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Abstract

We study the anti-de Sitter/conformal field theory correspondence (AdS/CFT correspon-
dence) and investigate in a scalar model how n point functions can be calculated through
functional derivatives and how they can be obtained with the use of Witten diagrams
instead.

We also study a previous anti-de Sitter/quantum chromodynamics (AdS/QCD) model
where the mass of the φ meson has not been considered. It turns out to be equivalent
to the mass of the ρ meson. A fact that is not supported experimentally. In an attempt
to obtain better results for the φ meson mass we do a slight modification to the existing
model. However our modifications led to computational difficulties and although some
results could be obtained none agreed well with experimental data.
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Chapter 1

Introduction

The foundation for this model was laid by Maldacena when he conjectured the AdS/CFT
correspondence in 1997 [1]. The main aspect of this AdS/CFT correspondence is that it
connects the calculations done in a four-dimensional gauge theory with those of a higher
dimensional string theory [2].

Since the original conjecture the research has taken two directions. The first one is the
attempts made to formally prove the conjecture, this is beyond the focus of this thesis. The
second is the attempts to expand the conjecture beyond concerning the highly symmetric
conformal field theories to more realistic gauge theories like QCD [2]. It is with this
extended correspondence, AdS/QCD, that we will concern ourselves.

We perform calculations on a classical level in a five dimensional theory and use the
duality to relate the results to observables on the quantum level of a four dimensional
theory. It is done within a already mostly laid framework much of which is present in
an older bachelor thesis by Sven Möller [3]. The reasons for why this formalism might be
preferable to the standard perturbation calculations of QCD is both that these calculations
may be a simpler way to reach the same results, and that one might obtain results that lie
in an energy region where the results are hard to obtain directly in QCD.

In the previous model the ρ meson and the φ meson get the same masses. This is
however not supported by experimental data. In an attempt to obtain better agreement
with experiments we added two terms to the action. It seems though that calculating
better values for the masses this way is difficult.

In Chapter 2 the AdS/CFT correspondence is presented. It begins with an overview of
the AdS space followed by a section on how the correspondence can be stated. It concludes
with a rather lengthy part on how calculations can be done in a scalar theory using Witten
diagrams. The reason behind this part being so extensive is that the original plan was to
use Witten diagrams to calculate four point functions in the actual model.

In Chapter 3 we present the model. The first part of the chapter presents the previously
used action. We also describe how the calculations are performed and the results that have
been obtained previously. the second part focuses on the terms we add to the action and
what consequences those terms have on the calculations.

In Chapter 4 we present our results. We have results from only fitting the new free
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2 CHAPTER 1. INTRODUCTION

parameters to the φ and K∗ masses and results from trying to refit all the free parameters
of the model with a number of observables.

In Chapter 5 we present our conclusions and discuss our results.



Chapter 2

The Correspondence

2.1 Anti-de Sitter Space

The metric of the AdS5 × S5 space is given by [2]

ds2 =
u2

L2
((dx0)2 − (dx1)2 − (dx2)2 − (dx3)2)− L2

u2
du2 − L2dΩ5. (2.1)

Where the x0, x1, x2 and x3 are the standard four-dimensional spacetime coordinates, u
is the fifth coordinate for the AdS5 and dΩ5 is the five-dimensional solid angle on the
corresponding hypersphere and L is the curvature radius.

The calculations we shall perform takes place in AdS5 space and we will ignore the
L2dΩ5 part of the metric in the remainder of the report.

With the coordinate transformation u = 1/z the AdS5 metric can be shown to be
conformally equivalent to the flat five-dimensional Minkowski spacetime [2,3]. The metric
becomes

ds2 =
L2

z2
((dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 − dz2). (2.2)

The papers concerning the anti-de Sitter space have large differences in notation. There-
fore we briefly state a few definitions used throughout the text. As usual greek letters (i.e.
µ, ν,...) as indices will run through 0, 1, 2 and 3. Set z = x5 and let capital latin letters
(i.e. M, N,...) as indices run through the usual four and the additional fifth. I.e. we can
write the metric as

ds2 = gMNdxMdxN , (2.3)

were we have introduced the metric tensor of the anti-de Sitter space

gMN =
L2

z2


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 =
L2

z2
ηMN . (2.4)
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4 CHAPTER 2. THE CORRESPONDENCE

gMN is required to have this form for equations (2.2) and (2.3) to be equivalent. This
tensor lowers indices as usual and to its covariant counterpart that raises indices can be
obtained through the identity gMNg

NL = δLM . Where the Kronecker delta has the form
δLM = diag(1, 1, 1, 1, 1). We have also introduced the shorthand notation ηMN = ηMN =
diag(1,−1,−1,−1,−1), which however is not a proper tensor. Another convention is the
determinant of the metric tensor

g = det(gMN) =
L10

z10
. (2.5)

However at many times it is preferable to separate the standard coordinates and the
z-coordinate. In those cases, as stated above, we use the standard conventions with Greek
letters i.e. write the metric as

ds2 =
L2

z2
(ηµνdx

µdxν − dz2), (2.6)

with the standard flat Minkowski metric ηµν = diag(1,−1,−1,−1).
In this model the z-coordinate represents an inverse energy scale [2]. Low z corresponds

to high energy and a high z to low energy. In particular the boundary z = 0 corresponds
to infinite energies. This naturally produces some divergences in the calculations and a
ultraviolet (UV) cut-off L0 has to be introduced. The expressions containing L0 are implied
to be taken in the limit where L0 goes to zero.

We are doing these calculations in the so called hard-wall model, in which an Infra-red
(IR) cut-off is introduced in addition to the UV cut-off. This cut-off, L1, corresponds to
the IR cut-off in QCD, ΛQCD, and simulates confinement [4].

2.2 Formulation of the Correspondence

Now it is time to shed light on how the correspondence is applied. To make use of it we need
to have an explicit mathematical formulation. Instead of the previous broad statements
about how the string theory side is related to the gauge theory side, here we will look
closely at exactly which quantities are related.

In QCD we have sought after quantities, e.g. masses, decay constants, form factors.
Within the theory these quantities are given as expectation values of different operators.
However via the correspondence these operators can be related to fields in the the AdS5

space. The calculations can then be performed in 5 dimensions with the fields and the
results are then translated back to the language of QCD.

To make this correspondence explicit we have to assume a field theory operator O(xµ)
and its related field φ(xµ, z) in AdS5 space. The field is the bulk field, which is related to
the boundary field through

φ(xµ, 0) = z4−∆φ0(xµ). (2.7)

Where ∆ is the conformal dimension of the field.
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Now if we call the string action of the bulk field S[φ(xµ, z)] and define the functional

Z = exp(S[φ(xµ, 0)]), (2.8)

then we can state the correspondence as [2]

Z =

〈
T exp

∫
d4xφ0(xµ)O(xµ)

〉
field theory

. (2.9)

I.e. from knowing the string action for the fields coupled to the operators we arrive at a
generating functional for the field theory side. We can see from the right hand side that
the boundary fields, φ(xµ), is the acting as the source for the operators, O(xµ).

To achieve something useful from this, an expectation value that can be related to a
measurable quantity, we take the repeated functional derivative with respect to the source
field, φ0(xµ). The n-point correlator is given by the n:th functional derivative of Z. We
have

δnZ

δφ0(xµ1)...δφ0(xµn)
= 〈TO(xµ1)...O(xµn)〉field theory . (2.10)

To achieve realistic results that are related to QCD we will naturally have to include more
than a single scalar field in our theory. Although first we will look at the example with
a single scalar field to show how to calculate physical observables from the 5 dimensional
theory.

2.3 A Scalar Example

We consider the action for a massive scalar field on AdS5. It is given by [2] (with an overall
constant 1/2 instead of 1/g2

s and L = 1 for simplicity.)

(2.11)
S =

∫
d5x
√
g

[
gMN∂Mφ(z, x)∂Lφ(z, x)

2
− m2

2
(φ(z, x))2

]
=

∫
d5x

1

z3

[
ηML∂Mφ(z, x)∂Lφ(z, x)

2
− m2

2z2
(φ(z, x))2

]
.

