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Abstract

In this thesis a chirally symmetric technicolor model is investigated as an ex-
tension to the Standard Model. The extension is based on low-energy QCD, with a
linear sigma model used to induce the additional degrees of freedom corresponding
to the lightest particles of the new techni-sector. The main goal is to incorporate
the Standard Model Higgs into the new model, as to explain its vacuum expectation
value and origin within the framework of the new model. The new model is exam-
ined for two cases. First, introducing two new fermions under the new sector; this
will be shown to give rise to a possible explanation of the Higgs vacuum expectation
value’s origin. Second, three fermions are introduced under the new sector, making
for a possible identification of the Higgs as a composite object of the fermions in
question.
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1 Introduction

As of now, the current observational data from particle experiments can be fully covered
within the framework of the Standard Model (SM). This includes the fairly recent dis-
covery of the sought after Higgs particle. However, as the SM contains the existence of
a Higgs particle, it does not offer any explanation of the origin to it. This thesis aims to
extend the SM of particle physics as to incorporate, in first place, a deeper explanation
of the origin of the Higgs boson. For this, a so called technicolor extension to the SM is
considered. The technicolor extension is based on low-energy quantum chromodynamics
(QCD), hence analogies between the two are drawn frequently.

The primary goal of this thesis is to reproduce and discuss the SM extension, presented
in Ref. [1], which is a chirally symmetric technicolor (CSTC) model. The focus is to un-
derstand the basic theory underlying the model and to obtain the physical Lagrangians.
Sect. 3 is devoted for that task. Further, the concept in the CSTC model will be addi-
tionally extended, as to consider a more extensive case; presented in Sect. 4. The study
following in Sect. 4 will also be a reproduction of notes by R. Pasechnik, with the main
goal being to follow the procedure done in Sect. 3 for the extended case.

As a start, the low-energy QCD theory, which the CSTC model is based upon, is generally
outlined in Sect. 2. Several concepts therein are applied later on the CSTC model. In
particular, the general model on which both QCD and the CSTC model is based on is
called the linear sigma model (LσM), which is presented there for QCD.

As a brief review, an Appendix on basic group theory (Appendix A) and another on the
essential theory of the SM (Appendix B) have been added. There some of the concepts,
which are used in the thesis, are explained.

2 QCD: Chiral symmetry and Linear sigma model

The outlines of the low-energy theory for QCD is here presented, which will be the foun-
dation of the CSTC model under study later. The main focus is on the LσM and its
consequences considering spontaneous symmetry breaking. An additional comment is
that the conventional units used are the natural units, where ~ = c = 1 and whenever
repeated indices are present summation over the indices is implied.

The QCD Lagrangian for the quarks can be written as

LQCD = iqLγ
µDµqL + iqRγ

µDµqR − qRMqL − qLMqR. (1)

In (1),M denotes the matrix containing the masses of the different quarks and Dµ is the
covariant derivative. Here the case of quark flavours nF = 2 is considered. Thus, we have

q =

(
u
d

)
, M =

(
mu

md

)
, (2)
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with straightforward generalization to arbitrary nF . As is seen, the QCD Lagrangian (1)
has in the chiral limit (i.e. for vanishing quark massesM = 0) a so called chiral symmetry
of the form Gχ = SU(2)L × SU(2)R [2].

As is discussed in Ref. [5], in the low-energy region, the interaction term of the lightest
mesons and the quarks can be taken to be of the form Lint = −qΦq. Here Φ is a set of
scalar and pseudoscalar fields, corresponding to the mesons. In order to maintain chiral
symmetry, the scalar field set must transform as

Φ→ gRΦg†L, (3)

under Gχ (where gR ∈ SU(2)R and gL ∈ SU(2)L); Φ is said to be in the bi-fundamental
representation of Gχ. As further derived in Ref. [5], one can write the set of mesons in
the form Φ = (1σ + iτaπa), where σ is a scalar field and πa (a = 1, 2, 3) is a triplet of
pseudoscalar fields.1 The name linear sigma model can now be apparent from the form
of Φ, which is linear in the fields (particularly σ). A Lagrangian, with a typical form for
a LσM, invariant under Gχ can now be set up for Φ as

L =
1

4
|∂µΦ|2 − µ2

2
|Φ|2 − λ

4
|Φ|4. (4)

The notation |Φ|2 = Tr(ΦΦ†) is used above [5].

The energy of the system is minimized when |Φ| is a constant, since then the kinetic term
have no contribution to the energy. The potential of (4) is given by the last two terms,
i.e.

V =
µ2

2
|Φ|2 +

λ

4
|Φ|4. (5)

The potential is minimized for |Φ|(µ2 + λ|Φ|2) = 0, whereas to be bounded from below
λ > 0. Hence, there are two cases for the minimum of the potential. Either µ2 > 0, which
means the potential is minimized for |Φ| = 0 and there is only one unique minimum point.
Or µ2 < 0, such that the potential is minimized for |Φ|2 = −µ2/λ = u2, u =

√
−µ2/λ. As

|φ|2 = σ2 + π2 (where π2 = πaπa), it implies there are degenerate minima on the 3-sphere
σ2 + π2 = u2. As a specific minimum is chosen to represent the ground state, interesting
consequences arise [5].

The ground state can be chosen such that σ can be said to gain a vacuum expectation
value (vev), hence 〈σ〉 = u. Thus, Φ = 1(u + σ) + iτaπa and inserting this into the
Lagrangian (4) yields

L =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 − λ

4
(σ2 + π2)2 − λuσ(σ2 + π2)− λu2σ2 + constants

=
1

4
|∂µΦ|2 − µ2

2
|Φ|2 − λ

4
|Φ|4 − λu2σ2 + constants. (6)

As can be seen by examining (6), σ has obtained a mass term m2
σ = 2λu2 while the triplet

πa appears massless [5].

1Pseudoscalar fields are odd under parity transformation, while scalar fields are even.
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The Lagrangian (6) is not invariant under the initial symmetry group Gχ, as a conse-
quence of choosing a vev. The symmetry is said to be spontaneously broken. However,
considering the subgroup Hχ = SU(2)V of Gχ, where V stands for vector and treats left-
handed (LH) and right-handed (RH) components equally (i.e. gL = gR), the Lagrangian
appears invariant under it [3]. The invariance is due to that the transformation of Φ under
SU(2)V reads Φ → gV Φg†V = 1σ + iV τaπaV

†, so that σ is a singlet under SU(2)V and
τaπa transforms in the adjoint representation.

The (chiral) symmetry breaking can thus be written as SU(2)L × SU(2)R → SU(2)V ,
with the consequence of yielding three massless particle modes. The massless particles
arising due to the spontaneous symmetry breaking (SSB) are referred to as Goldstone
bosons (GSBs), and correspond to a general phenomenon stated in the Goldstone theo-
rem. The Goldstone theorem states that each generator, of a continuous symmetry group,
which commutes with the Hamiltonian of a system but does not annihilate the ground
state, gives rise to a massless GSB [4]. A generator satisfying the conditions stated in the
Goldstone theorem is said to be broken.

For the LσM system considered in this section, the Lagrangian (or equivalently the Hamil-
tonian) is initially invariant under the chiral symmetry group, Gχ. However, since the
ground state, chosen as 〈|Φ|〉 = 1〈σ〉 = 1u, is not invariant under any other transfor-
mation of the form (3) than the vector subgroup SU(2)V [3] where gL = gR, there are
three broken generators from the initial symmetry group Gχ. Hence, Goldstone’s theorem
states that three massless modes should appear, as was seen in (6) (where the three πa
correspond to the GSBs).

In the CSTC extension of Ref. [1], to be treated in this thesis, the basic theory is built
up from low-energy QCD. Hence, the LσM and the concepts presented above, will be
used substantially when considering the CSTC extension. Further theory of LσMs and
different versions of it in QCD can be found in Ref. [2][4]. Note also that LσMs do not
exclusively deal with chiral symmetry, e.g. another important area of its application is
the Higgs mechanism, briefly described in Appendix B.3 (as part of the SM summary).

3 Techni-QCD: Two techniquark case

In this section, the first part of the thesis is presented. The primary goal is to reproduce
and discuss the theory of the chirally symmetric technicolor (CSTC) model treated in
Ref. [1]. It explores an extension to the SM based on low-energy QCD, and hence analogies
with QCD concepts (the main ones were discussed in Sect. 2) are made throughout the
new proposed physics presented.

The starting point of the CSTC model is to introduce a new interaction sector, called
the techni-sector or techni-QCD (T-QCD). Following in analogy to QCD, the new sector
interacts through the so called technicolor charge under the group SU(3)TC , which is
propagated by technigluons (only interacting with the techni-sector). New additional
fermions, henceforth referred to as techniquarks (or T-quarks), are introduced. They are
in the fundamental representation of the SU(3)TC group. The theory is taken to initially
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maintain a global chiral symmetry, as in QCD, under SU(nF )L × SU(nF )R, where nF is
the number of T-quarks considered in the theory.

To use analogy with low-energy QCD, the scale considered must be . ΛTC , where ΛTC

is the confinement scale for T-QCD (as the confinement scale for QCD is ΛQCD). An
approximate lower limit as ΛTC ∼MEW , where MEW ∼ 100 GeV is the electroweak scale
of the SM, is considered. Hence, regarding scales . ΛTC , only the lightest techniparticle
spectrum is relevant for study. And as was the basis of low-energy QCD, the spectrum
of the lightest hadrons can be that resulting from a chiral symmetry breaking [3]. Thus,
following the concept in QCD, one considers

SU(nF )L × SU(nF )R → SU(nF )V , (7)

where SU(nF )V is the vector-like subgroup of the initial chiral group SU(nF )L×SU(nF )R.
The chiral symmetry breaking of the techni-sector in (7) will be referred to as TChSB
(techni-sector chiral symmetry breaking).

In Ref. [1], the simplest case of nF = 2 is investigated. It corresponds to introducing two
new fundamental fermions, T-quarks, under the new techni-sector. The T-quarks are set
up as a doublet

Q̃ =

(
U
D

)
, (8)

where the LH and RH components of Q̃ transform in the fundamental representation
of SU(2)L and SU(2)R. Thus, Q̃L → gLQ̃L and Q̃R → gRQ̃R respectively, where
gL ∈ SU(2)L and gR ∈ SU(2)R. Further, due to the TChSB as (7), three GSBs are
obtained. Following the concept from Sect. 2, a LσM is used to describe the degrees of
freedom corresponding to the TChSB. Thus, a set of scalar fields Φ̃ is considered, where
Φ̃ transforms as Φ̃→ gRΦ̃g†L (in analogy to (3)). The scalar fields are parametrized such
that Φ̃ = (1S+iτaPa)/2, a = 1, 2, 3. One thus have the scalar field S and the pseudoscalar
fields Pa (corresponding to the GSBs). A Lagrangian concerning the techni-sector can
then be set up as

L2σ = iQ̃γµ∂µQ̃+Tr(∂µΦ̃∂µΦ̃†)+µ2
STr(Φ̃Φ̃†)−λTC(Tr(Φ̃Φ̃†))2−2gTC

(
Q̃LΦ̃Q̃R + Q̃RΦ̃†Q̃L

)
,

(9)
where the last term in (9) is a Yukawa-type term (allowed by symmetry) and the subscript
2σ denotes LσM for two T-quarks.

The TChSB can appear to be effectively induced by that S gains a vev, 〈S〉 = u. The
ground state is thus parametrized as 1u/2, being only invariant under the vector sub-
group SU(2)V . Alas, in the broken, vector-like, region (where gL = gR) the T-quark
doublet transforms in the fundamental representation and Φ̃ transforms in the adjoint
representation. The scalar field σ does not transform in the broken, vector-like region;
it is the triplet of pseudoscalar fields τaPa that transforms, which hence is in the adjoint
representation in the vector-like region (cf. Sect. 2).

In addition to the TChSB, the electroweak symmetry breaking (EWSB) of the SM is left
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unaltered, arising due to the vev obtained by the Higgs field (see Appendix B.3). Hence,
the Higgs particle has the same status as in the SM, being a complex, SU(2)W doublet
scalar field. In order to connect the new techni-sector with the SM, the techni-sector is
gauged through the electroweak (EW) SM interactions. This means that the techni-sector
is taken to interact with the EW gauge bosons of the SM. The gauging of the techni-sector
is obtained by that, in the low-energy limit, one can on phenomenological grounds iden-
tify the vector group, SU(2)V , from the TChSB with the weak isospin group, SU(2)W , of
the SM. A consequence of the identification SU(2)V ≡ SU(2)W is that the Higgs particle
and S can mix with the each other as they gain vevs, giving room for modified couplings
in the SM. Also, as it is the vector group SU(2)V that is identified with SU(2)W , the
techni-sector interacts vector-like with the weak interaction, in contrast to the SM parti-
cles which interacts only through their LH components under SU(2)W .

