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Abstract: We present the generating function approach to the perturbative exponentia-

tion of correlators of a product of Wilson lines and loops. The exponentiated expression is

presented in closed form as an algebraic function of correlators of known operators, which

can be seen as a generating function for web diagrams. The expression is naturally split

onto two parts: the exponentiation kernel, which accumulates all non-trivial information

about web diagrams, and the defect of exponentiation, which reconstructs the matrix ex-

ponent and is a function of the exponentiation kernel. The detailed comparison of the

presented approach with existing approaches to exponentiation is presented as well. We

also give examples of calculations within the generating function exponentiation, namely,

we consider different configurations of light-like Wilson lines in the multi-gluon-exchange-

webs (MGEW) approximation. Within this approximation the corresponding correlators

can be calculated exactly at any order of perturbative expansion by only algebraic manip-

ulations. The MGEW approximation shows violation of the dipole formula for infrared

singularities at three-loop order.
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1 Introduction

The dynamics of Wilson lines and loops is responsible for nearly every aspect of gauge

theories. Naturally, the correlators of Wilson lines and loops are one of the most attractive

objects of theoretical investigations. In this article we present the generating functional

approach to the exponentiation of a general correlator of Wilson lines.

The exponentiation of a correlator of Wilson lines is the fundamental property of the

perturbative approach. As the name suggests, the exponentiation property allows one

to present the perturbative series for the correlator as an exponent. The non-triviality

of this statement consists in the special diagrammatic of the exponentiated expression.

Namely, only connected diagrams enter the argument of the exponent. Moreover, often

the exponentiated diagrams possess some additional non-trivial properties, being a subset

of the initial (not exponentiated) series of diagrams. Such an approach can be considered

as an exact resummation of the initial diagram series. In this way, the knowledge of the

rules for exponentiated diagrammatic significantly simplifies analysis of the Wilson lines

correlators within the perturbation theory.
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The exponentiation property for Abelian gauge theories has been understood a long

time ago [1]. The exponentiation for a non-Abelian gauge theory is significantly more

complicated, and until the recent time, only the exponentiation property for the cusp

configuration of Wilson lines and for a Wilson loop was known [2–4]. The exponentiated

diagrams for the cusp were called “webs” [2], and were investigated in great details. They

play an important role in the description of the strong interaction dynamics. However,

nowadays more complex configurations of Wilson lines are interesting. During the last

decade several approaches to the exponentiation of a general correlator of Wilson lines

were presented [5–8] (the brief review of these approaches is given in sec.2).

In this article we present and elaborate details of the exponentiation approach via the

generating function, which has been partially presented in [9]. The main object of our

interest is the correlator of any number of Wilson lines of any paths and of any group

representations

SN ({γ1, f1}, ..., {γN , fN}) =
〈
Φf1
γ1

× ...×ΦfN
γN

〉
, (1.1)

where Φ is a Wilson line of representation f along the path γ:

Φf
γ = P exp

(
ig

∫ 1

0
dτ γ̇µ(τ)Aa

µ(γ(τ))t
[f ]
a

)
, (1.2)

where γ(τ) parameterizes the path, and γ̇ is a tangent to the path at point τ , t[f ] are

the generators of the gauge group in the representation f . We stress that the Wilson line

(1.2) is a matrix in the color space, and hence, the correlator (1.1) is a multi-matrix. The

disentangling of the matrix structure is the main difficulty of the exponentiation in a non-

Abelian gauge theory. In particular, inaccurate treatment of the matrix structure gives rise

to the incomplete exponentiated expression in ref.[9]. This issue is corrected in the present

article.

The method of exponentiation presented in the article, which we call the generating

function exponentiation, is novel and qualitatively differs from the methods presented in

the literature. The main feature of the generating function exponentiation is that the

argument of exponent is presented in closed form, namely, as a function of correlators

of certain operators. This function has the meaning of the generating function for web

diagrams.

Technically, the main difference between the generating function exponentiation and

other methods of exponentiation consists in the splitting of the problem onto two principally

different mathematical tasks: the exponentiation of a scalar operator in a non-Abelian field

theory, and the exponentiation of a matrix object. Separately these tasks are effortless.

However, together they produce many various diagrams and factors, the straightforward

exponentiation of which is a cumbersome work. Therefore, despite many parallels with

exponentiation methods presented in literature, we found the final result unique. The

detailed explicit comparison of the exponentiation approaches is given in sec.5.

The article is composed as follows. In sec.2 we make a brief review of exponentiation

methods. The main aim of this section is to introduce a minimal terminology. In sec.3 we
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present elementary introduction to the generating function approach to the exponentiation,

in particular, we demonstrate the exponentiation in the Abelian gauge theory and the

exponentiation of real exchanges. Section 4 is the main section of the article. In this

section we present the generating function approach to the non-Abelian exponentiation

and derive all the main formulae. Finally, sec.5 presents a set of explicit applications of the

generating function exponentiation. In particular, in sec.5.1 on the example of the two-

loop cusp, we perform diagram-by-diagram comparison of the presented approach with

existing approaches, while in sec.5.2 we demonstrate the effectiveness of the method by

evaluating some configurations of light-like Wilson lines in the multi-gluon-exchange-webs

approximation.

2 Brief review of exponentiation methods

In the paper we present an exponentiation method for a product of Wilson lines and

compare it with other exponentiation approaches presented in literature. The methods

(the one presented here and those taken from literature) have similar and distinct points.

In order to clarify the presentation let us shortly describe the exponentiation methods and

introduce necessary terminology.

The most straightforward approach to the exponentiation is to consider the logarithm

of the perturbative series. Performing the perturbative expansion of the logarithm and

combining diagrams together one obtains the exponentiated perturbative series. Within

the composition of diagrams many terms cancel and the remainder is called web diagrams,

or webs [2]. We name such an approach to the exponentiation as the diagrammatic expo-

nentiation.

For the cusp and for a Wilson loop the diagrammatic approach gives the following

result for the exponentiated series of diagrams. The color factor of the diagrams (of the

non-exponentiated series) should be replaced by the modified color factors [3, 4],

tr〈Φ〉 =
∑

d

C(d)F(d) = exp

(
∑

d

C̃(d)F(d)

)
, (2.1)

where C(d) and F(d) are the color factor and the kinematical part of a diagram d, respec-

tively. The modified color factor C̃ is obtained by the recursive procedure

C̃(d) = C(d)−
∑

d′

∏

w∈d′
C̃(w), (2.2)

where the sum runs over all decompositions of d into two-Wilson-lines-irreducible subgraphs

w (webs). In the consequence of the expression (2.2) only the two-Wilson-lines-irreducible

diagrams have non-zero modified color factors. These diagrams form the set of webs for

the cusp, or for the Wilson loop.

For a general configuration of Wilson lines the diagrammatic exponentiation has been

considered in ref.[7]. It has been shown that for the general case no simple selection

criterium exists, and all diagrammatic topologies enter the exponentiated series.
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Another method of exponentiation was suggested in ref.[5] and elaborated in [6, 8, 10].

The method is based on the replica trick and hence, we name it as the replica exponentia-

tion.

Briefly, the course of the replica exponentiation is the following. In the first step,

the correlator of (replica-ordered) Wilson lines is considered in the replicated theory, i.e.

the theory that consists of Nrep copies of the original theory (replicas). The obtained

diagrammatic expansion depends on Nrep. In the second step, the terms proportional to

Nrep are taken, and the rest terms are discarded. These terms form the argument of the

exponent in the original theory. The resulting expression can be presented in the following

form

〈Φ × Φ...× Φ〉IJ = exp


∑

d,d′

F(d)Rd,d′C(d′)




IJ

, (2.3)

where R is the web-mixing matrix [6, 10], and I and J are the color multi-indices. The

product RC generalizes the concept of the modified color factor of the color-singlet case

(2.2).

The replica exponentiation gives deeper theoretical understanding of the exponenti-

ation procedure, and allows one to make certain general conclusions about webs. For

example, using the replica exponentiation it has been shown that color factors of the

exponentiated expression contain only the color connected combinations of diagrams [8].

Recently, the method has been improved by the effective vertex formalism [8], and in this

form it was used for analysis of particular multi-loop webs [11].

The disadvantage of the replica method is that it does not present any universal ex-

pression for the series of web diagrams. The web-mixing matrix should be calculated at

every order of the perturbative expression independently, what makes any general con-

sideration difficult. In this aspect, the replica exponentiation resembles the diagrammatic

exponentiation for the product of Wilson lines [7] (for explicit comparison see the appendix

of ref.[10]).

In this article we present a novel exponentiation approach. The main distinctive feature

of the approach is the presentation of the exponentiated series in closed form, namely, as a

function of correlators of known operators. This function can be interpreted as a generating

function for web diagrams [9]. Thus, we name the presented method as the exponentiation

via generating function or, for shortness, GF exponentiation.

Although GF exponentiation is obtained independently from the diagrammatic expo-

nentiation and the replica exponentiation, these approaches have many common points.

GF exponentiation can be viewed as a union of both approaches. As we show later, the

generating function consists of two parts. One of those can be easily traced in the replica

method (in its formulation via effective operators [8]), while another is closely related to

the diagrammatic approach. However, in contrast to the diagrammatic and the replica

exponentiations, the GF exponentiation has a visual and simple expression.
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3 Generating function approach to exponentiation

In this section we discuss the basics of GF exponentiation. The material of the section is

somewhat trivial and generally can be collected from textbooks on quantum field theory.

Therefore, the main aim of this section is not to present a new material, but to introduce

notations, and the general way of approach.

We also demonstrate GF exponentiation in Abelian gauge theory. This presentation

serves as a pedagogical example, which is later generalized on the non-Abelian case. The

presentation of this part closely follows the presentation in ref.[9].

In the last subsection, we briefly discuss the generalization of GF exponentiation on

the correlators with real exchanges, which are very important in practice.

