, (318)

where we like have introduced the rescaling parameter ( = y/N,./27 as advocated by
[8{12]. In the previous expression we also introduced

mg 0 0
M={0 m; O (3.19)
0 0 mg
and
o, 0 0
X=(0 o, 0]. (3.20)
0 0 o,

M is the quark mass matrix with the up and down quark mass m, and the strange quark
mass m,. > is related to the quark condensate.

If we define )
vy(2) = (myz + Zaqz?’ (3.21)
and ]
vs(z) = (mgz + 20823. (3.22)
then the vacuum solution can be written as
v, 0 0
2Xo(z)=v(z) =0 v, 0]. (3.23)
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3.2 The Equations of Motion

With that done we can start looking at the EOMs for the A, V' and 7 fields. However
to have a chance of obtaining any equations we have to expand the exponential factors
and then limit ourselves to second order in the fields, which will be sufficient to obtain the
masses and wave functions to the order we work in.

We will also explicitly write the summation over the index in 7. By doing so we find
ourselves with expressions of the sort Tr([T%, X][T?, Xo]) and Tr({T?, Xo}{T?, X,}). Since
these evaluate to 0 if a # b we define

1
S M6 = =T ([T, Xo][T", X)) (3.24)
and |
§M;§25“b = Tr({T°, Xo}{T" X,}). (3.25)
Writing X explicitly in v, and v, these evaluate to
0 a=1,2,3
Mg? =< v, —v)? a=4,56,7 (3.26)
0 a=38
and
v; a=1,2,3
M3 =<{ L, +v,)? a=4,56,7. (3.27)
3(vg+2v,)? a=38

To be able to calculate m, we must split the eighth component, L.e 7%, in two. For
convenience we call them 7° and 7'° and define them, for later use, as

1 (000
T°=-—10 0 0 (3.28)
V2 001
and
o 1 100
T = 3 010]. (3.29)
000
T? corresponds to the ¢ meson and T to the w® meson. For these the associated M“}’AQ
are
0 a=9
My? = 3.30
v {0 a=10 (330)
and
2 a=9
Mea? = {“; ¢ (3.31)
v; a=10
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With these definitions we find that the resulting action is

a Ma2L3 a
S = / d%z ( 1o OV = On Vi) + — = Vi
. . (3.32)
4g (8MAa 8NA§\L4)2 + ;—23(8]\47#1 - A?\/I)2)7
5%
where the square of a field means
RYeYs L? M
Vet =M VA‘}VA‘}/ =29 Va Vi = ?V]\‘}V “. (3.33)
To simplify even further we will for also define
. g Ma2L2
a’(z) = = —— (3.34)
and )
u GEME*L
Biz) ==—— (3.35)

3.3 The Vector Sector

With these recent definitions we can write the part of the action that is quadratic in the
vector field as

L 1 « oy, @(2)
SV = /d5$2—92 Z ( — 2—2(an]\7 - a]\]‘/v]\/[)2 + TVM2> . (336)

From which we can find the EOMs for the vector field

MLy (%(am - ang)> + 2 Z(Z)v]s —0. (3.37)

The first four components of the vector field, V,(z,z"), can be separated into a transversal
part, V1 (z,2"), and a longitudinal part , V,(z,2"), by

Vi(z,2") =V, (z,2") + Vy (2, 2"). (3.38)

Where we note that the transversal part satisfies 0"V, (z,2") = 0. We also transform
the equation in the first four components by the Fourier transform defined as f (z,k") =
[ d*xe ek e f(z 2#) on a general function f(z,x*). With this done we can find the EOMs
for the Fourier transformed transverse part of Vi as

2 _ .a .
0, Gaz + k—o‘(z)) (2, k") = 0. (3.39)

z
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The field V#“L(z,k”) can be written as the product of its boundary value at the UV
boundary \A/l?j(k”) and a bulk to boundary propagator, V%(z, k?), i.e.

e (2, k) = VI (RY)V (2, k), (3.40)

where the boundary value acts as the Fourier transform of the source of the vector cur-
rent operator. The bulk to boundary propagator is defined with the boundary value
V4(Lo,k*) = 1 at the UV boundary. Since the boundary value is independent of z it
is clear that the bulk to boundary propagator obeys the same EOM as the field Vlﬁ(z, EY),
ie.