The techniparticles are classified differently under the EW group, SU(2)W × U(1)Y , of
the SM, such that they are in different representations of the group. As the T-quarks
transform in the fundamental representation of SU(2)V , they are also in the fundamen-
tal representation of SU(2)W . Similarly, S is thus a singlet and τaPa is in the adjoint
representation of SU(2)W . The couplings of the T-quarks with the EW gauge bosons
are taken to be same as the corresponding quarks in QCD (i.e. the u and d quarks), so
that the coupling constants g1, g2 are used for the U(1)Y , SU(2)W respectively (as in the
SM). Further, the T-quarks are assumed to have the same quantum numbers as the QCD
quarks, meaning that the hypercharge of Q̃ is YQ̃ = YQ = 1/3 and the weak isospin is

taken to be tU3 = tu3 = 1/2 and tD3 = td3 = −1/2.

Based on QCD, a non-zero value for the techniquark condensate,

〈Q̃Q̃〉 6= 0, (10)

is taken as the main contributor for making the ground state non-invariant under any
other subgroup than SU(2)V , in turn giving rise to the TChSB as (7) [2]. As mentioned,
the TChSB can appear to be effectively induced by that S gains a vev. The non-zero value
of the techniquark condensate can then be seen as a source term for the vev, which will
be explained further below. Additionally, it will also be seen that a non-zero techniquark
condensate has the effect of giving rise to masses for the GSBs.

As the gauging of the techni-sector is performed, the Lagrangian (9) is modified as to
incorporate the EW interactions of the techni-sector. The following covariant derivatives
are thus introduced

Dµ =

(
∂µ −

iY

2
g1Bµ −

i

2
g2W

a
µ τa

)
, dµPa = ∂µPa + g2εabcW

b
µPc, (11)

based on the representations of the techniparticles under the EW group. Further, from
symmetry arguments, a term mixing the Higgs doublet and the set of scalar fields Φ̃ is
allowed. Thus, in addition to the SM Lagrangian2 the Lagrangian involving the new

2Here also considering the Higgs Lagrangian, see (132), which will be seen to contain mixed field terms
as S and Higgs get vev.
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techni-sector physics is

L2σ =
1

2
∂µS∂

µS +
1

2
dµPad

µPa + (DµH)†(DµH) + iQ̃γµDµQ̃− gTCQ̃(S + iγ5τaPa)Q̃

+
1

2
µ2
S(S2 + P 2) + µ2

HH2 − 1

4
λTC(S2 + P 2)2 − λHH4 + λH2(S2 + P 2). (12)

Note that in (12), the traces of (9) has been written out.

In the text following, treating the CSTC model, the definitions

P 2 =
3∑

a=1

PaPa = π̃0π̃0 + 2π̃+π̃−. (13)

and H2 = HH† = H†iHi are used; Hi, i = 1, 2, refers to the ith element of the Higgs
doublet. The states π̃0, π̃± are called technipions and are states of definite charge and
definite mass, i.e. they correspond to physical techniparticles (mesons). Similar to the
pions in QCD [8], the relation (13) is obtained through the linear combinations

−P1 + iP2 =
√

2π̃+

−P1 − iP2 =
√

2π̃−

P3 = π̃0

. (14)

As the basic theory for the CSTC model is now presented, to start analysing what con-
sequences the new techni-sector gives rise to, one has to induce the vevs of the Higgs and
S. As mentioned, as an approximate lower limit ΛTC ∼ MEW . This means that the vev
of S is induced ∼ MEW [3], which is the same scale as the Higgs vev is induced. Thus,
the vevs of the Higgs and S can be induced at an approximate simultaneous energy scale.
As in the SM (see Sect. B.3), the Higgs obtains a vev as

H → 1√
2

(
0

v +H

)
, (15)

where H is the expansion around the vev (v). Similarly,

S → u+ S. (16)

The two equations above mean that 〈Hi〉 = 〈H†i 〉 = v/
√

2, for i = 2, and 〈S〉 = u. As
mentioned, since S and H mix as they gain vevs, they do not correspond to physical
states, i.e. states with definite mass.

3.1 Vacuum stability

The potential part of the Lagrangian (12), denoted LU , is

LU = −gTCQ̃(S + iγ5τaPa)Q̃+
1

2
µ2
S(S2 + P 2) + µ2

HH2

− 1

4
λTC(S2 + P 2)2 − λHH4 + λH2(S2 + P 2). (17)
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The minimum of LU should be obtained when considering its vacuum expectation value.
Hence, for that case, its first derivatives should be zero and the second derivatives should
satisfy 〈 δ2LU

δ(Hi)2

〉〈δ2LU
δS2

〉
−
〈 δ2LU
δHiδS

〉2
> 0 (18)

and

−
〈 δ2LU
δ(Hi)2

〉
> 0, −

〈δ2LU
δS2

〉
> 0. (19)

so that the Hessian matrix is positive definite [16].

Considering the first derivatives of the potential, it is obtained that〈
δLU
δHi

〉
=
〈
µ2
HH

†
i − 2λH(H†i )2Hi + λH†i (S2 + P 2)

〉
=
〈
H†i
〉〈
µ2
H − 2λHH†iHi + λ(S2 + P 2)

〉
=
√

2v(µ2
H − λHv2 + λu2) = 0 (20)

and〈
δLU
δS

〉
=
〈
µ2
SS − λTCS(S2 + P 2) + 2λH2S − gTC〈Q̃Q̃〉

〉
=
〈
S
〉〈
µ2
S − λTC(S2 + P 2) + 2λH2 − gTC〈Q̃Q̃〉

S

〉
= u

(
µ2
S − λTCu2 + λv2 − gTC〈Q̃Q̃〉

u

)
= 0 (21)

must hold. As is evident from (20), the relation

µ2
H − λHv2 + λu2 = 0, (22)

holds (since here we consider the degenerate minima case of the LσM potential, as in
Sect. 2, implying v 6= 0).

As is derived later, the mass terms of the technipions is given by (31). Comparing with
(21), where

µ2
S − λTCu2 + λv2 − gTC〈Q̃Q̃〉/u = 0 (23)

is obtained, yields

m2
π̃ = −gTC〈Q̃Q̃〉

u
. (24)

Thus, as mentioned earlier, the non-zero value of the techniquark condensate is seen to

give rise to the technipion mass. Note that 〈Q̃Q̃〉 < 0 and gTC > 0, where the negative
value for the quark condensate is a direct analogy taken from QCD [1].

By comparing (22) and (23), and also use (24), v2 and u2 can be uncoupled and expressed
as

v2 =
µ2
HλTC + λ(µ2

S +m2
π̃)

λHλTC − λ2
(25)
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and

u2 =
µ2
Hλ+ λH(µ2

S +m2
π̃)

λHλTC − λ2
. (26)

Turning to the second derivatives and considering (19) yields

0 >

〈
δ2LU
δ(Hi)2

〉
=
〈
− 2λH(H†i )2

〉
⇒ −λHv2 < 0⇒ λH > 0 (27)

and

0 >

〈
δ2LU
δS2

〉
=
〈
µ2
S − λTC(3S2 + P 2) + 2λH2

〉
= µ2

S − 3λTCu
2 + λv2

= −2λTCu
2 −m2

π̃ ⇒ λTC > −
m2
π̃

2u2
, (28)

where u, v > 0 and (31) has been used. Further, considering that〈 δ2LU
δHiδS

〉2
= 4λ2u2v2, (29)

the vacuum stability relation (18) can be seen to equal m2
σ̃m

2
h > 0, where the mass

relations in (39) and (40), yet to be derived, have been used.

3.2 Physical states and masses

Inserting (15) and (16) into the Lagrangian (12), it is seen that mixed terms of H and S
are obtained. The mixed terms mean that the states H and S are not states of definite
mass, i.e. they do not describe the physical particle states. Collecting all terms with
order two in any fields after insertion of the vevs in the Lagrangian, the following terms
are obtained

(
H S

)(1
2
(µ2

H − 3λHv
2 + λu2) λuv

λuv 1
2
(µ2

S − 3λTCu
2 + λv2)

)(
H
S

)

− 1

2

(
P 2(λTCv

2 − µ2
S − λv2)

)
. (30)

As seen, and mentioned before, it is possible to identify

m2
π̃ = λTCv

2 − µ2
S − λv2. (31)

Using (22) and (31), the matrix corresponding to the mixing of H and S can be written
as (

−λHv2 λuv
λuv −λTCu2 −m2

π̃/2

)
. (32)

Diagonalising the matrix (32) gives states of definite mass, i.e. the physical states cor-
responding to linear combinations of S and H. The state corresponding to the physical
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Higgs is to be denoted h and the other state corresponding to the physical scalar tech-
nimeson, as σ̃ (called the technisigma). Since (32) is a symmetric matrix, it can be
diagonalised by an orthogonal matrix [17]. Thus

(
H S

)(−λHv2 λuv
λuv −λTCu2 −m2

π̃/2

)(
H
S

)
=
(
H S

)
RTR

(
−λHv2 λuv
λuv −λTCu2 −m2

π̃/2

)
RTR

(
H
S

)
=
(
h σ̃

)(m2
h

m2
σ̃

)(
h
σ̃

)
, (33)

where

R =

(
cos θ sin θ
− sin θ cos θ

)
(34)

and θ is determined such that the matrix (32) is diagonalised. Note that from (15), (16)
and (33), inducing vevs for H and S yields(

H2

S

)
→
(
v +H
u+ S

)
=

(
v + hcθ − σ̃sθ
u+ hsθ + σ̃cθ

)
, (35)

where cθ, sθ are cos θ, sin θ respectively.

The mixing angle θ can be determined by inserting (35) into (30) and once again collect
all terms with order two in any fields. Mixed terms of h and σ̃ is then obtained as

hσ̃
(
cθsθ(−2λTCu

2 −m2
π̃ + 2λHv

2) + 2λuv(c2θ − s2θ)
)
. (36)

However, due to the definition of {h, σ̃} as eigenstates of the matrix (32), the expression
(36) must equal zero. Using that 2cθsθ = sin(2θ) and c2θ − s2θ = cos(2θ), the mixing angle
can thus be expressed as

tan(2θ) =
4λuv

2λTCu2 +m2
π̃ − 2λHv2

. (37)

The masses of {h, σ̃} can be obtained by diagonalising the matrix (32). Denoting the
eigenvalues by χ, it is obtained that

det

(
−λHv2 − χ λuv

λuv −λTCu2 −m2
π̃/2− χ

)
= 0

⇒ χ = −1

2

(
1

2

(
2λHv

2 + 2λTCu
2 +m2

π̃ ±
√

16(λuv)2 + (2λTCu2 +m2
π̃ − 2λHv2)2

))
,

(38)

so that the masses are

m2
σ̃ =

1

2

(
2λHv

2 + 2λTCu
2 +m2

π̃ +
√

16(λuv)2 + (2λTCu2 +m2
π̃ − 2λHv2)2

)
(39)

11



and

m2
h =

1

2

(
2λHv

2 + 2λTCu
2 +m2

π̃ −
√

16(λuv)2 + (2λTCu2 +m2
π̃ − 2λHv2)2

)
. (40)

Note, by considering (37), (39) and (40), the parameters {λTC , λH , λ} can be expressed
in the parameters {m2

π̃,m
2
σ̃,m

2
h} as
2λTCu

2 = m2
σ̃c

2
θ +m2

hs
2
θ −m2

π̃

2λHv
2 = m2

σ̃s
2
θ +m2

hc
2
θ

λuv = ±(m2
σ̃ −m2

h)cθsθ

. (41)

Additional comments can be made on the possible values of the masses of the techni-
particles. As a simple starting point, the masses of the techniparticles could be assumed
to exhibit a similar mass hierarchy as the corresponding QCD particles. A scale fac-
tor could thus be applied to the masses of the QCD particles, as to get the masses for
the corresponding techniparticles. As mentioned above, as an approximate lower limit,
ΛTC ∼ MEW ∼ 100 GeV. Since ΛQCD ∼ 100 MeV, a scale factor of 1000 between the
QCD particles and the techniparticles could be used. Of course the direct scale factor is a
very hand wavy approximation, but could still be used to get a sense for the values of the
different techniparticle masses considering a lower limit for the confinement scale (ΛTC).
With the direct scaling between QCD and T-QCD of a 1000, the masses of the technipar-
ticles would be mQ̃ ∼ 300 GeV, mπ̃ ∼ 150 GeV and mσ̃ ∼ 500 GeV. If the technisigma
vev, u, is assumed to be of the same order as the Higgs vev, v, one has u ∼ 100 GeV,
implying that gTC ∼ 1, by considering (44). From experimental measurements, v ' 246
GeV and mh ' 125 GeV.