3.1 The foundation of exponentiation

In ref.[9] it was shown that the quantum average of any operator, which has the form

of an exponent of another operator, can be presented as an exponent of the series of

connected diagrams. In fact, this statement is a reformulation of the famous relation

between the partition function and the series of connected diagrams (3.2). The relation

holds in any quantum field theory, therefore, in this section we use maximally abstract

notation, denoting all fields of a theory as A, and do not specify their quantum numbers.

The partition function of a quantum theory reads

Z[J ] =

∫
DA eS[A]+

∫
dx J(x)O(x), (3.1)

where O(x) is a composite operator, J(x) is the source, and S[A] is the action of theory.

The diagrammatic expansion of Z[J ] consists of all possible Feynman diagrams connected

and disconnected, with or without insertions of operator O. The logarithm of the partition

function

W [J ] = ln
Z[J ]

Z[0]
, (3.2)

has the meaning of the generating function for the Green functions of operators O. Dia-

grammatically, it is given by only connected diagrams with insertions of operator O. In

the case of many sources, Z[J1, J2, ...], the corresponding generating function W [J1, J2, ...]

is given by all connected diagrams with all possible insertions of operators O1, O2, etc.

Let us consider an operator of the form

O[A] = exp

(∫
dx M(x)Y[A]

)
, (3.3)

where M(x) is some classical field and Y[A] is a composite operator of fields A. According

to the definition of the quantum average one can consider the vacuum matrix element of

the operator (3.3) as the partition function evaluated on the “classical sources” M(x),

〈
T O[A]

〉
=

1

Z[0]

∫
DA eS[A] e

∫
dx M(x)Y(x) =

Z[M ]

Z[0]
. (3.4)
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The T-ordering on the left-hand-side of eqn.(3.4) allows us to apply the functional inte-

gration quantization. For brevity, in the following we do not explicitly denote T-ordering,

assuming it for every quantum average. Exception is made only in sec.3.3, where we discuss

the quantum averages of operators without T-ordering.

The matrix element (3.4) can be presented as an exponent of the generating function

(3.2). By definition, the generating function can be presented as a series of correlators

〈
O[A]

〉
= eW [M ] (3.5)

= exp

(∫
dxM(x)〈Y(x)〉 + 1

2

∫
dx1,2M(x1)M(x2)〈Y(x1)Y(x2)〉

+
1

3!

∫
dx1,2,3M(x1)M(x2)M(x3)〈Y(x1)Y(x2)Y(x3)〉+ ...

)
,

where the factorial coefficients are the symmetry coefficients resulting from the permutation

symmetry of the correlators. Thus, the exponentiated series for the operator O[A] is given

by only connected diagrams with arbitrary number of operators Y convoluted with the

“classical sources” M(x).

The fact that W [M ] is given solely by connected diagrams does not imply that the

original series for 〈O〉 contains disconnected diagrams. Both series contain only connected

diagrams, but connected to different operator vertices. Since, the operators Y and O can

have very different properties, the series of diagrams contributing to 〈O〉 can relate to the

series of diagrams contributing to W [M ] in a very non-trivial way. The case of non-Abelian

exponentiation, the main subject of this article, is an example of such a non-trivial relation.

Exponentiation of the perturbative series for an operator of the type (3.3) is the funda-

mental property of the perturbative expansion. It is founded only on the relations between

the symmetry coefficients of various Feynman diagrams. In its own turn, the later is the

consequence of the perturbative approach to functional integration, i.e. the property of

the expansion of the action exponent around its Gaussian part. It is important to mention

that the structure of the propagator does not affect the symmetry coefficients and, thus,

does not influence on the exponentiation of the diagrams.

3.2 Exponentiation of Wilson lines in QED

Let us demonstrate the application of GF exponentiation of the Wilson line in an Abelian

gauge theory (QED).

The starting point of the approach is to present the operator, namely the Wilson line,

in the form (3.3). In QED the path-ordered exponent (1.2) is equal to the usual exponent,

Φγ = exp

(
ig

∫ 1

0
dτ γ̇µ(τ)Aµ(γ(τ))

)
. (3.6)

Comparing this expression with eqn.(3.3) we find that the operator Y(x) is just the field

Aµ(x), while the source M(x) is a classical source of radiation,

Mµ(x) = ig

∫ 1

0
dτ γ̇(τ) δ(γ(τ) − x). (3.7)
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Evaluating the expression (3.5) with the sources (3.7) we obtain the exponentiated

expression

〈
Φγ

〉
= exp

(−g2

2!

∫ 1

0
dτ1

∫ 1

0
dτ2γ̇

µ1(τ1)γ̇
µ2(τ2)

〈
Aµ1(γ(τ1))Aµ2(γ(τ2))

〉
(3.8)

+
g4

4!

(
4∏

i=1

∫ 1

0
dτiγ̇

µi(τi)

)
〈
Aµ1(γ(τ1))Aµ2(γ(τ2))Aµ3(γ(τ3))Aµ4(γ(τ4))

〉
+ ...

)
,

where the correlators with odd number of photons are omitted in consequence of Furry’s

theorem. Diagrammatically the argument of the exponent is given by connected diagrams

with an arbitrary number of external photons positioned on the path of the Wilson line.

The expression (3.8) is already suitable for the further consideration, however, it can

be rewritten in the more traditional form. Indeed, using the symmetry of the multi-photon

correlators under the permutations of fields we combine multiple sources to a single path-

ordered source,

〈
Φγ

〉
= exp

(
− g2

∫ 1

0
dτ1

∫ 1

τ1

dτ2γ̇
µ1(τ1)γ̇

µ2(τ2)
〈
Aµ1(γ(τ1))Aµ2(γ(τ2))

〉
(3.9)

+g4
∫ 1

0

∫ 1

τ1

∫ 1

τ2

∫ 1

τ3

(
4∏

i=1

dτiγ̇
µi(τi)

)
〈
Aµ1(γ(τ1))Aµ2(γ(τ2))Aµ3(γ(τ3))Aµ4(γ(τ4))

〉
+ ...

)
.

The symmetry coefficients of (3.8) are canceled by factorial multipliers resulting from the

ordering procedure. The expression (3.9) has the common form of the exponent of all com-

pletely connected (connected in the absence of Wilson line) diagrams with unity symmetry

coefficients.

We stress that within GF exponentiation the contour of a Wilson line plays no role.

Therefore, the exponentiation property holds for any contours, including cusped, self-

crossed and disconnected. However, for the contours with singularities it is convenient

to introduce independent sources for every individual smooth segment. This allows one to

reveal the influence of the contour singularities on the diagrams explicitly.

3.3 Exponentiation of real exchanges

Diagrams with real particles exchanges play an important role in applications of quantum

field theory, especially, in the consideration of final state interactions of hard processes.

Typically, on the operator level the real exchanges appear as an insertion of the complete

set of asymptotic states. Alternatively such operators can be given by the (usual) product

of T-ordered operators

〈T O1[A]
∑

X

|X〉〈X|T O2[A]〉 = 〈(T O1[A]) (T O2[A])〉. (3.10)

On the diagrammatic level it implies that diagrams describing (3.10) contain two parts.

The interactions inside these parts are presented by the Feynman propagators ∆F , while

the interactions between these two parts are presented by the positive-frequency part of

the Pauli-Jordan function, ∆(+).
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We remind that the standard functional integration approach assumes the considera-

tion of only T-ordered operators. The diagrammatic expansion of the functional integral

can be expressed via the differential reduction exponent (see [12])

〈T O[A]〉 = 1

Z[0]
e

(∫
dxdx′

2
δ

δA(x)
∆F (x,x′) δ

δA(x′)

)

O[A]eSint [A]
∣∣∣
A=0

, (3.11)

where ∆F (x, x
′) is the Feynman propagator, Sint is the interaction part of the action. In

the reduction exponent (3.11) the T-ordering of operator is reflected through the Feynman

propagator.

In fact, the reduction exponent is the general form of any diagrammatic expansion,

but not only the T-ordered as it follows from the functional integral. In order to obtain the

diagrammatic expansion for (3.10) we can adjust every operator to an independent copy of

a quantum field theory. In this case, the virtual interactions are generated independently

by copies of the functional integral. The real particle exchanges between these copies can be

added to diagrammatic by the extra reduction exponent with a real propagator. Formally,

we have

〈(T O1[A]) (T O2[A])〉 =
1

Z2[0]
e

(∫
δ

δA1
∆(+) δ

δA2

)(
e

(
1
2

∫
δ

δA1
∆F

δ
δA1

)

O1[A1]e
Sint[A1]

)

×
(
e

(
1
2

∫
δ

δA2
∆F

δ
δA2

)

O2[A2]e
Sint[A2]

) ∣∣∣
A1,2=0

, (3.12)

where we omit the arguments of fields for brevity. In this way, the product of T-ordered

operators is presented as a T-ordered product of operators in the modified theory,

〈(T O1[A]) (T O2[A])〉 = 〈T O1[A] O2[A]〉mod (3.13)

=
1

Zmod[0]

∫
DA1DA2 O1[A1]O2[A2] e

S[A1]+S[A2]+
∫
A1∆(+)A2 .

Such a trick has been applied in ref.[13] for calculation of Drell-Yan soft factor.

Let us consider two T-ordered operators of the form (3.3). In the course of GF expo-

nentiation we have the chain of equalities

〈
(T O1[A])(T O2[A])

〉
=
〈
T e

∫
M1Y1[A1]+

∫
M2Y2[A2]

〉
mod

= eWmod[M1,M2]. (3.14)

The modified argument of the exponent reads

Wmod[M1,M2] =

∫
dx (M1(x)〈T Y1[A1]〉mod +M2(x)〈T Y2[A2]〉mod) (3.15)

+

∫
dx1,2

(1
2
M1(x1)M1(x2)〈T Y1[A1]Y1[A1]〉mod

+
1

2
M2(x1)M2(x2)〈T Y2[A2]Y2[A2]〉mod

+M1(x1)M2(x2)〈T Y1[A1]Y2[A2]〉mod

)
+ ...,

where the arguments of operators are omitted for brevity.
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Any expression in the modified theory can be transformed back to the usual theory

using the rule (3.13). Therefore, eqn.(3.15) transforms to

W [M1,M2] =

∫
dx (M1(x)〈T Y1〉+M2(x)〈T Y2〉) (3.16)

+

∫
dx1,2

(1
2
M1(x1)M1(x2)〈T Y1Y1〉+

1

2
M2(x1)M2(x2)〈T Y2Y2〉

+M1(x1)M2(x2)〈(T Y1) (T Y2)〉
)
+ ...,

where the arguments of operators are omitted for brevity. We conclude that the diagrams

with real exchanges exponentiate in the same way as the usual virtual diagrams.