1 k? — ¢

0. (-az n —O‘(z)) Ve(2, k) = 0. (3.41)

z z
To find a unique solution to this equation we do however need another boundary con-
dition. The choice will that the derivative of the function vanishes at the IR boundary,
9. V*(L1,k*) = 0, in accordance to [34]. In the case where a = 1,2,3,8,9,10 we have
a(z) = 0 and an analytical solution can be found in terms of Bessel functions [3]

V) = L G Lo Yo (kL) — Va(KLo) Jo(K L) (342)

However for a = 4,5,6,7 the function o”(z) is generally an even polynomial of degree 4
and no analytical solution exists. We have to rely on numerical solutions.

3.4 The Axial Sector

For the axial sector we have the action

L 1 a a 60‘ z a a
which results in the following EOMs
1 a
™Moy (;(GLA?V — 8NA“L)) + g iz) (O — A%) = 0. (3.44)

The axial part is then similarly to the vector part decomposed in a transverse and longi-
tudinal part and Fourier transformed. This gives for the transverse part an equation of
motion analogous to the transverse part of the vector sector, but with 8%(z) exchanged for
a*(z), ie.

1 k2 — 5&(2) Aa v
0, (;02 + — Al (2, k") = 0. (3.45)
However in the axial sector we are mainly interested in the longitudinal part. Defining
A (z,27) = 0,0"(2,2") gives us the EOMs for the Fourier transforms of ¢°(z,2") and
7z, x") [3,4]

8z (%@zﬁga(il, k}2)> — 6(1_(,2)(&&(% kﬂ) _ 7c‘.a(z7 k2>> -0 (346)

z
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and
k20.0% (2, k?) — B(2)8.7%(2, k?) = 0. (3.47)

The boundary conditions for these equations are ¢?(Lg, k%) = 0 and #%(Lg, k2) = —1 at
the UV boundary and 8.¢%(Ly, k2) = 0 and 9,7%(Ly, k?) = 0 at the IR boundary. These
two equations can also be combined into one equation with the definition y®(k?, 2) =
%@éa(Lo, k?) resulting in

0, (ﬁ%(z)@zy“(z, k2)) + z( 55(1) - 1) Yo (2,k2) = 0. (3.48)

To find the boundary conditions we use the ones we have for equations (3.46)) and (3.47)).
using 9,¢*(Ly, k%) = 0 gives us directly that y*(Ly, k%) = 0. To find another boundary
condition we insert ¢*(Lo, k2) = 0 and 7#%(Lo, k?) = —1 into equation which gives us
0,y*(Lo, k*) = B*(Lo)/Lo. Note also that from equation we can find that y*(z, k?) =
5a—(z)ﬁa(z, k?).

k22

3.5 Normalizable Solutions

The normalizable modes that solve the EOMs correspond to hadrons Eﬂ The modes
must vanish at the UV boundary to keep the action finite. At the IR boundary we keep the
Neumann boundary condition which guarantees that the boundary terms vanish. These
modes can for example be found through the following steps

1. Define a new boundary condition by setting derivative at the UV boundary to a
chosen constant.

2. Solve the EOMs with the two UV boundary conditions as a function of z and k2.

3. Find the values of k? for which the boundary condition at the IR boundary holds,
these are generally an infinite number of discrete values.

4. Normalize the solution for these k2 and thus remove the arbitrariness introduced in
step 1.

What is described here is essentially the shooting method. It was implemented in Mathe-
matica for the numerical calculations performed for this thesis.