3.3 Physical Lagrangians

As the physical states of definite mass {Q̃, π̃0, π̃±, σ̃, h} have been determined, the La-
grangian terms of (12) can be evaluated in these states to obtain the physical interaction
terms. Starting of with the Yukawa-type interaction term

− gTCQ̃(S + iγ5τaPa)Q̃ = −gTC
(
U D

)( S + iγ5P3 iγ5P1 + γ5P2

iγ5P1 − γ5P2 S − iγ5P3

)(
U
D

)
= −gTC

(
U
(
(S + iγ5P3)U + γ5(iP1 + P2)D

)
+D

(
γ5(iP1 − P2)U + (S − iγ5P3)D

))
.

(42)

Using that S → u+ hsθ + σ̃cθ (from (35)) and (14), (42) can be written as

− gTC
((
u+ hsθ + σ̃cθ

)(
UU +DD

)
+ iπ̃0

(
Uγ5U −Dγ5D

)
− i
√

2π̃+Uγ5D − i
√

2π̃−Dγ5U
)
. (43)
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The terms in (43) thus yield the three-vertex interaction terms between the T-quarks and
the Higgs, technisigma and technipions. Mass terms for the T-quarks are also present in
(43), corresponding to −gTCuUU − gTCuDD. Hence, the T-quarks have masses

mQ̃ = mU,D = gTCu. (44)

The equal masses of the two T-quarks can be expected by considering symmetry argu-
ments. In the vector-like region, a Lagrangian of the form presented for QCD in (1) is
allowed as long as the masses are equal. Hence, as the T-quarks interact vector-like under
SU(2)W , equal mass terms follow.

The interaction terms between the EW gauge bosons of the SM and the technipions can
be obtained by considering the kinetic term of the pions in (12) and the definition of their
covariant derivative (11). Using the notation ∂µPa = Pa,µ and ignoring the propagation
term, one has

Lπ̃;π̃V/V V =
1

2

(
g2εabcPa,µW

µ,bPc + g2εabcW
b
µPcP

µ
a + g22εabcεadeW

b
µPcW

µ,dPe
)
, (45)

where V denotes any EW gauge boson (A,Z,W±). The pions can be expressed in their
states of definite charge and mass as (14) and similarly, the W i fields can be expressed as

W 1 = − 1√
2
(W+ +W−)

W 2 = i√
2
(W− −W+)

W 3 = Z cos θW + A sin θW

, (46)

where the right-hand side denotes states of definite charge and mass [8]. Noting that
P2,µP1−P1,µP2 = 2i(π̃−π̃+

,µ− π̃+π̃−,µ) from (14) and using the properties of the Levi-Cevita
tensor (εabc), (45) can be written as

Lπ̃;π̃V/V V = ig2
(
−W µ,+(π̃−π̃0

,µ − π̃0π̃−,µ)−W µ,−(π̃0π̃+
,µ − π̃+π̃0

,µ)

+ (Zµ cos θW + Aµ sin θW )(π̃−π̃+
,µ − π̃+π̃−,µ)

)
+ g22

(
W+
µ W

µ,−(π̃0π̃0 + π̃+π̃−) + (Zµ cos θW + Aµ sin θW )2π̃+π̃−

−W+
µ (Zµ cos θW + Aµ sin θW )π̃−π̃0 −W−

µ (Zµ cos θW + Aµ sin θW )π̃+π̃0

− 1

2
W−
µ W

µ,−π̃+π̃+ − 1

2
W+
µ W

µ,+π̃−π̃−
)
. (47)

The EW interactions for the T-quarks are obtained by considering the kinetic term in
(12) and the definition of its covariant derivative (11). The gauge bosons have to be
expressed in their states of definite charge and mass, given by (46), alongside with the
corresponding relation for the B-field, B = A cos θW − Z sin θW [8]. As mentioned, the
hypercharge of the T-quark doublet is taken to be the same as that of the u, d quark
doublet, i.e. YQ̃ = 1/3. Similarly, the weak isospins were also taken to be the same as

the corresponding quarks, i.e. tU3 = 1/2 and tD3 = −1/2. The electric charges of the
T-quarks are then also the same as of the corresponding quarks, i.e. qU = qu = 2/3 and
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qD = qd = −1/3, since qf = YQ̃/2 + tf3 [8]. Thus, the EW interactions with the T-quarks
are given by

L
Q̃Q̃V

=
1

2
Q̃γµ(g1YQ̃Bµ + g2W

a
µ τa)Q̃ = − g2√

2
UγµDW+

µ −
g2√

2
DγµUW−

µ

+

(
1

2
(g1YQ̃cW + g2sW )UγµU +

1

2
(g1YQ̃cW − g2sW )DγµD

)
Aµ

+

(
1

2
(−g1YQ̃sW + g2cW )UγµU +

1

2
(−g1YQ̃sW − g2cW )DγµD

)
Zµ

= − g2√
2

(
UγµDW+

µ +DγµUW−
µ

)
+
∑
f=U,D

eqffγ
µfAµ +

∑
f=U,D

g2
cW

(tf3 − qfs2W )fγµfZµ,

(48)

where g2sW = e, g1cW = e has been used and cW = cos θW , sW = sin θW (θW is the
Weinberg angle) [8].

The Higgs and technisigma couplings to the EW gauge bosons are obtained by considering
the Lagrangian terms for the Higgs couplings in the SM case and then letting H →
hcθ − σ̃sθ (see (35)). The relevant Lagrangian terms are given in Appendix B.3 by (139),
yielding

Lh/σ̃;WW/ZZ =
1

2

(
g22vW

+
µ W

µ,− + v
1

2
(g21 + g22)ZµZ

µ

)
(hcθ − σ̃sθ)

+
1

4

(
g22W

+
µ W

µ,− +
1

2
(g21 + g22)ZµZ

µ

)
(hcθ − σ̃sθ)2. (49)

The Yukawa terms for the SM fermions will also be altered due to the Higgs-technisigma
mixing. From Appendix B.3, specifically (143), the interaction term between Higgs and
fermion is seen to be of the form Lhff = gfffH/

√
2. Using (144) and (140), one can

obtain the relation gf/
√

2 = g2mf/2MW ; leading to a Higgs-technisigma-fermion coupling
(letting H → hcθ − σ̃sθ) as

Lh/σ̃,ff =
g2mf

2mW

ff(hcθ − σ̃sθ). (50)

Finally, the Higgs and technisigma interaction terms with the technipions can be obtained
from the potential terms of the Lagrangian, i.e. by considering (12); the relevant terms
are −λTCS2P 2/2 + λH2P 2. By using (35), the following interaction terms are obtained

Lh/σ̃,π̃π̃ = −σ̃(uλTCcθ + vλsθ)P
2 + h(vλcθ − uλTCsθ)P 2

= −σ̃ gTC
2mQ̃

(m2
σ̃ −m2

π̃)cθ(π̃
0π̃0 + 2π̃+π̃−)− h gTC

2mQ̃

(m2
h −m2

π̃)sθ(π̃
0π̃0 + 2π̃+π̃−), (51)

where (41), (44) and (13) are also used in the second step.
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3.4 Nearly conformal limit

As to restrict the CSTC model further by reducing the number of free parameters, the
nearly conformal limit (NCL) can be investigated. Considering the theory of QCD in
greater detail, it can be seen that QCD in the chiral limit (vanishing quark masses)
is subject to a symmetry called conformal symmetry. The conformal symmetry in the
chiral limit must also be respected by the LσM used in low-energy QCD, which has as
a consequence that µ-terms are forbidden.3 In reality, the quarks in QCD have non-zero
mass and hence the conformal symmetry is broken. However, since the quark masses are
small compared to the quark condensate 〈qq〉 one could still imagine that the conformal
symmetry is almost realised, implying that the µ-terms should be small (if existing).

By direct analogy with QCD, the above concept is applied to the techni-sector, where one
then considers small T-quark masses compared to the T-quark condensate, or equivalently
small T-quark masses compared to the technipion mass (since the technipion mass and the
T-quark condensate are related through (24)). As µ-terms were forbidden by conformal
symmetry, one considers the limit were both µS and µH , of the Lagrangian (12), vanish.
The main consequence of the NCL is that the Higgs and technisigma vevs will be solely
expressed through the T-quark condensate (or technipion mass); meaning that both vevs
have the same origin. It can be seen explicitly by considering (25) and (26), while taking
the limit µH , µS → 0, yielding {

v2 =
λm2

π̃

δ

u2 =
λHm

2
π̃

δ

, (52)

where δ = λTCλH − λ2. Using (24), i.e. m2
π̃ = gTC |〈Q̃Q̃〉|, it is obtained that

u2 =
λHgTC |〈Q̃Q̃〉|

δu
⇒ u =

(
gTCλH
δ

)1/3

|〈Q̃Q̃〉|1/3. (53)

Hence, it is also obtained that

v2 =
λgTC |〈Q̃Q̃〉|

δu
=
λgTC |〈Q̃Q̃〉|

δ

(
λHgTC |〈Q̃Q̃〉|

δ

)−1/3
=

λ

λ
1/3
H

(
gTC |〈Q̃Q̃〉|

δ

)2/3

⇒ v =

(
λ

λH

)1/2(
gTCλH
δ

)1/3

|〈Q̃Q̃〉|1/3. (54)

Thus, it is evident that u, v ∝ |〈Q̃Q̃〉|1/3 and hence both originate from a non-zero T-
quark condensate.

The parameters in the NCL can be plotted against the mass of the technisigma, in or-
der to draw interesting conclusions about this scenario. The parameters of the CSTC
model, expressed in the NCL are considered in Appendix C, whereas the plots are seen

below in fig. 1 and 2. Note that the quantity gTC = gTC |〈Q̃Q̃〉| has been defined and used.

3Conformal symmetry is not discussed any further here, only the fact that µ-terms are forbidden by
it is what is relevant for the discussion.
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Figure 1: From top-bottom, left-right the plots of sin θ, λTC , λH and λ are presented as
functions of the technisigma mass. The dashed (red), solid (green), dashed-dot (blue)

lines correspond to a technipion mass of 150, 250, 350 GeV respectively.
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Figure 2: From left to right the plots of u and gTC/v
3 are presented as functions of the

technisigma mass. The dashed (red), solid (green), dashed-dot (blue) lines correspond to
a technipion mass of 150, 250, 350 GeV respectively.

3.5 Precision tests

As the introduced techniparticles interact with SM particles, additional non-SM diagrams
describing interactions will appear. In particular, higher-order corrections to the EW
bosons (such as mass, decay, cross section modifications) should be present. As there
have been substantial precision measurements on the electroweak sector of the SM, the
new techni-sector must be able to be contained within those measurements. New physics
corrections can be constrained by the so called Peskin-Takeuchi parameters, S, T, U [14].
As quoted in Ref. [1], they are at approximate values S = 0.00+0.11

−0.10, T = 0.02+0.11
−0.12, U =

0.08+0.11
−0.11, where the sub- and superscripts denotes the regions of allowable deviation.

Considering any mixing angle, degenerate T-quark masses and technipion and -sigma
masses in regions around the ones obtained from the scaling of the QCD mesons, the
CSTC model here under discussion can be seen to uphold the specific allowed regions for
the S and U parameters. However, in order for the T parameter to be in accordance
with measurements, the mixing angle has to be constrained |sθ| . 0.55. Further, as the
mixing angle approaches zero, the T parameter vanishes completely; making the near-to-
no-mixing limit (NNML) particularly interesting [1].

A reason for the construction of a chirally symmetric (vector-like) theory under the EW
group SU(2)W ×U(1)Y , is that the S, T, U parameters of the model turn out to be within
the allowed regions. Other technicolor models, without vector-like interactions do not
necessarily imply such a property [15]. Hence, the vector-like interactions are a way
to circumvent problems that have arisen for other, non-chirally symmetric technicolor
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models.

3.6 Discussion

Several remarks can be made on the constructed CSTC model and the conclusions it im-
plies. As a start, the basic assumptions of the fundamental theory can be examined. Since
no techniparticle modes has yet to be observed, assuming the naive mass scaling from the
QCD particle spectrum, the techniparticles must seem to be suppressed such that a strong
clear experimental signal is not visible. However, there is no definite argument stating
that the mass scaling should be realised, even in an approximate sense. The CSTC model
could still be realised even with heavier techniparticles than could be observed now (i.e.
within the 1 TeV range). However, this means that the particle spectrum would not give
rise to any signals, making it harder to confirm a possible techni-sector.