Were we use the shorthand notation φ(z, xµ) = φ(z, x).
We are interested in the 2-point function in momentum space on the four dimensional

boundary theory. To achieve this we do a expansion in z-independent Fourier modes in
accordance to

φ(z, x) =

∫
d4k

(2π)4
e−ik·xfk(z)φ0(k), (2.12)

where φ0(k) is the Fourier transform of the boundary field. We take the functional deriva-
tive with respect to this boundary field in order to compute n-point functions as shown in
equation (2.10).
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The resulting action is

(2.13)

S =
1

2

∫
d5x

∫
d4k

(2π)4

∫
d4k′

(2π)4

1

z3

[
− k · k′fk(z)fk′(z)

− ∂zfk(z)∂zfk′(z)− m2

z2
fk(z)fk′(z)

]
φ0(k)φ0(k′)e−ix·(k+k′)

=
1

2

∫ L1

L0

dz

∫
d4k

(2π)4

∫
d4k′

(2π)4

1

z3

[
k2fk(z)fk′(z)− ∂zfk(z)∂zfk′(z)

− m2

z2
fk(z)fk′(z)

]
φ0(k)φ0(k′)(2π)4δ(4)(k + k′).

Before we go any further we should look into the equation of motion (EOM) which will
give us an expression for fk(z). The EOM can be found from the original action, equation
(2.11), to be [

ηML∂L

(
1

z3
∂M

)
+
m2

z5

]
φ(z, x) = 0. (2.14)

By dividing M into indices z and µ we see that the equation reads[
∂µ∂

µ

z3
− ∂z

(
1

z3
∂z

)
+
m2

z5

]
φ(z, x) = 0 (2.15)

and by applying the four dimensional Fourier transform we arrive at[
−k2

z3
− ∂z

(
1

z3
∂z

)
+
m2

z5

]
fk(z)φ0(k) = 0. (2.16)

Since φ0(k) is independent of z we find that fk(z) must solve this equation regardless of
the value of φ0(k) and we find an equation for fk(z)

f ′′k (z)− 3

z
f ′k(z) +

(
k2 − m2

z2

)
fk(z) = 0. (2.17)

To proceed we integrate the term containing derivatives with respect to z by parts,
which gives us

(2.18)

S =

[
1

2

∫
d4k

(2π)4

∫
d4k′δ(4)(k + k′)φ0(k)φ0(k′)

fk′(z)∂zfk(z)

z3

]L1

L0

+
1

2

∫ L1

L0

dz

∫
d4k

(2π)4

∫
d4k′

1

z3

[
∂z∂zfk(z)− 3

z
∂zfk(z)

+ k2fk(z)− m2

z2
fk(z)

]
fk′(z)φ0(k)φ0(k′)δ(4)(k + k′).
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The expression within the square brackets in the second term is 0 by the EOM and thus
the whole term evaluates to 0 and we are left with the boundary term.

To compute the 2-point function we take two functional derivatives of the generating
functional, Z, with respect to the boundary field φ0(x). However from the chain rule we
can see that we just get Z times the functional derivative of the action. This expression is
then evaluated at φ0 = 0 giving Z = 1 and it is sufficient to take the functional derivative
of the action. Since we are interested in the 2-point function in momentum space we also
have to Fourier transform the expression.

(2.19)
〈O(p)O(p′)〉 =

∫
d4x

∫
d4x′eix·peix

′·p′〈O(x)O(x′)〉

=

∫
d4x

∫
d4x′eix·peix

′·p′ δ
2S[φ0(x′′)]

δφ0(x)δφ0(x′)
.

When we expanded φ0(x′′) in Fourier modes the explicit dependence of φ0(x′′) was elim-
inated from the action. However we can treat action as a functional of the the Fourier
transform φ0(k) which in turn we treat as a functional of φ0(x′′). Then we apply the chain
rule for functional derivatives and get

(2.20)
δ2S[φ0(k)[φ0(x′′)]]

δφ0(x)δφ0(x′)
=

δ

δφ0(x)

(∫
d4q′

δS[φ0(k)]

δφ0(q′)

δφ0(q′)[φ0(x′′)]

δφ0(x′)

)
,

where the last functional derivative evaluates as

δφ0(q′)[φ0(x′′)]

δφ0(x′)
=

δ

δφ0(x′)

∫
d4x′′e−iq

′·x′′φ0(x′′) = e−iq
′·x′ . (2.21)

Using this we get

(2.22)

δ2S[φ0(k)[φ0(x′′)]]

δφ0(x)δφ0(x′)
=

∫
d4q′e−iq

′·x′ δ

δφ0(q′)

(
δS[φ0(k)[φ0(x′′)]]

δφ0(x)

)
=

∫
d4q′e−iq

′·x′ δ

δφ0(q′)

(∫
d4q

δS[φ0(k)]

δφ0(q)

δφ0(q)[φ0(x′′)]

δφ0(x)

)
=

∫
d4q

∫
d4q′e−iq

′·x′e−iq·x
(

δ2S[φ0(k)]

δφ0(q)δφ0(q′)

)
.

Where the functional derivative evaluates as

δ2S[φ0(k)]

δφ0(q)δφ0(q′)
=

δ2

δφ0(q)δφ0(q′)

[
1

2

∫
d4k

(2π)4

∫
d4k′δ(4)(k + k′)φ0(k)φ0(k′)

fk′(z)∂zfk(z)

z3

]L1

L0

=

[
1

(2π)4
δ(4)(q + q′)

fq′(z)∂zfq(z)

z3

]L1

L0

,

(2.23)
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giving

δ2S[φ0(x′′)]

δφ0(x)δφ0(x′)
=

∫
d4q

∫
d4q′e−iq

′·x′e−iq·x

[
1

(2π)4
δ(4)(q + q′)

fq′(z)∂zfq(z)

z3

]L1

L0

. (2.24)

Which we can insert in the expression for the two point correlator to give

〈O(p)O(p′)〉 =

∫
d4x

∫
d4x′

∫
d4q

∫
d4q′eix·qeix

′·q′eix·peix
′·p′

×

[
1

(2π)4
δ(4)(q + q′)

fq′(z)∂zfq(z)

z3

]L1

L0

=

∫
d4q

∫
d4q′δ(4)(p+ q)δ(4)(p′ + q′)(2π)8

[
1

(2π)4
δ(4)(q + q′)

fq′(z)∂zfq(z)

z3

]L1

L0

=

[
(2π)4δ(4)(p+ p′)

fp′(z)∂zfp(z)

z3

]L1

L0

.

(2.25)

Since we can see from the EOM that fp only depends on p2 and thus f−p = fp. At the IR
boundary we either have L1 = ∞ and fp(L1) = ∂zfp(L1) = 0 or we have a finite L1 with
the boundary condition chosen as ∂zfp(L1) = 0 to reduce the interference of the boundary.

either way the expression also vanishes at the IR boundary so we get

〈O(p)O(p′)〉 = −(2π)4δ(4)(p+ p′)
fp′(z)∂zfp(z)

z3

∣∣∣∣∣
L0

. (2.26)

2.4 Witten Diagrams

The previous example shows how all n-point functions in principle can be derived. It
is however a long and tedious procedure, especially when going to higher n. Even with
some shortcuts that were not taken in the explicit example above the calculations become
gruesome. Luckily the calculations can be simplified with the use of Witten diagrams.
However to understand the underlying principles we must perform a couple more explicit
calculations where we include an interaction. For simplicity only a φ3 term is included.

If we would have used the same procedure as presented here in a four dimensional
theory we would have obtained all tree level Feynman diagrams in the end.

2.4.1 Iterative Solution

Consider now the action where an interaction term has been added

S =

∫
d5x
√
g

[
gMN∂Mφ(z, x)∂Lφ(z, x)

2
− m2(φ(z, x))2

2
− b

6
(φ(z, x))3

]
. (2.27)



2.4. WITTEN DIAGRAMS 9

The EOM becomes

1
√
g
∂M(gML√g∂Lφ(z, x)) +m2φ(z, x) = −1

2
b(φ(z, x))2, (2.28)

where we want φ(L0, x) = φ0(x).
We can identify the Laplace operator 1√

g
∂M(gML√g∂L) = ∇2 and write the equation

more conveniently

(∇2 +m2)φ(z, x) = −1

2
b(φ(z, x))2. (2.29)

This equation has no simple solution and we will solve it iteratively, as done in [10].
We start with solving

(∇2 +m2)φ′(z, x) = 0. (2.30)

with boundary condition φ′(L0, x) = φ0(x). We do so by defining a bulk to boundary
propagator K(z, x, x′) which satisfies

(∇2 +m2)K(z, x, x′) = 0, (2.31)

K(L0, x, x
′) = δ(4)(x− x′) (2.32)

and write the solution as

φ′(z, x) =

∫
d4x′K(z, x, x′)φ0(x′). (2.33)

then we insert this solution on the right hand side of the EOM and solve for φ′′(z, x)

(∇2 +m2)φ′′(z, x) = −1

2
b(φ′(z, x))2, (2.34)

with boundary condition φ′′(L0, x) = 0. To solve this we define a bulk to bulk propagator
G(z, z′, x, x′) that satisfies

(∇2 +m2)G(z, z′, x, x′) =
δ(z − z′)δ(4)(x− x′)

√
g

, (2.35)

G(L0, z
′, x, x′) = 0. (2.36)

With which we can write the solution as

φ′′(z, x)

= − b
2

∫
d5x′
√
gG(z, z′, x, x′)(φ′(z′, x′))2

= − b
2

∫
d5x′
√
gG(z, z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)

∫
d4x′′′K(z′, x′, x′′′)φ0(x′′′).

