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Vaidman (Phys.Rev. A 87, 052104 (2013)) has proposed a ”weak value” criterion for the past of 

a quantum particle, and applied it to photons in a particular setup of nested Mach-Zehnder 

interferometers. From his analysis, he draws some astonishing conclusions regarding which arms 

of the setup the photons populate. I argue that the weak values Vaidman employs as “weak 

tracers” in his analysis cannot be used in this case and that, consequently, the conclusions he 

draws cannot be upheld. The reason is that weak values are defined as a limit which in this case 

turns out to be discontinuous.  I propose instead a “weak mean value” criterion which avoids 

these shortcomings.  

PACS numbers: 03.65.Ta, 03.65.Ca 

 

 

I. INTRODUCTION: VAIDMAN’S CRITERION 

Vaidman –  in [1], further elaborated on in [2-4] –  has proposed a criterion for the past of a 

quantum particle in terms of  “the weak trace it leaves”.  His aim is to improve the approach 

by Wheeler [5] which he [1] describes as follows: “It asserts that while we cannot discuss the 

past of a particle until it is measured, we can do so after the measurement. If the preselection 

led to a superposition of a few states and one of them was found in the postselection 

measurement, then we should regard the particle as being in the postselected state even before 

the postselection. Thus, the past of a quantum particle comes into existence due to 

measurement at a later time.”  

 Wheeler’s criterion is a non-local one; it involves more than the particular particle location 

one is interested in. One of Vaiman’s aims is to find a more local criterion. An approach by 

means of a direct (projective) measurement at the location of interest, which would be the 

classical way of doing it, will of course not be possible in the quantum case, since it will 

destroy quantum coherence. But, and this is the raison d’être for Vaidman’s proposal, a weak 
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measurement can both be made locally and cause little disturbance to coherence, the less the 

weaker the measurement is.
1
  

Although it is not stated explicitly, it is clear from Vaidman’s writings that he means the 

“weak trace” to be understood operationally as the weak value of the projection operator onto 

that part of the set-up where one wants to establish the presence of the particle: A non-zero 

value for such a weak value would then, according to Vaidman, be a sign that the particle has 

been present at that location. 

As an application of his criterion, Vaidman [1] treats the case of photons passing through a 

setup consisting of two nested Mach-Zehnder interferometers (MZI) as illustrated in Fig.1. 

For this setup, he arrives at some counterintuitive results. For example, he finds that there is a 

photon weak trace in the B- and C-arms without there being such a trace in either the D- or the 

E-arms: the photons seem to be able to appear in the inner MZI without entering or leaving it! 

 In this paper, I argue that these conclusions regarding the past of the photons in the nested 

MZIs cannot be upheld. The reason is that the limiting procedure that defines a weak value 

(c.f. Appendix 1 below) in the setup studied is discontinuous: the weak value deduced by 

going to the limit of vanishing weak measurement does not faithfully represent the 

undisturbed setup with no measurement. Therefore, the weak values cannot be used to draw 

any conclusions on the past of the photon in this case. 

The plan of the paper is as follows. I start in section 2 by analyzing in detail the nested MZI 

setup of Fig. 1 in order to pinpoint exactly how and where the discontinuous limit occurs. I 

then devote a section to comment on the possible relevance to my analysis of the so called 

two-state vector formulation (TSVF) [10-12] of quantum mechanics (QM). Next, I venture to 

suggest an alternative criterion for the past of a quantum particle, still using weak 

measurements but avoiding the discontinuity that plagues Vaidman’s weak value criterion. A 

short section gives an outline of a possible experimental realization of the new proposal. In 

the final section I give a summary of and some conclusions from my arguments. The 

appendices outline an operational definition of the weak value as well as my conventions for 

the unitary transitions in the beamsplitters of an MZI. 