As was mentioned in the NCL scenario, both the Higgs and technisigma vevs are seen
to have the same source, being the non-zero value of the T-quark condensate. As this
scenario, if realised, offers a clear explanation of the Higgs vev within the model, the plau-
sibility could be investigated. Using the adopted mass hierarchy of QCD, with the scale
factor of 1000, the current T-quark masses are very small compared to the energy scale of
the theory ΛTC (of order ∼ 0.01). In analogy with QCD [18], the T-quark condensate can

be related to the confinement scale ΛTC , very approximately, as 〈Q̃Q̃〉 ∼ Λ3
TC . As was

required for QCD, low mass compared to the quark condensate implied a near conformal
symmetry of the theory. It is hence, with the assumed mass scaling from QCD, possible
that the NCL is indeed realised for the CSTC model.

The plots of the parameters of the NCL in fig. 1 and 2 should also be commented on,
as to see what physical consequences are apparent. In order for the CSTC model to be
realised, the current experimental results must be respected. As noted before, considering
the S, T, U parameters, a constrained mixing angle had to be considered in order for the
value of the T parameter to be consistent with experimental data. In fig. 1, it can be seen
that as sθ → 0 also λTC , λ → 0, such that the techni-sector is completely disconnected
from the Higgs sector (see (12) and recall that the µ-terms are put to zero in the NCL).
At the same time, in the NNML, λH stays at a low value (< 1), as is favourable con-
sidering calculations (coupling constants cannot be arbitrarily large in order to be used
in higher order calculations, as it leads to non-perturbative effects [7]). As was noted in
Appendix C, the no-mixing limit corresponds to m2

σ̃ = 3m2
π̃, also visible in the figures;

and is the reason why the dashed (red) line, corresponding to mπ̃ = 150 GeV, has no
no-mixing scenario (since it happens at a lower value of mσ̃ considered on the present
scale of the figures). Another consequence of the NNML is seen in fig. 2. There it is seen
that as θ → 0 both u and gTC tend to large values (in comparison to the EW scale).
Hence, as a low mixing could be a probable case (as to not modify the SM too much),
the confinement scale for the techni-sector would be a lot larger than the lower limit of
∼ MEW . Note however that independent of how large u (or equivalently ΛTC or gTC)
becomes, the Higgs vev can still be expressed in terms of the T-quark condensate , with
subsequent explanation of the Higgs vev’s origin.
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A distinction between QCD and the CSTC model is that in QCD, masses for the GSBs
are obtained by explicitly breaking the initial chiral symmetry in a perturbation manner,
such that SSB is still induced [2]. However, in the CSTC model, the initial chiral sym-
metry is solely broken through SSB, where the mass term for the GSBs rest entirely on
the non-zero value of the T-quark condensate. A reason to exclude an explicit symmetry
breaking in the CSTC model can be considered that one of the goals of the model is to
explain the EWSB within the framework of the model. And as was examined, the Higgs
mechanism could be considered induced by a non-zero T-quark condensate (especially if
the NCL scenario is approximately realised). As the EWSB is a SSB, an explicit symme-
try breaking in the CSTC model might modify the theory such that the EWSB cannot
be induced through the model spontaneously.

The choice of considering ΛTC ∼ MEW as an approximate lower limit can also be com-
mented on. As a main focus of the CSTC model is to introduce an origin to the Higgs
vev through the T-quark condensate, it could be argued that the scale of ΛTC should
be of the same scale as the Higgs vev v. From QCD, one expects the vev (u) break-
ing the chiral symmetry, to be related as u ∼ ΛQCD ∼ |〈qq〉|1/3 [3]. Thus, in analogy
one could consider for the CSTC model (here u denotes the technisigma vev as before)
v ∼ u ∼ ΛTC ∼ |〈qq〉|1/3, as the T-quark condensate is desired to be the source of the
Higgs vev.

4 Techni-QCD: Three techniquark case

In Sect. 3, the CSTC model extension to the SM of Ref. [1] was reproduced, where two
T-quarks were considered (see (8)). A chirally symmeric model was there constructed
under SU(2)L × SU(2)R with SSB to SU(2)V , which was identified with the SM weak
isospin group SU(2)W . The SSB gave rise to a light technimeson particle spectrum,
corresponding to technipions as GSBs. The GSBs were introduced via a LσM, also giving
rise to the technisigma meson. In this section the basic theory of a three T-quark CSTC
model shall be outlined. The study following is a reproduction of notes by R. Pasechnik.

Considering three T-quarks implies that the chiral symmetry group considered now is
SU(3)L × SU(3)R, with SSB to SU(3)V . The two main reasons for introducing three
T-quarks, instead of having only two, are:

• The technimeson particle spectrum due to the SSB will be larger, giving rise to more
possible signals which could show up in further experimental precision measurements
at particle colliders.

• The Higgs boson can be integrated into the technimeson particle spectrum, giving
it a composite substructure of T-quarks. Hence, within the framework of the CSTC
model of three T-quarks, the Higgs boson’s origin can be explained.

As a start, the T-quarks’ properties are examined. In analogy to QCD, one considers left-
handed (LH) doublets (under SU(2)W ) and right-handed (RH) singlets (under SU(2)W ).
The strong force in QCD have three color charges, i.e. QCD corresponds to an SU(3)
group. For the three T-quark CSTC model treated here, a two-technicolor charge force

19



is considered (for simplicity), hence one has SU(2)TC .4 Even though the T-quarks’ LH
and RH components here initially are taken to be treated differently in SU(2)W , chirally
symmetric T-quarks can be constructed of the non-chirally symmetric ones, as is shown
below. The implication is that the T-quarks interacting under SU(2)W will have vector-
like interactions.

4.1 Constructing chirally symmetric techniquarks

As mentioned, in analogy to QCD, there are LH T-quarks which are in the fundamental
representation of SU(2)W × SU(2)TC (henceforth referred to as LH bi-doublets) and
RH T-quarks which are in fundamental representation of SU(2)TC (referred to as RH
singlets). The SU(2)W index is denoted a = 1, 2 and the SU(2)TC index as α = 1, 2. The
hypercharges of the LH bi-doublets are zero and for the RH singlets they are of the same
magnitude but of opposite sign for the generation members. Two generations, A = 1, 2, of
T-quarks are considered, meaning that there are two LH bi-doublets and four RH singlets.
Denoting the LH bi-doublet as QL and the corresponding RH singlets as UR, DR, one has
the following infinitesimal transformations

Qaα
L(A) → Qaα

L(A) +
i

2
g2ϑkτ

ab
k Q

bα
L(A) +

i

2
gTCϕkτ

αβ
k Qaβ

L(A), (55)

Uα
R(A) → Uα

R(A) −
i

2
g1θU

α
R(A) +

i

2
gTCϕkτ

αβ
k Uβ

R(A) (56)

and

Dα
R(A) → Dα

R(A) +
i

2
g1θD

α
R(A) +

i

2
gTCϕkτ

αβ
k Dβ

R(A). (57)

Here g1, g2 and gTC are the coupling constants of the U(1)Y , SU(2)W and SU(2)TC re-
spectively, with infinitesimal parameters θ, ϑ and ϕ. Note that in (56) and (57) the signs
are different for the U(1)Y transformations and the magnitude of the hypercharges are
set to unity.

The goal, as previously implied, is to construct three chirallly-symmetric T-quarks out of
the ones in (55) - (57). It can be done by first taking QL(1) and DR(1) as they are, and
then consider the charge conjugation of QL(2) and UR(1).

5 As charge conjugation flips the
chirality of a chiral spinor, it is possible to define

Qaα
R(2) = εabεαβCQbβ

L(2), (58)

and
Dα
L(1) = −εαβCUβ

R(1), (59)

4Note that since the technicolor force acts in the fundamental representation on T-quarks, both LH
and RH T-quarks are doublets in SU(2)TC . Since the LH quarks also form a doublet in SU(2)W it is a
bi-doublet.

5The second generation of the RH singlets is discarded for further use. Since two complete generations
correspond to four techni-quarks, all of the members are not needed to construct a three T-quark model
(and as is seen, to construct a chirally-symmetric three T-quark model one does not need UR(2) or DR(2)).
One could consider a chirally-symmetric four T-quark model, but to follow in the footsteps of QCD, the
fourth T-quark is assumed to be a lot heavier than the three lightest [11].
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where C denotes the charge conjugation operator. As is seen, (58) describes a RH bi-
doublet and (59) describes a LH singlet. Investigating their transformation properties,
one finds that (58) transforms like (55), and (59) transforms like (57). Hence, one can
construct a chirally symmetric bi-doublet and singlet, as

Qaα = Qaα
L(1) +Qaα

R(2) (60)

and
S = Dα

L(1) +Dα
R(1) (61)

respectively.

The construction of the three chirally symmetric T-quarks can be seen in greater detail
in Appendix D.1.

In addition to the SM Lagrangian, the extra terms for Q,S and the technigluon field Tµ,n,
with n = 1, 2, 3 is also present. Since Q (i.e. (60)) was constructed from objects (i.e. (55))
which transformed under SU(2)W × SU(2)TC , Q will also transform under these groups.
For S (i.e. (61)), (56) and (57) were used in its construction, and makes it transform
under SU(2)TC × U(1)Y . The allowed Lagrangian under the present symmetries is then

LTC = −1

4
T nµνT

µν,n + iQγµDµ,QQ−mQQQ+ iSγµDµ,SS −mSSS, (62)

where  Dµ,QQ =
(
∂µ − i

2
g2W

a
µ τ

a − i
2
gTCT

n
µ τ

n
)
Q

Dµ,SS =
(
∂µ + i

2
g1Bµ − i

2
gTCT

n
µ τ

n
)
S

, (63)

are the covariant derivatives for Q and S, and Tµν is the field strength tensor of the
technigluon field.

4.2 Parametrization

In Sect. 3 a CSTC model characterised by the SSB as (7) with nF = 2 was considered.
Here the extension to the case for nF = 3 is examined. Thus, the following triplet is
constructed

Q̂ =

UD
S

 (64)

with infinitesimal transformations under SU(3)L × SU(3)R as

Q̂L →
(

1 +
i

2
ζaλa

)
Q̂L (65)

and

Q̂R →
(

1 +
i

2
ξaλa

)
Q̂R. (66)

By considering the Lagrangian (62), it is seen that (as was the case for the two T-quarks)
the masses for the U and D are the same (mQ). By simplicity and convenience the mass of
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S is also considered to be approximately the same, such that mS ≈ mQ. This is in contrast
to QCD, where ms � md ≈ mu [11]. Considering the present masses for the T-quarks
small compared to the confinement scale makes the chiral limit more (approximately)
realised for the three T-quark case in T-QCD than for the three quark case in QCD.

As in the previous sections, the technimeson particle spectrum is obtained as the GSBs
from the SSB of SU(3)L × SU(3)R to SU(3)V , and is introduced via a LσM. Using the
same notation for the technimeson as the mesons in QCD, one has

π0, π+, π−;K0, K0, K+, K−; η. (67)

The pseudoscalar mesons above have a spin-parity 0− [13]. To be completely general,
their chiral partners with spin-parity 0+, should also be considered. The chiral partners
are here denoted as

a0, a+, a−;H0, H0, H+, H−; f. (68)

The parametrization of the technimesons and their chiral partners can be done similarly
to the case in Sect. 3, only here extending to higher dimension, thus

Φ̂ =
1√
2


1√
2
a0 + 1√

6
f + 1√

3
σ a+ H+

a− − 1√
2
a0 + 1√

6
f + 1√

3
σ H0

H− H
0 −

√
2
3
f + 1√

3
σ



− i√
2


1√
2
π0 + 1√

6
η + 1√

3
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η + 1√

3
η0 K0

K− K
0 −

√
2
3
η + 1√

3
η0

 . (69)

Here σ is the scalar, SU(3)V singlet introduced as usual in a LσM and η0 is its pseudoscalar
chiral partner. Under SU(3)L × SU(3)R, the matrix Φ̂ transforms infinitesimally as

Φ̂α
β → Φ̂α

β +
i

2
ζa(λa)

α
γ Φ̂γ

β −
i

2
Φ̂α
δ (λa)

δ
βξa, (70)

similarly to the cases in the previous sections (only here the infinitesimal transformations
are considered explicitly).

