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1. INTRODUCTION

This talk is an overview of mesonic Chiral Perturbation Theory (ChPT) concentrating on a number of recent develop-
ments.

2. CHIRAL PERTURBATION THEORY

Chiral Perturbation Theory can best be described by “Exploring the consequences of the chiral symmetry of QCD
and its spontaneous breaking using effective field theory techniques.” It was introduced by Weinberg, Gasser and
Leutwyler [1, 2, 3]. A good discussion of the underlying assumptions can be found in [4]. References to lectures and
other material can be found in [5].

A general effective field theory (EFT) needs three principles: the correct degrees of freedom, there has to be a power-
counting principle to ensure predictivity and one should remember the associated range of validity. For ChPT the
degrees of freedom are the Nambu-Goldstone bosons from the spontaneous symmetry breaking of the chiral symmetry
of massless QCD, the power-counting for mesonic ChPT is dimensional counting in momenta and meson masses, and
the range of validity stops somewhere below the mass of the first not included resonance, the rho.

The QCD Lagrangian
LQCD = ∑

q=u,d,s

[iq̄LD/qL + iq̄RD/qR−mq(q̄RqL + q̄LqR)] (1)

has anSU(3)L×SU(3)R global chiral symmetry whenmq = 0. This symmetry is spontaneously broken by the quark-
antiquark vacuum-expectation-value〈qq〉= 〈qLqRqRqL〉 6= 0. The mechanism is discussed in the talk by L. Giusti. The
remaining symmetry group isSU(3)V , we have thus 8 broken generators and get 8 Goldstone bosons whose interaction
vanishes at zero momentum. The latter allows for a consistent power counting via dimensional counting [1].

There are many extensions of ChPT in different directions. Some of them are:

• Which chiral symmetry:SU(Nf )L ×SU(Nf )R, for Nf = 2,3, . . . and extensions to (partially) quenched
• Or beyond QCD
• Space-time symmetry: Continuum or broken on the lattice: Wilson, staggered, mixed action
• Volume: Infinite, finite in space, finite T
• Which interactions to include beyond the strong one
• Which particles included as non Goldstone Bosons

My general belief is that if it involves soft pions (or softK,η) some version of ChPT exists.
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TABLE 1. The number of low-energy constants (LECs) at each
order in the expansion for a number of cases, thei + j notation
indicates the number of mesonic + pure contact terms.

order 2 flavour 3 flavour PQChPT/Nf flavour

p2 F,B 2 F0,B0 2 F0,B0 2
p4 l ri ,h

r
i 7+3 Lr

i ,H
r
i 10+2 L̂r

i , Ĥ
r
i 11+2

p6 cr
i 52+4 Cr

i 90+4 Kr
i 112+3

The Lagrangians are written in terms of the special unitary matrix, parametrizingSU(3)×SU(3)R/SU(3)V ≈ SU(3),

U = ei
√

2Φ/F0 with Φ(x) =

















π0
√

2
+

η8√
6

π+ K+

π− − π0
√

2
+

η8√
6

K0

K− K̄0 −2η8√
6

















. (2)

In terms of these the lowest order Lagrangian is given by

L2 =
F2

0

4
{〈DµU†DµU〉+ 〈χ†U + χU†〉} , (3)

with DµU = ∂µU − ir µU + iUl µ , and χ = 2B0(s+ ip) in terms of the left and right external currents:r(l)µ =
vµ +(−)aµ and scalar and pseudo-scalar external densities:s, p [3]. Quark masses are included via the scalar density:
s= M + · · ·. The notation〈A〉= TrF (A) indicates the trace over flavours.

At higher orders many more terms appear. The number of terms is listed in Tab. 1. The free coefficients of those
terms are called low-energy constants (LECs). The two- and three-flavourp4 Lagrangians were constructed in [2, 3],
the p6 Lagrangians in [6]. Including finite volume and boundary conditions does not introduce any new LECs, other
effects and interactions typically introduce (many) new LECs.