The values k2 = m2?, where m¢ is the mass of the relevant hadron. Higher n correspond
to radial excitations, but in the hard wall model these scale as m2* ~ n? which is not
consistent with the measured scaling behaviour m2? ~ n. Physical values for the ground
states can be obtained though.
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3.5.1 The Vector Sector

The normalizable modes of the transverse part of the vector sector corresponds to vector
mesons. Lets define the normalizable modes as 1?(z). The first three are shown in figure
. They obey the orthogonality and normalization condition

| ) = b (3.49)

0

and the boundary conditions 1% (Ly) = 0 and 0,¢%(L;) = 0 We also want and identification
of the nonet, a = 1,2, ..., 10 of vector mesons. The first three, a = 1,2, 3 corresponds to p
mesons, (p™, p~, p°), the next four, a = 4,5,6,7, correspond to K* mesons, (K**, K*~,
K*0, K*%) and a = 8 corresponds to a combination of the w® meson and the ¢ meson or,
if divided, a = 9 corresponds to the ¢ meson and a = 10 to the w® meson.

Already here we can see a problem with the masses for p, ¢ and w’. Since M% = 0 for
a=1,2,3,9,10 the equations become identical for these cases and thus the masses for p,
¢ and w° will also be identical.

One can also find that the bulk to boundary propagator can be written as a sum over

the normalizable modes

a _g5Fr?ng(z)
V (Z,kQ) = w, (350)
where the factor F? is defined as
az,éba(LO)
Fl=—— 3.51
9g5Lo (3:51)

which can be identified as the decay constant of the corresponding meson.

Figure 3.1: first three normalizable modes of ¥. v, (red curve), ¥ (dashed blue curve)
and 13 (dash-dot green curve). The z-axis are in units of L; Taken from [4].
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3.5.2 The Axial Sector

In the axial sector we study the longitudinal part. The transverse part can be dealt
with in the same way as in the vector case. Here the normalizable modes correspond to
pseudoscalar mesons. The first three of our octet, a = 1,2, 3 are the pions, (7*, 7=, %),
and the following four are kaons, (K+, K—, K° K°).

One can go about this defining the normahzable modes for equations ([3.46)) and ( -
as ¢2(z) and #(z) or one for equation (3 as yi(z) = i@ngfl( ). The ﬁrst two modes for
¢4 (z) and 7%(z) are shown in figure The boundary conditions here are ¢%(Ly) = 0 and
#%(Lo) = 0 at the UV boundary and 9,¢%(L;) = 0 and 9,7%(Ly) = 0 at the IR boundary.
The equivalent boundary conditions for y%(z) are y%(L;) = 0 and 0,y%(Lo) = 0.

Since the normalization and orthogonality relation here is given by

5771/!1

|t ) = (352)

one can find a solution for y? with an extra arbitrary boundary condition and then nor-
malize the solution with the previous relation. The solution can be used to set normalized
boundary conditions for the ¢%(z) and #9(z) instead of arbitrary ones to find solutions
which do not require normalizations.

However if we only are interested in the masses we can use equations (3.46)) and ((3.47 -
directly since the masses are independent of the normalization.

Similarity to the vector sector the general solutions can be expressed as sums over the
normalizable modes. For y%(z, k?) we have

. me?ye(Lo)ya(z
Y (2K =) k:2<—:r2a2< ) (3.53)

and for ¢%(z, k?) and 7%(z, k2) we get

(2,k?) = Z g5ma2fa¢a() (3.54)

maQ

and

(z,k?) = Z g5ma2 7 (2) (3.55)

ma2

Where we have used

azéZ<L0)

3.56
g5Lo (3:56)

fi=-

which too can be identified as the decay constant of the corresponding meson.
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0.4+
0.2+

25

g§ _02_\ 0.2

o -0.4-
-0.67 1
0871
-1.0-
-124

Figure 3.2: first two normalizable modes of ¢% and 7% for a = 1,2, 3. ¢{ (upper solid curve,
in blue), ¢$ (dashed blue curve), 7¢ (lower solid curve, in red) and 7§ (dash-dot red curve).
The z-axis are in units of L; and ¢? and 7% are in units of L;'. Taken from [4]

’ Parameter \ Value ‘
Ly (322.47 MeV)~!
my 8.291 MeV
My 188.48 MeV
o (213.66 MeV)?
o (213.66 MeV)?