The LσM Lagrangian allowed under SU(3)L × SU(3)R, with transformations described
by (65), (66) and (70) is

L3σ = iQ̂γµ∂µQ̂−
√

6κ
(
Q̂LΦ̂Q̂R + Q̂RΦ̂†Q̂L

)
+ Tr(∂µΦ̂†∂µΦ̂) + µ2Tr(Φ̂†Φ̂)

− λ1
(
Tr(Φ̂†Φ̂)

)2 − 3λ2Tr(Φ̂†Φ̂Φ̂†Φ̂) + 2
√

6Λ3Re
(
det(Φ̂)

)
. (71)

The second term of (71), i.e. −
√

6κ
(
Q̂LΦ̂Q̂R+ Q̂RΦ̂†Q̂L

)
, is a Yukawa-type term between

the T-quarks and the technimesons. The last term in the Lagrangian, 2
√

6Λ3Re
(
det(Φ̂)

)
,

is of more technical nature (not treated in this work); it can be seen to break certain
symmetries present in the theory (being a desirable effect), but under SU(3)L × SU(3)R
it can be shown to be invariant.
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4.3 Pre-EWSB phase

In the two T-quark CSTC model of Sect. 3, vevs were given to the Higgs (see (15)) and
the S field (see (16)). For the three T-quark model, the vevs will be given in two phases.
First, only the σ meson acquires a vev as σ → σ + u. It happens before the EWSB of
the SM, hence it will be called pre-EWSB phase. Later, the Higgs doublet of the SM will
be identified with some of the technimesons, and then it will obtain a vev in the usual
sense (i.e. as in (15)). The phase were both σ and Higgs have acquired vevs will be called
the post-EWSB phase. That the vev of σ and the vev of Higgs are given in two distinct
energy regions is a consequence of considering u2 � v2. Further remarks on this are made
in the discussion section.

Restricting to the pre-EWSB phase, as mentioned only σ aquires a vev, i.e. 〈σ〉 = u. The
potential part of the Lagrangian (71) is

U =
√

6κ
(
Q̂LΦ̂Q̂R+Q̂RΦ̂†Q̂L

)
−µ2Tr(Φ̂†Φ̂)+λ1

(
Tr(Φ̂†Φ̂)

)2
+3λ2Tr(Φ̂†Φ̂Φ̂†Φ̂)−2

√
6Λ3Re

(
det(Φ̂)

)
,

(72)
which has a vacuum average (letting σ → u and the other fields to zero) reading

〈U〉 = κu〈Q̂Q̂〉 − 1

2
µ2u2 +

1

4
λ1u

4 +
1

4
λ2u

4 − 1

3
Λ3u

3. (73)

Since (73) describes the vacuum, it is the minimum of the potential (72). Hence, d〈U〉/du =
0 and d2〈U〉/du2 > 0 must hold; leading to the relations

d〈U〉
du

= u
(κ〈Q̂Q̂〉

u
− µ2 + λ1u

2 + λ2u
2 − Λ3u

)
= 0 (74)

and
d2〈U〉
du2

= −κ〈Q̂Q̂〉
u

+ 2λ1u
2 + 2λ2u

2 − Λ3u > 0, (75)

where (74) has been used to write (75) on the form it is written.

The mass spectrum for the technimesons can be obtained by expanding each field around
their vevs, which, for the pre-EWSB phase, means that σ → σ + u in Φ̂ (i.e. in (69)).
The terms from the Lagrangian (71) contributing to the technimeson masses are

µ2Tr(Φ̂†Φ̂)− λ1
(
Tr(Φ̂†Φ̂)

)2 − 3λ2Tr(Φ̂†Φ̂Φ̂†Φ̂) + 2
√

6Λ3Re
(
det(Φ̂)

)
. (76)

Evaluating the terms in (76) leads to

M2
π(0) = M2

η(0) = M2
K(0) = −µ2 + (λ1 + λ2)u

2 − Λ3u = −κ〈Q̂Q̂〉
u

, (77)

where the subscript (0) denotes that the pre-EWSB phase is considered and the last step
in (77) is obtained from (74). Further the mass terms

M2
a(0) = M2

f(0) = M2
H(0) = −µ2 + (λ1 + λ2)u

2 + Λ3u = M2
π(0) + 2λ2u

2 + 2Λ3u, (78)

M2
σ(0) = −µ2 + 3(λ1 + λ2)u

2 − 2Λ3u = M2
π(0) + 2(λ1 + λ2)u

2 − Λ3u (79)

23



and
M2

η0(0)
= −µ2 + (λ1 + λ2)u

2 + 2Λ3u = M2
π(0) + 3Λ3u. (80)

are obtained. Note that using (75), (77) and (79) yields M2
σ(0) = d2〈U〉/du2 > 0.

From (77) - (80), the parameters of the Lagrangian (71) can be expressed in the techn-
imeson masses as 

−κ〈Q̂Q̂〉
u

= M2
π(0)

Λ3u = 1
3

(
M2

η0(0)
−M2

π(0)

)
2λ2u

2 = M2
H(0) −

1
3

(
2M2

η0(0)
+M2

π(0)

)
2λ1u

2 = M2
σ(0) +M2

η0(0)
−M2

π(0) −M2
H(0)

. (81)

Hence, the only parameter of the five independent ones of the Lagrangian (71) not ex-
pressible in technimeson masses is µ2.

4.4 Post-EWSB phase

Due to the T-quark substructure of the technimesons in (69), they are classified differently
in the EW group (see Appendix D.1 for additional explanation). Two SU(2)W doublets
are present, in the forms

H =

(
H+

H0

)
, K =

(
K+

K0

)
. (82)

Both H and K have hypercharge 1. The SM Higgs doublet is here identified with H,
since it has matching properties with the Higgs (in the SM sector). Further the triplets
of πa and aa are in the adjoint representation of SU(2)W with hypercharge 0. The rest of
the technimesons are singlets under SU(2)W × U(1)Y , thus not interacting with the EW
gauge bosons of the SM.

The LσM Lagrangian (71) has to be modified by introducing covariant derivatives for the
fields, due to their respective representations under the EW group SU(2)W × U(1)Y of
the SM. For the T-quarks one has

iQ̂γµDµQ̂ = iQγµDµ,QQ+ iSγµDµ,SS, (83)

where the right-hand side is given in (63). For the technimesons, the following covariant
derivatives have to be introduced{

∂µπa → Dµπa = ∂µπa + g2εabcW
b
µπc

∂µaa → Dµaa = ∂µaa + g2εabcW
b
µac

(84)

and 
∂µK → DµK =

(
∂µ − i

2
g1Bµ − i

2
g2W

a
µ τa

)
K

∂µH → DµH =

(
∂µ − i

2
g1Bµ − i

2
g2W

a
µ τa

)
H

. (85)
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Thus, the LσM Lagrangian reads

L3σ = iQ̂γµDµQ̂−
√

6κ
(
Q̂LΦ̂Q̂R + Q̂RΦ̂†Q̂L

)
+ (DµK)†DµK + (DµH)†DµH

+
1

2
(DµπaD

µπa +DµaaD
µaa + ∂µσ∂

µσ + ∂µf∂
µf + ∂µη0∂

µη0 + ∂µη∂
µη)

+ µ2Tr(Φ̂†Φ̂)− λ1
(
Tr(Φ̂†Φ̂)

)2 − 3λ2Tr(Φ̂†Φ̂Φ̂†Φ̂) + 2
√

6Λ3Re
(
det(Φ̂)

)
. (86)

As mentioned, the phase were both σ and the SM Higgs doublet (H) gain vevs would
be referred to as the post-EWSB phase. The Higgs obtaining a vev, with subsequent
expansion around it, is taken to be the same as in the SM, namely

H =
1√
2

(
0

v + h

)
. (87)

Since now that the SM Higgs has entered the theory and obtained a vev, it induces
the EWSB (in the same way as in the SM). Since both σ and the Higgs obtain vevs,
the vacuum average of the potential (73) is modified. Letting all fields in (69) go to zero
except for σ and H0 (and hence also H0) which go to u and v/

√
2 respectively, the vacuum

average of the potential (72) is obtained to be

〈U〉 = κu〈Q̂Q̂〉+

√
3

2
κv〈SD +DS〉 − 1

2
µ2(u2 + v2) +

1

4
λ1(u

2 + v2)2

+ λ2

(
1

4
(u2 + v2)2 + v2

(
u2 +

1

8
v2
))
− Λ3u

(
1

3
u2 − 1

2
v2
)
. (88)

To represent the minimum, (88) must have derivatives w.r.t. u and v equal to zero and
satisfy (18). Hence, the following relations should hold

∂〈U〉
∂u

= u
(
κ〈Q̂Q̂〉
u
− µ2 + λ1(u

2 + v2) + λ2(u
2 + 3v2)− Λ3

(
u− v2

2u

))
= 0

∂〈U〉
∂v

= v
(√

3
2
κ〈SD+DS〉

v
− µ2 + λ1(u

2 + v2) + λ2(3u
2 + 3

2
v2) + Λ3u

)
= 0

, (89)

and (
∂2〈U〉
∂u2

)(
∂2〈U〉
∂v2

)
−
(
∂2〈U〉
∂u∂v

)2

> 0, (90)

where 

∂2〈U〉
∂u2

= −µ2 + λ1(3u
2 + v2) + 3λ2(u

2 + v2)− 2Λ3u

∂2〈U〉
∂v2

= −µ2 + λ1(u
2 + 3v2) + λ2(3u

2 + 9
2
v2) + Λ3u

∂2〈U〉
∂u∂v

= v
(

2λ1u+ 6λ2u+ Λ3

) . (91)

Considering the post-EWSB phase, the Higgs has also obtained a vev (see (87)) in addition
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to σ. The mass terms for the technimesons are thus modified compared to the pre-EWSB
phase. In particular, most of the technimesons will mix, such that they do not represent
states of definite mass any longer. Only considering terms up to first order in v/u (since
u2 � v2), there will be mixing between the neutral scalar fields {h, σ, f, a0}, the charged

pseudoscalar fields {π±, K±} and the neutral pseudoscalar fields {K0, K
0
, η0, η, π

0}. The
(mixed) mass terms are obtained by expanding each technimeson field around their vevs,
implying that Φ̂ has the same appearance as in (69) but taking σ → σ + u and H as in
(87). The Lagrangian terms contributing to the mass terms were stated in (76). Using
the pre-EWSB mass relations (77) - (80), the relevant, mixed, mass terms are

M2
π(0)(π

+π− +K+K−) +

√
3

2
v(λ2u+ Λ3)(π

+K− + π−K+) (92)

for the charged pseudoscalar fields,

M2
π(0)(K

0K
0

+ η2 + (π0)2) +M2
η0(0)

η20 +
√

2v(2λ2u− Λ3)(K
0 +K

0
)η0

−
√

3v(λ2u+ Λ3)(K
0 +K

0
)π0 − v(λ2u+ Λ3)(K

0 +K
0
)η (93)

for the neutral pseudoscalar fields and

M2
H(0)(f

2 + h2 + (a0)2) +M2
σ(0)σ

2 + 2(2λ1uv + 6λ2uv + Λ3v)hσ

+
√

2(−3λ2uv + Λ3v)fh+
√

6(3λ2uv + Λ3v)ha0 (94)

for the neutral scalar fields. In obtaining the expressions above, it has been used implicitly
that any terms containing v2 in combination with either λ1 or λ2 can be omitted. This
follows from considering (81), where such terms can be seen to be of second order in v/u.

There lies some ambiguity as in how to set up the mass hierarchy of the pre-EWSB tech-
nimeson masses. In what follows, the conditions that M2

π(0) > M2
η0(0)

and M2
H(0) > M2

π(0)

have been used. To get the states of definite mass the mixed terms must be diagonalised.
The three relations (92) - (94) will thus be examined individually below, as to obtain the
masses and the corresponding physical states.

4.4.1 Physical charged pseudoscalar states

The charged pseudoscalar fields {π±, K±} with mass terms (92) are the simplest to de-
couple into definite mass states. The mixed mass terms can be set up as a 2 × 2 matrix
problem. The linear combinations

π± = 1√
2
(π̃± + K̃±)

K± = 1√
2
(−π̃± + K̃±)

(95)

can be shown to lead to states of definite mass for the new states {π̃±, K̃±}. The mass
terms obtained, using (81) to express them in terms of the pre-EWSB masses, are

M2
π̃ = M2

π(0) −
√

3
8
(M2

H(0) −M2
π(0))

v
u

M2
K̃

= M2
π(0) +

√
3
8
(M2

H(0) −M2
π(0))

v
u

. (96)
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4.4.2 Physical neutral pseudoscalar states

As to start, finding the definite mass states of the neutral pseudoscalar fields

{K0, K
0
, η0, η, π

0} with mass terms as (93), can be made into a matrix problem of di-

mension 4× 4. The fields K0 and K
0

can be rewritten into two pseudoscalar fields which
are their own hermitian conjugate (as are the fields η0, η and π0). Examining (93), one

sees that the linear combination (K0 + K
0
) appears in all the mixed terms. Further,

considering the linear combination i(K0 −K0
), the two new fields

ζ = 1√
2
(K0 +K

0
)

ξ = i√
2
(K0 −K0

)
(97)

can be introduced to obtain the desired result. The mass problem in (93) can then be
written in matrix form as

M2
π(0)ξ

2+

(
ζ π0 η η0

)


M2
π(0) −

√
6
2
v(λ2u+ Λ3) −

√
2
2
v(λ2u+ Λ3) v(2λ2u− Λ3)

−
√
6
2
v(λ2u+ Λ3) M2

π(0) 0 0

−
√
2
2
v(λ2u+ Λ3) 0 M2

π(0) 0

v(2λ2u− Λ3) 0 0 M2
η0(0)



ζ
π0

η
η0

 .