Let me just add a reminder about the main properties of ChPT: It relates processes with different numbers of
pseudo-scalars, includes isospin and the eightfold way (SU(3)V) and unitarity and analyticity effects are included
perturbatively. The best known consequence are the chiral logarithms, e.g. for the example of the pion mass [2]

m2
π = 2Bm̂+

(

2Bm̂
F

)2
[

1
32π2 log

(2Bm̂)

µ2 +2l r3(µ)

]

+ · · · (4)

with M2 = 2Bm̂ the lowest-order mass.

3. DETERMINATION OF LECS IN THE CONTINUUM

One of the problems in practically using ChPT is to have values for the unknown LECs. The original determination
was done in [2, 3] at thep4 level. However, all needed observables are known to orderp6, as reviewed in [7]. The
latest update of the LECs can be found in [8].

The two-flavour constants, quoted in the subtraction-scale-independent form̄l i , are

l̄1 = −0.4±0.6, l̄2 = 4.3±0.1, l̄3 = 3.0±0.8, l̄4 = 4.3±0.2,

l̄5 = 12.24±0.21, l̄6− l̄5 = 3.0±0.3, l̄6 = 16.0±0.5±0.7. (5)

l̄1 and l̄2 follow from theππ-scattering analysis [9], see also [10].l̄3 is mainly restricted from lattice data [11] and̄l4
from the quark mass dependence ofFπ and the pion scalar radius [12].l̄5− l̄6 is from the pion electromagnetic radius
[12], while l̄5 follows from the decayπ → eνγ[13] andτ-decays [14].

The three flavour first fullp6 fit was done in [15, 16]. Including many more observables and new data, a major
update was done by [17] and a final update with the same experimental input but some more information onp6 LECs
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TABLE 2. Values of thep4 three-flavour ChPT LECs,Lr
i in the

major fits performed at two-loop order.do f stands for degrees of
freedom.

ABC01 JJ12 Lr
4 free BE14

old data
103Lr

1 0.39(12) 0.88(09) 0.64(06) 0.53(06)
103Lr

2 0.73(12) 0.61(20) 0.59(04) 0.81(04)
103Lr

3 −2.34(37) −3.04(43) −2.80(20) −3.07(20)
103Lr

4 ≡ 0 0.75(75) 0.76(18) ≡ 0.3
103Lr

5 0.97(11) 0.58(13) 0.50(07) 1.01(06)
103Lr

6 ≡ 0 0.29(8) 0.49(25) 0.14(05)
103Lr

7 −0.30(15 −0.11(15) −0.19(08) −0.34(09)
103Lr

8 0.60(20) 0.18(18) 0.17(11) 0.47(10)

χ2 0.26 1.28 0.48 1.04
dof 1 4 ? ?
F0 [MeV] 87 65 64 71

in [8]. Recent values of the weak interaction ChPT LECs can befound in [18, 19]. An overview of the lattice work is
the FLAG second report [11].

For the three-flavour case we have thatm2
K ,m

2
η >>m2

π so a question is whether ChPT works at all in this sector. The
contributions from the not very well knownp6 LECs are much larger and there is the question of the importance of
1/Nc suppressed terms. In [20] a large number of observables was checked and a number of relations found that were
independent of thep6 LECs and only depend onp4 LECs via loop contributions. With 76 observables we found 35
relations. For 13 of these there were enough experimental data available. The resulting picture was that three-flavour
ChPT works but might converge slowly in some cases.

