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1. TMDs with maximum perturbative content

Transverse momentum dependent (TMD) parton distributimttions (PDFs) and fragmen-
tation functions (FFs) (we will refer them collectively ad/Ds) are universal functions which
accumulate information about intrinsic structure of hadro TMDs express the leading behav-
ior of processes with two detected states in the range afirgdiate transverse momenturs
oht > Agcp- The examples of such processes are Drell-Yan process;iselnsive deep inelastic
scattering (SIDIS), and" e -annihilation to two jets. The typical expression for thelifwan tensor
reads [[L[]2[]3] (here for SIDIS)
d?br
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whereH is the hard coefficient functiorf; (D) is TMD PDF (FF),x andz are longitudinal parts
of parton momentay and{ are scales of the factorization. Theterm accumulates corrections
significant atg,t ~ Q.

TMDs depend on four parameters. So, the dependence onifation scaleqt and { is
given by renormalization group equation (RGE) and ColBuper-Sterman (CSS) equatidh [4].
These dependencies have been intensively studied dushgdars (see e.§.[f, B, [, 8]). While
the dependence of TMDs on the parameter@nd br cannot be extracted within perturbative
QCD due to nonperturbative nature of hadron states. In dyepwe concentrate on tixe- and
br —dependence of TMDs leaving— and {-dependence aside. For simplicity, we also set aside
polarization effects and consider only non-polarized TMDs

The explicit expression for TMD PDF has the form of a nonlagadrator sandwiched between
hadron states. The parton fields are separated by the skaddidtanceé = (0,&,by) and
equipped by a construction of Wilson lines. A typical regrdsative is the quark operator for TMD

PDF (see e.d]4] 3] £,]101)
Oq(X,br;u,{) = (1.2)
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whereq, are renormalized quark fieldgy(a,b;n) is Wilson line from pointa to point b along
directionn (n® = 0). The factorsZq and S are field renormalization constant and soft factor, re-
spectively. This factors are singular and responsibleHerdancelation of ultraviolet and rapidity
divergences.

The factorized expressiop (IL.1) is suitable for the phemmiagical application. However,
usually another representation for TMD is used. Followfjwe call this representation as TMD
with maximum perturbative content. In this representalfidfDs are given by

F(x.br;p,{) =C(xbr;u,0) @ f(x,u)e 9210, (1.3)

wherew is the Mellin convolution irx, C is the coefficient functionf is the integrated PDF ared 9

is the non-perturbative factor. This is the general ansatZ MDs widely used in phenomenology,
although the particular details of the representatiorediffetween approaches (compare e[y [5,
3, [12], for the recent applications see e[g] [T2[IB, 14]rafetence within).
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The coefficient function in[(1}.3) is obtained from the leagterms of operator product ex-
pansion (OPE) for the TMD operatdr ([1.2). We emphasize thetfat used OPE holds only in
the region of smalbr. Thus one should impose a cutoff ou@r. The typical size of cutoff is
b2 .= 0.5— 2 GeV 2. This boundary is motivated by a convergence radius of deative expan-
sion for the coefficient functiof.

In the representatior (1.3) the non-perturbative factaypthe central role. It accumulates the
most significant portion of information dmr. One can resolve it§-dependance with the help of
evolution equations and present the functipin the form (see e.dJ2] 5))

glx.br.¢) = 91 br) + g (br) In 7
wheregs andgk cannot be obtained in the model-independent way and sheuittdd from exper-
iment. The prevalent parametrization for the functigpg is the Gaussian ansatg;, k ~ b2 /4B2.
This parametrization results to reasonable descriptiatate. The typical size of Gaussian is about
B2 =0.2—0.6 GeV 2.

In any parametrization the non-perturbative functgpneduces to zero aty — 0. In this
limit TMDs match integrated parton distributions. Therefothe representatiof (1.3) describes
the TMDs at smalby within the perturbative QCD, while at largéf it is replaced by unknown
function. In the following we discuss to which limits the pebative content of representation
(L.3) can be used and possible way to extend these limits.

(1.4)

2. Intrinsic scales of smallbr OPE

In this section we discuss the properties of the non-peativd factor and OPE. In the follow-
ing, we keep in mind the Gaussian ansatz for the non-pettuebfactorg = b2 /4B2. Moreover,
we use the expressiof ([L.3) (with Gaussian non-pertrubéistor) as a kind of the standard, that
perfectly describes the data. We make such conjecture dilwe tack of theoretical methods for
analysis of TMDs at intermediatier. The similar arguments which we will present can be ap-
plied for any other parameterizations with the same gemenratlusion. The only privilege of the
Gaussian ansatz is its simplicity and popularity.