4 Exponentiation of Wilson lines in non-Abelian gauge theories

The exponentiation in non-Abelian gauge theories is a more involved problem than the

exponentiation in Abelian ones. In comparison to QED there are two sources of compli-

cation. The first complication comes from the involved form of operators Y. The second

complication comes from the (color-)matrix structure of the non-Abelian Wilson line. The

structure of operators Y and the generating function was elaborated in ref.[9]. However,

in ref.[9] the matrix issues of the non-Abelian exponentiation were missed. In this section

we present a detailed derivation of the non-Abelian exponentiation.

We remind that within the framework of GF exponentiation the only important in-

formation is the path-order of gauge fields, but not their coordinates. The term Wilson

line, which is used all over the article, denotes rather a Wilson curve on arbitrary path,

than a straight Wilson line, as it may be suggested from the term. Generally, the path can

be arbitrary difficult, or even non-analytical. However, we suppose that every individual

Wilson line is smooth.

4.1 Wilson line as exponent

The starting point of GF exponentiation is to present the Wilson line (1.2) in the form

(3.3). For this purpose we use the following exponential representation for the Wilson line,

Φf
γ = exp

{
ig

∫ 1

0
A0 +

∞∑

s=1

(ig)s+1
s∑

k=1

(−1)k

k + 1
(4.1)

×
∑

j1+..+jk=s
ji>1

∫ 1

0

(∫ τ

0
...

∫ τj1−1

0
adA1 ...adAj1

)
...

(∫ τ

0
...

∫ τjk−1

0
adA1 ...adAjk

)
A0

}
,

where Ai = γ̇µ(τi) Âµ(γ(τi)) dτi and τ0 = τ , with Âµ(x) = t
[f ]
a Aa

µ(x). The operator adA is

defined as adAX = [A,X]. The detailed derivation of this relation can be found in ref. [14]

The representation (4.1) reveals several important properties. The main of them is

that the operator Y consists only of completely nested commutators of generators of gauge

fields. It leads to the color-connectivity of webs, the property that has been the defining

property of the webs for many years starting from [3].
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The completely nested commutator structure of the operators also implies universality

of the representation (4.1) for Wilson lines of different group representation. Indeed, the

commutator of generators is proportional to the structure constant [t
[f ]
a , t

[f ]
b ] = ifabct

[f ]
c . The

structure constant is independent of group representation. Therefore, the representation

dependence of the operator Y is concentrated in a single generator, which can be moved

out of the operator. The equation (4.1) takes the form

Φf
γ = exp

(
t[f ]a V a

γ

)
, (4.2)

where V a
γ are operators independent on the representation of the Wilson line. Here the

definition of the operator V is slightly different from the corresponding definition in ref.[9],

where the corresponding operator was defined with the integration over τ0 removed. The

representation (4.2) also has an advantage that all the matrix structure of the Wilson line

is concentrated in the single generator t
[f ]
a .

In the case of multiple Wilson lines, it is convenient to merge all Wilson lines to a

single exponent. With this purpose we demand that every separate Wilson line acts in

a separate matrix space. Then the whole composition of Wilson lines is a matrix of the

reducible representation f1 ⊗ f2 ⊗ ... ⊗ fN , where fi is the representation of i’th Wilson

line. This trick is often used to simplify the consideration of web diagrams, see e.g.[5, 7].

In order to simplify the notation we introduce the generator in this space with appropriate

numbering

TA =





t
[f1]
A ⊗ 111⊗ ..⊗ 111, A = 1, ...,dimG,

111⊗ t
[f2]
A ⊗ ..⊗ 111, A = dimG + 1, ..., 2dimG,

...

111⊗ 111⊗ ..⊗ t
[fN ]
A , A = (N − 1)dimG + 1, ..., NdimG ,

(4.3)

where dimG is the dimension of the gauge group or, equivalently, the number of generators.

We adopt the convention that the labels in the joined space are capitalized, while the labels

in the irreducible spaces are denoted by the lowercase letters. Simultaneously, the path

dependence of the operator V a
γ is adjusted to the corresponding sector of label A,

V A =





V A
γ1
, A = 1, ...,dimG,

V A
γ2
, A = dimG + 1, ..., 2dimG,

...

V A
γN

, A = (N − 1)dimG + 1, ..., NdimG .

(4.4)

In this representation the product of several Wilson lines reads
(
Φf1
γ1

)
i1j1

×
(
Φf2
γ2

)
i2j2

× ...×
(
ΦfN
γN

)
iN jN

= ΦIJ =
(
expTAV

A
)
IJ

, (4.5)

where I and J are indices of the joined matrix space.

The representation (4.5) resembles the required form (3.3), where generators TA play

the role of the matrix sources for operators V A. For the general discussion of GF exponen-

tiation it is convenient to keep the infinite sum of operators (4.1) as a single object V A.
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While for the perturbative analysis and practical applications it is convenient to split the

operator V A on individual terms of a fixed perturbative order,

V A =

∞∑

n=1

V A
n , (4.6)

where Vn ∼ gn. The expressions for the first few operators Vn, as well as, Feynman rules

for them are presented in the appendix A.

4.2 Matrix exponentiation

According to the general discussion of sec.3.1, the connected diagrams with all possible in-

sertions of the operators V A are the only diagrams contributing to the exponent. However,

in the case of non-Abelian gauge theory it is not entirely correct. The point is that in the

non-Abelian gauge theories the operators in diagrams are caused by the matrix sources TA.

This complication spoils the usual relations between connected and disconnected diagrams,

and prevent the straightforward exponentiation.

The direct way to bring the diagrammatic series into the exponentiated form is to

consider its logarithm. The perturbative expansion of the logarithm (of the perturbative

series) mixes up the diagrams such that it is very difficult to find out on a general level,

which parts of diagrams cancel and which do not. Therefore, this way necessarily leads us

to the analysis of individual Feynman diagrams, the procedure which that we try to avoid.

This approach was elaborated in ref.[7], and indeed it appears to be not efficient.

In order to solve the matrix complications of the non-Abelian exponentiation in the

most efficient way, we split the consideration onto two independent tasks. First, we consider

the exponentiation of a scalar version of the non-Abelian Wilson line. That grants us the

most promising starting point for the exponentiated diagrammatic. Second, we generalize

the scalar version of Wilson line and its exponentiated expression on the matrix form. In

this way we obtain the complete matrix exponentiated expression without lost of efficiency

of GF exponentiation.

The first point of our program is to consider a scalar operator

φ = exp
(
MAVA

)
, (4.7)

where MA is a scalar source. We emphasize that the term scalar in this section denotes

an object, which does not carry matrix indices (IJ), although the object can be a vector,

or a tensor in the color space. For example, the operator V a
γ in eqn.(4.2) is a scalar, while

the generator taij is a matrix.

The operator φ has many common properties with the non-Abelian Wilson line Φ. So,

one may say that φ is a scalar image of the non-Abelian Wilson line. According to the

discussion of sec.3.1 the average of φ can be presented in the form of exponent

〈φ〉 = Z[M ]

Z[0]
= expW [M ]. (4.8)

The function W [M ] is given by all connected diagrams with insertions of operator VA. The

exponentiation of the scalar image of Wilson lines is, as simple as, the exponentiation of
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Wilson lines in the Abelian gauge theory, discussed in sec.3.2. The only difference is that in

the non-Abelian gauge theory the operator V is given by infinite series of operators (4.6).

In order to fulfill the second point of our program, we need the formal definition of the

matrix generalization procedure for a function of several arguments. It can be presented

as action of the matrix shift operator on the scalar image,

f̃(T )ij =
(
e
TA ∂

∂xA

)
ij
f(x)

∣∣∣
x=0

. (4.9)

It is straightforward to check that right-hand-side of eqn.(4.9) satisfies all standard demands

on the matrix function f̃(T ).

The Wilson line Φ is obtained from its scalar image (4.7) with the help of operation

(4.9)

ΦIJ =
(
e
TA δ

δMA

)
IJ

φ
∣∣∣
M=0

. (4.10)

Therefore, the average of Wilson line is given by

〈
ΦIJ

〉
=
(
e
TA δ

δMA

)
IJ

Z[M ]

Z[0]

∣∣∣∣∣
M=0

=
Z̃IJ [T ]

Z[0]
, (4.11)

where Z̃[T ] is the matrix generalization of the partition function by means of the procedure

(4.9).

As one can see from eqn.(4.9), the generalization of the partition function to ma-

trix sources is rather straightforward procedure. However, the relations between diagrams

within Z̃[T ] are not the same as within Z[M ]. This happens due to the symmetrization of

matrix variables by the shift operator (4.9). As a result, the originally disconnected dia-

grams are entangled by their matrix structure (see explicit example in eqn.(4.24)). There-

fore, the logarithm of the matrix partition function Z̃[T ] is not the matrix generalization

of the function W [M ] (which we denote as W̃ [T ]). In symbolic notations this statement

reads

Z̃IJ [T ]

Z[0]
=

1

Z[0]

(
e
TA δ

δMA

)
IJ

eW [M ]
∣∣∣
M=0

6=
(
eW̃ [T ]

)
IJ

, (4.12)

where

W̃IJ [T ] =
(
e
TA δ

δMA

)
IJ

W [M ]
∣∣∣
M=0

. (4.13)

The inequality (4.12) has been overlooked in ref.[9], therefore, the final result of ref.[9]

presented there is incomplete.