The data included for a fit ofLr
1, · · · ,Lr

8 are:

• Mπ ,MK ,Mη ,Fπ ,FK/Fπ
• 〈r2〉π

S, cπ
S slope and curvature ofFS

• ππ andπK scattering lengthsa0
0, a2

0, a1/2
0 anda3/2

0 .
• Value and slope ofF andG in Kℓ4

• ms
m̂ = 27.5 (lattice)

• l̄1, . . . , l̄4

This corresponds to 17+ 3 inputs and we have 8Lr
i and 34 combinations ofCr

i to fit, a clearly ill-defined problem.
The older fits [16] (ABC01), [17](BJ12) used a simple resonance estimate of theCr

i , this was complemented by more
input on theCr

i from other models and various estimates and a requirement ofnot too largep6 corrections the meson
masses in [8] (BE14). The resulting values of the fits are shown in Tab. 2.

Many prejudices, as described in detail in [8], were used in fixing the values of theCr
i . The final values chosen

are all “reasonable” and compatible with existing determinations. The largeNc suppressed constantLr
4, if left free, is

rather large. We therefore restricted it to the expected range. Surprisingly, this lead to the values ofLr
6 and 2Lr

1−Lr
2

also being small and compatible with largeNc arguments. The values for theLr
i are compatible with existing lattice

determinations as well. The convergence is reasonable, butenforced for the masses, as can be seen from the examples:

Mass: m2
π/m2

π phys = 1.055(p2)−0.005(p4)−0.050(p6) ,

m2
K/m2

Kphys = 1.112(p2)−0.069(p4)−0.043(p6) ,

m2
η/m2

η phys = 1.197(p2)−0.214(p4)+0.017(p6) ,

Decay constants: Fπ/F0 = 1.000(p2)+0.208(p4)+0.088(p6) ,

FK/Fπ = 1.000(p2)+0.176(p4)+0.023(p6) .

Scattering: a0
0 = 0.160(p2)+0.044(p4)+0.012(p6) ,

a1/2
0 = 0.142(p2)+0.031(p4)+0.051(p6) . (6)
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0.0001

0.001

0.01

 2  2.5  3  3.5  4

|∆
V
 m

2 π+
|/m

2 π

mπ L

θ=0

θ=π/8

θ=π/4

θ=π/2

(a)

0.0001

0.001

0.01

 2  2.5  3  3.5  4

|∆
V
 m

2 π0 |
/m

2 π

mπ L

θ=0

θ=π/8

θ=π/4

θ=π/2

(b)

FIGURE 1. Finite volume corrections to the charged and neutral pion mass squared as a function ofmπL for several values of
the up quark twist angleθ . (a) Charged pion (b) neutral pion. Plots from [33].

4. FINITE VOLUME

An example of extra effects that can be included is the use of ChPT to study the effects of a finite volume. Finite
volume effects were studied first in a general way by Lüscher [21] and soon introduced in ChPT by Gasser and
Leutwyler [22, 23]. In particular, [23] proved that no new LECs were needed. They calculatedmπ ,Fπ and〈q̄q〉 to
one-loop in the equal mass case. Note that the remainder willbe in thep-regime withmπL ≥ 1. L is the size of the
finite volume. ChPT will be useful since the convergence is given by the rho mass with 1/mρ ≈ 0.25 fm, while the
finite volume effects are controlled by 1/mπ ≈ 1.4 fm. It will often be needed to go beyond the leading exp(−mπL)
behaviour. An introduction and more references can be foundin [24].

A partial overview of existing results at finite volume is: Masses and decay constants for three flavours at one-loop
[25, 26, 27],mπ at two-loop order in two-flavour ChPT [28] and the quark-anti-quarkvacuum-expectationvalue at two-
loops in three-flavour ChPT [29]. Other examples are including a twisted mass [30] and twisted boundary conditions
[31] in ChPT. I will now concentrate on two recent developments.