 

II. ANALYSIS OF THE PHOTON STATE IN THE NESTED MACH-

ZEHNDER INTERFEROMETERS 

Referring to Fig.1, I denote the photon state in arm A by | A > , etc. for photon states in the 

other arms, and by | D1 >  through | D3 >  for the detector arms photonic states. The transition 

in the beamsplitter BS1 is denoted U(1), etc. for the other beamsplitters; the explicit 

expressions for these transitions may be deduced from eq. (B1) of Appendix B below. The 

inner interferometer in the undisturbed (i.e. without any measurement involved) setup is tuned 

so that no photons from the inner MZI enter into arm E. This is due to destructive interference 

                                                      
1
 For recent reviews of weak measurement and weak values see [6-9] with further references therein. I 

also include in Appendix 1 below a description of the operational definition of a weak value. 
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between the B- and C-arm photonic states in BS3. The photons in the innermost MZI thus all 

end up in the detector D3 . 

The weak measurement – c.f. Appendix 1 –  is described by a von Neumann measuring 

scheme [13] with a meter measuring the projection operator onto one of the arms of the MZIs. 

To be specific, let A = | A >< A | denote the projection operator onto arm A, etc. for the 

other arms. Denote by PM the meter momentum observable conjugate to the meter pointer 

variable QM.  The measuring device induces a unitary transition in the joint Hilbert space of 

the photon and meter which reads (the symbol ⨂ stands for the direct product of the 

photon and meter Hilbert spaces) 

 UM(A)    exp(  i g A ⨂ PM )    1   A ⨂ [ exp(– i g PM ) – 1 ]   

      

  ≈   1   i g A ⨂ PM .    (1) 

   

Here, the last approximation is valid in the weak limit when the measurement coupling 

strength g is small. Expressions similar to (1) hold for the other arms. 

 

Following Vaidman [1], the weak trace is now operationalized to mean a nonvanishing weak 

value of the projection operator onto that arm of the setup one is interested in.  

 

A weak value requires specification of an initial, “preselected” state| in > and a final, 

“postselected” state | f >. In the example to be treated, | in > is the state | N > (corresponding 

physically to a photon entering the MZI setup from the photon source), while | f > is taken to 

be | D2 > (corresponding physically to a click in the detector D2 ). 

 

Let me now deduce the weak value for the projection operator onto the B-arm. On Vaidman’s 

criterion, this weak value being nonzero means that the photon has been present in arm B of 

the nested MZIs. The calculation I present uses a standard QM approach; in the next section I 

comment on any possible bearing the two-state vector formalism [10-12] might have on the 

analysis. 

 

I present this standard analysis by exhibiting how the joint photon-meter initial state 

| in > ⨂ |m > (with |m > the initial state for the meter) evolves forward in time through the 

setup, also including a (weak) measurement of the projector onto the B-arm. This evolution 

reads 
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 | in >⨂ |m >  →  U(1)| in > ⨂ |m >         (2a) 

 

 →  U(2) U(1) | in > ⨂ |m >         (2b) 

 

 →  UM(B) U(2) U(1) | in > ⨂ |m >   

 

 =   U(2) U(1) | in > ⨂ |m >    

 

   + [UM(B) 1] U(2) U(1) | in > ⨂ |m >      (2c) 

 

 →  U(3) U(2) U(1) | in > ⨂ |m >   

 

   +  U(3) [UM(B)  1] U(2) U(1) | in > ⨂ |m >      (2d) 

 

 →  U(4) U(3) U(2) U(1)| in > ⨂ |m >   

 

    +  U(4) U(3) [UM(B)  1] U(2) U(1)| in > ⨂ |m >.  (2e) 

 

More explicitly, and using the conventions for the beamsplitter transitions U(1) etc as exhibited 

in Appendix 2, an expression like U(2) U(1)|in> stands for 

 

 U(2) U(1) | in >  =    i  (√2| A > +  | B >  + i | C > ) / 2  ,   (3) 

  

and U(3) U(2) U(1) | in >  for 

 

 U(3) U(2) U(1) | in >  =   i  ( | A > +  | D3 > ) / √2 .    (4) 

 

In fact, what matters for the discontinuity argument that I am about to present is only the main 

structure of these expressions, i.e., which photon arm states do occur, not their respective 

coefficients. Of course, these coefficients are important for calculating numerical expressions for 

the weak values. 