Table 3.1: Parameter values used in model A1l in [3]

3.6 Previous Results

With the parameter values in table Sven Moller [3] obtained the results in table in
his thesis.

We are however also concerned with the ¢ meson mass. If it is calculated in the same
model as tablewe find, as mentioned before, that the masses for the p, ¢ and w° mesons
are identical. We can also see in the table that m, # mg-. Experimentally though one
finds the approximate relation

My — Mg > Mps — M. (3.57)
Which does not hold under these circumstances.

In an attempt to obtain better agreement with these experimental results, while still
conserving the promising results from others we shall add a couple of terms to the action.
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| observable | sector | a | n [ Model[MeV] | Measured[MeV] |

My pseudoscalar | 1,23 |1 (fit) 139.57

fr pseudoscalar | 1,23 |1 (fit) 92.4 4+ 0.35
My pseudoscalar | 4,5,6,7 | 1 (fit) 495.7

fx pseudoscalar | 4,5,6,7 | 1 103.8 113+ 14
M scalar 456,71 791.0 672

Jr: scalar 456,71 27.6

mp vector 1,23 |1 (fit) 775.49 + 0.34
Vi vector 1,23 |1 329.3 345 + 8[4]
M vector 4,5,6,7 | 1 791.0 893.8

frc vector 456,71 329.7

Ma1 pseudovector | 1,23 |1 1366.2 1230 £+ 40
Va1 pseudovector | 1,2,3 | 1 488.8 433 + 13[4]
Ma1 pseudovector | 4,5,6,7 | 1 1458.1 1272 +£7
Vfal pseudovector | 4,5,6,7 | 1 511.1

Table 3.2: Results in model Al in [3]. The measured values are also taken from [3], but
Originally they come from [11] and [4](where stated). We have also reproduced these
results for the Vector/axial vector and pseudoscalar sections, including the wave functions.

3.7 Additional Terms

The addition we do to the previous action is

Sadd = / d°z,/g Tr { - 4d—;§XXT(FJE4L])\,F(]‘L4)N + Fy FHN) — 2d—g2§XFA<f}VXT FYV|, (3.58)
keeping the SU(3), ® SU(3) g symmetry. Here we have introduced the two new free param-
eters d; and dz. These shall be used to make a better fit to m,. We can also immediately
conclude that neither of these terms has any effect on the vacuum solution.

When evaluating the terms added to the action to second order in fields we will come
across the traces Tr(XoXoTeT?) and Tr(X,T*X,T?). These both evaluate to 0 when a # b
and we can define

1
V(200" = Te(Xo X T°T") (3.59)
and )
575(2)0" = Tr(XoT* XoT"). (3.60)
Writing X explicitly in v, and v, these evaluate to
Tz a=1,2,3
L2 +0?) a=4,56,7
V(z) = f(zq tes) =456, (3.61)
105 a=9
Tz a=10
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and
T2 a=1,23
1
" “U0s a=4,5,6,7
%(2) =915 B . (3.62)
105 a=9
4—111)2 a=10

With these definitions we find the addtional terms to second order as

5 _ a . a
Sadd — / d_xLZ ( dlrh (Z) d2/72 (Z) (aMVﬁ] _ aNV]\(})Q
. z (3.63)