(2.37)
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Now the solution up to O(φ2
0) can be written as φ(2)(z, x) = φ′(z, x) + φ′′(z, x)

In the next iteration we get φ′′′(z, x) which solves

(∇2 +m2)φ′′′(z, x) = − b
2

(φ′(z, x) + φ′′(z, x))2, (2.38)

with φ′′′(L0, x) = 0. We can immediately write down the solution as

(2.39)φ′′′(z, x) = − b
2

∫
d5x′
√
gG(z, z′, x, x′)(φ′(z, x) + φ′′(z, x))2

= − b
2

∫
d5x′
√
gG(z, z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)

∫
d4x′′′K(z′, x′, x′′′)φ0(x′′′)

+ b2

∫
d5x′
√
gG(z, z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)

×
∫

d5x′′′
√
gG(z′, z′′′, x′, x′′′)

∫
d4x(4)K(z′′′, x′′′, x(4))φ0(x(4))

∫
d4x(5) K(z′′′, x′′′, x(5))φ0(x(5))

+O(φ4
0).

Where we stop at order three since φ′′′(z, x) contains some but not all contributions at
the fourth order. the solution up to third order can now be written φ(3)(z, x) = φ′(z, x) +
φ′′′(z, x). In general the solution to n:th order is φ(n)(z, x) = φ′(z, x) + φ(n)(z, x) where
φ(n)(z, x) solves

(∇2 +m2)φ(n)(z, x) = − b
2

(φ′(z, x) + φ(n−1)(z, x))2, (2.40)

with φ(n)(L0, x) = 0.

2.4.2 Relationship Between G and K

To find a relationship between the bulk to bulk propagator and the bulk to boundary
propagator we apply Green’s second identity∫

d5x
√
g(G(z, z′, x, x′)(∇2 +m2)K(z, x, x′′)−K(z, x, x′′)(∇2 +m2)G(z, z′, x, x′))

=

∫
d5x
√
g(G(z, z′, x, x′)∇2K(z, x, x′′)−K(z, x, x′′)∇2G(z, z′, x, x′))

=

∫
d4x
√
γ ×

[
(G(z, z′, x, x′)nM∂MK(z, x, x′′)−K(z, x, x′′)nM∂MG(z, z′, x, x′))

]z=L1

z=L0

(2.41)

where γ is the determinant of the boundary metric and nM is the unit vector normal to
the boundary and directed outwards. Using the defining equations of the propagators the
left hand side evaluates to

LHS =

∫
d5x
√
g

(
G(z, z′, x, x′)× 0−K(z, x, x′′)

δ(4)(x− x′)δ(z − z′)
√
g

)
= −K(z′, x′, x′′).

(2.42)



2.4. WITTEN DIAGRAMS 11

The right hand side vanishes at the IR boundary, L1, and using the defining boundary
values for the propagators it evaluates to

(2.43)RHS = −
∫

d4x
√
γ × (0× nM∂MK(z, x, x′′)− δ(4)(x− x′′)nM∂MG(z, z′, x, x′)|z=L0)

=
√
γnM∂MG(z, z′, x′′, x′)|z=L0 .

Combining this gives the relation

K(z′, x′, x′′) = −√γnM∂MG(z, z′, x′′, x′)|z=L0 . (2.44)

2.4.3 3 point function

Now we can reinsert the solution into the action to calculate the 3-point function. Before
doing that we shall integrate it by parts to obtain

S =

∫
d4x
√
γ

[
φ(z, x)nM∂Mφ(z, x)

2

]z=L1

z=L0

+

∫
d4x

∫
dz
√
g

[
− ∇

2φ(z, x)

2
− m2φ2

2
− b

6
φ3

]
=

∫
d4x
√
γ

[
φ(z, x)nM∂Mφ(z, x)

2

]z=L1

z=L0

+ b

∫
d4x

∫
dz
√
g

(
1

4
− 1

6

)
(φ(z, x))3.

(2.45)

We only need to expand the action to third order in φ0 since we want the three point
function. The only way to achieve this in the bulk term is to expand each of the three
fields to first order

S(3)
Bulk = b

∫
d4x

∫
dz
√
g

(
1

4
− 1

6

)
×
∫

d4x′φ0(x′)K(z, x, x′)

∫
d4x′′φ0(x′′)K(z, x, x′′)

∫
d4x′′′φ0(x′′′)K(z, x, x′′′).

(2.46)

The boundary term is however not quite so straightforward. In the IR boundary it vanishes
but we must still evaluate it in the UV boundary. Using φ(L0, x) = φ0(x) we find that the
other factor involving φ(z, x) must be expanded to second order in φ0 to give a total order
of three. Using our expansion for φ(z, x) , equation (2.37), gives us

−√γnM∂Mφ(2)(z, x)|z =L0

= − b
2

∫
d4x′

∫
dz′
√
g(−√γnM∂M(z, z′, x, x′))|z=L0

×
∫

d4x′′φ0(x′′)K(z′, x′, x′′)

∫
d4x′′′φ0(x′′′)K(z′, x′, x′′′)

= − b
2

∫
d4x′

∫
dz′K(z′, x, x′)

∫
d4x′′φ0(x′′)K(z′, x′, x′′)

∫
d4x′′′φ0(x′′′)K(z′, x′, x′′′),

(2.47)
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where we used the relation between K(z′, x, x′) and G(z, z′, x, x′). If we insert this in the
boundary term and relabel the variables x′ ↔ x and z′ ↔ z we get the boundary term of
order three in φ0

(2.48)
S(3)
boundary = − b

4

∫
d4x

∫
dz
√
g

∫
d4x′φ0(x′)K(x, x′, z)

×
∫

d4x′′φ0(x′′)K(x, x′′, z)

∫
d4x′′′φ0(x′′′)K(x, x′′′, z).

Adding this up with the bulk term gives the total third order contribution

(2.49)

S(3) = S(3)
Bulk + S(3)

boundary

= − b
6

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d4x′′′K(x, x′, z)

×K(x, x′′, z)K(x, x′′′, z)φ0(x′)φ0(x′′)φ0(x′′′).

The three point function is now obtained by taking three functional derivatives of the
action with respect to φ0

(2.50)
〈T (O(x1)O(x2)O(x3))〉 =

δ3S
δφ0(x1)δφ0(x2)δφ0(x3)

= −b
∫

d4x

∫
dz
√
gK(x, x1, z)K(x, x2, z)K(x, x3, z),

where the factor 1/6 goes away since there are 6 ways to match up x′, x′′, x′′′ with x1, x2, x3.
This result can however be directly obtained from the diagram in figure 2.1.

φ0(x1)

φ0(x2)

φ0(x3)(x, z)

Figure 2.1: Witten diagram for the three point function

by

1. multiply a bulk to boundary propagator for each line that ends at the boundary (with
a dot).

2. multiply a bulk to bulk propagator for each line with both ends in the bulk (none
present here).
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3. add a factor −b for each vertex.

4. integrate over vertex positions with
∫

d5x
√
g.

We are however often interested in the momentum space n point function, by which we
mean momentum space for the first four coordinates and position space for z. To obtain
these there are analogous rules for the diagrams in momentum space. To show an example
we Fourier transform the three point function

〈O(p1)O(p2)O(p3)〉 =

∫
d4x1

∫
d4x2

∫
d4x3e

ip1·x1eip2·x2eip3·x3〈T (O(x1)O(x2)O(x3))〉

= −b
∫

d4x

∫
dz
√
g

∫
d4x1

∫
d4x2

∫
d4x3e

ip1·x1eip2·x2eip3·x3

×K(x, x1, z)K(x, x2, z)K(x, x3, z).
(2.51)

This may not seem straightforward at first to evaluate, but the bulk to boundary prop-
agators only depend on the distance between its two x arguments [10] so with the right
variable substitution the integrals are easily evaluated.