 

The two terms in lines (2c -e) have different contents. Consider the line (2d). The first term there 

represents the undisturbed case with, from (4), photonic states in the A- and D3- arms only. In 

particular, destructive interference in BS3 between the B- and C-arm states means no photon 

state into the E-arm. The second term represents the influence of the measurement and does have 

an amplitude into the E-arm: the factor UM(B)  1  is, according to (1), proportional to B, 

implying that this second term, representing a state in the B-arm only, is not subject to  the 

destructive interference with the C-arm state in BS3.   

 

To get the meter to reveal the weak value, one has to perform a (projective) measurement on the 

photons, projecting the state (2e) onto the postselected state | f  >  | D2 >. The (un-normalized) 

meter state after this post-selection is then 
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 < f |[ U(4) U(3) U(2) U(1)| in > ⨂ | m >   

 

   + U(4) U(3) B U(2) U(1)| in > ⨂ [exp(  – i g PM  ) – 1] | m >]  
 

  ≈ < f | U(4) U(3) U(2) U(1)| in >  [ 1  i g  f {B}w  PM ] | m >, (5) 

 

where the last line is the weak approximation and where the weak value  f {B}w  of the 

projection operator onto the B-arm is given by 

 

 f {B}w  < f | U(4) U(3) B U(2)U(1)|in> / < f | U(4) U(3) U(2) U(1) | in >. (6) 

 

According to Vaidman [1], the non-vanishing of this weak value is interpreted as the presence of 

a photon in the B-arm. 

 

I note in passing that it is the fact that you have a non-zero state in the A-arm that allows you to 

extract a weak value for the number/projection operator in the B-arm: blocking the A-arm and 

you cannot extract such a weak value. This shows the quantum mechanical interconnectedness, 

the “non-locality”, of the setup. I comment further on the locality issue in section IV below. 

 

It is clear from this detailed calculation that it is the very act of performing a weak 

measurement + postselection that gives a nonzero result for this weak value: the measurement, 

even if ever so weak, “disturbs“ the photon state by allowing part of the B-arm photon state to 

pass un-interfered through the BS3 beamsplitter into the E-arm. This then ultimately results in a 

signal in the D2-detector implying a nonvanishing weak value for the B-arm projection operator.  

 

Another way of looking at this result is to observe (see Appendix 1) that the weak value f {B}w 

is obtained by a limiting procedure involving the mean value after postselection,  f < QM >, of 

the meter pointer variable QM : 

   

  f {B}w    limg→0  [ (1/g)   f < QM > ].    (7) 

 

This limit is to be taken using the expression (2e), all the time with  g ≠ 0, i.e., all the time with a 

photonic state in the E-arm arising from the measurement of the B-arm projector. For small g, the 

amplitude of this E-arm state is indeed tiny, being linear in g. But the fact that you divide by g to 

get the weak value means that you may in any case get a non-zero weak value however tiny this 

amplitude.  But the situation for g = 0 is different. Then there is no second term in the expression 

(2e), so no state corresponding to a photon in the E-arm. The limit g → 0 is thus a discontinuous 

one in the sense that the limit is taken with a contribution from an E-arm state while there is no 

such contribution when g = 0, i.e., in the situation undisturbed by any measurement. The limiting 

procedure defining the weak value is discontinuous when you compare the configuration used in 

taking the limit g → 0 to the undisturbed configuration g = 0.
 2

 