Considering the left-hand-side of eqn.(4.12) we conclude that although the function W̃

is not the complete result of the exponentiation, but still it is the only function that can

appear in the argument of the exponent. Taking into account that the leading term of the

perturbative expansion is W̃ , we can present the left-hand-side of eqn.(4.12) as

Z̃IJ [T ]

Z[0]
=
(
eW̃ [T ]+δ̃W [T ]

)
IJ

, (4.14)
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where δ̃W is a function of W̃ .

One can see that the function W̃ plays an exceptional role in the GF exponentiation

procedure. For this reason we call W̃ the kernel of matrix exponentiation (MEK).

The correction terms δ̃W we name the defect of matrix exponentiation (for shortness

we often call it the defect). Mathematically, the defect arises from the reordering of color-

matrices during the formation of matrix exponent. Accordingly, the structure of the defect

resembles the famous tail of commutators in Baker-Campbell-Hausdorff (BCH) formula.

The defect is an algebraic function of W̃ [T ], in the same manner as the higher terms of

BCH series are algebraic functions of the previous ones. The formal definition of the defect

reads

δ̃W IJ [T ] =
[
ln ,

(
e
TA δ

δMA

)
IJ

]
eW [M ]

∣∣∣∣∣
M=0

(4.15)

= ln

((
e
TA δ

δMA

)
IJ

eW [M ]

∣∣∣∣∣
M=0

)
−
(
e
TA δ

δMA

)
IJ

ln eW [M ]

∣∣∣∣∣
M=0

.

Thus, we have shown that the (T-)product of Wilson lines can be presented as a matrix

exponent

〈 (
Φf1
γ1

)
i1j1

...
(
ΦfN
γN

)
iN jN

〉
=
〈
ΦIJ

〉
=
(
eW̃ [T ]+δ̃W [T ]

)
IJ

, (4.16)

where functions W̃ and δ̃W are defined in (4.13) and (4.15) respectively. This expression

is the main result of the article. In the following we discuss the properties of MEK and the

defect, and demonstrate the relation between the presented approach and other approaches.

The form of the exponent (4.16) would necessarily appear during the exponentiation

of any matrix object. The most important point of exponentiation is the selection of

an efficient leading term, which is MEK in GF exponentiation. As we already told, in

ref.[7] the whole perturbative series has been chosen as a leading term, and this choice

leads to unnecessary complications. Our choice of MEK is inspired by many remarkable

features of W̃ . Above all, MEK is the generating function for webs in the case of the

scalar image of Wilson line. It implies that MEK already contains essential features of

the exponentiated expression, except the matrix issues. Another example of important

features favoring MEK is that MEK contains all color connected diagrams (see details in

ref.[9]). The color connectivity is a defining attribute of web diagrams [8]. All in all, MEK

is the best candidate for the leading term and, as we demonstrate later, such a conjecture

is well-founded.

The structure presented in eqn. (4.16) is can be also traced in the replica exponen-

tiation [5, 6, 8, 10]. Within the replica exponentiation the diagrams contributing to the

exponent always has two contributions: the part proportional to unity in the replica space,

and the rest, which has more involved structure (for explicit examples see e.g. equations

(50),(61),(63) and (65) in [8]). The part proportional unity, after the summation over

replica indices, is linear in Nrep, and therefore, directly contributes to the exponent. In

GF exponentiation this part is given by MEK. The rest is an arbitrary polynomial of Nrep,
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the linear part of which contributes to the exponent. In GF exponentiation this contribu-

tion is given by the defect. We emphasize that in contrast to the replica exponentiation,

in GF exponentiation the defect (4.15) is given by explicit expression, that significantly

simplify the consideration of webs. The detailed comparison of the approaches, as well as,

an example-calculation are given in sec.5.

4.3 Structure of MEK

MEK is a matrix generalization of the function W [M ] (4.8). Using the explicit expression

for generating function (3.5) we obtain

W̃IJ [T ] = TA
IJ

〈
V A
〉
+

(
TATB

)
IJ

2!

〈
V AV B

〉
+

(
TATBTC

)
IJ

3!

〈
V AV BV C

〉
+ ... , (4.17)

where we have used that the correlators are symmetric over permutations of operators.

Important to note that in the case of real gluon exchanges the matrix generalization of

generating function is more involved. The product of T-ordered operators is not symmetric

under permutations. Therefore, the expression (4.17) would contain terms with explicit

symmetrization of generators.

Let us pass from the joined notation for multiple Wilson lines (4.3-4.4) to the consid-

eration of individual contributions. We continue to assume that generators related to a

separate Wilson line act in the separate matrix spaces. So, the generator t
[fk]
a is a matrix

acting in the space (ik, jk) and, MEK is a multimatrix in spaces (ik, jk) for k = 1 to N . For

brevity we continue to denote the multi-index by capital letters, i.e. Wi1..iN ,j1..jN = WIJ .

We have

TA
IJV

A =
N∑

k=1

(
t[fk]a

)
ikjk

V a
γk
, (4.18)

where the missed indices on the right-hand-side of the expression should be given by the

unity matrices. Also we will omit the representation indication [f ] on generators, since it

is fixed by denoting the matrix indices.

In the case of multiple Wilson lines, MEK reads

W̃IJ =

N∑

k=1

taikjk

〈
V a
γk

〉
+

N∑

k,l=1
k 6=l

taikjkt
b
iljl

2!

〈
V a
γk
V b
γl

〉
+

N∑

k=0

(
tatb
)
ikjk

2!

〈
V a
γk
V b
γk

〉

+

N∑

k,l,m=1
k 6=l 6=m

taikjkt
b
iljl

tcimjm

3!

〈
V a
γk
V b
γl
V c
γm

〉
+

N∑

k,l=1
k 6=l

(
tatb
)
ikjk

tciljl
2!

〈
V a
γk
V b
γk
V c
γl

〉
(4.19)

+

N∑

k=1

(
tatbtc

)
ikjk

3!

〈
V a
γk
V b
γk
V c
γk

〉
+ ... .
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Figure 1. Diagrams contributing to MEK for three Wilson lines at O(g6) order that connect all

three Wilson lines (diagrams with permutations of Wilson lines should be added, as well as, web

diagrams of O(g4) order with a virtual loop). Blobs with Vn denote the vertices (A.1), while the

empty blob denotes all possible four-gluon tree interactions. Ovals with a “plus” sign denote the

symmetrization of the vertices.

This can be simplified by the fixation of the order of individual Wilson line within correlator,

W̃IJ =

N∑

k=1

taikjk

〈
V a
γk

〉
+

N∑

k,l=1
k<l

taikjkt
b
iljl

〈
V a
γk
V b
γl

〉
+

N∑

k=1

t
{ab}
ikjk

〈
V a
γk
V b
γk

〉

+

N∑

k,l,m=1
k<l<m

taikjkt
b
iljl

tcimjm

〈
V a
γk
V b
γl
V c
γm

〉
+

N∑

k,l=1
k<l

t
{ab}
ikjk

tciljl

〈
V a
γk
V b
γk
V c
γl

〉
(4.20)

+

N∑

k,l=1
k<l

taikjkt
{bc}
iljl

〈
V a
γk
V b
γl
V c
γl

〉
+

N∑

k=1

t
{abc}
ikjk

〈
V a
γk
V b
γk
V c
γk

〉
+ ... ,

where t{a..b} denotes the product of generators symmetrized over the indices

t{a1...an} =
1

n!

∑

σ=perm[a1...an]

tσ1 ...tσn . (4.21)

According to eqn.(4.20) one has a simple diagrammatic rule: MEK consists of all

diagrams connecting arbitrary number of operators V located on Wilson lines with unity

symmetry coefficients. Every operator should be convoluted with the gauge group generator

of the corresponded Wilson line. If there are several operators adjusted to the same Wilson

line they should be convoluted with the symmetrized product of generators.

For the actual calculation one inserts the perturbative expansion for the operator V

in terms of operators (4.6). The operator Vn radiates exactly n gluons. Nonetheless, the

general diagrammatic rules are still the same: the gluons could be contracted to other ver-

tices, interact with each other, or be contracted to the same vertex, but all vertices V must

be connected together. An example of diagrams with three Wilson lines is demonstrated

in fig.1.
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4.4 Structure of the defect

The formal definition of the defect is given in eqn. (4.15). However, the form (4.15) is not

transparent and is hardy applicable. In this section we reorganize eqn.(4.15) in simpler

form, suitable for calculations.

In order to simplify eqn.(4.15) we expand the exponent of the generating function in

a series

eW [M ] = 1 +W1 +
W2 +W 2

1

2
+

W3 + 3W2W1 +W 3
1

3!
+ ... (4.22)

=

∞∑

n=0

∑

{k}∑
i i·ki=n

W k1
1

(1!)k1k1!

W k2
2

(2!)k2k2!
...

W kn
n

(n!)knkn!
,

where we have introduced the short notation

Wk = MA1 ...MAk
〈
V A1 ...V Ak

〉
. (4.23)

The action of the matrix shift exponent (4.9) replaces all sources MA by the generators TA

in the completely symmetric way. This operation mixes the matrices, such that the result

is not the matrix product of W̃n’s. For example, the first term with mixture of matrices in

eqn.(4.22) is

(
e
TA δ

δMA

)
IJ

W1W2

∣∣∣
M=0

(4.24)

=
1

3

(
TATBTC + TATCTB + TCTATB

)
IJ

〈
V AV B

〉〈
V C
〉
,

where the symmetry of correlators is taken into account. One can see that this expression

is not equivalent to (W̃1W̃2 + W̃2W̃1)/2, what is needed for the expansion of exp(W̃ ), but

contains extra terms. The extra terms are proportional to commutators of generators and

give rise to the defect of exponentiation.

Let us introduce the special notation for symmetrized products of the form (4.24). We

denote

{Wn}IJ = T
{A1...An}
IJ

〈
V A1 ...V An

〉

{WkWn−k}IJ = T
{A1...An}
IJ

〈
V A1 ...V Ak

〉〈
V Ak+1 ...V An

〉
, (4.25)

{WkWlWn−k−l}IJ = T
{A1...An}
IJ

〈
V A1 ...V Ak

〉〈
V Ak+1 ...V Ak+l

〉〈
V Ak+l+1...V An

〉
,

etc.

where T {a..b} denotes the symmetric product of generators, see (4.21).