〈O(p1)O(p2)O(p3)〉 = −b
∫

d4x

∫
dz
√
g

∫
d4x1

∫
d4x2

∫
d4x3e

ip1·x1eip2·x2eip3·x3

×K(x1 − x, z)K(x2 − x, z)K(x3 − x, z)

=


u = x1 − x
v = x2 − x
w = x3 − x


= −b

∫
d4x

∫
dz

∫
d4u

∫
d4v

∫
d4weix·(p1+p2+p3)eip1·ueip2·veip3·w

×√gK(u, z)K(v, z)K(w, z)

= −b(2π)4δ(4)(p1 + p2 + p3)

∫
dz
√
gKp1(z)Kp2(z)Kp3(z).

(2.52)

If we define the Fourier transform of K(u, z) as

Kp(z) =

∫
d4ueip·uK(u, z). (2.53)

This expression can be found from the diagram in figure 2.2
with the rules

1. multiply a momentum space bulk to boundary propagator for each line that ends at
the boundary (with a dot).

2. multiply a momentum space bulk to bulk propagator for each line with both ends in
the bulk (none present here).
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φ0(p1)

φ0(p2)

φ0(p3)z

Figure 2.2: Witten diagram for the three point function in momentum space

3. add a factor −b for each vertex.

4. add a factor (2π)4δ(4)(
∑

i pi)

5. integrate over vertex positions in the z-direction with
∫

dz
√
g.

To evaluate this expression further we need to find the momentum space bulk to bound-
ary propagators. It can of course be done by taking the long route and finding the ex-
pression in position space and Fourier transforming. However it is easier to transform the
equation it satisfies and solve directly in momentum space. Since the bulk to bulk propa-
gator satisfies almost the same equation we will also find its equation in momentum space
with only a little more effort.

Note that equation (2.31) can be written as

[−z2∂z∂z + 3z∂z + z2∂µ∂
µ +m2]K(w, z) = 0. (2.54)

Fourier transforming the left hand side gives us

(2.55)LHS =

∫
d4weip·w[−z2∂z∂z + 3z∂z + z2∂µ∂

µ +m2]K(w, z)

= [−z2∂z∂z + 3z∂z − z2p2 +m2]Kp(z),

while the right hand side is still 0 after a transform. The right hand side for equation
(2.35) is however nonzero. by taking the transform we get

RHS =

∫
d4weip·wz5δ(4)(w)δ(z − z′) = z5δ(z − z′). (2.56)

giving us the two equations in momentum space as[
− ∂z∂z +

3

z
∂z − p2 +

1

z2
m2

]
Kp(z) = 0 (2.57)

and [
− ∂z∂z +

3

z
∂z − p2 +

1

z2
m2

]
Gp(z, z

′) = z3δ(z − z′), (2.58)
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where Gp(z, z
′) is the Fourier transform of G(w, z, z′). The boundary conditions can also

be transformed, which gives
Kp(L0) = 1 (2.59)

and
Gp(L0, z

′) = 0. (2.60)



Chapter 3

The Model

The action we are going to work with here is defined to correlate to a three flavoured
version of QCD. First we will present the action used in [3,4] and some results obtained
from it. Then we will add a couple of terms and work out the consequences in an attempt
to improve the results.

To build up this theory we must incorporate some relevant operators. we start with
defining a left/right-handed vector containing the three lightest quark flavours: up, down
and strange.

qL,R =

ud
s


L,R

. (3.1)

This together with the matrices T a related to the Gell-Mann matrices λa through T a = λa/2
allows us to express the relevant operators. These matrices naturally share the following
two properties with the Gell-Mann matrices

Tr(T aT b) =
1

2
δab (3.2)

and

[T a, T b] = ifabcT c. (3.3)

We are interested in the current operators JaLµ = q̄LγµT
aqL and JaRµ = q̄RγµT

aqR. We
also want the quark bilinear q̄LqR. To make use of the correspondence we need the fields
in AdS5 space related to these operators. These are found to be the following [3,5,12,13]

JaLµ ←→ LaM(xµ, z), (3.4)

JaRµ ←→ Ra
M(xµ, z) (3.5)

and

q̄LqR ←→
2

z
X(xµ, z). (3.6)

16
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With these fields we can write down the action that was used in [3,4]. They used the
following action with a 5 dimensional SU(3)L ⊗ SU(3)R local flavour symmetry

(3.7)S =

∫
d5x
√
gTr

[
(DMX)†(DMX) +

3

L2
X†X − 1

4g2
5

(F
(L)
MNF

MN
(L) + F

(R)
MNF

MN
(R) )

]
where we have to keep in mind that the curvature radius, L, is 1 in [4].

To explain the action we start with the definitions for the field strengths

F
(L)
MN = ∂MLN − ∂NLM − i[LM , LN ] (3.8)

and similarly
F

(R)
MN = ∂MRN − ∂NRM − i[RM , RN ]. (3.9)

where LM and RM are related to the fields dual to the operators through

LM = T aLaM (3.10)

and
RM = T aRa

M . (3.11)

It is also important for the future to state the relations between left/right-handed and the
vector, VM , and axial, AM , fields. We will follow [3,4] and use

LM = VM + AM (3.12)

and
RM = VM − AM . (3.13)

They are not of great importance right now, but will come in handy when discussing
the equations of motion. The change from left/right-handed to vector and axial makes it
possible to separate the equations of motion in an axial part and a vector part. Something
that is not possible for the left and right handed fields. These are also the combinations
that will give the mass eigenstates.

To completely understand the action we must also have the expression for the covariant
derivative DM which is the source of the interactions between the scalar field X and the
gauge fields LM and RM . It is given by

DMX = ∂MX − iLMX + iXRM . (3.14)

With this foundation laid down it is time to investigate the equations of motions.

3.1 The Vacuum Solution

The X field can be expanded as [4]

X(xµ, z) = eiπ
a(xµ,z)TaX0(z)eiπ

a(xµ,z)Ta , (3.15)
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where we have introduced the pion field π = πaT a. In a flavour symmetric world the X0(z)
is a multiple of the unit matrix. Hence it would commute with the exponential functions
and X could be written as

X(xµ, z) = e2iπa(xµ,z)TaX0(z). (3.16)

This form has sometimes been used anyway [6,7], but we will follow [3,4] and not let X
commute with the exponential. We will however keep isospin symmetry i.e. the up and
down quark masses are interchangeable.

The vacuum expectation value is the solution to the EOMs with all fields but X0(z)
set to zero. By setting all fields but X0(z) in the action, equation (3.7), we arrive at

S =

∫
d5x
√
gTr

[
(∂zX0)†(∂zX0) +

3

L2
X†0X0

]
. (3.17)

This can then be divided into separate equations of motions for the for the different elements
of X0(z) referred to as X0ij(z). The EOMs can be solved yielding [3,4]

2X0ij(z) = vij(z) = ζMijz +
1

ζ
Σijz

3, (3.18)

where we like [3,4] have introduced the rescaling parameter ζ =
√
Nc/2π as advocated by

[8,12]. In the previous expression we also introduced

M =

mq 0 0
0 mq 0
0 0 ms

 (3.19)

and

Σ =

σq 0 0
0 σq 0
0 0 σs

 . (3.20)

M is the quark mass matrix with the up and down quark mass mq and the strange quark
mass ms. Σ is related to the quark condensate.

If we define

vq(z) = ζmqz +
1

ζ
σqz

3 (3.21)

and

vs(z) = ζmsz +
1

ζ
σsz

3. (3.22)

then the vacuum solution can be written as

2X0(z) = v(z) =

vq 0 0
0 vq 0
0 0 vs

 . (3.23)
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3.2 The Equations of Motion

With that done we can start looking at the EOMs for the A, V and π fields. However
to have a chance of obtaining any equations we have to expand the exponential factors
and then limit ourselves to second order in the fields, which will be sufficient to obtain the
masses and wave functions to the order we work in.