—d 1~ dor@
+ 171 (Z)Z+ 272 (’Z) (aMA?V o 8NA%/[>2>-

A derivation of this can be found in appendix [A]
We now define

W(2) =1+ di7i(2) + dov3 (2) (3.64)
and

Ya(z) =1+ di71(2) — 25 (). (3.65)
To be able to write the full action up to second order in fields as

L Ma2L3
S= /d52< W Jouve — oxvin? + MLy

223
L Me2[3
- Z;Z( >(aMA7V—aNA?V,)2 5,5 (O — A ))
5
L La®
/ P Z( (2 8MV]$—8NVA‘})2+ ;‘g 2(5)1/;32
5

g3~
Lya(2) o s ayz, LB°(2) a
— 4%2 (Om A% — OnAS)” + 22 (O™ — A3y)? ).

From which we can find new slightly different EOMs. Since the boundary terms still vanish
with the same boundary conditions they remain unchanged.

(3.66)

3.7.1 New Vector Sector
In the vector sector we find the EOMs analogous to equation (3.37) to be

L0y, (W( ) ve — an5)> + 2 iz) Ve =o0. (3.67)
From which it follows that the EOMs corresponding to equation ([3.39)) is
@(2)k? —a%(2) ~
az<7v< >a Ve (2 ,k”)) + (’VV( ) . ( )> (2, KY) =0. (3.68)

The derivation can be found in appendix
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3.7.2 New Axial Sector
Similarly to the new EOMs for the vector sector we find the EOMs analogous to (3.44) to

be
B(2)

z

n™MEoN, (”‘T(Z)@LA';V - aNA%)) + (OnT™ — A%) = 0. (3.69)

Not surprisingly we find the EOMs corresponding to equation ({3.45]) to be

az(ﬂ‘@ 0,41, (=, m) + (”f‘(z)kQ - m(z))fimz, k) = 0. (3.70)

z z

As for the transversal the new EOMs in place of (3.46|) and (3.47) is

o.(Ba o)) - P -y 0 )

z

and X
Va(2)k20,0" (2, k*) — B(2)0,7%(2, k*) = 0. (3.72)

If we define y*(z, k*) = %@@a@a(z, k%) we can find the EOMs corresponding to (3.48) as

0. (B%@az(ya(z, k?))) + z( Bf(Qz) _ ﬂl(z>>ya(z, k) = 0. (3.73)

The derivation of these EOMs can be found in appendix [B]
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Results

4.1 Reﬁttlng With d1 and dQ

Keeping the parameters as in table and fitting the calculated masses of the ¢ and K*
mesons to the measured masses by varying d; and dy gave us the results in table [£.1] Note
that increasing my also increases m,.

’ observable ‘ sector ‘ a ‘ n ‘ Model[MeV] ‘ Measured[MeV] ‘

My pseudoscalar | 1,2,3 | 1 135.2 139.57

fr pseudoscalar | 1,2,3 |1 95.35 92.4 +0.35
m pseudoscalar | 4,5,6,7 | 1 477.0 495.7

fx pseudoscalar | 4,5,6,7 | 1 106.7 1134+ 14

m, vector 1,23 |1 861.8 775.49 £ 0.34
M vector 456,71 896.6 893.8

Mg vector 9 1 906.2 1019.455

Table 4.1: Results when fitting the calculated masses of the ¢ and K* mesons to the
measured masses by varying d; and dy. The values obtained for the parameters were
dl = 3.817 and d2 = —6.494.