                                                      
2 An analogy to this situation, although not a perfect one,  is an ordinary function f(x) which for small  x > 0 has an 

expansion  f(x)    a x + 0(x
2
)  but which for x  0  has a non-vanishing value. Then limx→0 [(1/x)  f(x)]    a, while 

for x  0 the expression   
 

 
  f(x)  is undefined  (or, if you prefer, infinite).  
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The conclusion is clear. You are not allowed to conclude from the case g > 0 to the g = 0 unless 

the limit g → 0 is continuous. Since this is not the case here, the weak value cannot represent the 

photon behavior in the innermost MZI undisturbed by measurement. Vaidman’s “weak trace” 

criterion cannot be applied to this case due to the discontinuous behavior of the limiting 

procedure in getting the weak value. 

It goes without saying that Vaidman’s far-reaching arguments against “the common sense 

description” of the past of a quantum particle, based as they are on the weak values, lose their 

very foundation. The discontinuous behavior invalidates his arguments. Statements (quoted from 

[4]) like “The photons tell us that they have been in the parts of the interferometer through which 

they could not pass.“  and “… (the photons) never left the nested interferometer…” become 

unfounded: they rely on the weak value as the relevant entity in the weak trace criterion. As I 

have shown, however, the weak values do not give a faithful picture of the (undisturbed) MZI 

setup. 

 

III. THE TWO-STATE VECTOR FORMULATION APPROACH 

 

In his articles, Vaidman makes heavy use of the so called two-state vector formalism TSVF 

[10-12]. In this formalism, a quantum state between two measurements is described by a “two-

state” vector < | | >. Here, the second of the two states, | >, is the usual quantum state 

evolving forward in time from the initial, pre-selected state. As an example, in the expression (6) 

it is given by | > = U(2)U(1)|in>. The first state < | is the Hermitian conjugate (denoted † ) 

of the quantum state evolving backwards in time from the final, post-selected state. In the 

expression (6), it is given by <  | = [U(3)
-1

 U(4)
-1

| f  > ]
† . This formalism is strongly advocated 

by Vaidman as an appropriate way of understanding, visualizing and talking about the weak 

trace of his criterion.  

 

In fact, the TSVF description of the nested MZI setup is tailored to a description in terms of 

weak values of projection operators. A statement in TSVF can be directly translated into a 

statement of a weak value of such an operator and conversely. From a logical point of view, then, 

TSVF is equivalent to an analysis in terms of weak values. Therefore, the TSVF approach is 

subject to the same arguments as I have put forward in the previous section. 

 

Nor can the experimental results of [4] (see also Section V below) have any bearing on the 

arguments I have presented. An experiment, however interesting per se, can never have anything 

to say about the interpretation of its results. Only a theory can. 
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IV. AN ALTERNATIVE WEAK TRACE CRITERION FOR THE PAST OF A 

QUANTUM PARTICLE. 

 

The idea of formulating a “weak trace” criterion for the past of a quantum particle is, however, 

too good to be given up that easily. In fact, I think there is another way of invoking weak 

measurement for this purpose: use weak measurement but without postselection and let the 

“weak trace” be identified with the mean value of the projector onto the location of interest. 

Operationally, in the (weak) measurement scheme, this mean value is essentially the mean value 

of the meter observable, eq. (11) below. I call this “the weak mean value” criterion. 

 

Indeed, one of Vaidman’s intentions in proposing the weak value for the weak trace criterion is 

to find a more local criterion for the past of a QM particle than, e.g., Wheeler’s [5]. But on this 

point he is not completely successful. Since a weak value depends also on the postselected state, 

the weak value criterion obviously involves more than what occurs at the location of interest. In 

other words, the weak value criterion is not as local as one might have wished. If one instead, as 

I propose, identifies the weak trace with a non-vanishing weak non-postselected mean value of a 

projection operator, the criterion will be as local as is possible. 

 

For the nested MZI setup discussed previously, an application of this “weak mean value” 

criterion goes as follows. 