We will also explicitly write the summation over the index in T a. By doing so we find
ourselves with expressions of the sort Tr([T a, X0][T b, X0]) and Tr({T a, X0}{T b, X0}). Since
these evaluate to 0 if a 6= b we define

1

2
Ma

V
2δab = −Tr([T a, X0][T b, X0]) (3.24)

and
1

2
Ma

A
2δab = Tr({T a, X0}{T b, X0}). (3.25)

Writing X0 explicitly in vq and vs these evaluate to

Ma
V

2 =


0 a = 1, 2, 3
1
4
(vs − vq)2 a = 4, 5, 6, 7

0 a = 8

(3.26)

and

Ma
A

2 =


v2
q a = 1, 2, 3

1
4
(vs + vq)

2 a = 4, 5, 6, 7
1
3
(vq + 2vs)

2 a = 8

. (3.27)

To be able to calculate mφ we must split the eighth component, I.e T 8, in two. For
convenience we call them T 9 and T 10 and define them, for later use, as

T 9 =
1√
2

0 0 0
0 0 0
0 0 1

 (3.28)

and

T 10 =
1

2

1 0 0
0 1 0
0 0 0

 . (3.29)

T 9 corresponds to the φ meson and T 10 to the ω0 meson. For these the associated Ma
V,A

2

are

Ma
V

2 =

{
0 a = 9

0 a = 10
(3.30)

and

Ma
A

2 =

{
v2
s a = 9

v2
q a = 10

. (3.31)
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With these definitions we find that the resulting action is [3,4]

(3.32)
S =

∫
d5x

∑
a

(
− L

4g2
5z

(∂MV
a
N − ∂NV a

M)2 +
Ma

V
2L3

2z3
V a
M

2

− L

4g2
5z

(∂MA
a
N − ∂NAaM)2 +

Ma
V

2L3

2z3
(∂Mπ

a − AaM)2

)
,

where the square of a field means

V a
M

2 = ηMM ′V a
MV

a
M ′ =

L2

z2
gMM ′V a

MV
a
M ′ =

L2

z2
V a
MV

Ma. (3.33)

To simplify even further we will for also define

αa(z) =
g2

5M
a
V

2L2

z2
(3.34)

and

βa(z) =
g2

5M
a
A

2L2

z2
. (3.35)

3.3 The Vector Sector

With these recent definitions we can write the part of the action that is quadratic in the
vector field as

SV =

∫
d5x

L

2g2
5

∑
a

(
− 1

2z
(∂MV

a
N − ∂NV a

M)2 +
αa(z)

z
V a
M

2

)
. (3.36)

From which we can find the EOMs for the vector field [3,4]

ηML∂M

(
1

z
(∂LV

a
N − ∂NV a

L )

)
+
αa(z)

z
V a
N = 0. (3.37)

The first four components of the vector field, Vµ(z, xν), can be separated into a transversal
part, Vµ⊥(z, xν), and a longitudinal part , Vµ‖(z, x

ν), by

Vµ(z, xν) = Vµ⊥(z, xν) + Vµ‖(z, x
ν). (3.38)

Where we note that the transversal part satisfies ∂µVµ⊥(z, xν) = 0. We also transform

the equation in the first four components by the Fourier transform defined as f̂(z, kν) =∫
d4xeiηνµk

νxµf(z, xµ) on a general function f(z, xµ). With this done we can find the EOMs
for the Fourier transformed transverse part of V a

µ as [3,4]

∂z

(
1

z
∂z +

k2 − αa(z)

z

)
V̂ a
µ⊥(z, kν) = 0. (3.39)
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The field V̂ a
µ⊥(z, kν) can be written as the product of its boundary value at the UV

boundary V̂ 0a
µ⊥(kν) and a bulk to boundary propagator, Va(z, k2), i.e.

V̂ a
µ⊥(z, kν) = V̂ 0a

µ⊥(kν)Va(z, k2), (3.40)

where the boundary value acts as the Fourier transform of the source of the vector cur-
rent operator. The bulk to boundary propagator is defined with the boundary value
Va(L0, k

2) = 1 at the UV boundary. Since the boundary value is independent of z it
is clear that the bulk to boundary propagator obeys the same EOM as the field V̂ a

µ⊥(z, kν),
i.e.

∂z

(
1

z
∂z +

k2 − αa(z)

z

)
Va(z, k2) = 0. (3.41)

To find a unique solution to this equation we do however need another boundary con-
dition. The choice will that the derivative of the function vanishes at the IR boundary,
∂zVa(L1, k

2) = 0, in accordance to [3,4]. In the case where a = 1, 2, 3, 8, 9, 10 we have
αa(z) = 0 and an analytical solution can be found in terms of Bessel functions [3]

Va(z, k2) =
z

L0

J1(kz)Y0(kL1)− Y1(kz)J0(kL1)

J1(kL0)Y0(kL1)− Y1(kL0)J0(kL1)
. (3.42)

However for a = 4, 5, 6, 7 the function αa(z) is generally an even polynomial of degree 4
and no analytical solution exists. We have to rely on numerical solutions.

3.4 The Axial Sector

For the axial sector we have the action

SA =

∫
d5x

L

2g2
5

∑
a

(
− 1

2z
(∂MA

a
N − ∂NAaM)2 +

βa(z)

z
(∂Mπ

a − AaM)2

)
, (3.43)

which results in the following EOMs

ηML∂M

(
1

z
(∂LA

a
N − ∂NAaL)

)
+
βa(z)

z
(∂Nπ

a − AaN) = 0. (3.44)

The axial part is then similarly to the vector part decomposed in a transverse and longi-
tudinal part and Fourier transformed. This gives for the transverse part an equation of
motion analogous to the transverse part of the vector sector, but with βa(z) exchanged for
αa(z), i.e.

∂z

(
1

z
∂z +

k2 − βa(z)

z

)
Âaµ⊥(z, kν) = 0. (3.45)

However in the axial sector we are mainly interested in the longitudinal part. Defining
Aaµ‖(z, x

ν) = ∂µφ
a(z, xν) gives us the EOMs for the Fourier transforms of φa(z, xν) and

πa(z, xν) [3,4]

∂z

(
1

z
∂zφ̂

a(z, k2)

)
− βa(z)

z
(φ̂a(z, k2)− π̂a(z, k2)) = 0 (3.46)
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and

k2∂zφ̂
a(z, k2)− βa(z)∂zπ̂

a(z, k2) = 0. (3.47)

The boundary conditions for these equations are φ̂a(L0, k
2) = 0 and π̂a(L0, k

2) = −1 at
the UV boundary and ∂zφ̂

a(L1, k
2) = 0 and ∂zπ̂

a(L1, k
2) = 0 at the IR boundary. These

two equations can also be combined into one equation with the definition ya(k2, z) =
1
z
∂zφ̂

a(L0, k
2) resulting in

∂z

(
z

βa(z)
∂zy

a(z, k2)

)
+ z

(
k2

βa(z)
− 1

)
ya(z, k2) = 0. (3.48)

To find the boundary conditions we use the ones we have for equations (3.46) and (3.47).
using ∂zφ̂

a(L1, k
2) = 0 gives us directly that ya(L1, k

2) = 0. To find another boundary
condition we insert φ̂a(L0, k

2) = 0 and π̂a(L0, k
2) = −1 into equation (3.46) which gives us

∂zy
a(L0, k

2) = βa(L0)/L0. Note also that from equation (3.47) we can find that ya(z, k2) =
βa(z)
k2z

π̂a(z, k2).

3.5 Normalizable Solutions

The normalizable modes that solve the EOMs correspond to hadrons [3,4,9]. The modes
must vanish at the UV boundary to keep the action finite. At the IR boundary we keep the
Neumann boundary condition which guarantees that the boundary terms vanish. These
modes can for example be found through the following steps

1. Define a new boundary condition by setting derivative at the UV boundary to a
chosen constant.

2. Solve the EOMs with the two UV boundary conditions as a function of z and k2.

3. Find the values of k2 for which the boundary condition at the IR boundary holds,
these are generally an infinite number of discrete values.

4. Normalize the solution for these k2 and thus remove the arbitrariness introduced in
step 1.

What is described here is essentially the shooting method. It was implemented in Mathe-
matica for the numerical calculations performed for this thesis.

The values k2 = ma
n

2, where ma
n is the mass of the relevant hadron. Higher n correspond

to radial excitations, but in the hard wall model these scale as ma
n

2 ∼ n2 which is not
consistent with the measured scaling behaviour ma

n
2 ∼ n. Physical values for the ground

states can be obtained though.
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3.5.1 The Vector Sector

The normalizable modes of the transverse part of the vector sector corresponds to vector
mesons. Lets define the normalizable modes as ψan(z). The first three are shown in figure
3.1. They obey the orthogonality and normalization condition [3,4]∫ L1

L0

dz

z
ψan(z)ψam(z) = δmn (3.49)

and the boundary conditions ψan(L0) = 0 and ∂zψ
a
n(L1) = 0 We also want and identification

of the nonet, a = 1, 2, ..., 10 of vector mesons. The first three, a = 1, 2, 3 corresponds to ρ
mesons, (ρ+, ρ−, ρ0), the next four, a = 4, 5, 6, 7, correspond to K∗ mesons, (K∗+, K∗−,
K∗0, K̄∗0) and a = 8 corresponds to a combination of the ω0 meson and the φ meson or,
if divided, a = 9 corresponds to the φ meson and a = 10 to the ω0 meson.