(98)

One state of definite mass is immediately obtained, corresponding to the recently intro-
duced ξ which has a mass M2

ξ = M2
π(0). For the remaining four fields, the 4× 4 matrix in

(98) has to be diagonalised in order to obtain the masses (corresponding to the eigenval-
ues). The eigenvectors then correspond to the states of definite mass, which will be some
linear combinations of the fields {ζ, π0, η, η0}.

Using (81) and only considering terms of first order in v/u, the eigenvalues of the matrix
in (98) are

M2
π(0), M

2
η0(0)

, M2
π(0) +

M2
H(0) −M2

π(0)√
2

v

u
, M2

π(0) −
M2

H(0) −M2
π(0)√

2

v

u
. (99)

The corresponding eigenvectors, i.e. the physical states are

π̃0 = − 1√
3
π0 + η

η̃0 = − kv
mu
ζ + η0

ψ̃ =
(

mu
kv

+ n√
2k

)
ζ +

(
−
√
3mu
2kv

+
√
3(n+k)m

2
√
2nk

)
π0 +

(
−mu

2kv
+ (n+k)m

2
√
2nk

)
η + η0

χ̃ =
(

mu
kv
− n√

2k

)
ζ +

(√
3mu
2kv

+
√
3(n+k)m

2
√
2nk

)
π0 +

(
mu
2kv

+ (n+k)m

2
√
2nk

)
η + η0

, (100)

where
m = M2

π(0) −M2
η0(0)

n = M2
H(0) −M2

π(0)

k = M2
H(0) −M2

η0(0)

, (101)
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have been defined. The masses of the physical states are thus

M2
π̃0 = M2

π(0), M
2
η̃0

= M2
η0(0)

, M2
ψ̃

= M2
π(0) +

n√
2

v

u
, M2

χ̃ = M2
π(0) −

n√
2

v

u
. (102)

Note that when deriving the eigenvectors (100), only the leading and next-to-leading order
terms in u have been considered. This means that for π̃0 and η̃0, terms of order 1/u2 have
been omitted and for ψ̃ and χ̃, terms of order 1/u have been omitted.

4.4.3 Physical neutral scalar states

The mass terms (94) for the neutral scalar states {h, σ, f, a0} can directly be written in
a similar matrix form as (98). Diagonalising the matrix gives the definite masses of the
physical states, which are

M2
H(0), M

2
π(0) +

M

3
√

2

v

u
, M2

π(0) −
M

3
√

2

v

u
, M2

σ(0), (103)

where M is defined as

M =

√
81M4

H(0) + 19M4
π(0) + 28M4

η0(0)
+ 34M2

π(0)M
2
η0(0)
− 18M2

H(0)

(
4M2

π(0) + 5M2
η0(0)

)
.

(104)
The scalar states of definite mass are obtained by considering the eigenvectors corre-
sponding to the masses (eigenvalues). In terms of the mixed, non-physical states they
are

h̃ = J√
3L
a0 + f

%̃ =
(

3uK
vN
− M√

2N

)
h+

(
−3
√
3uKL

2vNM
+
√

3
2

L
(
1− N2

M2

)
2N

)
a0 +

(
3KJu
2vNM

− 3JP2

2
√
2NM2

)
f + σ

ς̃ =
(

3uK
vN

+ M√
2N

)
h+

(
3
√
3uKL

2vNM
+
√

3
2

L
(
1− N2

M2

)
2N

)
a0 +

(
− 3KJu

2vNM
− 3JP2

2
√
2NM2

)
f + σ

σ̃ = − vN
3uK

h+ σ

(105)

where

N = 6M2
H(0) − 7M2

π(0) + 3M2
π(0) − 2M2

η0(0)

K = M2
H(0) −M2

σ(0)

L = 9M2
H(0) − 5M2

π(0) − 4M2
η0(0)

J = 9M2
H(0) −M2

π(0) − 8M2
η0(0)

P =
[
15M4

H(0) − 10M4
π(0) − 3M4

σ(0) + 2M2
H(0)

(
2M2

π(0) − 6M2
π(0) − 11M2

η0(0)

)
+4M2

σ(0)M
2
η0(0)

+ 8M4
η0(0)

+ 2M2
π(0)

(
7M2

σ(0) +M2
η0(0)

) ]1/2
(106)

are defined. Identifying the masses with the corresponding states, one obtains

M2
h̃

= M2
H(0), M

2
%̃ = M2

π(0) +
M

3
√

2

v

u
, M2

ς̃ = M2
π(0) −

M

3
√

2

v

u
, M2

σ̃ = M2
σ(0). (107)

Note that, just as for the neutral pseudoscalar eigenvectors (see (100)), only the leading
and next-to-leading order terms in u have been considered for the scalar eigenvectors
(105).
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4.5 Discussion

The confinement group for the technicolor force is taken to be an SU(2) group, instead
of an SU(3) group, as is the case in QCD and the two T-quark CSTC model. The moti-
vation can in first case be due to simplicity, such that an SU(3) confinement group could
also later be investigated. Further, a possible Dark Matter candidate of the techniparticle
spectrum cannot be realised in an SU(nF )TC group as long as nF is odd, by comparison to
experimental data and assuming conservation of technibaryon number (the techni-sector
analogy to baryon number) [21]. Thus, SU(2)TC is here chosen to be the confinement
group in consideration.

In the two T-quark case (Sect. 3) a mass scaling from QCD was applied to the CSTC
model, as to get an approximate sense for probable mass values of the techniparticles.
For the three T-quark model, such a mass scaling cannot be done if the Higgs particle
wants to be incorporated in the techniparticle spectrum. As the Higgs is taken to be
part of the chiral partners (68) of the pseudoscalar mesons (67), if one applied a direct
scaling such as in the two T-quark case with a factor of 1000, the Higgs would be a lot
heavier than what is observed. The chiral partners of 0− pseudoscalar fields considered
in QCD is a complex matter [20]; however, the masses of them are still considered & 500
MeV which is not possible to directly scale to the Higgs mass of mh ' 125 GeV [19][20],
by considering similar arguments of the two T-quark model of a techni-confinement scale
close to the EW scale. Thus, if the Higgs particle is desired to be incorporated into the
three T-quark theory, a scaling of the QCD particles seem inapplicable for the model.

The choice of using u2 � v2 can follow from considering the elaborated two T-quark
CSTC model of Ref. [1], treated in Sect. 3. There it was noted that for the theory to be
in accordance with EW precision measurements, the mixing angle had to be restricted
(see Sect. 3.5). As a consequence of approaching the no-mixing limit, the technisigma
vev, u, grew large (fig. 2). A similar approach for the three T-quark case could also be
applied, as to motivate the consideration of u2 � v2.6

As the Post-EWSB phase is investigated, the non-diagonal T-quark condensate, 〈DS +
SD〉, appears automatically as the vacuum of the potential is considered (see (88)). In
the two T-quark model, only the diagonal T-quark condensate was present, and the non-
diagonal T-quark condensate is a consequence of the extended number of T-quarks and
the identification of the Higgs as (82).

When considering the mass terms for the technimesons in the post-EWSB phase (Sect. 4.4),
the initial expressions (92) - (94) were simplified to first order in v/u. As the three techni-
quark model is only outlined in this thesis, future elaboration of the model should include
higher order terms in these expressions from the start. Thus, the mass terms obtained in
this thesis, i.e. (96), (102) and (107), must be checked such that they are consistent with
the results obtained from including higher orders.

Further comments on the post-EWSB phase consider the expansion of the Higgs, which

6Note that further arguments for u2 � v2 exist, however they are not treated in this thesis.
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was taken as (87), i.e. as in the SM. In the SM, the additional dofs corresponding to the
fields set to zero in (87) become the extra polarization parts of the EW gauge bosons as to
create the massive W± and Z0 [8]. With the Higgs appearing in the CSTC model, consid-
ering terms to first order in v/u and using an expansion of the Higgs as H → (H+, v+ h)
(and similar for complex conjugate), mixed terms between H± and a± (similar to the
charged pseudo scalar states K±, π±) will appear. As the above model is further devel-
oped, this should also be included and considered further as to investigate the coupling
to the EW gauge bosons; and was excluded in the text above as the main focus (with the
time at hand) was to consider the scalar sector involving the Higgs (h) mixing.

5 Summary and conclusions

A CSTC model has in this thesis been considered as an extension to the SM. The CSTC
model is based on QCD, which was briefly examined in Sect. 2. The two T-quark extension
was reviewed in Sect. 3 and the three T-quark model was investigated in Sect. 4.

As a consequence of the chiral symmetry breaking in the two T-quark model, it could be
seen that the Higgs and the technisigma vev could be expressed in terms of the non-zero
T-quark condensate. Considering the NCL, both vevs were exclusively dependent on the
T-quark condensate, causing both vevs to have the same origin. In addition, the particle
spectrum of the techni-sector should also consist of three technipions, corresponding to the
GSBs from the chiral symmetry breaking. Further, the model seemed to be in consistency
with EW precision tests, such that the values of the S, T, U parameters for the model did
not violate the experimental limits. However, for the T parameter to be within the correct
region, the mixing angle had to be restricted; whereas the mixing angle was reduced, the
T parameter approached zero (recall the experimental limits T = 0.02+0.11

−0.12).

In the three T-quark case, the concept for the two T-quark case was extended, giving rise
to a greater particle spectrum related to the SSB of the chiral symmetry of the model.
From these particles, arising from the symmetry breaking, the SM Higgs particle could
be identified; such that within the framework of the model, the Higgs particle appears
naturally. However, the final step treated in this thesis was obtaining the physical states
with definite masses for the technimesons (post-EWSB phase), so the three techniquark
model has just been outlined here. In further studies of the model, higher order terms in
v/u when considering the technimeson masses should be included from the start. Hence,
the terms in (92) - (94) and the subsequent calculations in Sects. 4.4.1 - 4.4.3 need to
be checked against the case when including higher orders. As a next step the physical
Lagrangian should be obtained and there after the model should undergo a detailed study
of possible interactions and parameter values. The S, T, U parameters must be tested as
for the two T-quark model, so as to see that the three T-quark model is consistent with
the allowed values. Also, as the mass hierarchy is not as defined as in the two T-quark
case (by the considered scaling from QCD), alternative mass hierarchies could also be
examined, to see if possible desirable effects arise.
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A Basic group theory

Group theory is an important tool in physics due to the fact that groups can be used to
describe symmetries. These symmetries then in turn dictate the building blocks of e.g.
the SM and possible extensions to it (as is the topic of this thesis). Hence, the basic
concepts of group theory and the basic groups of the SM are presented here.

Formally, four conditions are required to form a group. Denoting a group as G, it needs
to fulfil:

1. There exists a group multiplication ∗, where ∀g1, g2 ∈ G : g1 ∗ g2 = g3 ∈ G.

2. There exists an identity element I ∈ G, where ∀g ∈ G : g ∗ I = I ∗ g = g.

3. Every element has a unique inverse g−1, so ∀g ∈ G : g ∗ g−1 = g−1 ∗ g = I.

4. The group multiplication is associative, such that ∀g1, g2, g3 ∈ G : (g1 ∗ g2) ∗ g3 =
g1 ∗ (g2 ∗ g3).

If all group elements commute, the group is known as an Abelian group, otherwise it is
called a non-Abelian group [8].

Lie groups are groups whose elements can be written as

g(θ1, θ2, ..., θn) = exp

(
n∑
j=1

iθjTj

)
, (108)

where θj ∈ R are the parameters of the group and Tj, which are Hermitian matrices, are
called the generators (of the group). The space of T =

∑n
j=1 θjTj is called the Lie algebra

of a certain Lie group. The commutation relation of the generators, [Ta, Tb], define the lie
algebra of a lie group in question. The groups considered in this thesis are all Lie groups
[9][10].