 

Start with the line (2c) above and rearrange it slightly. Use 

 

 [A + B + C ]  =  1      (8) 

to write 

 

 UM(B) = [A + C ]  +  B ⨂ exp( – i g PM ) .    (9) 

 

Then one finds  

 

 | in > ⨂ |m > →  UM(B)U(2) U(1)| in > ⨂ |m >   

 

 = [A + C]  U(2) U(1)| in > ⨂ |m >    

     

   + B U(2) U(1)| in > ⨂ exp( – i g PM  ) |m >   (10) 

 

for the state which, in the forward time evolution, describe the photon before the innermost MZI 

states enter the beamsplitter BS3.  

 

Next, calculate the mean value < QM > of the meter variable in this state (assuming, as I do, that 

this mean value is zero in the initial meter state). One finds 
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 < QM > = <m | exp( + i g PM ) QM exp( – i g PM )| m >   
 

   ⨯  < in | U(1)
-1

 U(2)
-1

 B U(2) U(1)| in > =   

 

   =  g < in | U(1)
-1

 U(2)
-1B U(2) U(1)| in >.   (11) 

 

Note that this result is exact: no small-g approximation is invoked. In fact, the von Neumann 

measurement of the projection operator affects only the non-diagonal terms (those proportional 

to | A > < B |, etc.) of the photon density matrix.  

 

The conclusion is that the (non-postselected) mean value < QM > of the meter observable is a 

direct measure of the presence of the photon in the B-arm as manifested by the second factor in 

(11).  

 

The non-vanishing of the expression 

 

  limg→0 [ (1/g) < QM > ] = < in | U(1)
-1

 U(2)
-1B U(2) U(1)| in >  (12) 

 

may then be taken as a weak trace criterion for the presence of photons in the B-arm. In 

particular, even if (11) is exact, a weak measurement, i.e., a small-g approximation, is needed 

in order for the measurement not to disturb (more than minimally) the quantum coherence of 

the succeeding time evolution.  

 

One should note the local character of this criterion: as it stands, it is independent of any 

perturbation that the measurement may induce to the succeeding time-evolution of the photon 

state. So from the point of view of merely measuring the mean value of the projection operator 

B , it does not matter whether, for example, there is a transition into the E-arm from BS3. The 

meter attached to the B-arm to measure the mean value of B has so to speak already registered 

what it is supposed to register and need not wait for a post-selection to occur in detector D2. Of 

course, unless it is weak, the B-measurement will disturb that succeeding time evolution, so if 

one wants to keep intact as much of the original evolution as possible, the measurement has 

nevertheless to be weak. 

 

This more strict locality property also implies that there is no discontinuity involved in taking the 

limit (12) as compared to the undisturbed, no-measurement situation.  

 

If the “weak trace” is interpreted with this “weak mean value” criterion, one may also convince 

oneself that the “common sense’ interpretation of the past of a photon in the nested MZI setup is 

restored. There is no question of “the photon (leaving) a trace in a path through which it did not 

pass” as stated in [1], nor for the photons to “have been inside the nested interferometer  .. 

(which) they never entered and never left…” as it was stated in [4].  

 

In sum, a weak trace scheme with a weak mean value criterion has definite advantages. Since it 

involves weak measurements, its influence on the undisturbed setup is minimal. Since it does not 
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involve any postselection, it has the property of being as local as possible. And it introduces no 

discontinuity. It seems therefore to be an ideal way of establishing, through (weak) measure-

ments, the trace of a QM particle.  

 

 

V. EXPERIMENTAL REALIZATION OF THE WEAK MEAN VALUE 

CRITERION. 