4.1. Twisted boundary conditions

On a lattice with a finite size given byL, components of spatial momenta are restricted bypi = 2πni/L with ni

integer. That means that in practice very few low momenta areavailable. One way to allow for more momenta is to put
a boundary condition on some of the quark fields in some directions viaq(xi +L) = eiθ i

qq(xi). Then allowed momenta
arepi = θ i/L+2πni/L. Varying theθ i

q allows to map out momentum space on the lattice much better [32]. The finite
box breaks rotational symmetry down to cubic symmetry but twisting reduces it even further. Consequences are:

• m2(~p) = E2−~p2 is not constant.
• There are typically more form-factors than in infinite volume.
• In general quantities can depend on many more components of the momenta, not just Lorentz-invariant products.
• Charge conjugation involves a change in momentum.
• The boundary conditions can break isospin.

As a first example I show the finite volume corrections to the charged and neutral pion mass [33] in Fig. 1. The plots
show the finite volume correction∆Vm2 =m2V −m2V=∞ as a function ofmπL for several values ofθ with ~θu =(θ ,0,0)
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FIGURE 2. Finite volume corrections and infinite volume one-loop partof the components of theπ+-π0 vector transition form-
factors. (a)µ = t component (b)µ = x component. Plots from [33].

and~θd = ~θs = 0. The relation with the earlier work in [31] and [34] is discussed in detail in [33]. Note that the finite
volume correction is very dependent on the twist-angle.

The matrix-element for the decay constant has extra terms

〈

0|AM
µ |M(p)

〉

= i
√

2FM pµ + i
√

2FV
Mµ . (7)

These are required such that the Ward identities are satisfied [33] and the extra components can be quite sizable.
The vector-form factors also require extra components [33]:

〈

M′(p′)| jµ |M(p)
〉

= fµ = f+(pµ + p′µ)+ f−qµ +hµ . (8)

earlier work on two flavours is [34]. Note that the vector current satisfies the Ward identities, contrary to what is
sometimes stated butqµ fµ = (p2− p′2) f+ +q2 f−+qµhµ = 0 requires to include all components and the use of the
correct finite volume masses forp2 andp′2.

The lattice determination of the pion electromagnetic form-factor from theπ+-π0 transition amplitude

fµ =− 1√
2
〈π0(p′)|d̄γµu|π+(p)〉=

(

1+ f ∞
+ +∆V f+

)

(p+ p′)µ +∆V f−qµ +∆Vhµ (9)

requires all the finite volume corrections. In Fig. 2 the corrections needed are shown for the time andx spatial
component of the form-factorfµ of (9). Plotted is also for comparison the pure one-loop contribution to the infinite
volume form-factorf ∞

+ .

4.2. Masses at two-loops

The finite volume correction for the meson masses and decay constants in three-flavour ChPT is in progress [35].
As was already visible in the two-flour two-loop calculationof [28], the main obstacle for a full two-loop calculation
is the finite volume sunset integrals. These were derived forthe most general mass case in [36], thus paving the way
for a full two-loop evaluation. Some preliminary results are shown in Fig. 3. For the pion mass at orderp4 the two-
and three-flavour result differ by kaon and eta loops. These are numerically very small. Thep6 results are also in good
agreement with each other. The kaon mass at orderp4 has only a very small correction since there is no pion-loop
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FIGURE 3. Finite volume corrections at two-loop order to the meson masses squared. Shown is the relative correction
∆Vm2

π/m2
π = mV2

π /mV=∞2
π − 1. LO is the p4 or one-loop results. NLO is thep6 or two-loop result. (a) Pion mass in two- and

three-flavour ChPT (b) Kaon and eta mass.

contribution. Thep6 contribution is of the expected size. For theη , there is a cancellation between the pure two-
loop contribution and theLr

i -dependent part atp6 resulting in a very small correction in total. Thep4 contribution is
suppressed by an extra factor ofm2

π/m2
η . More results and details will be published in [35].

5. BEYOND QCD

There are other symmetry breaking patterns possible in generic gauge theories. Early examples are related to tech-
nicolour [37, 38, 39] and some might be useful to avoid the sign problem in high density QCD lattice simulations
[40]. The equal mass case requires for many quantities the same integrals as needed forππ-scattering in two-flavour
ChPT [41, 42]. The lattice studies of these type of theories was discussed in the talk by E. Pallante. One often wants
to extrapolate to zero fermion masses from the lattice data here. ChPT can help there, just as for the QCD case. A
number of quantities were studied forN equal mass flavours for the complex, real and pseudo-real case [43, 44, 45] at
two-loop order. References to earlier one-loop work can be found in our work and [40].