The operation (4.25) does not have a special name, nonetheless it often appears in

course of diagrammatic resummations and related problems. In ref.[7] this operation serves

as a generalized product of diagrams needed for the diagrammatic exponentiation. Authors

of ref.[7] shows that the result of the symmetrized product (4.25) has the meaning of the

sum of all joined diagrams with all mutual ordering of gluons attached to Wilson lines.
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In the notation (4.25), the matrix generalization of the partition function reads

Z̃IJ [T ] =
(
e
TA δ

δMA

)
IJ

eW [M ]
∣∣∣
M=0

=

∞∑

n=0

∑

{k}∑
i i·ki=n

{W k1
1 W k2

2 ...W kn
n }IJ

(1!)k1(2!)k2 ...(n!)knk1!k2!...kn!
. (4.26)

In the same notation MEK and the partition function (4.26) are

W̃IJ [T ] =

∞∑

k=1

{Wk}IJ
k!

, Z̃IJ [T ] =

∞∑

k=0

{W̃ [T ]k}IJ
k!

, (4.27)

where the operation {..} for {W̃ [T ]k} should be taken individually for every term of per-

turbative expansion.

Finally, we evaluate (4.15) and obtain the expression for the defect. For the practical

applications it is convenient to present the defect as the series

δ̃W IJ [T ] =

∞∑

k=2

δ̃kW IJ [T ], (4.28)

where δ̃kW ∼ W̃ k. The first few terms are

δ̃2W IJ [T ] =
1

2

(
{W̃ 2}IJ −

(
W̃ 2
)
IJ

)
,

δ̃3W IJ [T ] =
1

6
{W̃ 3}IJ −

(
{W̃ 2}W̃

)
IJ

+
(
W̃{W̃ 2}

)
IJ

4
+

1

3

(
W̃ 3
)
IJ

, (4.29)

δ̃4W IJ [T ] =
{W̃ 4}IJ

4!
−

(
{W̃ 3}W̃

)
IJ

+
(
W̃{W̃ 3}

)
IJ

12
−

(
{W̃ 2}{W̃ 2}

)
IJ

8

+

(
{W̃ 2}W̃ 2

)
IJ

+
(
W̃ 2{W̃ 2}

)
IJ

+
(
W̃{W̃ 2}W̃

)
IJ

6
−

(
W̃ 4
)
IJ

4
.

The equations (4.29) can be significantly simplified by means of recursion. With this

aim we consider eqns.(4.29) as equations on the totally symmetrized products {W̃ n}, as
functions of δ̃W . Substituting the solution again into eqns.(4.29) we found a simple recur-

sive relation for the defect

δ̃nW IJ [T ] =
1

n!
{W̃ n}IJ −

n∑

k=2

1

k!

∑

i>1∑
i=n

(
δ̃i1W...δ̃ikW

)
IJ

, (4.30)

where δ̃1W = W̃ . In the next sections we present explicit calculation of the defect for

particular diagrams.

In fact, the matrix structure of the defect δ̃nW is proportional to (at least) (n − 1)

commutators of generators. It follows from the recursive equation (4.30). Therefore, if

matrices T commute, all term of the defect are zero. In this way many contributions to

the defect are zero, especially in for diagrams that involve many Wilson lines.
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Due to the property that the defect is proportional to the commutators of generators,

the color factors appearing in the defect are color connected. Together with the statement

that MEK is color connected, see discussion in [9], it proves the non-Abelian exponentiation

theorem formulated in [8].

It is interesting to consider the gauge invariance of the exponentiated expression. Gen-

erally, the correlator (4.16) is not gauge invariant, and therefore, there are no special prop-

erties for MEK or for the defect. However, if one considers a color singlet configuration,

or the open color indices located at spatial infinities, the correlator (4.16) is perturba-

tive gauge invariant (for the later case, only in non-singular gauges, see e.g. discussion in

ref.[15]). Consequently, the exponentiated expression for such a gauge-invariant configu-

ration, is also gauge invariant. Indeed, at order α the statement is obvious. Given that,

the gauge invariance for higher orders can be proven by iterations. In its own turn, the

gauge invariance of the exponentiated expression leads to gauge invariance of the defect

and MEK independently.

Let us sketch the proof of independent gauge invariance for MEK and the defect (given

that the correlator under consideration is perturbative gauge invariant). The proof is made

by interactions, comparing order-by-order the (gauge invariant) exponentiated expression

and W̃ [T ] + δ̃W [T ]. Comparing the leading terms we observe that the leading term of

MEK is gauge invariant. The next-to-leading term is given by the sum of next-to-leading

term of MEK and leading term of the defect. The leading term of the defect is gauge

invariant, because it is composed from the leading terms of MEK, see (4.30). Therefore,

the next-to-leading term of MEK is gauge invariant. Then one can construct iteration and

prove that MEK and the defect are independently gauge invariant at any order.

5 Application of GF exponentiation

In this section we compare the GF exponentiation with the diagrammatic and the replica

exponentiations. The examples presented in the section clarify the role of the defect and

MEK in the exponentiation procedure.

In order to compare approaches we consider two half-infinite Wilson lines, i.e. the cusp.

The cusp is a popular playground for the testing of various methods. Recently, it has been

evaluated up to the three loop order in the general kinematics in QCD [16]. The evaluation

of exponentiated diagrams at one and two-loop order can be found in many articles, e.g. in

refs. [17–20] one can find all necessary details and the explicit expressions. In the course

of comparison we do not evaluate loop-integrals. Instead, we compare the unintegrated

expressions for the diagrams and show the relations between different approaches.

In order to demonstrate the effectiveness of GF exponentiation we consider the spe-

cial class of diagrams called the multiple gluon exchange webs (MGEW). These are the

diagrams with neglected interaction between gluons. Such an approximation is simplest

but non-trivial part of the exponentiated expression. Particulary, the simple structure of

MGEWs results to the possibility to evaluate MGEW-loop-integrals at high orders without

significant efforts, see e.g.[21, 22]. MGEWs were studied in details within the replica expo-

nentiation in refs.[11, 22]. For simplicity, we consider the configuration of light-like Wilson
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Figure 2. The web diagrams contributing to the correlator of two Wilson lines. The diagram B

should be taken with the modified color factor.

Figure 3. The diagrams contributing to MEK for the cusp. The diagram B does not equal the

diagram B in fig.2. Diagrams C, D and E, as well as, the diagram A are equal to the corresponding

diagrams in fig.2. Diagrams F, G, H and I are zero due to the convolution of antisymmetric three-

gluon vertex with the symmetrized product of generators.

lines, and show that in such kinematics MEK is given solely by one-loop diagrams. There-

fore, all the higher order contribution are generated by the defect, and can be evaluated

by algebraic manipulations.

5.1 Cusp at two loops

Let us consider a cusped Wilson line, which approaches from infinity to the origin along

vector v1, and then continues to infinity along vector v2. For definiteness, we consider the

Wilson line in the fundamental representation of SU(Nc). We denote

〈(
Φ†
v1
Φv2

)
ij

〉
= δijΓ(v1, v2) = δij exp [CFE(v1, v2)] , (5.1)

where Φv is the half-infinite Wilson line pointed from the origin along the vector v. For

simplicity, we neglect self-interaction of Wilson lines, and use the Feynman gauge.

The webs contributing to E within the diagrammatic exponentiation [3, 4] are pre-

sented on fig.2. The webs are to be equipped with modified color factors (2.2). At this

order of accuracy, the only diagram, whose color factor differs from the original, is diagram

B. Its color factor is −CFCA/2.

In order to apply GF exponentiation as it is described in sec.3, we consider both Wilson

lines in separate matrix spaces, see sec.4.1. At two-loop accuracy, only one combination of

generators appears in the exponent. We denote

〈(
Φ†
v1

)
i1j1

(Φv2)i2j2

〉
= exp

[
(tC)ai1j1t

b
i2j2

Eab(v1, v2) + ...
]
, (5.2)
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where dots stay for other compositions of color indices arise at three-loop order (see example

in the next section). Here, the exponent is the matrix exponent, where generators ti1j1and

ti2j2 act in different matrix spaces.

The label C (as if charge-conjugation) on the first generator in eqn.(5.2) recalls that

these generators should be multiplied in the reverse order, from right to left. Such a

prescription is needed to match out definition of the operator Vγ , which utilizes the path-

ordering from the origin, but not from infinity. In other words, the proper color and path

ordering for conjugated Wilson line is Φ† = exp
(
−tCV

)
, where the minus sign is the result

of the conjugation of operator V .

Contracting eqn.(5.2) with δj1i2 and using that function Eab is proportional to δab, we

obtain the relation (at this order of accuracy)

Eab(v1, v2) = δabE(v1, v2). (5.3)

In its own turn, the function Eab is given by the sum of MEK and the defect (4.16).

Let us remark, that one can consider the cusped Wilson line in another way. Instead

of consideration of every Wilson line in separate color space, as it is done in (5.2), one can

consider a single Wilson line, whose path-dependent part is split, V a
γ = V a

v1
+ V a

v2
. Within

such consideration, one can keep a single generator ta in (4.2) by the price of two operators

V . These two approaches are equivalent to each other, although diagrams would distribute

differently within the perturbative expansion of MEK (4.20).

In the following we perform the diagram-by-diagram comparison for both sides of (5.3).

The diagrams contributing to MEK are presented in fig.3. In the context of eqn.(4.20), the

diagrams from A to E are produced by the perturbative expansion of the double correlator,

while the diagrams F and G are produced by the triple correlator. Contribution of the

average of an operator V is zero in the absence of self-interaction.