A group, G, can be considered in different representations. A representation is when one
has a set of objects, S, and the group elements, g, (in the representation fg) act on an
object, s, of this set such that the resulting object is still in S. Further, the action of the
group elements on an object s ∈ S should follow the procedure of the group multiplication.
The representation conditions can be written as

∀g ∈ G : ∃fg : ∀s ∈ S : fg(s) ∈ S (109)

and
∀g1, g2 ∈ G : ∀s ∈ S : fg1∗g2(s) = fg1(fg2(s)) (110)

respectively [9].

The groups considered in the SM are the ones called SU(3), SU(2) and U(1), all of which
are lie groups. The group U(1) is the set of all complex phase factors with standard
multiplication as the group multiplication. If a group element is denoted U , one then has
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U = eiε. Comparing with (108), it is seen that the generator is in this case a real number.
Also U(1) is unitary U †U = 1 and the elements have magnitude of unity. The U(1) group
is an Abelian group [8].

The other two groups are of the same type. Generally, SU(N) is the group of N × N
matrices which are unitary (U †U = I) and have determinant equal to unity (det(U) =
1). The group multiplication is matrix multiplication, hence SU(N) are non-Abelian
groups. Due to the constraints of unitarity and determinant equal to unity, SU(N) has
N2 − 1 parameters [8]. This means that, comparing with (108), one also has N2 − 1
generators. Hence, for SU(2) there are three generators, which can be chosen to be the
Pauli matrices (τi, i = 1, 2, 3), and for SU(3) there are 8, and can be chosen as the Gell-
Mann matrices (λa, a = 1, . . . , 8). The Pauli matrices satisfies the commutaion relation
[τi, τj] = 2iεijkτk, where the structure constants, εijk, are the Levi-Civita symbol [8]. The
Gell-Mann matrices satisfies [λa, λb] = 2ifabcλc, where fabc are the structure constants
(given by fabc = Tr([λa, λb]λc)/4i) [4].

A specific type of representation is the fundamental representation. In the fundamental
representation, the representation of the group elements are themselves, i.e. (with previous
notation from (109) and (110)) fg = g. For an SU(N) group, the objects on which the
elements (i.e. the matrices) act on are column vectors of sizeN . Hence, in the fundamental
representation, denoting an SU(N) group element (matrix) as M and the object it acts
on (column vector) as c, the action of the group is

c→Mc [9]. (111)

Another representation is the adjoint representation, which is the Lie algebra of a Lie
group T =

∑n
j=1 θjTj. The action of the group on the adjoint representation is

T →MTM † [9]. (112)

B The Standard Model

The Standard model (SM) is here briefly presented. The elementary particles and their
interactions are considered, by first investigating the fermions and their properties. Then
the gauge bosons are treated, which are the force mediators and hence interactions are
introduced. Finally, the Higgs particle is considered, which is the field necessary to
introduce masses of the particles in the SM.

B.1 Fermions

Fermions are spin-1
2

particles and in the SM they are divided into leptons and quarks.
The equation of motion for fermions is called the Dirac equation. It is obtained from the
Lagrangian

L = ψ(iγµ∂µ −m)ψ, (113)

34



where ψ is a fermionic field (a four-component complex spinor function) with mass m.7

Using the Euler-Lagrange equation

∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

)
= 0, (114)

on (113), yields the equation of motion for the fermions, i.e. the Dirac equation

(iγµ∂µ −m)ψ = 0 [6]. (115)

There is no unique representation of the γ-matrices, and a specific representation is the
chiral representation, where

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, γ5 =

(
+1 0
0 −1

)
. (116)

Note that the γ-matrices in (116) are 2×2 block-matrices (they are really 4×4 matrices).
It can thus be expected that the fermion field can be written as

ψ =

(
χR
χL

)
, (117)

where χR and χL are two component spinors. Given the two component form of ψ,
projection operators can be defined as

PR =
1 + γ5

2
, PL =

1− γ5

2
. (118)

They can be seen to satisfy the standard projection operator rules
P 2
L = PL
P 2
R = PR
PR + PL = 1
PRPL = 0

. (119)

The projection operators have the effect

PRψ = PR

(
χR
χL

)
=

(
χR
0

)
= ψR (120)

and, similarly,

PLψ =

(
0
χL

)
= ψL. (121)

The components ψL and ψR are referred to as chiral states, where ψL is called the left-
handed (LH) and ψR the right-handed (RH) component of ψ respectively [8].

7To be precise, the Lagrangian of (113) is not Hermitian. Hence a Lagrangian written as L = ψ(iγµ∂µ−
m)ψ−ψ(iγµ

←−
∂µ+m)ψ, which is Hermitian, is more extensive than (113). However, in the present text, it

is sufficient to use the simpler (113) as the Lagrangian of the fermions, since the only difference between
this one and the Hermitian one is a total divergence which does not affect the action [6].
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The meaning of left- and right-handedness can be further understood by considering the
massless limit, where they also correspond to eigenstates of helicity. To see this, consider
a free fermion; its space-time dependence is of the form e−ipµx

µ
. The Dirac equation,

(115), using (116), (117) and taking the limit m→ 0 then yields

~σ · p̂
(
χR
χL

)
=

(
χR
−χL

)
. (122)

Applying PL respectively PR, yields the two relations

(~σ · p̂)ψL = −ψL
(~σ · p̂)ψR = ψR

. (123)

Since (~σ · p̂) is the helicity operator (i.e. it measures if the spin and momentum is parallel
or antiparallel), one hence see that in the massless limit, a chiral LH state corresponds
to a left-handed helicity state (negative helicity) and a chiral RH state corresponds to a
right-handed state (positive helicity) [8][4].

The chiral states are very important in the SM, since they are treated differently in
the weak interaction. Further, LH and RH decomposition is the basis of symmetries
considered in low-energy QCD, which in turn is the basis of the technicolor extension
considered in this thesis [8][2][1].

B.2 Interactions

Interactions in the SM occur through the propagation of so called gauge bosons, which in
contrast to fermions, are spin-1 particles. The interactions, and hence the gauge bosons,
arise from the various symmetry groups considered in the SM. As mentioned in Ap-
pendix A, the groups considered in the SM are SU(3) × SU(2) × U(1), or with a more
careful notation

SU(3)C × SU(2)W × U(1)Y , (124)

where the subscripts denote the specific spaces of the groups, since there could e.g. be
other SU(3) groups as well [8].

For the groups (124) to define a symmetry of the SM, the Lagrangian should be invariant
under transformations of each group individually. Since the groups (124) are Lie groups,
they correspond to a phase transformation (see (108)) or gauge transformation (which
is the term used by historical convention). Considering the fermionic field ψ in the
fundamental representation and denoting a general (unitary) group element as U , the
requirement that L → L as ψ → Uψ does not in general hold for the fermionic Lagrangian
(113). The non-invariance is due to that ∂µ(Uψ) 6= U∂µψ if U = U(x), i.e. if U is a local
symmetry (has a space-time dependence). If U does not have a space-time dependence it
is called a global symmetry, and one would automatically have an invariant theory; but
in the SM, local symmetry (under the groups in (124)) is a demand [8][11].

The Lagrangian can be made invariant by exchanging the derivative in (113) to a so called
covariant derivative, ∂µ → Dµ. It is defined to be in the adjoint representation of the
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group, so that it transforms as Dµ → UDµU †, and hence leaves the fermionic Lagrangian
(113) invariant. The form of the covariant derivative is

Dµ = ∂µ −
ig

2
T aF a

µ , (125)

where g ∈ R (called the coupling strength or constant), T a are the generators of the
concerned group and F a

µ are new fields, called gauge fields (i.e. the fields of the gauge
bosons) [8]. For gauge invariance of the Lagrangian (113), i.e. Dµψ → UDµψ, it is found
that the following transformation must hold

T aF a
µ → −

i

g
(∂µU)U † + UT aF a

µU
† [11]. (126)

Taking U = exp (iθa(x)T a) and considering an infinitesimal transformation, the field alone
transforms as

F a
µ → F a

µ +
1

g
∂µθ

a(x)− fabcθb(x)F c
µ, (127)

where fabc are the structure constants of the lie algebra in consideration [8]. Note that
since the gauge bosons are bosons and not fermions, they are not described by the Dirac
equation. Instead, the Lagrangian term describing their propagation is given by

L = −1

2
Tr
(
FµνF

µν
)
, (128)

where
Fµν = ∂µFν − ∂νFµ − ig[Fµ, Fν ] [12]. (129)

The full covariant derivative of the SM groups (124) reads

Dfµ = ∂µ − ig1
Y f

2
Bµ − ig2

τ i

2
W i
µ − ig3

λa

2
Ga
µ, (130)

where i = 1, 2, 3, a = 1, 2, . . . , 8 and f is fermion flavour. The second term of (130)
corresponds to the U(1)Y symmetry. The generator of U(1)Y is Yf , which is a constant
(as mentioned in Appendix A) and where the subscript f indicates that it could be
different depending on the fermion flavour. The value of Yf for fermion f is called the
hypercharge of f . All fermions are in the fundamental representation of U(1)Y . The third
term of (130) corresponds to the SU(2)W symmetry, which is called the weak isospin space
(and the SU(2)W interaction is called the weak interaction). It acts differently on LH and
RH fermions, where LH fermions are put in SU(2)W doublets (i.e. in the fundamental
representation) and RH fermions are singlets (hence they do not interact by the weak
interaction). The leptons and quarks are put in each respective doublet, with the lepton
doublet as L(A) and quark doublet as QL,(A), where A = 1, 2, 3 denotes the number of
generations. The corresponding right-handed singlets are eR,(A), dR,(A), uR,(A) (it is not
known if right-handed neutrinos exist). Finally, the fourth term of (130) corresponds to
the SU(3)C group, called the color space. Only the quark carry color charge, i.e. they are
the only fermions in the fundamental representation of SU(3)C , as triplets. The leptons
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are color singlets and hence do not interact by SU(3)C [8].

The Lagrangian for the SM fermions can now be written as

L =
∑

f=L,eR,QL,uR,dR

fiγµDfµf, (131)

where only the first generation has been considered, but for the other two the expression
is the same. Note that if a term in (130) acts on a fermion state, f , which is a singlet in
that space it gives zero by definition [8].

The Lagrangian (131) does not contain any mass terms, which is due to the fact that
mass terms cannot be introduced without breaking the gauge invariance.8 However, there
is a way of introducing mass terms without breaking the symmetries explicitly (i.e. by
adding a symmetry breaking term), but instead break them spontaneously, through the
so called Higgs mechanism, see Appendix B.3 [8].

B.3 The Higgs mechanism

Masses can be obtained by interaction with a complex scalar field, called the Higgs field
(H(x)), via the subsequent SSB that occurs for its system; the process is called the Higgs
mechanism. In the SM, masses are present for the observable gauge bosons W± and Z0

and the fermions. The W± and Z0 are part of SU(2)W × U(1)Y , hence the Higgs field
must have a Lagrangian (or equivalently a Hamiltonian) which is invariant under these
groups.9 The Higgs mechanism follows a typical LσM, so the procedure is similar to
Sect. 2, only that here the symmetry group SU(2)W ×U(1)Y is considered instead of the
chiral group SU(2)L × SU(2)R [8].

The Lagrangian (cf. (4)) considered is

L = (DµH)†(DµH)− µ2H†H− λ(H†H)2, (132)

where

H =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(133)

and

Dµ = ∂µ − ig1
YH
2
Bµ − ig2

τ i

2
W i
µ. (134)

Following Sect. 2 and minimizing the potential, V (H) = µ2H†H + λ(H†H)2, degenerate
minima are obtained along the 3-sphere φ2

1 +φ2
2 +φ2

3 +φ2
4 = (2H†H =)v2. A ground state

8Consider the mass term of the fermion, which is of the form mψψ. Using (119), that ψL = ψPR and
ψR = ψPL one obtains mψψ = mψRψL+mψLψR. Since ψR is an SU(2)W singlet and ψL a doublet, the
fermion mass terms are not SU(2)W gauge invariant and can hence not be added to the SM Lagrangian.
Similarly, mass terms for the gauge fields cannot either be added to the SM Lagrangian, since they are
of the form mFµF

µ and will not transform invariantly for any of the SM groups, since they transform as
(127) [8].

9SU(3)C is not considered because its gauge bosons, the gluons, are massless, so they do not interact
with the Higgs field (i.e. Higgs is an SU(3)C singlet) [8].
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can then be chosen, for simplicity, as

〈H〉 =
1√
2

(
0
v

)
, (135)

where φ3 = v and φ1 = φ2 = φ4 = 0 [8].