Already here we can see a problem with the masses for ρ, φ and ω0. Since Ma
V = 0 for

a = 1, 2, 3, 9, 10 the equations become identical for these cases and thus the masses for ρ,
φ and ω0 will also be identical.

One can also find that the bulk to boundary propagator can be written as a sum over
the normalizable modes [3,4]

Va(z, k2) =
∑
n

−g5F
a
nψ

a
n(z)

k2 −ma
n

2
, (3.50)

where the factor F a
n is defined as

F a
n =

∂zψ
a
n(L0)

g5L0

, (3.51)

which can be identified as the decay constant of the corresponding meson.

Figure 3.1: first three normalizable modes of ψ. ψ1 (red curve), ψ2 (dashed blue curve)
and ψ3 (dash-dot green curve). The z-axis are in units of L1 Taken from [4].
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3.5.2 The Axial Sector

In the axial sector we study the longitudinal part. The transverse part can be dealt
with in the same way as in the vector case. Here the normalizable modes correspond to
pseudoscalar mesons. The first three of our octet, a = 1, 2, 3 are the pions, (π+, π−, π0),
and the following four are kaons, (K+, K−, K0, K̄0).

One can go about this defining the normalizable modes for equations (3.46) and (3.47)
as φ̂an(z) and π̂an(z) or one for equation (3.48) as yan(z) = 1

z
∂zφ̂

a
n(z). The first two modes for

φ̂an(z) and π̂an(z) are shown in figure 3.2. The boundary conditions here are φ̂an(L0) = 0 and
π̂an(L0) = 0 at the UV boundary and ∂zφ̂

a
n(L1) = 0 and ∂zπ̂

a
n(L1) = 0 at the IR boundary.

The equivalent boundary conditions for yan(z) are yan(L1) = 0 and ∂zy
a
n(L0) = 0.

Since the normalization and orthogonality relation here is given by [3,4]∫ L1

L0

dz
z

βa(z)
yan(z)yam(z) =

δmn
ma
n

2
, (3.52)

one can find a solution for yan with an extra arbitrary boundary condition and then nor-
malize the solution with the previous relation. The solution can be used to set normalized
boundary conditions for the φ̂an(z) and π̂an(z) instead of arbitrary ones to find solutions
which do not require normalizations.

However if we only are interested in the masses we can use equations (3.46) and (3.47)
directly since the masses are independent of the normalization.

Similarity to the vector sector the general solutions can be expressed as sums over the
normalizable modes. For ya(z, k2) we have [3,4]

ya(z, k2) =
∑
n

ma
n

2yan(L0)yan(z)

k2 −ma
n

2
(3.53)

and for φ̂a(z, k2) and π̂a(z, k2) we get

φ̂a(z, k2) =
∑
n

−g5m
a
n

2fan φ̂
a
n(z)

k2 −ma
n

2
(3.54)

and

π̂a(z, k2) =
∑
n

−g5m
a
n

2fan π̂
a
n(z)

k2 −ma
n

2
. (3.55)

Where we have used

fan = −∂zφ̂
a
n(L0)

g5L0

, (3.56)

which too can be identified as the decay constant of the corresponding meson.
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Figure 3.2: first two normalizable modes of φan and πan for a = 1, 2, 3. φa1 (upper solid curve,
in blue), φa2 (dashed blue curve), πa1 (lower solid curve, in red) and πa2 (dash-dot red curve).
The z-axis are in units of L1 and φan and πan are in units of L−1

1 . Taken from [4]

Parameter Value

L1 (322.47 MeV)−1

mq 8.291 MeV
ms 188.48 MeV
σq (213.66 MeV)3

σs (213.66 MeV)3

Table 3.1: Parameter values used in model A1 in [3]

3.6 Previous Results

With the parameter values in table 3.1 Sven Möller [3] obtained the results in table 3.2 in
his thesis.

We are however also concerned with the φ meson mass. If it is calculated in the same
model as table 3.2 we find, as mentioned before, that the masses for the ρ, φ and ω0 mesons
are identical. We can also see in the table that mρ 6= mK∗ . Experimentally though one
finds the approximate relation

mφ −mK∗ ' mK∗ −mρ. (3.57)

Which does not hold under these circumstances.

In an attempt to obtain better agreement with these experimental results, while still
conserving the promising results from others we shall add a couple of terms to the action.
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observable sector a n Model[MeV] Measured[MeV]

mπ pseudoscalar 1,2,3 1 (fit) 139.57
fπ pseudoscalar 1,2,3 1 (fit) 92.4± 0.35
mK pseudoscalar 4,5,6,7 1 (fit) 495.7
fK pseudoscalar 4,5,6,7 1 103.8 113± 1.4
mK∗0

scalar 4,5,6,7 1 791.0 672
fK∗0 scalar 4,5,6,7 1 27.6
mρ vector 1,2,3 1 (fit) 775.49± 0.34√
fρ vector 1,2,3 1 329.3 345± 8[4]

mK∗ vector 4,5,6,7 1 791.0 893.8√
fK∗ vector 4,5,6,7 1 329.7
ma1 pseudovector 1,2,3 1 1366.2 1230± 40√
fa1 pseudovector 1,2,3 1 488.8 433± 13[4]
ma1 pseudovector 4,5,6,7 1 1458.1 1272± 7√
fa1 pseudovector 4,5,6,7 1 511.1

Table 3.2: Results in model A1 in [3]. The measured values are also taken from [3], but
Originally they come from [11] and [4](where stated). We have also reproduced these
results for the Vector/axial vector and pseudoscalar sections, including the wave functions.

3.7 Additional Terms

The addition we do to the previous action is

(3.58)Sadd =

∫
d5x
√
gTr

[
− d1

4g2
5

XX†(F
(L)
MNF

MN
(L) + F

(R)
MNF

MN
(R) )− d2

2g2
5

XF
(R)
MNX

†FMN
(L)

]
,

keeping the SU(3)L⊗SU(3)R symmetry. Here we have introduced the two new free param-
eters d1 and d2. These shall be used to make a better fit to mφ. We can also immediately
conclude that neither of these terms has any effect on the vacuum solution.

When evaluating the terms added to the action to second order in fields we will come
across the traces Tr(X0X0T

aT b) and Tr(X0T
aX0T

b). These both evaluate to 0 when a 6= b
and we can define

1

2
γa1 (z)δab = Tr(X0X0T

aT b) (3.59)

and
1

2
γa2 (z)δab = Tr(X0T

aX0T
b). (3.60)

Writing X0 explicitly in vq and vs these evaluate to

γa1 (z) =


1
4
v2
q a = 1, 2, 3

1
8
(v2
q + v2

s) a = 4, 5, 6, 7
1
4
v2
s a = 9

1
4
v2
q a = 10

(3.61)
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and

γa2 (z) =


1
4
v2
q a = 1, 2, 3

1
4
vqvs a = 4, 5, 6, 7

1
4
v2
s a = 9

1
4
v2
q a = 10

. (3.62)

With these definitions we find the addtional terms to second order as

(3.63)
Sadd =

∫
d5x

4g2
5

L
∑
a

(
−d1γ

a
1 (z)− d2γ

a
2 (z)

z
(∂MV

a
N − ∂NV a

M)2

+
−d1γ

a
1 (z) + d2γ

a
2 (z)

z
(∂MA

a
N − ∂NAaM)2

)
.

A derivation of this can be found in appendix A.
We now define

γaV (z) = 1 + d1γ
a
1 (z) + d2γ

a
2 (z) (3.64)

and
γaA(z) = 1 + d1γ

a
1 (z)− d2γ

a
2 (z). (3.65)

To be able to write the full action up to second order in fields as

(3.66)

S =

∫
d5x

∑
a

(
− LγaV (z)

4g2
5z

(∂MV
a
N − ∂NV a

M)2 +
Ma

V
2L3

2z3
V a
M

2

− LγaA(z)

4g2
5z

(∂MA
a
N − ∂NAaM)2 +

Ma
A

2L3

2z3
(∂Mπ

a − AaM)2

)
=

∫
d5x

∑
a

(
− LγaV (z)

4g2
5z

(∂MV
a
N − ∂NV a

M)2 +
Lαa(z)

2g2
5z

V a
M

2

− LγaA(z)

4g2
5z

(∂MA
a
N − ∂NAaM)2 +

Lβa(z)

2g2
5z

(∂Mπ
a − AaM)2

)
.

From which we can find new slightly different EOMs. Since the boundary terms still vanish
with the same boundary conditions they remain unchanged.