 
In [4], Danan et al present an interesting experimental realization of the nested MZI setup 

suggested by Vaidman. Their setup is slightly different from that of Fig.1  – see [4] for details – 

but the main characteristics remain the same. In particular, it would correspond to using vibrating 

mirrors M1 – M3 to implement (weak) measurements. The meter pointer variable is then the 

deviation of the (transverse) momentum of the photon beam from the fixed-mirror situation. For 

example, a vibrating mirror M1 with the mirrors M2 and M3 fixed will constitute a measurement 

of the presence of photons in the A-arm. In fact, Danan et al let the frequency of the vibrations be 

different for the different mirrors in order to identify photons in the respective arms of the setup.  

To define the postselected state, they place a (differential) detector in the position D2 of Fig.1. A 

signal at the relevant frequency of that detector is then a measure of the weak value of the 

projection operator onto the arm of the respective vibrating mirror. – See [4] for all the details. 

 

This general procedure of Danan et al can rather straightforwardly be adapted to provide an 

experimental realization also for the suggested “weak mean value” criterion for the past of a QM 

particle. The principle behind such an adaption is as follows. 

 

Suppose you vibrate the mirrors M1 through M3 like Danan et al do. Also, let the meter pointer 

observable be the (transverse) momentum deviation, called y by Danan et al. Then, replace the 

differential detector D2 in the Danan et al experiment with (non-differential) detectors at the 

positions D1 through D3 of Fig. 1. These detectors shall directly register the deviation y. Taking 

as an example the tracing of the photon in the B-arm, you will have to vibrate the mirror M2 and 

read off the y-value in detector D3. The detector should, in particular, deliver the mean value of 

this deviation, as a direct measure – c.f.  eq. (11) – of the weak mean value of the projector B . 

 

 

VI. SUMMARY AND CONCLUSIONS 

 

This paper is devoted to some aspects of identifying the past of a quantum particle. In 

particular, I have focused on Vaidman’s “weak trace” criterion [1] in which the past of a 

quantum particle is revealed by a nonzero weak value of the projection operator onto that 

location which one is interested in. For the particular example studied – photons in the nested 

Mach-Zehnder setup of Fig.1 –  I show that the weak values cannot be used to characterized 

the setup when it is undisturbed by the measurement. This is due to the fact that even an ever 

so weak measurement disturbs the photonic state in a discontinuous way.  The limiting 

procedure with weaker and weaker measurement strength is, in fact, discontinuous with 

respect to the situation with no measurement. As a consequence hereof, and of the fact that a 
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weak value is defined by this limiting procedure – see eq. (7) – the weak values do not any 

longer characterize the (undisturbed) setup and cannot be used to draw any conclusions on the 

past of the photons for this setup. 

A treatment using the two-state vector formalism TSVF cannot come to the rescue. This is so 

because the TSVF is but a reformulation of a weak value one. Logically, the two formulations 

are equivalent. 

It follows that the rather far-reaching conclusions that Vaidman and his collaborators draw 

regarding “photons (that) leaves a trace in a path through which they did not pass” (quoted 

from [1]) cannot be upheld. Instead of inferring that “the past of the photons is not represented 

by continuous trajectories” ([4]), one must rather note that it is the very definition of the weak 

value as a limit that introduces a discontinuity. 

As an alternative to Vaidman’s “weak value” criterion I propose a “weak mean value” 

criterion which does not run into the problems of Vaidman’s criterion. It does so by avoiding 

the dependence on a post-selected state which a weak value has. The proposed criterion does 

not lead to any of the “non-commonsense” traits found by Vaidman.  From the point of view 

of experimental realization, the “weak mean value” criterion can be examined by a slight 

variation of the apparatus used by Danan et al [4] to examine Vaidman’s “weak value” 

criterion. 
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APPENDIX A: OPERATIONAL DEFINITION OF A WEAK VALUE. 

 

I here sketch the main steps in the experimental procedure to arrive at a weak value. A more 

thorough treatment – with the necessary caveats – can be found, e.g., in [6]; see also [7-9] or 

any of the relevant references cited therein. 