Let us consider the OPE which leads to the expres$ioh (1o8gll It reads

O(x,br) = icé”(x,bT)e@osﬂ(x), (2.1)

where the operator@,ﬂT> are proportional to the'th power of transverse derivativ@ST) ~ Qo7q

and the coefficient functiorﬁt),(]T> are proportional td}. We omit the factorization scalgs and
Z for brevity. In the absence of interaction the right-haitkf (2.1) represents the Taylor series
of the operatolO(x,by) atbr = 0, that we indicate by superscrifit The coefficient function in
equation [(1]3) is:éT) in this notation.

In fact, the series[(3.1) is a double expansion, because eeefficient functionC,ﬁT> is a
perturbative series. Therefore, the serfeq (2.1) has tvio im@insic scalednaxandBr. The scale
bmaxis the universal scale of convergence for the perturbatipamsion for coefficient functions. It
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is naturally connected WithaéD. The origin of the scal8y is non-pertrubativeBr parameterizes
some intrinsic dynamics of hadron.
Taking the hadron matrix element ¢f (2.1) one obtains TMChiaform

00

F(xbr) =G (xbr) @ f(x)+ T i (xbr) @ fn(). (2.2)

n=1
wheref,, are integrated PDFs of higher twists. Comparing expresg@) and[(I]3) we conclude
thatC, ® f, ~ b} /B}. In other words, the higher terms of OPE are of the same otder & Br.
We stress that there are no perturbative methods to estiimateadius of convergence for OPE
(2.1), and that our conclusion on behavior of higher ternisaised only on the phenomenological
significance of the non-perturbative factor.

The scaleBy is generally smaller then the scdig,x. It shows that the standard approach does
not use the maximal possible perturbative rangbrgfdue to inefficiency of the power expansion.
It suggests to use another basis which would saturate Omiihwlite perturbative range by the first
terms. In ref[1p] such a modified approach to TMDs has beggested. In the following we
present the main points df[15].

3. Smallbt OPE in Laguerre basis

The main idea of[[15] is to rearrange smallOPE in order to simulate the the non-perturbative
behavior. Choosing suitable basis for OPE one can obtaipraassigned form dir-distribution
already at the leading order. The perturbative correctisosld tend to fit the expansion to the
“true” expression within the radius of perturbative comeice. The control of the convergence
is to be obtained from the comparison with experiment. Tioeee the operator basis should be
taken such that its leading terms describes the significanttgb data. We call such an approach
asphenomenologically motivated OPEechnically it goes in parallel to the standard approach of
ref.[8] and does not spoil any evolution or other propertiE$MDs.

There are no special restrictions on the operator basisoltld be transversally local, orthog-
onal and complete. These are general demands which gudinanipiqgueness and existence of the
decomposition. Additionally, one can impose symmetry dweotconstraints, which follow from
the auxiliary guidelines. Within these assumptions onecterose any basis.

Let us assume that the smbfl range of TMDs is described by the Gaussian behavior. For the
description of such a leading behavior the best choice ib#lses of Laguerre polynomials,. We
have

Oxbrl) =  Cn”(x.briBr) @ O (< Br), (3.1)
n=
whereO{" ~ L,(B242). The coefficient functions of Laguerre expansion are Gaunssi

b% : 2 /R2
CiY (x,br;Br) ~ <§> e Y/B 1 6(ay),
T
which follow from the Gaussian form of the generating fuoetfor Laguerre polynomials. Addi-
tional argument in favor of Laguerre polynomial basis is thaguerre polynomials are the only
classical orthogonal polynomials on the ratgec (0, ).
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Figure 1: Plots of the first terms Laguerre based expansion of TMD P& ¢urve) at different values
of x (x = 0.8,0.4,0.1 from left to right panels) ahmax= 1GeV-! andB2 = 0.24GeV-2. The thick-orange
curves are the first term of TMD PDF Taylor based expansiomw. lhe-dashed curves are the first term of
TMD PDF Taylor based expansion multiplied by the non-péative factor exp—b2 /4B2). The evolution
exponent is omitted.

The parameteBr in (B.3) is introduced for the dimensional reason. In gelN@®E is in-
dependent on this parameter although its convergence nieppef OPE are dependent on it. In
particular, the Laguerre based OFE|(3.1) turns to the steritgylor based OPH (2.1) in the limit
Br — o. However, the truncated series which is used in practidg; idependent.