4.2 Refitting With All Parameters

In an attempt to obtain better results than the ones in the previous section we did a fit
by varying all the free parameters to minimize the square of the relative errors in all the
computed observables. The parameters obtained can be found in table 4.2| and the results

in table [4.3]

29
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Parameter \ Value ‘
L, 3.0978 x 107> MeV !
Mg 9.0395 MeV
M 218.08 MeV
oq (211.05 MeV)?
Os (211.05 MeV)?
dq 7.01974
doy —9.7301

Table 4.2: Parameter values when fitting with all free parameters to obtain a the least
square in the relative errors of the calculated observables.

| observable | sector | a [ n | Model[MeV] | Measured[MeV] |

My pseudoscalar | 1,2,3 | 1 139.0 139.57

fr pseudoscalar | 1,2,3 | 1 95.21 92.4+0.35
meg pseudoscalar | 4,5,6,7 | 1 504.2 495.7

fx pseudoscalar | 4,5,6,7 | 1 108.5 113+ 14

m, vector 1,23 |1 856.3 775.49 +0.34
M vector 456,71 895.4 893.8

Mg vector 9 1 906.8 1019.455

Table 4.3: Results when fitting with all free parameters to obtain a the least square in the
relative errors of the calculated observables.
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Conclusions

We have shown how the calculations of n point functions can be performed with the
AdS/CFT correspondence in a scalar field theory. Both by explicitly taking functional
derivatives and by relating the n point functions to Witten diagrams.

Additionally we tried to improve an existing AdS/QCD model to produce better results
for the mass of the ¢ meson. This was done by introducing two new free parameters through
adding two terms to the action. Although we saw some improvement in the mass of the
¢ and K* mesons it was at the expense of the mass of the p meson. We also encountered
some numerical difficulties which only allowed us to obtain masses for ¢ in a region well
below its experimentally measured mass.

In the first fit we expected to get good values for the ¢ and K* meson masses. Since it
is in general possible to fit two quantities with the use of two free parameters. The reason
why we did not get the correct ¢ mass stems from the fact that for certain values of d; and
dy the functions 7{;, 4(z) changes sign in the z range we are working with. This is a problem
because a sign change in 7y, 4(2) leads to singularities in the solutions to the EOMs and
we found no way to handle this numerically.

The values we found and presented are such that the sign change in 7y, 4(2) falls just
outside the z range. Other values for the parameters would either produce a lower mass
for the ¢ meson or move the sign change of 7y, 4(2) inside the z range. However they could
be varied quite drastically without affecting the masses much and we might have been to
narrow in our search.

In the second fit we tried refit our calculated quantities by varying all free parameters.
That the first fit did not work as we hoped does not imply that an overall fit is unable
produce better values for the observables. The behaviour of 7{, 4(z) changes with m,, m,
and o, ; and we also change the range in which a sign change is not allowed.

Our attempt at an overall fit did however reproduce quite similar values for the original
parameters and the masses. Although the original parameters are slightly different we
can see by comparing to the first fit how little the masses changes with d; and dy. We
have not investigated this thoroughly enough to rule out the possibility that a better fit
can be produced with the parameters in this model. However our results indicate that
the additional terms in the action are not sufficient to produce the ¢ mass while still
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maintaining good values for the other masses.

Since the original plan of the thesis was different much work has been done that is not
presented in the report. For example the form factor f,(q) for K3 [4] was rederived, but
no further numerics were done with it. It is also the reason why the investigation with the
masses is not more extensive.



Appendix A

The New Terms to Second Order

7

In this appendix it is implied that ”=" means equal up to second order in fields.

The purpose of the appendix is to explicitly write the steps that show

(—dy)
2g2

—d
/ d%\/g{( 1) Tr(XXT(FJEf}VF(J‘f)N + FA%F(%;V ) + Te(X Py X EMNY

4g2

d’z 2
= / 102 T 2 = ) Ou Vs = OnVi)? 4 (=i + d) Onr Al — O Aiy)?
5

a

This is done independently for each term. What is left for the reader is to combine the
results of the two sections below.
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A.1 The first term

Rewriting the first term up to second order in fields goes as follows

/ d°z (492 ) VI T (X XT(EFEY + iR FIEY)

5

[ 5 (=d)
B / @ 4g2
X [(Opr(VE + AY) — On (Vi + A (OM (VN 4 ANP) — 9N (VMb 4 AMDY)
+(Oum (Vi — A%) — On (Vi — A3)) (@M (VNP — ANP) — oV (VM0 — AMP))]