Generically the fermions can be in a complex, real or pseudo-real representation of the gauge group. Examples
are of the first case QCD, the second case any group with fermions in the adjoint representation and the last case an
SU(2) gauge group with fermions in the fundamental representation. In the latter two cases anti-quarks are in the same
representation as the quarks leading to larger global chiral symmetry group. Assuming that a condensate forms similar
to QCD, we get the breaking patterns:

• SU(N)×SU(N)/SU(N) (complex)
• SU(2N)/SO(2N) (real)
• SU(2N)/Sp(2N) (pseudo-real)

The three cases can be dealt with in very similar fashion.
The standard QCD case has a vectorqT = (q1 · · ·qNF ) and the chiral symmetry transformation under(gL,gR) ∈ G=

SU(NF)L ×SU(NF)R is qL → gLqL,qR → gRqR. The condensate〈qL jqRi〉= −vΣi j is described by a unitary matrixΣ.
The vacuum expectation value is〈Σ〉 = 1, the unity matrix, such that forgL = gr the vacuum remains invariant under
Σ → gRΣg†

L. The conserved symmetry group is thusH = SU(NF)V .
The case withNF fermions in a real representation of the gauge group can be described by a 2NF vector q̂T =

(qR1 . . . qRNF q̃R1 . . . q̃RNF ) with q̃Ri≡Cq̄T
Li .C is charge conjugation. The global chiral symmetry is thusG=SU(2NF)
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with q̂→ gq̂. The vacuum expectation value〈q jqi〉 is really

Σ ji = 〈(q̂ j)
TCq̂i〉 ∝ JSi j with JS=

(

0 I
I 0

)

. (10)

Σ is 2NF × 2NF and Σ → gΣgT for g ∈ G. The vacuum is conserved ifgJSgT = JS =⇒. The conserved part is
H = SO(2NF).

For NF fermions in a pseudo-real representation the situation is similar but q̂T = (qR1 . . . qRNF q̃R1 . . . q̃RNF ) with
q̃Rα i ≡ εαβCq̄T

Lβ i instead.qRi transforms under the gauge group asqRα i. The global chiral symmetry is thus again
G= SU(2NF) with q̂→ gq̂. The vacuum expectation value〈q jqi〉 corresponds now to

−vΣ ji = εαβ 〈(q̂α j)
TCq̂β i〉 ∝ JAi j with JA =

(

0 −I
I 0

)

. (11)

Σ is again a 2NF ×2NF matrix andΣ → gΣgT for g∈ G. The vacuum is conserved ifgJAgT = JA with a conserved
global symmetryH = Sp(2NF).

ChPT for the three cases is extremely similar if we defineu= exp(iφaXa/(
√

2F)) [43] with theXa the generators
of an SU(NF) (complex case), or of anSU(2NF) satisfyingXaJS = JSXaT (real) or XaJA = JAXaT (pseudo-real).
Note that these are not the usual ways of parametrizingSp(2NF) or SO(2NF) matrices but related. As a consequence
the Lagrangians constructed for theNF flavor complex case [6] can be taken, but might not be minimal.Also the
divergence structure for the complex case is known [46], providing a check on the calculations.

The expressions for masses, decay constants and vacuum expectation values to two-loop order can be found in
[43] and are known fully analytically. The meson-scattering case can be written in terms of two amplitudesB(s, t,u)
andC(s, t,u) [44], analoguous toA(s, t,u) defined inππ-scattering, see e.g. [41]. The possible intermediate states are
a little more complicated than forππ-scattering. All scattering formulas are fully analytically obtained in [44]. For
explicit expressions I refer to that paper. As an example, I show the single meson-scattering length as a function of
n= NF for the complex case in Fig. 4.