Considering the Goldstone theorem, there is a Hamiltonian (Lagrangian (132)) invariant
under SU(2)W ×U(1)Y with a ground state (135) that is not annihilated by their genera-
tors (since (135) is not invariant under SU(2)W ×U(1)Y ). Hence four GSBs are expected
to arise. More careful analysis shows that the ground state (135) actually is invariant
under a new U(1) group, with generator Q = t3 +YH/2, where t3 is the weak isospin. The
new U(1) group is denoted U(1)EM and corresponds to the electromagnetic interaction,
propagated by the photon (and Q is thus the electric charge). Hence, the SSB that occurs
under the Higgs mechanism has the form SU(2)W × U(1)Y → U(1)EM and is referred to
as the electroweak (spontaneous) symmetry breaking (EWSB) [8].

Returning to following the procedure of Sect. 2, a field h (i.e. φ3 in (133)) can be consid-
ered to have obtained the vev (135) yielding

H(x) =
1√
2

(
0

v + h(x)

)
. (136)

Inserting (136) into the Lagrangian (132) and taking YH = 1 yields

1

8

∣∣∣∣ (2∂µ − ig1Bµ − ig2W 3
µ −ig2(W 1

µ − iW 2
µ)

−ig2(W 1
µ + iW 2

µ) 2∂µ − ig1Bµ + ig2W
3
µ

)(
0

v + h

) ∣∣∣∣2. (137)

Multiplying it all out, the following expression is obtained

1

2
(∂µh)2 +

1

8

[
g22

(
(W 1

µ)2 + (W 2
µ)2
)

(v + h)2 +
(
g2W

3
µ − g1Bµ

)2
(v + h)2

]
[8]. (138)

The initial symmetry, SU(2)W ×U(1)Y , started with the four fields Bµ,W
i
µ. From (138),

the states
(
(W 1

µ)2 + (W 2
µ)2
)

and
(
g2W

3
µ − g1Bµ

)
have definite masses and can be identified

with three fields as
(
(W 1

µ)2 + (W 2
µ)2
)

= 2W+
µ W

−µ and
(
g2W

3
µ − g1Bµ

)
=
√
g21 + g22Zµ. It

is now possible to express (138) as

1

2
(∂µh)2 +

(
1

2
g2v

)2

W+
µ W

−µ +

(
1

2
g2

)2

W+
µ W

−µh2

+
1

2
g22vW

+
µ W

−µh+
1

2

(
1

2
v
√
g21 + g22

)2

ZµZ
µ

+
1

2

(
1

2

√
g21 + g22

)2

ZµZ
µh2 + v

(
1

2

√
g21 + g22

)2

ZµZ
µh, (139)

giving rise to the mass terms

MW =
g2v

2
2, MZ =

v
√
g21 + g22
2

. (140)
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As noted, only three gauge fields with definite masses were observed after the EWSB.
There is thus one field missing comparing the four initial ones Bµ,W

i
µ with the three final

ones Zµ,W
±
µ . From the linear combinations of Zµ,W

±
µ in terms of Bµ,W

i
µ, the final field

is the combination orthogonal to Zµ, i.e.
(
g2W

3
µ + g1Bµ

)
/
√
g21 + g22 = Aµ. Since Aµ has

no mass term it corresponds to the gauge boson of the U(1)EM symmetry (i.e. it is the
electromagnetic field) [8].10

Fermions will also gain mass due to interactions with the Higgs field, through the so called
Yukawa interaction. Having the Higgs as a doublet one can construct terms as 11

gdQLHdR + guQLHCuR + gdH†dRQL + guH†CuRQL, (141)

where gd, gu are coupling constants and

HC =

(
−φ0∗

φ−

)
(142)

is introduced.12 Note that in (141), the two last terms are the complex conjugate of the
two first terms [8].

Letting H go to (136), and similar for HC , the Yukawa terms (141) become

gdv√
2
dd+

gd√
2
ddh− guv√

2
uu− gu√

2
uuh. (143)

The masses of the fermions can be identified as

md =
gdv√

2
, mu =

guv√
2

[8]. (144)

C Calculations: Two techniquark case

Nearly conformal limit parameters

The parameters in the two T-quark CSTC model are here evaluated in the NCL. Consid-

ering (53), (54) and defining gTC = gTC |〈Q̃Q̃〉|, we can write

u =

(
λHgTC
δ

)1/3

. (145)

Hence, it is also obtained that

v =

(
λ

λH

)1/2(
λHgTC
δ

)1/3

. (146)

10The unbroken symmetries SU(3)C × U(1)EM have massless gauge bosons (which propagate the
interactions), since mass terms for gauge fields are not allowed for unbroken symmetry groups [8].

11Here considering the first generation of quarks, but the process is the same for the other generations;
and leptons. However, for leptons the right-handed neutrino might not exist so if it should be included
or not is a question in itself [8].

12HC needs to be introduced to obtain mass terms for both the u and d quarks [8].

40



From (27) , λH > 0 and hence for v to be real λ > 0 must hold; thus, one takes λ→ ξλ =
|λ| > 0, where ξ = sign(m2

σ̃ − 3m2
π̃). From (145) and (146) it is obtained that

u =

(
λH
ξλ

)1/2

v. (147)

and

gTC = v3
(
λTCλH − λ2

λ

)(
λH
ξλ

)1/2

. (148)

Since m2
π̃ = gTC/u (see (24)), using (147) and (148), we have

m2
π̃ = v2

(
λTCλH − λ2

λ

)
. (149)

The mixing angle θ and the masses for technisigma and Higgs are also altered when
considering the NCL. The mass matrix (32) can be expressed in the NCL, using (147)
and (149), as

−1

2

(
2λHv

2 −2v2
√
ξλλH

−2v2
√
ξλλH 2λv2 + 3m2

π̃/2

)
. (150)

As before, (150) can be diagonalised to give the masses for the physical fields h and σ̃,
which now are m2

h = 1
2

(
2λHv

2 + 2λv2 + 3m2
π̃ −

√
16λλHv4 + (2λv2 + 3m2

π̃ − 2λHv2)2
)

m2
σ̃ = 1

2

(
2λHv

2 + 2λv2 + 3m2
π̃ +

√
16λλHv4 + (2λv2 + 3m2

π̃ − 2λHv2)2
) . (151)

The mixing angle in the NCL is given by using (147) on (37), i.e. by

tan(2θ) =
4v2
√
ξλλH

2λv2 + 3m2
π̃ − 2λHv2

. (152)

As in the general case (see (41)), the parameters {λTC , λH , λ} can be expressed in the
parameters {m2

π̃,m
2
σ̃,m

2
h} as

λTC = λ
λH

(
λ+

m2
π̃

v2

)
λH =

m2
σ̃mh2

6m2
π̃v

2

λ =
3m2

π̃(m
2
σ̃+m

2
h)−m

2
σ̃m

2
h−9m

4
π̃

6m2
π̃v

2

, (153)

obtained by considering (149) and (151).

As a final, interesting scenario, the no-mixing limit (where θ = 0) can be considered.
From (152), one has for θ = 0 that λλH = 0 should hold. Using (153) yields

0 = λλH =
m2
σ̃m

2
h(m

2
h − 3m2

π̃)

36v2m4
π̃

(3m2
π̃ −m2

σ̃), (154)

for θ = 0. As m2
h ' m2

π̃, considering the mass scaling from QCD, the term where θ = 0 due
to (m2

h−3m2
π̃) = 0 is not as probable. In order for this scenario to be true, the technipion

mass should be around m2
π̃ ≈ 40 GeV. However, the case where (3m2

π̃ −m2
σ̃) = 0⇒ θ = 0

is not constrained in the same sense and is thus of more interest.
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D Calculations: Three techniquark case

D.1 Construction of chirally symmetric techniquarks

As was stated in Sect. 4.1, three chirally symmetric T-quarks could be constructed by
considering the two LH bi-doublets Qaα

L(1), Q
aα
L(2) and the two RH singlets Uα

R(1), D
α
R(1). In

this section the chirally symmetric, or vector-like, bi-doublet, seen in (60), is constructed,
while the vector-like singlet (61) follows in a similar manner.

The objects used in construction of the vector-like bi-doublet are the two LH bi-doublets
Qaα
L(1) and Qaα

L(2). The bi-doublet for the first generation is left as it is, while the one for
the second generation is altered. Consider first the charge conjugation of the bi-doublet
under transformation. From (55), it is obtained that

CQaα
L(2) → C

(
Qaα
L(2) +

i

2
g2ϑkτ

ab
k Q

bα
L(2) +

i

2
gTCϕkτ

αβ
k Qaβ

L(2)

)
= CQaα

L(2) −
i

2
g2ϑk(τ

ab
k )∗CQbα

L(2) −
i

2
gTCϕk(τ

αβ
k )∗CQaβ

L(2), (155)

where C denotes the charge conjugation operator. When charge conjugation is applied to
a chiral spinor, it flips the chirality. Thus it is possible to define (see (58)) a RH bi-doublet
as

Qaα
R(2) = εabεαβCQbβ

L(2), (156)

where εij denotes the two-dimensional Levi-Civita tensor. Multiplying (155) with εcaεγα

thus yields

Qcγ
R(2) = εcaεγαCQaα

L(2) → εcaεγαCQaα
L(2)−

i

2
g2ϑkε

ca(τabk )∗εγαCQbα
L(2)−

i

2
gTCϕkε

γα(ταβk )∗εcaCQaβ
L(2).

(157)
In the expression above, we have terms of the form εki(τ ijs )∗Qj (omitting all indices except
for the ones which the Pauli matrix applies to). Considering the anti-symmetry of the
Levi-Civita tensor, it is possible to write δij = εikεjk = −εikεkj. Thus, (157) contains
terms of the form

εki(τ ijs )∗Qj = εki(τ ijs )∗δjlQl = −εki(τ ijs )∗εjmεmlQl. (158)

The property ετ ∗s ε = τs can be seen to hold, which considering indices translates to
εki(τ ijs )∗εjm = τ kms . Taken the recent stated properties into account, (157) can be written
as

Qcγ
R(2) → Qcγ

R(2) +
i

2
g2ϑkτ

cb
k Q

bγ
R(2) +

i

2
gTCϕkτ

γβ
k Qcβ

R(2). (159)

The expression obtained in (159) is seen to transform identically to Qaα
L(1), by consider-

ing (55). Hence, one can construct a vector-like bi-doublet by adding Qaα
L(1) and Qaα

R(2),
resulting in

Qaα = Qaα
L(1) +Qaα

R(2). (160)

As by construction, Qaα is a doublet under both SU(2)TC and SU(2)W and transforms
as

Qaα → Qaα +
i

2
g2ϑkτ

ab
k Q

bα +
i

2
gTCϕkτ

αβ
k Qaβ. (161)
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D.2 Technimeson substructure

Even though the technimesons are treated as fundamental particles in the low-energy
theory that is considered, they should in reality be built up by T-quarks. The pseudoscalar
technimesons, (67), can be considered to have a T-quark substructure as

Pa = Q̂γ5λaQ̂ (162)

and the η0 a substructure as

η0 = Q̂γ5Q̂, (163)

where Q̂ is given in (64). Further, their chiral partners, (68), can be taken to have
substructure

Sa = Q̂λaQ̂ (164)

and the σ a substructure as
σ = Q̂Q̂. (165)

The above substructures can be used by considering the substructures of the corresponding
mesons in QCD. Examining the quark structure of the pseudoscalar fields (67) in QCD,
it can be seen to correspond to the structure presented in (162) [13]. The concept is then
extended to the chiral partners. Note however that in (162) and the other substructures
above, not the physical states are obtained, but one has to take linear combinations as in
(14) in order to get the physical, charged states. The linear combinations that should be
taken become clear when expanding the parametrization of the mesons as in (69) through
the substructures of them, (162) - (165); given by

Φ̂i
j =

1√
6

(σ − iη0) δij +
1

2
(Sa − iPa) (λa)

i
j. (166)

The T-quark substructure of the technimesons as (162) - (165) determine the transfor-
mation properties of the technimesons in the EW groups SU(2)W ×U(1)Y of the SM. As
mentioned, Q̂ is given by (64), where Q = (U,D) transforms as a doublet under SU(2)W
and S as a singlet. Further, it was mentioned that the hypercharge of Q were YQ = 0,
while S had hypercharge with negative sign, and can be taken to be YS = −1. The
technimesons will thus be in different representations of SU(2)W × U(1)Y depending on
their T-quark substructure.

As an example, it can be checked by considering (164) that the Higgs doublet identified as
in (82) have a T-quark substructure of SQ. As S is an SU(2)W singlet and Q an SU(2)W
doublet, the quantity SQ is in the fundamental representation of SU(2)W . Further, as the
hypercharges were YQ = 0 and YS = −1, it means that YSQ = 1, since YS = 1 (hypercharge

sign flips when considering antiparticles [13]). Thus, it is seen that the properties of SQ
under SU(2)W × U(1)Y coincide with that of the SM Higgs, justifying the identification
in (82).
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