5 (—dq a1

- [a xﬁ@ DI
X [(Opr(VE + AY) — On (Vi + A (OM (VN 4 ANP) — 9N (VMb 4 AMDY)

(3M(Vz3 Ay) = On(Viy — Aj)) (@Y (VP — AT — o (VP — AM))]

7
= / 4 2 \/_ Z 3
x[204 (Vg + A‘}V)aM(VN“ + AN — 205 (Vi + A3 )OM (VN 4 AN9)
1420 (Vi — AS)OM (Ve — AND) — 205 (Vi — AG)OM (Ve — AN
(s (=dh) "
N / @ 493 v Z 2
x[4(Op VoM VN — o VEOMVNGY 1 40y, AS0M AN — O AG,0M AN
(—di)
= /d% 102
x[2(0p VoMV — O VEOMVNY) 20N VEONVME — ), VoV VM)
+2(0p A% OM AN — 9y AL,0M AN) 4 2(O A%, 0N AM — 9y, AL ON AM )
_ [ (=dy) 7"
B / @ 493 v Z 2
x[2(0p Vi — On V) (MU Ne — NV May 1 9(9,, A% — Oy AS,) (0™ AN — 9N AMa))
. 5
= /d5x( d21) L— "

4gz 2°

T°T")

4

Z4 a a z a a
X {ﬁ(aMVN — 8NVM)2 + ﬁ(aMAN — 8NAM)2

—dy) L
= / ot 495) ~ DOV = OnVi)® + (O AR — On AGy )
5

a

(A.2)
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A.2 The Second term
Rewriting the second term term up to second order in fields goes as follows

/d5 <2 2>\/_T(XF](W]3,XTF Ny — /d5 (2 2 \/_ZZTrXTaXOT”)

< (Om(Vy — AYy) — O (Vig — A3,)) (@Y (V0 + AN — 3N(VMb +AMY)
5 <_d2) 7(21 a
= /d Xz 9 D) - ;?5 b
><(@M(Vz% — AR) = On(Viy = A)) (@Y (VI + AY) — 9N (VI 4 AMY)) =

/d5 S \/—272

X[On VROV 4 9y VgoM AN — 9y VoV — 9y, VGoT AMe
T 3 T k1
— ARV VN — 9y AR OM AN 4 0y AZON VMY 4 Oy AR O AN
3 z b b
— OV 0M VI — Vi M AN 4 Oy VOV VMY 4 oy Vot AME
T RS T 5
+Ou AG OV 4 Oy AT 0M AN — Oy AG OV VM 4 Gy A 0N AN =

e RS 5 b
’72
[ zmz

x[(Om Vi — aNVM)(anN“ — NV — (9 A — OnAG) (DY AN — 9N AN
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+ (O ViGN AM® — Oy V0N AM®) 1 (05 A% MV — Oy A 0M VYY) =
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X [(On Vi — ONVEN (@M VN — NV MAY _ (5, A% — Oy A%, ) (M AN — N AMAY] =
(_dQ) L V2 2 a a 2 a a
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Appendix B

The New Equations of Motion

In this appendix we explicitly write the steps needed to go from the equations (3.67) and

(3.69) to equations (3.68)), (3.70), (3.71), (3.72) and (3.73).

We suppress the arguments for simplicity.