The last application we did was to perform the calculations necessary to extract theS-parameter [45].

6. LEADING LOGARITHMS

The last application is the calculation of leading logarithms (LL) in EFT and especially mesonic ChPT. Leading
logarithms are the following, take as an example an observable quantityF dependent on a single physical scaleM.
The dependence on the subtraction scaleµ in field theory is typically logarithmic:

F = F0+F1
1 L+F1

0 +F2
2 L2+F2

1 L+F2
0 +F3

3 L3+ · · · L = log(µ/M) . (12)

The coefficientsF i
j arei loop-level andj logarithm-level. The terms withFm

m are called the leading logarithm terms.
These terms are easier to calculate than the remaining ones at the same loop level. The underlying reason is that
physical quantities must be independent of the subtractionscale,µ (dF/dµ)≡ 0 and that divergences in local quantum
field theory are always local.

In a renormalizable quantum field theory the leading logarithms can be calculated by a simple one-loop calculation
using the renormalization group. In an EFT this is not quite so simple since at each order in the expansion new terms in
the Lagrangian occur. Weinberg [1] showed that the leading logarithms at two-loop level could be obtained from one-
loop calculations only. The full two-loop leading logarithm was calculated with these Weinberg consistency conditions
in [47]. This was expected to work similarly to all orders andproven to do so in [48], an alternative diagrammatic proof
is in [49]. The underlying argument is that atn-loop order, (̄hn), all the divergences must cancel. Ford= 4−w all terms
of the form 1/wi logj µ with i = 1, . . . ,n and j = 0, . . . ,n−1 must cancel. For the leading logarithms then conditions
with i+ j = n give a sufficient amount of relations that the leading logarithms can be obtained from one-loop diagrams
only, the conditions withi + j = n− 1 show that for the next-to-leading logarithms two-loop diagrams are required
and so on.

The problem is that each order new terms in the Lagrangians show up, so new one-loop diagrams are required and
new vertices at each new order. The problem is illustrated inFig. 5 for the case of the mass at two-loop order. We need
in general both new vertices of higher order but also new vertices with more external legs.
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FIGURE 4. The singlet scattering length as a function of the meson mass. The scale is set by the decay constantF ≈ Fπ . Plots
from [44]. For technicolour applications the mass and decayconstant should be scaled up accordingly.
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• but also needs h̄
1
: 0 0

0

=⇒ 1

FIGURE 5. The reason for the increase in complexity with the loop-order for leading logarithms in EFT. The index in the vertices
shows the loop-order of the vertex needed. Top line: at one-loop we need the one-loop diagram for the and it gives us the mass
one-loop counter-term and logarithm. Middle line: at two-loop order we need the two one-loop diagrams to get the two-loop mass
counter-term and leading logarithm. It needs the one-loop scattering counter-term as well. Bottom line: the extra one-loop diagrams
needed to get one-loop scattering counter-term.
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TABLE 3. The coefficientsai of the leading logarithms for the mass in the
massiveO(N) model to five loops. Table adapted from [49].

i ai , N = 3 ai for generalN

1 − 1
2 1− N

2

2 17
8

7
4 − 7N

4 + 5 N2

8

3 − 103
24

37
12 − 113N

24 + 15 N2

4 −N3

4 24367
1152

839
144− 1601N

144 + 695 N2

48 − 135 N3

16 + 231 N4

128

5 − 8821
144

33661
2400 − 1151407N

43200 + 197587N2

4320 − 12709N3

300 + 6271N4

320 − 7 N5

2

Actually, in the massless case matters simplify somewhat, no vertices with more external legs are needed than
already appear at one-loop. The reason is that massless tadpoles vanish. This was used first in [50] for the scalar two-
point function LL to five loops. In [51, 52, 53, 54] a clever Legendre polynomial parametrization of the meson-meson
scattering vertices allowed to obtain the divergences at all orders via a recursion relation that in some limits can evenbe
solved analytically. LargeN in the sigma model agreed with the older work, see e.g. [55]. Treated were meson-meson
scattering, scalar and vector form-factors. It was typically found that largeN is not a good approximation.