Let us compare diagrams one-by-one. The comparison is simpler to perform in the

position representation. The gluon propagator reads

∆µν
ab (x, y) = gµνδab∆(x, y) =

Γ(1− ǫ)

4π2−ǫ

−gµνδab
(−(x− y)2 + i0)1−ǫ

, (5.4)

where ǫ is the parameter of the dimension regularization, d = 4− 2ǫ. The expressions for

the vertices Vn are presented in appendix A.

The diagrams A and E stay the same in both approaches. For the following consider-

ation we need the one-loop expression for MEK,

W̃1-loop = (tC)ai1j1t
b
i2j2

W ab
1-loop = −(ig)2(tC)ai1j1t

a
i2j2

v12

∫ ∞

0
dxdy ∆(v1x, v2y), (5.5)

where vij = (vi · vj).
The diagrams C and D are also equal in both approaches. Let us demonstrate it

explicitly. The diagram C in fig.2 reads

δijCFEC = (ig)3
(
tatbtc

)
ij
ifabcFC = δijCF

iCA

2
FC . (5.6)
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The kinematical part equals to

FC =

∫ ∞

0
dydx1,2

∫
ddz Vµνρ(z)v

µ
1 v

ν
1v

ρ
2∆(z, v1x1)∆(z, v1x2)∆(z, v2y)θ(x2 < x1),

where V µνρ(z) is the Feynman rule for the triple-gluon vertex. The diagram C in fig.3

reads

Eab
C =

1

2

(ig)(ig2)

2

(
fadc − facd

)
if cdbFC = δab

iCA

2
FC (5.7)

where we have used the Feynman rules for V2 (A.4) and the symmetry properties of the

three-gluon vertex. The factor 1/2 in front of expression (5.7) is the symmetry coefficient

of the diagram. Therefore, we find that Eab
C = δabEC . The consideration of the diagram D

is analogous.

The diagrams F, G, H and I have not analogues in the diagrammatic exponentiation.

These diagrams equal zero, due to the convolution of the symmetric combination of gen-

erators with the anti-symmetric color structure of the three-gluon vertex, or V2 vertex.

Explicitly, we have

(tC)ai1j1t
b
i2j2

Eab
F (v1, v2) = (ig)3

(
t{ab}

)
i1j1

tci2j2if
abcFF = 0, (5.8)

where the kinematical part is

FF =

∫ ∞

0
dydx1,2

∫
ddz Vµνρ(z)v

µ
1 v

ν
1v

ρ
2∆(z, v1x1)∆(z, v1x2)∆(z, v2y).

The consideration of diagrams G, H and I is analogous.

Finally, the diagrams B in fig.2 and in fig.3 are not equal. This is the manifestation of

the matrix origin of Wilson lines. Within the diagrammatic exponentiation the diagram B

reads

EB = −(ig)4
CA

2
v212 (5.9)

×
∫ ∞

0
dx1,2dy1,2∆(v1x1, v2y1)∆(v1x2, v2y2)θ(x1 < x2)θ(y2 < y1).

While, in GF exponentiation the contribution of the diagram B to MEK reads

Eab
B,MEK =

−1

2

(
ig2

2

)2

facdf bcdv212

∫ ∞

0
dx1,2dy1,2 (5.10)

×∆(x1, y1)∆(x2, y2) (θ(x1 < x2)− θ(x2 < x1)) (θ(y1 < y2)− θ(y2 < y1)) .

The factor 1/2 in front of the expression is the symmetry coefficient.

Expressions (5.9) and (5.10) differ significantly. The difference is the defect of expo-

nentiation, which comes from the squaring of the one-loop contribution (5.5). Evaluating

the expression (4.29) we obtain

δ̃2W =
1

2

[
(t{a1a2})Ci1j1t

{b1b2}
i2j2

− (ta2ta1)Ci1j1(t
b1tb2)i2j2

]
W a1b1

1-loopW
a2b2
1-loop

=
(ig)4

2

[
(tatb + tbta)Ci1j1

2

(tatb + tbta)i2j2
2

− (tbta)Ci1j1(t
atb)i2j2

]
v212 (5.11)

×
∫ ∞

0
dx1,2dy1,2∆(v1x1, v2y1)∆(v1x2, v2y2).
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Simplifying the color structure we find

Eab
B,defect =

(ig2)2

8
facdf bcdv212

∫ ∞

0
dx1,2dy1,2∆(v1x1, v2y1)∆(v1x2, v2y2). (5.12)

Adding the defect contribution (5.12) to MEK contribution (5.10) and simplifying the

integrands we obtain

Eab
B,MEK + Eab

B,defect = δabEB . (5.13)

Therefore, the sum of diagram B for MEK and the defect reproduces the diagram B within

the diagrammatic exponentiation.

Thus, we observe the complete agreement between GF exponentiation and the dia-

grammatic exponentiation. We stress that the correspondence between approaches is not

trivial. Namely, the diagrams contributing to MEK have an unique kinematical part. Only

in the combination with the defect, the standard diagrammatic (2.1) is restored. It implies

that GF exponentiation exponentiates not only the color part but also the kinematic part.

So, the method separates unique contributions of two-loop integrals, from the powers of

one-loop contribution.

It is also instructive to compare GF exponentiation with the replica exponentiation.

The diagrams appearing in replicated theory are the same as shown in fig.3. The expressions

to compare in the form of eqn.(5.2) can be found in ref.[8].

The contributions of diagrams A, C, D, E, F and G equal in both approaches. The

equivalence happens because these diagrams are irreducible in the absence of Wilson lines.

Therefore, only the fields of the same replica quantum number are presented in the diagram.

In other words, these diagrams are proportional to unity in the replica space, that after

evaluation of the diagrams results in the common factor Nrep (number of replicas). Effective

vertices at Nrep = 1 are the same in both approaches (compare our definition of V in (4.2)

with the definition (20) in ref.[8]. Also compare explicit expressions for the vertices Vn

(A.1) with (22a-22c) in ref.[8]). Thus, the rest parts of diagrams are identically equal in

both approaches.

Diagrams H and I are zero in both approaches due to the convolution of symmetric

and anti-symmetric color factors. In ref.[8] this fact is demonstrated in eqn.(48).

Diagram B in the replica exponentiation is presented in eqn.(52) of ref.[8]. Using our

notation this equation reads

Eab
B,rep = −(ig2)2

8
f cdaf cdbv212

∫ ∞

0
dx1,2dy1,2∆(v1x1, v2y1)∆(v1x2, v2y2) (5.14)

× [Nrep (θ(x1 < x2)− θ(x2 < x1)) (θ(y1 < y2)− θ(y2 < y1)) +Nrep (Nrep − 1)] ,

where we have taken into account that in ref.[8] both Wilson lines are incoming. Comparing

this expression with (5.10) and (5.12) we observe that

Eab
B,rep = NrepE

ab
B,MEK −Nrep(Nrep − 1)Eab

B,defect. (5.15)

Therefore, the contribution of MEK and the defect are clearly distinguished within the

replica exponentiation. Namely, the diagrams with only a single copy of field (i.e. with
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Figure 4. MGEWs contributing to the cusp at three-loop level order. The symmetric diagrams

are not shown. For light-like Wilson lines only the first diagram is not zero.

all internal vertices proportional to δnm in replica space) are the contribution to MEK.

These diagrams are proportional to the first power of Nrep. The rest contributions are

proportional to a polynomial in Nrep and represent the contribution of the defect. The

polynomial in Nrec reflects the reordering of color matrices during exponentiation, which

is taken into account explicitly by definition (4.15) in the case of GF exponentiation.

5.2 Multiple gluon exchange webs for light-like Wilson lines

The webs, as well as, diagrams contributing to MEK are naturally split on subclasses by

the number of connected parts of the internal graph. The division by this principle is not

gauge invariant, but it is very effective from the practical point of view.

The limiting case of such a division is the completely connected diagrams, i.e. diagrams

that are connected in the absence of both Wilson lines and vertices Vn (e.g. these are

diagrams A,C,D,E,F,G in fig.3, and diagram A in fig.1). These diagrams are not influenced

by the matrix structure of the non-Abelian gauge theory, and do not mix with the defect.

For this subclass, the diagrams of MEK are in one-to-one correspondence with the diagrams

of the diagrammatic exponentiation. The limit of completely connected graphs resembles

the Abelian exponentiation procedure.

The opposite limiting case of the division is the diagrams without any internal inter-

action of gluons (e.g. these are diagrams B,C,E, and F in fig.1). These diagrams have been

studied in details in the recent publications [11, 22], and are called multiple gluon exchange

webs (MGEW). Within GF exponentiation MGEWs are given by the sum of MEK and the

defect contributions. Moreover, the contribution of the defect is the strongest in compari-

son to the more connected diagrams. In some sense, MGEWs contain the smallest amount

of a new (in comparison to the previous order of perturbative calculation) information.

MGEWs are the best demonstration of the effectiveness of GF exponentiation. In the

case of light-like Wilson lines MEK can be evaluated exactly, and directly contributes only

at one-loop order. Therefore, for light-like Wilson lines the higher-loop orders of MGEWs

are given entirely by the defect of exponentiation.

To start with, we consider the cusp configuration (5.2) at v21 = v22 = 0. MGEWs

contributing to the cusp up to three-loop level order are shown in fig.4. The one-loop

contribution to MEK is given by (5.5). For the light-like kinematic we have

Eab
A = −δabg2vǫ12

Γ(1− ǫ)

4π2−ǫ
µ2ǫ

∫ ∞

0

dxdy

(2xy + i0)1−ǫ
e−δ(x+y), (5.16)
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where exponent performs the infrared regularization. For future convenience we rewrite

the one-loop expression in the form

Eab
A = −δabαsv

ǫ
12K1, K1 =

Γ2(ǫ)Γ(1− ǫ)

(2π)1−ǫ

(
µ2

δ2

)ǫ

. (5.17)

The two-loop contribution to MEK is given in eqn.(5.10). In the light-like kinematics

it reads

Eab
B,MEK =

−1

2

(
ig2

2

)2

facdf bcdv2ǫ12
Γ2(1− ǫ)

16π4−2ǫ

∫ ∞

0
dx1,2dy1,2 (5.18)

×(θ(x1 < x2)− θ(x2 < x1)) (θ(y1 < y2)− θ(y2 < y1))

(2x1y1 + i0)1−ǫ(2x2y2 + i0)1−ǫ
e−δ(x1+x2+y1+y2).