B.1 The Vector Sector

From the action we get the EOMs

LD, (%@(am . 8NVL“)) + O‘:(Z) Ve =0. (B.1)
By writing N explicitly as v and z we get
0, (%(Z)(awj - 8Vv;)) — 0. <Wf) 0.V — ayv;)> + O‘af) Ve=0 (B2
and
"0, (%('Z)(@Vz — 8ZVA)> + aaz(z) V. =0. (B.3)
Decomposing V' into its longitudinal and transversal part V¥ = V3 + VJj and using

0°Ve =0 gives

a

7V§z) nukaﬂa}\ VaL _ az (/VVZ(Z) az Val) + o z(z) VaL

(B.4)
. az(,YV(Z) . 1/a||> + - (Z) Vl/aH _i_az(’yV(Z)aV‘éa) =0
z z z
and
'yvz(z) n“Aauaz\Vza i «Q Z(Z) Ve — ’YVZ(Z)nuAaMaZV/{l” —0. (B.5)
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Fourier transforming the equations gives

_’YV(Z) k2VVaL _ az(’YV(z) azvyaj_) + Q (Z) Vyaj_
z z z

7%(:) 2 () o
— 82( 8 V”) a ZZ ‘A/Va” - ikuaz <’YVZZ ‘7;) =0
and a a
I ’YVZ( )k2va ( )Va v Z( ) P«)‘k 0 V/\“ = 0. (B7)

Multiplying the first equation with —Zk‘l, makes the transverse parts vanish. The result is
two equations that show that the longitudinal part vanishes independently of the transverse
part. Because of this we know that the opposite also must be true, i.e. the transverse part
vanishes independently of the longitudinal part. Using this we find the EOMs for the
transverse part as the transverse parts in , ie.

0.z, )+ B edy B

z

Which is equation (3.68))

B.2 The Axial Sector

From the action we get the EOMs

L0y (%@(aﬁ;@ - 8NA“L)) .8 aiz) (A% — Oy7) = 0. (B.9)

By writing N explicitly as v and z we get

) < 14 (9, 40 8VA§)> —az(ﬁ‘z(z) (8ZA3—6,,A§)> +6az(z) (A°—9,7%) = 0 (B.10)

and

ﬁaz(z) (Az _ 8Z7Ta) —0. (B.ll)

n"*0, ( Valz )((%A —8ZA,\)> +
By the gauge invariance

Ay = A = A%y — 0N

a a - _ __a a
T =Ty =Ty — A

(B.12)

allows us to set any \*. We set 0,\* = A, and thus effectively setting A, to zero. We also
decompose the A% into its longitudinal and transversal part A% = A2 + A® ol and define
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= 0,¢". Using this together with 0“A%, = 0 we get

aH o

/YAT(Z)nuka#a)\AzL . az (IYA’Z(Z) (azAz/J_)) + /B iz) Az/J_

(B.13)
o.M @a0m) + T @ - ) =0
and . .
- “T(Z)Wa#a@w _p Z(Z>az7ra —0 (B.14)
Fourier transforming these equations gives
_,VA(Z) kQAZ,J_ 8Z<7A(Z> (8 AVJ_)) /8 (Z)AZ/J_
z g < (B.15)
+k:8( qua) § -1 =0
and . .
“T(Z)mzq%a _L Z(z)(?zfr“ = 0. (B.16)

Multiplying the first equation with —ik, /k* makes all the transversal parts vanish. If we
also multiply the second equation with z we get

o.M 0.dm)) - g -7y =0 (B.17)
and R
v4(2)k*0.¢" — 3%(2)0.7* = 0. (B.18)
Which is equations (3.71)) and -
Defining y* = 72( ) Zgb“ gives
0.0~ T (g 70 =0 (B.19)
and
2k*y* — B%(2)0,7* = 0. (B.20)

Multiplying the first equation with z/5%(z) and taking the derivative with respect to z
gives

o, (%@ay) 9" — 7 =0 (B.21)
and
2k — B*(2)0.7% = 0. (B.22)
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Relating an with y® through the definition and 7 with y® through the second equation

o oo ) + (s 1) ¢ o

which is equation (3.73)).
The longitudinal and z part vanishes independently and thus so must the transverse
part. With this we easily find the EOMs from equation (B.15]) as

@C%d@Aﬂ)+ﬁ@W—W@uuzo 520

z

which is equation (3.70]).
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