We realized in [49] that a construction of a minimal Lagrangian at each order is not necessary. When calculating
the divergences using a method that preserves the underlying symmetry the produced divergence structure will
automatically have the correct symmetry and reducing it to its most minimal form or even rewriting it in a fully
symmetric form is not needed. The consequence is that thingscan be computerized and simply let run using FORM
[56]. We first pushed the massive nonlinearO(N) model to rather large orders for the masses, form-factors and
scattering in [49, 57] and solved the largeN-limit to all orders also for the massive case using gap equation techniques.
A very strong check of the result is to use different parametrizations of the lowest-order Lagrangian. This should give
the same results in the end but intermediate expressions arevery different.

An example result is the mass to fifth order via

M2
phys= M2(1+a1LM +a2L

2
M +a3L

3
M + ...) (13)

The coefficientsai are shown in Tab. 3 to five loops. The effects of the anomaly were added in [58]. An example is the
pion coupling to two off-shell photons:

A(π0 → γ(k1)γ(k2)) = εµναβ ε∗µ
1 (k1)ε∗ν

2 (k2)kα
1 kβ

2 Fπγγ(k
2
1,k

2
2) ,

Fπγγ(k
2
1,k

2
2) =

e2

4π2Fπ
F̂Fγ(k

2
1)Fγ(k

2
2)Fγγ (k

2
1,k

2
2) . (14)

F̂ : is for on-shell photons;Fγ(k2) is the form factor for one-off shell photon ;Fγγ is the nonfactorizable part when both
photons are off-shell. This was done to six loops. The on-shell decays leading logarithm part converges extremely
well:

F = 1+0−0.000372+0.000088+0.000036+0.000009+0.0000002+ . . . (15)

The nonfactorizable starts only at three loops and in the massless case only at four loops. The leading logarithms give
for this a very small contribution.

The extension to theSU(N)×SU(N) case was done in [59]. In particular we pushedγγ → ππ there to high order
and found only small corrections. A summary of existing massive leading logarithms from our work is:

• O(N)/O(N−1) model [49, 57]
– massive case:ππ , FV andFS to 4-loop order
– largeN for these cases also for massiveO(N).
– done using bubble resummations or recursion equation whichcan be solved analytically

• [58]
– O(N)/O(N−1) model: Mass,Fπ , FV to six loops
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– O(4)/O(3) Anomaly:γ∗3π (five) andπ0γ∗γ∗ (six loops)
• SU(N)×SU(N)/SU(N) [59]

– Mass, Decay constants, Form-factors
– Meson-Meson,γγ → ππ

Typically, the expected radius of convergence was found. LargeN was not a good numerical guide either to the actual
coefficients unless one went to rather large values ofN.

Unfortunately, in no case could we identify a conjecture forall order behaviour of leading logarithms. I strongly
recommend all of you to have a look at the many tables in the mentioned papers to see if you have more luck there.

A final comment is that the method has recently been extended to the nucleon sector [60]. This is discussed in more
detail in the parallel session talk by A.A. Vladimirov.

7. CONCLUSIONS

In this talk I gave a very short introduction to Chiral Perturbation Theory in the mesonic sector and discussed a
number of recent advances. These include the latest determination of the LECs of [8]. Finite volume effects with
twisted boundary conditions and preliminary results on thefinite volume two-loop results in three flavour ChPT were
the next topic. The third subject was the use of mesonic ChPT and its extension to different symmetry breaking patterns
with an eye towards applications relevant to technicolour.The last topic was the calculation of leading logarithms in a
number of effective field theories to high orders.
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