The i0 prescription does not influence the integral, because the ultraviolet singularity at

xy → 0 is regulated by the dimension regularization. We conclude that the propagator

attached to light-like Wilson lines can be split on individual components, ∆ ∼ xǫ−1yǫ−1.

Therefore, the loop integral is zero due to the antisymmetry of the integrand under the

permutation of x1 and x2, or y1 and y2.

Thus, in the light-like kinematics of Wilson line at two-loop MGEW contribution is

given solely by the defect contribution. Evaluating integral (5.12) we obtain

Eab
2-loop,MGEW = −α2

s

CA

8
v2ǫ12K

2
1 . (5.19)

This result coincides with the calculation performed in the diagrammatic exponentiation,

see e.g.[20].

In the similar way one can show that the contribution of the three- and higher-loop

diagrams to MEK are zero. Indeed, all the propagators for MGEW with light-like Wilson

lines are just the product of components, ∆ ∼ xǫ−1yǫ−1. Therefore, loop-integrals can be

split on two parts: one depending on the variables related to Wilson line Φv1 , and another

depending on the variables related to Φv2 . The interaction with Wilson lines are given by

vertices Vn. Schematically, the contribution of some n-loop diagram reads

∑
(color factor)

∫ ∞

0
dx1,...,n

Vk(x1, ..)...Vl(.., xn)

x1−ǫ
1 ... x1−ǫ

n

∫ ∞

0
dy1,...,n

Vr(y1, ..)...Vs(.., yn)

y1−ǫ
1 ... y1−ǫ

n

, (5.20)

where the sets of vertices (k, .., l) and (r, .., s) are defined by the diagram, k + ... + l =

r + ... + l = n, and the summation runs over all independent color structures. According

to the diagrammatic rules for MEK, there are necessarily several vertices Vn with n > 1.

The kinematical part of vertices Vn(x1, .., xn) is antisymmetric over the permutation of

arguments. Therefore, the integrals on the right-hand-side of (5.20) are zero. The only

exception is the case when all vertices are V1, which is the one-loop contribution (5.17).

We conclude that in the MGEW approximation, MEK is given solely by the one-loop

diagram, and reads

W̃IJ(v1, v2)

∣∣∣∣∣
MGEW

= −(tC)ai1j1t
a
i2j2

αsv
ǫ
12K1, (5.21)
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n En,tt En,δδ En,cusp

1 −1 0 −1

2 −Nc

8 0 −Nc

8

3 3−2N2
c

72
1−N2

c

48 −N2
c

36

4 Nc(40−33N2
c )

4608
5Nc(1−N2

c )
768

Nc(10−33N2
c )

4608

5 −35+93N2
c −57N4

c

28800
(1−N2

c )(23N
2−22)

23040
N2

c (71−114N2
c )

57600

Table 1. The coefficients for expansion of the light-like cusp amplitude in MGEW approximation

(5.22-5.23) for SU(Nc) gauge theory.

where K1 is given in (5.17).

The fact that at MGEW approximation MEK is given by solely by one-loop diagram,

leads to the surprising conclusion. Namely, MGEW approximation is gauge invariant (in

non-singular gauges) in the case of light-like kinematics, as long as, Wilson lines are color

connected at the origin. Indeed, MEK is given by a single gauge invariant diagram. As a

consequence, the defect is also gauge invariant, see discussion in the end of sec.4.4. The

gauge invariance of MGEW approximation holds only for light-like Wilson lines. For the

Wilson lines off-light-cone the MEK has contributions of higher orders, which are composed

from different diagrams, and therefore, MGEW diagrams are not gauge invariant.

The contribution of the defect can be obtained by straightforward evaluation of ex-

pressions (4.29) with MEK (5.21). For an arbitrary gauge group the evaluation involves

the elaboration of higher Casimir operators (see e.g. four-loop example in [21]). However,

for any given algebra the evaluation can be performed easily. It is convenient to present

the final result for two Wilson lines in the form
〈(

Φ†
v1

)
i1j1

(Φv2)i2j2

〉∣∣∣
MGEW

(5.22)

= exp

[ ∞∑

n=1

αn
s v

nǫ
12K

n
1

(
(tC)ai1j1t

a
i2j2

En,tt +
δi1j1δi2j2

Nc
En,δδ

)]
,

where En’s are numeric coefficients. Here, the exponent is the matrix exponent, where

matrices with indices (i1j1) and (i2j2) belongs to different matrix spaces. Often one con-

siders the cusp configuration with contracted color indices. Then it is convenient to use

the following parametrization

〈(
Φ†
v1
Φv2

)
ij

〉∣∣∣
MGEW

= δij exp

[
CF

∞∑

n=1

αn
s v

nǫ
12K

n
1En,cusp

]
. (5.23)

The first few coefficients E for the case of SU(Nc) gauge group are presented in table 1.

For the calculation we have used the ColorMath package [23].

In the case of many Wilson lines the general consideration remains the same. Since

the diagrams contributing to MEK are connected in the absence of Wilson lines they
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Figure 5. MGEW contributing to MEK for the correlator of four Wilson lines. The diagrams with

permuted Wilson lines should be added. For light-like Wilson lines these diagrams are zero.

n An, Bn

1 A1 = 2CFu1 +
s1−t1
Nc

B1 = t1 − s1

2 A2 =
CA

8

(
2CFu2 +

s2−t2
Nc

)
B2 =

CA

8 (t2 − s2)

3 A3 =
C2

A

36

[
2CFu3+

3
4Nc

(
7s3
3 + 2t3

3 + s2(3u1−5t1)
2 −2t2s1+u2(s1− t1)

+s21(t1 − u1) +
t1u

2
1−t21u1+s1(t21−u2

1)
2 + 3θ1

2

)]

B3 =
C2

A

144

[
CF

(
8t3−2s3−2s2(t1+u1)+6t2(u1− s1)+6u2(t1− s1)

+3s1(t
2
1 + u21)− 3t1u1(t1 + u1) + 3θ1

)

+ 3
Nc

(
− 7s3

3 − 2t3
3 + 2s1t2 + s2

2 (5t1 − 3u1) + u2(t1 − s1)

+(t1 − u1)
(
u1t1
2 − s21

)
+

s21
2

(
u21 − t21

)
− 3θ1

2

)]

Table 2. The coefficients for expansion of correlator of four light-like Wilson lines in MGEW

approximation (5.25). The variables s, t, u and θ1 are defined in (5.26).

necessarily contain several vertices Vn with n > 1, see the example of two-loop MGEWs

with four Wilson lines in fig.5, and three-loop MGEWs with three Wilson lines in fig.1 (the

diagrams B,C,E and F). The only non-zero contribution to MEK is given by the one-loop

diagrams. Therefore, MEK is given by

W̃IJ(v1, ..., vn)

∣∣∣∣∣
MGEW

=
n∑

k,l=1
k<l

taikjkt
a
iljl

αsv
ǫ
klK1, (5.24)

where K1 is given in (5.17), and missed indices should be saturated by Kronecker deltas.

The expression (5.24) is given for the Wilson lines pointing from the origin. In the case

of Wilson line incoming to the origin the corresponded generator should be replaced by

−tC . Thus, the only non-trivial contribution to the correlator of light-like Wilson lines in

MGEW approximation comes from the defect and can be evaluated algebraically.

As an illustrative example, we present the correlator of four light-like Wilson lines

in MGEW approximation in the exponentiated form. The complete result (with eight

open indices) is rather involved. Therefore, we took a particular convolution of Wilson

lines, which corresponds to the scattering in t-channel. In MGEW approximation such a
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correlator is convenient to present in the following form

〈 (
Φ†
v1
Φv3

)
i1j1

(
Φ†
v2
Φv4

)
i2j2

〉∣∣∣
MGEW

= (5.25)

exp

(
−2

∞∑

n=1

αn
sK

n
1 [δi1j1δi2j2An + δi1j2δi2j1Bn]

)
.

The expression for coefficients A and B are presented in table 2 up to the three-loop order.

The variables s, t and u are defined as

sn = (v12)
nǫ + (v34)

nǫ, tn = (v14)
nǫ + (v23)

nǫ un = (v13)
nǫ + (v24)

nǫ,

θ1 = (v12v13v23)
ǫ + (v12v14v24)

ǫ + (v13v14v34)
ǫ + (v23v24v34)

ǫ. (5.26)

The calculation of higher orders in MGEW approximation does not present any diffi-

culties, but also is not interesting. We remind that MGEW is only an approximation, and

therefore, it can be considered only as an illustration. Nonetheless, the results presented

in table. 2 show some interesting features.

One can see that the two-loop expression resembles the one-loop expression. This

is a known feature of the two-loop soft anomalous dimension, see [24, 25]. Moreover

the proportionality coefficient is the same as in MGEW approximation for the cusp, see

E(1,2),cusp in table 1. In fact, it is a consequence of a general statement: in two-loop

approximation the soft anomalous dimension (for light-like Wilson lines) is equal to the one-

loop anomalous dimension multiplied by the two-loop cusp anomalous dimension [24, 25].

This observation is known as the dipole formula for infrared singularities of scattering

amplitudes in QCD [26, 27]. The status of the dipole formula at three-loop order and

higher is currently questionable, e.g. see ref.[28], for recent review see ref.[29].

Considering, the expression presented in table 2, we observe that at three-loop order

MGEW approximation does not support the dipole formula. Since in the considered kine-

matics MGEW approximation is gauge invariant, the expression given in tables 1 and 2

represent some irreducible part of the complete result. In this way we conclude that the

violation of the dipole formula at the three-loop order is likely.

6 Conclusion

In this article we have presented an approach that allows one to evaluate the correlator

of a product of Wilson lines directly in the exponentiated form. In contrast to the ex-

isting methods of exponentiation, e.g.[3–7], the presented method does not rely on the

diagrammatical consideration, and allows to obtain the argument of exponent in the form

of correlators of known operators. To our best knowledge, it is the first example for such

a relation in a non-Abelian gauge theory.