3.7.1 New Vector Sector

In the vector sector we find the EOMs analogous to equation (3.37) to be

ηML∂M

(
γaV (z)

z
(∂LV

a
N − ∂NV a

L )

)
+
αa(z)

z
V a
N = 0. (3.67)

From which it follows that the EOMs corresponding to equation (3.39) is

∂z

(
γaV (z)

z
∂zV̂

a
µ⊥(z, kν)

)
+

(
γaV (z)k2 − αa(z)

z

)
V̂ a
µ⊥(z, kν) = 0. (3.68)

The derivation can be found in appendix B
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3.7.2 New Axial Sector

Similarly to the new EOMs for the vector sector we find the EOMs analogous to (3.44) to
be

ηML∂M

(
γaA(z)

z
(∂LA

a
N − ∂NAaL)

)
+
βa(z)

z
(∂Nπ

a − AaN) = 0. (3.69)

Not surprisingly we find the EOMs corresponding to equation (3.45) to be

∂z

(
γaA(z)

z
∂zÂ

a
µ⊥(z, kν)

)
+

(
γaA(z)k2 − βa(z)

z

)
Âaµ⊥(z, kν) = 0. (3.70)

As for the transversal the new EOMs in place of (3.46) and (3.47) is

∂z

(
γaA(z)

z
∂zφ̂

a(z, k2)

)
− βa(z)

z
(φ̂a(z, k2)− π̂a(z, k2)) = 0 (3.71)

and
γaA(z)k2∂zφ̂

a(z, k2)− βa(z)∂zπ̂
a(z, k2) = 0. (3.72)

If we define ya(z, k2) =
γaA(z)

z
∂zφ̂

a(z, k2) we can find the EOMs corresponding to (3.48) as

∂z

(
z

βa(z)
∂z(y

a(z, k2))

)
+ z

(
k2

βa(z)
− 1

γaA(z)

)
ya(z, k2) = 0. (3.73)

The derivation of these EOMs can be found in appendix B.
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Results

4.1 Refitting With d1 and d2

Keeping the parameters as in table 3.1 and fitting the calculated masses of the φ and K∗

mesons to the measured masses by varying d1 and d2 gave us the results in table 4.1. Note
that increasing mφ also increases mρ.

observable sector a n Model[MeV] Measured[MeV]

mπ pseudoscalar 1,2,3 1 135.2 139.57
fπ pseudoscalar 1,2,3 1 95.35 92.4± 0.35
mK pseudoscalar 4,5,6,7 1 477.0 495.7
fK pseudoscalar 4,5,6,7 1 106.7 113± 1.4
mρ vector 1,2,3 1 861.8 775.49± 0.34
mK∗ vector 4,5,6,7 1 896.6 893.8
mφ vector 9 1 906.2 1019.455

Table 4.1: Results when fitting the calculated masses of the φ and K∗ mesons to the
measured masses by varying d1 and d2. The values obtained for the parameters were
d1 = 3.817 and d2 = −6.494.

4.2 Refitting With All Parameters

In an attempt to obtain better results than the ones in the previous section we did a fit
by varying all the free parameters to minimize the square of the relative errors in all the
computed observables. The parameters obtained can be found in table 4.2 and the results
in table 4.3.
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Parameter Value

L1 3.0978× 10−3 MeV−1

mq 9.0395 MeV
ms 218.08 MeV
σq (211.05 MeV)3

σs (211.05 MeV)3

d1 7.01974
d2 −9.7301

Table 4.2: Parameter values when fitting with all free parameters to obtain a the least
square in the relative errors of the calculated observables.

observable sector a n Model[MeV] Measured[MeV]

mπ pseudoscalar 1,2,3 1 139.0 139.57
fπ pseudoscalar 1,2,3 1 95.21 92.4± 0.35
mK pseudoscalar 4,5,6,7 1 504.2 495.7
fK pseudoscalar 4,5,6,7 1 108.5 113± 1.4
mρ vector 1,2,3 1 856.3 775.49± 0.34
mK∗ vector 4,5,6,7 1 895.4 893.8
mφ vector 9 1 906.8 1019.455

Table 4.3: Results when fitting with all free parameters to obtain a the least square in the
relative errors of the calculated observables.



Chapter 5

Conclusions

We have shown how the calculations of n point functions can be performed with the
AdS/CFT correspondence in a scalar field theory. Both by explicitly taking functional
derivatives and by relating the n point functions to Witten diagrams.

Additionally we tried to improve an existing AdS/QCD model to produce better results
for the mass of the φ meson. This was done by introducing two new free parameters through
adding two terms to the action. Although we saw some improvement in the mass of the
φ and K∗ mesons it was at the expense of the mass of the ρ meson. We also encountered
some numerical difficulties which only allowed us to obtain masses for φ in a region well
below its experimentally measured mass.

In the first fit we expected to get good values for the φ and K∗ meson masses. Since it
is in general possible to fit two quantities with the use of two free parameters. The reason
why we did not get the correct φ mass stems from the fact that for certain values of d1 and
d2 the functions γaV,A(z) changes sign in the z range we are working with. This is a problem
because a sign change in γaV,A(z) leads to singularities in the solutions to the EOMs and
we found no way to handle this numerically.

The values we found and presented are such that the sign change in γaV,A(z) falls just
outside the z range. Other values for the parameters would either produce a lower mass
for the φ meson or move the sign change of γaV,A(z) inside the z range. However they could
be varied quite drastically without affecting the masses much and we might have been to
narrow in our search.

In the second fit we tried refit our calculated quantities by varying all free parameters.
That the first fit did not work as we hoped does not imply that an overall fit is unable
produce better values for the observables. The behaviour of γaV,A(z) changes with ms, mq

and σm,s and we also change the range in which a sign change is not allowed.
Our attempt at an overall fit did however reproduce quite similar values for the original

parameters and the masses. Although the original parameters are slightly different we
can see by comparing to the first fit how little the masses changes with d1 and d2. We
have not investigated this thoroughly enough to rule out the possibility that a better fit
can be produced with the parameters in this model. However our results indicate that
the additional terms in the action are not sufficient to produce the φ mass while still
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maintaining good values for the other masses.
Since the original plan of the thesis was different much work has been done that is not

presented in the report. For example the form factor f+(q) for Kl3 [4] was rederived, but
no further numerics were done with it. It is also the reason why the investigation with the
masses is not more extensive.



Appendix A

The New Terms to Second Order

In this appendix it is implied that ”=” means equal up to second order in fields.

The purpose of the appendix is to explicitly write the steps that show

∫
d5x
√
g

[
(−d1)

4g2
5

Tr(XX†(F
(L)
MNF

MN
(L) + F

(R)
MNF

MN
(R) )) +

(−d2)

2g2
5

Tr(XF
(R)
MNX

†FMN
(L) )

]

=

∫
d5x

4g2
5

z

L

∑
a

[(−d1γ
a
1 − d2γ

a
2 )(∂MV

a
N − ∂NV a

M)2 + (−d1γ
a
1 + d2γ

a
2 )(∂MA

a
N − ∂NAaM)2]

(A.1)

This is done independently for each term. What is left for the reader is to combine the
results of the two sections below.
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A.1 The first term

Rewriting the first term up to second order in fields goes as follows

∫
d5x

(−d1)

4g2
5

√
gTr(XX†(F

(L)
MNF

MN
(L) + F

(R)
MNF

MN
(R) ))

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

∑
b

Tr(X0X0T
aT b)

×[(∂M(V a
N + AaN)− ∂N(V a

M + AaM))(∂M(V Nb + ANb)− ∂N(V Mb + AMb))

+(∂M(V a
N − AaN)− ∂N(V a

M − AaM))(∂M(V Nb − ANb)− ∂N(V Mb − AMb))]

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

∑
b

δab
γa1
2

×[(∂M(V a
N + AaN)− ∂N(V a

M + AaM))(∂M(V Nb + ANb)− ∂N(V Mb + AMb))

+(∂M(V a
N − AaN)− ∂N(V a

M − AaM))(∂M(V Nb − ANb)− ∂N(V Mb − AMb))]

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

γa1
2

×[2∂M(V a
N + AaN)∂M(V Na + ANa)− 2∂N(V a

M + AaM)∂M(V Na + ANa)

+2∂M(V a
N − AaN)∂M(V Na − ANa)− 2∂N(V a

M − AaM)∂M(V Na − ANa)]

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

γa1
2

×[4(∂MV
a
N∂

MV Na − ∂NV a
M∂

MV Na) + 4(∂MA
a
N∂

MANa − ∂NAaM∂MANa)]