(i) Let the system under study, 𝒮, be subject to a weak von Neumann type measurement 

[13] of one of its observables, S, by a measuring device, a ‘meter’ M . Think of the 

procedure as being done on one representative of 𝒮 after the other, be it an ordinary 

particle, a photon or whatever physical system is considered.  – In the example studied 

in the main text above, the system  𝒮 is a photon and the observable S is a projection 

operator onto one of the arms of the MZIs. 



11 

 

(ii) The initial system-meter state is assumed to be | in > ⨂ | m > . Here, | in > is the initial, 

“preselected” state for the system and | m > is the initial state of the meter, while the 

symbol ⨂ denotes the direct product of the system and the meter Hilbert spaces. The 

meter initial state is chosen so that its wave function  < q | m >  –  with | q > an 

eigenstate of the meter pointer observable QM  –  is a Gaussian peaking at  q 0 and 

width (in its square) of . In particular, the mean value < QM > ≡  < m | QM | m > of 

QM in the initial state is assumed to vanish. 

(iii) Invoking a von Neumann measurement scheme [13], a measurement interaction is 

described as a transformation of this state into the state  U [| in > ⨂ | m >] with 

U = exp(  i  g S ⨂ PM ), where PM is the momentum conjugate to the meter pointer 

observable QM. A weak measurement is characterized by a small value of the 

measurement strength g, allowing an expansion in g so that U =  1  i g S ⨂ PM 

+ O(g
2
).  – Vaidman, in [1] and earlier papers, puts g   1, and instead uses (an entity 

proportional to) 1/ as the small expansion parameter. However, I find it convenient to 

keep g as the regulating parameter to be able to talk easily of the strength of the 

interaction and to let g = 0 characterize the non-measurement situation.  The two 

approaches are equivalent as long as  g  0. 

(iv) Next, project the system state onto a “postselected”, final state | f >. 

(v) Finally, submit the measuring device to a projective measurement, resulting in a 

definite value q of the pointer variable. 

(vi)  Repeat to get enough statistics. 

(vii) The ensuing mean value  f < QM > of the pointer observable, representing the shift in 

the peak of the meter Gaussian wave function with respect to its initial position, will 

then, for small values of g, be given by  g  fSw  with the weak value fSw of S defined by

  

 fSw  < f | S | in > / < f | in >,    (A1) 

which means that 

fSw    limg→0  [ (1/g)   f < QM > ].    (A2) 

 Here, I prefer the slightly clumsy notation with a pre-subscript f attached to the 

relevant symbols in order to emphasize that the respective entities require specification 

also of the post-selected state | f  >. 

Two remarks to this scheme are appropriate.  

The first is that a single measurement does not provide much information about the system. 

But after a large number of repeated measurement –  point (vi) above – on an ensemble of 

identically prepared pre- and postselected systems, useful information can be extracted.  
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The second is that the weak value fSw is defined by a limiting procedure (A2). In most cases, 

this limit is continuous and the limiting procedure causes no problems. However, in the case 

with the nested Mach-Zehnder interferometers studied in the main text above, this limit is 

discontinuous and requires special considerations. 

 

APPENDIX B: CONVENTION FOR TRANSITION IN A BEAMSPLITTER. 

In the notation of Fig.1, and for the beamsplitter BS3 in front of the detector D3 – assumed as 

all the other beamsplitters to be well-balanced, 50-50 ones –  my convention amounts to the 

unitary transition  

(     
    

 )  U(3) (    
    

 )  √2  
  

) (    
    

 ),  (B1) 

with similar expressions for the other beamsplitters. Any other consistent convention for the 

transition matrix will give equivalent results.  
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FIG.1. The nested Mach-Zehnder interferometer setup. The arm directing the 

photons from the photon source into the set-up is denoted N. Symbols A 

through E denote the interferometer arms, BS1 to BS4 are beamsplitters, M1 

to M3 are mirrors, and D1 to D3 are detectors.(Adapted from Vaidman [1]) 