Then = 0 term of OPE[(3]1) is proportional to the integrated PDF afuer At the same time
the higher terms of Laguerre based OPE represent the migfuoperators of different twists
including the leading one. However, this observation dostsworsen the approach since the
contribution of different operators are of the same ordere @an be guided only by experimental
data, and tune the parameRar such than > 0 terms give negligible contribution.

One may say that the change of the operator basis redistribatpower corrections between
the terms of OPE. In such a picture the paramBtecan be viewed as a handle which controls the
amount of redistributed power corrections, while Lagueolynomials modulate the redistribution
to the Gaussian shape.

In the free theory the suggested scheme does not add anywntp the standard description
of TMDs with Gaussian non-perturbative factor. The new ltssand predictions of the scheme
appear with the loop-corrections to the coefficient funttibhe corrections produces the deviation
of the functional form of coefficient function from the fréeeory limit. In the Taylor-like OPE
the corrections can contain only the logarithmdef In the Laguerre based expansion, the other
type of corrections are possible, e.g. power correctiomseaponentials. These corrections are of
the special interest, because they show the perturbativatoa from the Gaussian ansatz. At the
same time these corrections are small within the pertudatingeb < bnax and do not spoil the
general picture.

At large bt (i.e. br > bmay the convergence of OPE is not controlled. Therefore, tl@es
of Laguerre (or any other) basis does not eliminate the restugbative factor. However, one can
expect that this new non-perturbative factor is much clésarmity within perturbative range in
comparison to the standard non-perturbative factor.

4. Modified expression for TMD PDF

Taking the hadron matrix element of the Laguerre based QP (& obtain the modified
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expression for the TMD PDF. It reads

q/H XbT M, Z Z/ 7 q/J< bT M, Z) j/H(Zvu)+ﬁlv (41)

wheref is the integrated PDF. The symh®} denotes the order of eliminated contribution. As we
have discussed in the previous section the estimatiofi;aé impossible within the perturbative
QCD. In the following we suppose thét is negligible in comparison with the first term ¢f (4.1)
within the perturbative range.

The coefficient function€") have been calculated at NLO in15] and read

®
Ll

Cyp(xbr.p,0) = e ®F 5(1—x)+ (4.2)
212 2
2aCre % | — LtPyg(x) + (%) (gLT—%L% 71122+LTIn<I”é >>+>?
BB (CBR N KB\ ]
et (Ge )5 (8) ) o
A
CLp(xbr, 1, 0) = 2ae ®F (—Pyg(x)Lt +2) + 6/(82), (4.3)

whereas = g?/(4m)?, Lt = In (b% u?/4e~2%) andP are the corresponded DGLAP kernels

1+x2 _
+

At Bt — o these expressions reveal the standard expressions foatiching coefficients of TMD
PDF to integrated PDF[([2] & 8]).

In fig.1 we show the comparison of Taylor based expandiol) €@ Laguerre based expan-
sion (4.2) (both without non-perturbative factor) with #tandard expressiof (IL.3). In contrast to
the Taylor expansion, the Laguerre expansion reproduce® PMIF in the wider range dbr as
it was expected. At smaller the resulting distribution is broader, i.e. the slope of &an is
smaller. This is very natural result which shows that at #nalpartons are allowed to be farer
from the centrum of hadron.

5. Conclusion

We suggest the modification of the standard approach to TMBs.modification consists in
the consideration of the smdi OPE (which is the central part of the standard approach)en th
modified operator basis. So, instead of power expansion ggestito use the Laguerre polynomial
expansion. Within such a scheme the first term of OPE desctiteedata in the wider range lof
in comparison to the power expansion.

Such an approach is systematic, in the sense that it alloe$ootake into account quantum
corrections systematically, and make comparison with thedard approach at every step of the
consideration. This approach does not violate the staniast properties of TMD and TMD
factorization theorems, such as evolution equation, CGgBt@n, convergence of the perturbative
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series and other. The modified expansion has the same status standard one, since the size of
corrections to both expressions cannot be estimated wtiturbative QCD.

The choice of Laguerre polynomials as a basis for OPE istaidthy their simplicity and the
Gaussian form of resulting coefficient function (which iteofused as phenomenological ansatz for
TMDs). One can use another orthogonal and complete basthwitiuld lead to different behavior
of coefficient function, with all the rest properties of TMBuarvived. In the absence of theoretical
constraints the choise of the basis can be done only by cisopawith the experimental data.
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