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

γa1
2

×[2(∂MV
a
N∂

MV Na − ∂NV a
M∂

MV Na) + 2(∂NV
a
M∂

NV Ma − ∂MV a
N∂

NV Ma)

+2(∂MA
a
N∂

MANa − ∂NAaM∂MANa) + 2(∂NA
a
M∂

NAMa − ∂MAaN∂NAMa)]

=

∫
d5x

(−d1)

4g2
5

√
g
∑
a

γa1
2

×[2(∂MV
a
N − ∂NV a

M)(∂MV Na − ∂NV Ma) + 2(∂MA
a
N − ∂NAaM)(∂MANa − ∂NAMa)]

=

∫
d5x

(−d1)

4g2
5

L5

z5

∑
a

γa1

×
[
z4

L4
(∂MV

a
N − ∂NV a

M)2 +
z4

L4
(∂MA

a
N − ∂NAaM)2

]
=

∫
d5x

(−d1)

4g2
5

L

z

∑
a

γa1 [(∂MV
a
N − ∂NV a

M)2 + (∂MA
a
N − ∂NAaM)2]

(A.2)
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A.2 The Second term

Rewriting the second term term up to second order in fields goes as follows∫
d5x

(−d2)

2g2
5

√
gTr(XF

(R)
MNX

†FMN
(L) ) =

∫
d5x
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a
N − ∂NV a

M)(∂MV Na − ∂NV MA)− (∂MA
a
N − ∂NAaM)(∂MANa − ∂NAMA)] =∫

d5x
(−d2)

2g2
5

L5

z5

∑
a

γa2
2

[
z4

L4
(∂MV

a
N − ∂NV a

M)2 − z4

L4
(∂MA

a
N − ∂NAaM)2

]
=∫

d5x
(−d2)

4g2
5

L

z

∑
a

γa2 [(∂MV
a
N − ∂NV a

M)2 − (∂MA
a
N − ∂NAaM)2]

(A.3)



Appendix B

The New Equations of Motion

In this appendix we explicitly write the steps needed to go from the equations (3.67) and
(3.69) to equations (3.68), (3.70), (3.71), (3.72) and (3.73).

We suppress the arguments for simplicity.

B.1 The Vector Sector

From the action we get the EOMs

ηML∂M

(
γaV (z)

z
(∂LV

a
N − ∂NV a

L )

)
+
αa(z)

z
V a
N = 0. (B.1)

By writing N explicitly as ν and z we get

ηµλ∂µ

(
γaV (z)

z
(∂λV

a
ν − ∂νV a

λ )

)
− ∂z

(
γaV (z)

z
(∂zV

a
ν − ∂νV a

z )

)
+
αa(z)

z
V a
ν = 0 (B.2)

and

ηµλ∂µ

(
γaV (z)

z
(∂λVz − ∂zVλ)

)
+
αa(z)

z
Vz = 0. (B.3)

Decomposing V a
α into its longitudinal and transversal part V a

α = V a
α⊥ + V a

α‖ and using
∂αV a

α⊥ = 0 gives

(B.4)

γaV (z)

z
ηµλ∂µ∂λV

a
ν⊥ − ∂z

(
γaV (z)

z
∂zV

a
ν⊥

)
+
αa(z)

z
V a
ν⊥

− ∂z
(
γaV (z)

z
∂zV

a
ν‖

)
+
αa(z)

z
V a
ν‖ + ∂z

(
γaV (z)

z
∂νV

a
z

)
= 0

and
γaV (z)

z
ηµλ∂µ∂λV

a
z +

αa(z)

z
V a
z −

γaV (z)

z
ηµλ∂µ∂zV

a
λ‖ = 0. (B.5)
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Fourier transforming the equations gives

(B.6)
−γ

a
V (z)

z
k2V̂ a

ν⊥ − ∂z
(
γaV (z)

z
∂zV̂

a
ν⊥

)
+
αa(z)

z
V̂ a
ν⊥

− ∂z
(
γaV (z)

z
∂zV̂

a
ν‖

)
+
αa(z)

z
V̂ a
ν‖ − ikν∂z

(
γaV (z)

z
V̂ a
z

)
= 0

and

− γaV (z)

z
k2V̂ a

z +
αa(z)

z
V̂ a
z + i

γaV (z)

z
ηµλkµ∂zV̂

a
λ‖ = 0. (B.7)

Multiplying the first equation with −ikν makes the transverse parts vanish. The result is
two equations that show that the longitudinal part vanishes independently of the transverse
part. Because of this we know that the opposite also must be true, i.e. the transverse part
vanishes independently of the longitudinal part. Using this we find the EOMs for the
transverse part as the transverse parts in (B.6), i.e.

∂z

(
γaV (z)

z
∂zV̂

a
ν⊥

)
+
γaV (z)k2 − αa(z)

z
V̂ a
ν⊥ = 0. (B.8)

Which is equation (3.68)

B.2 The Axial Sector

From the action we get the EOMs

ηML∂M

(
γaA(z)

z
(∂LA

a
N − ∂NAaL)

)
+
βa(z)

z
(AaN − ∂Nπa) = 0. (B.9)

By writing N explicitly as ν and z we get

ηµλ∂µ

(
γaA(z)

z
(∂λA

a
ν−∂νAaλ)

)
−∂z

(
γaA(z)

z
(∂zA

a
ν−∂νAaz)

)
+
βa(z)

z
(Aaν−∂νπa) = 0 (B.10)

and

ηµλ∂µ

(
γaA(z)

z
(∂λAz − ∂zAλ)

)
+
βa(z)

z
(Az − ∂zπa) = 0. (B.11)

By the gauge invariance

AaM →A′
a
M = AaM − ∂Mλa

πa →π′aM = πaM − λa
(B.12)

allows us to set any λa. We set ∂zλ
a = Az and thus effectively setting Az to zero. We also

decompose the Aaα into its longitudinal and transversal part Aaα = Aaα⊥ + Aaα‖ and define
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Aaα‖ = ∂αφ
a. Using this together with ∂αAaα⊥ = 0 we get

(B.13)

γaA(z)

z
ηµλ∂µ∂λA

a
ν⊥ − ∂z

(
γaA(z)

z
(∂zAν⊥)

)
+
βa(z)

z
Aν⊥

− ∂z
(
γaA(z)

z
(∂z∂νφ

a)

)
+
βa(z)

z
(∂νφ

a − ∂νπa) = 0

and

− γaA(z)

z
ηµλ∂µ∂λ∂zφ

a − βa(z)

z
∂zπ

a = 0. (B.14)

Fourier transforming these equations gives

(B.15)
−γ

a
A(z)

z
k2Âaν⊥ − ∂z

(
γaA(z)

z
(∂zÂν⊥)

)
+
βa(z)

z
Âν⊥

+ ikν∂z

(
γaA(z)

z
(∂zφ̂

a)

)
− ikν

βa(z)

z
(φ̂a − π̂a) = 0

and
γaA(z)

z
k2∂zφ̂

a − βa(z)

z
∂zπ̂

a = 0. (B.16)

Multiplying the first equation with −ikν/k2 makes all the transversal parts vanish. If we
also multiply the second equation with z we get

(B.17)∂z

(
γaA(z)

z
(∂zφ̂

a)

)
− βa(z)

z
(φ̂a − π̂a) = 0

and
γaA(z)k2∂zφ̂

a − βa(z)∂zπ̂
a = 0. (B.18)

Which is equations (3.71) and (3.72).

Defining ya = γaz (z)
z
∂zφ

a gives

∂zy
a − βa(z)

z
(φ̂a − π̂a) = 0 (B.19)

and
zk2ya − βa(z)∂zπ̂

a = 0. (B.20)

Multiplying the first equation with z/βa(z) and taking the derivative with respect to z
gives

∂z

(
z

βa(z)
∂zy

a

)
− ∂z(φ̂a − π̂a) = 0 (B.21)

and
zk2ya − βa(z)∂zπ̂

a = 0. (B.22)
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Relating φ̂a with ya through the definition and π̂a with ya through the second equation
gives

∂z

(
z

βa(z)
∂zy

a

)
+ z

(
k2

βa(z)
− 1

γaA(z)

)
ya = 0 (B.23)

which is equation (3.73).
The longitudinal and z part vanishes independently and thus so must the transverse

part. With this we easily find the EOMs from equation (B.15) as

(B.24)∂z

(
γaA(z)

z
(∂zÂν⊥)

)
+
γaA(z)k2 − βa(z)

z
Âν⊥ = 0

which is equation (3.70).
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