The approach is based on the fundamental property of the perturbative expansion,

namely, on the exponentiation of the connected part of Feynman diagrams. In sec. 3.1

(see also [9]) we show that this property implies the exponentiation of the diagrammatic

expansion for a wide class of operators; the operators, which can be presented in the form
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of the exponent (3.3). Although this observation is evident and well-known, it was not

regularly applied for the consideration of Wilson lines and their correlators.

In the line of derivation it was natural to split the problem of exponentiation onto two

independent problems: the exponentiation within the non-Abelian gauge theory, and the

exponentiation of a matrix object (see sec. 4.2). As the result of such consideration the

exponentiated expression is split onto two components, those are the matrix exponentiation

kernel (MEK) and the defect of exponentiation. These two components are very different

both in the form and in the content. MEK contains all the essential information about the

exponentiated expression. While the defect represents the difference between the matrix

and the scalar exponentiation procedure, and it is an algebraic function of MEK.

In this way, the knowledge of MEK results to the knowledge of the complete exponent.

The expression for MEK has the form of a sum of correlators of the operators V (4.20).

The operators V have very peculiar form of nested commutators of gauge fields, and play

an exceptional role in the non-Abelian exponentiation. Undoubtedly, further investigation

should reveal exceptional properties of the operators V , and hence, of MEK. Good illustra-

tion of non-trivial properties of MEK is the correlator of light-like Wilson lines in MGEW

approximation. In this case MEK is given exactly by one-loop diagram (see sec. 5.2).

The defect of exponentiation is an algebraic function of MEK. In sec. 4.4 we have

shown that the defect is given by the simple recursive formula (4.30), where the most non-

trivial operation is the procedure of the matrix symmetrization. Therefore, the evaluation

of the defect can be easily automated.

In sec. 5, we have performed the comparison of the presented approach with existing

approaches. We have shown the complete agreement between the presented approach

and the standard approach to the cusp exponentiation at two-loop order [3, 4](Here, the

standard approach is the approach based on the modification of color factors, which can

be applied only for singlet configurations of Wilson lines). We have also demonstrated

an agreement and the relation of the presented approach to the exponentiated diagrams

obtained by the replica trick [5, 6]. Remarkably, the splitting of the exponent onto MEK

and the defect, can be also traced within the replica approach. Thus, we conclude that the

presented approach is in complete agreement with other methods of the exponentiation.

Using MGEW approximation we have analyzed the light-like configuration of Wilson

lines. In this approximation and kinematics the web diagrams can be evaluated with a

minimal effort, they are given entirely by one-loop MEK and the corresponded defect.

Remarkably, that MGEW part of the complete expression is gauge invariant that allows

us to make a judgement about the form of the whole expression. Using this approximation

we observe the violation of the dipole formula for infrared singularities of parton scattering

amplitude at the three-loop order. However, we can not strictly conclude the violation of

the dipole formula due to the possible cancelation of violating terms with similar terms

from the diagrams do not contributing MGEW approximation.

The presented procedure of exponentiation allows further generalizations. So, for ex-

ample, the correlator of ordinary product of Wilson lines (i.e. the diagrammatic series with

exchanges by real particles) can be exponentiated by the same procedure, as it is demon-

strated in sec. 3.3. Therefore, the presented exponentiation procedure can be applied to a
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wide range of physical tasks, e.g. calculation of the soft anomalous dimension, the thresh-

old resummation, the evaluation of the soft factor for transverse momentum dependent

factorization, description of diffractive processes.
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A Operator Vn at low orders

In this appendix we present the explicit expression for the operators Vn up to the fourth

order. These expressions are used for the calculation in the sec.5.

The operator V a
γ is defined in (4.1,4.2), while the operator V a

n,γ is defined in (4.6).

Elaborating the matrix structure we obtain the expressions for the first four operators

V a
1 = ig

∫ 1

0
dτAa

0 ,

V a
2 = −(ig)2

∫ 1

0
dτ

∫ τ

0
dτ1 tr

(
ta
[
Â1, Â0

])
,

V a
3 = (ig)3

∫ 1

0
dτ

∫ τ

0
dτ1

(
2

3

∫ τ

0
−
∫ τ1

0

)
dτ2 tr

(
ta
[
Â1

[
Â2, Â0

]])
(A.1)

=
(ig)3

3

∫ 1

0
dτ

∫ τ

0
dτ1

∫ τ1

0
dτ2 tr

{
ta
([[

Â0, Â1

]
, Â2

]
−
[[
Â1, Â2

]
, Â0

])}
,

V a
4 = −(ig)4

∫ 1

0
dτ

∫ τ

0
dτ1

(∫ τ1

0

∫ τ2

0
−2

3

∫ τ1

0

∫ τ

0
−2

3

∫ τ

0

∫ τ2

0
+
1

2

∫ τ

0

∫ τ

0

)
dτ2dτ3

×tr
(
ta
[
Â1

[
Â2

[
Â3, Â0

]]])

= −(ig)4

6

∫ 1

0
dτ

∫ τ

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 ×

tr
{
ta
([[[

Â1, Â2

]
Â3

]
, Â0

]
−
[[[

Â0, Â1

]
Â2

]
, Â3

]
+
[[[

Â0, Â3

]
Â2

]
, Â1

]

−
[[[

Â2, Â3

]
Â1

]
, Â0

])}
,

where Âi = γ̇µ(τi)taA
a
µ(γ(τi)) and Â0 = γ̇µ(τ)taA

a
µ(γ(τ)). Here, as everywhere in the

article, γ(τ) is a parametrization of a Wilson line curve, γ̇(τ) is a tangent to the curve,

and ta is the generator of a gauge group. The expressions for V3,4 after the first equality

symbol have the form resulting directly from eqns. (4.1,4.2), while the expressions after

the second equality symbol are obtained by rearranging the integrals and renaming the

integration variables.
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The expression (A.1) is valid for the Wilson line in any representation. The represen-

tation dependence is concentrated in the generator prefactor of operator V in eqn.(4.2). It

can be archived by the selection of the proper normalization condition for the generators

and structure constants. The normalization condition used in (A.1) is

[
ta, tb

]
= ifabctc, tr(tatb) =

δab

2
,

for generators of any representation.

For practical application one usually consider the straight segments of Wilson lines.

Let us consider a straight Wilson line from the point yµ to the point zµ. In this case the

contour parametrization reads

γ(τ) = τzµ + (1− τ)yµ, (A.2)

and the tangent to the contour is the constant vector

γ̇µ(τ) = zµ − yµ = vµ.

The Feynman rules for the operators Vn in the position space are defined as

V µ1...µn
a,a1...an

(x1, ..., xn) =
δ

δAa1
µ1(x1)

...
δ

δAan
µn (xn)

V a
γ

∣∣∣
A=0

. (A.3)

Therefore, for a straight Wilson segment (A.2) the Feynman rules corresponding to oper-

ators V1,2,3,4 read

V µ1
a,a1

(x1) = ig δaa1v
µ1θ1,

V µ1µ2
a,a1a2

(x1, x2) =
ig2

2
faa1a2v

µ1vµ2 (θ12 − θ21) ,

V µ1µ2µ3
a,a1a2a3

(x1, x2, x3) =
ig3

12
vµ1vµ2vµ3 (A.4)

×
[
faa1bf ba2a3 (θ123 − θ132 − θ231 + θ321) + P213 + P312

]
,

V µ1µ2µ3µ4
a,a1a2a3a4

(x1, x2, x3, x4) =
ig4

12
vµ1vµ2vµ3vµ4

[
faa1bfba2cfca3a4

× (θ1234 − θ1243 − θ2341 + θ2431 − θ3214 + θ3421 + θ4213 − θ4321)

+P1324+P1432+P2134+P2431+P2341+P3142+P3412+P3214

+P4132 + P4312 + P4213

]
,

where all xi are located on the path of Wilson line, and θi..k = θ(y < xi < .. < xk < z) the

Heaviside function ordering coordinates along the Wilson line. The symbol Pijk stands for

the first term in the bracket with permuted color indices and coordinates, i.e. {a1a2a3} →
{aiajak} and {x1x2x3} → {xixjxk}.

In the case of half-infinite straight Wilson lines it is convenient to use the same

parametrization as for the segment (A.2). The only change is that the scalar parame-

ter runs over the infinite range τ ∈ (0,∞). Such a configuration of Wilson lines can have
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additional infrared divergences, resulting from the interaction with gluons at infinity. In

order to regularize these divergences one commonly uses the suppressing exponent with

infinitesimal argument [22, 30]. Formally such a regularization implies the change of the

gauge field within the Wilson line

Aµ(vτ + y) → Aµ(vτ + y)e−iτδ
√
v2−iε, (A.5)

where δ and ε are infinitesimal and δ > ε > 0. Within such a regularization the large-

distance singularities are regularized for space-, time and light-like Wilson lines. Thus,

the change of the Feynman rules for a half-infinite Wilson lines is minimal. Namely, the

function θi..k should be replaced by θ(y < xi < ... < xk < ∞) exp
(
−iδ

√
v2 − iε

∑
i xi

)
.

References

[1] D. R. Yennie, S. C. Frautschi and H. Suura, Annals Phys. 13 (1961) 379.

[2] G. F. Sterman, AIP Conf. Proc. 74 (1981) 22.

[3] J. G. M. Gatheral, Phys. Lett. B 133 (1983) 90.

[4] J. Frenkel and J. C. Taylor, Nucl. Phys. B 246 (1984) 231.

[5] E. Laenen, G. Stavenga and C. D. White, JHEP 0903 (2009) 054 [arXiv:0811.2067 [hep-ph]].

[6] E. Gardi, E. Laenen, G. Stavenga and C. D. White, JHEP 1011 (2010) 155 [arXiv:1008.0098

[hep-ph]].

[7] A. Mitov, G. Sterman and I. Sung, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099

[hep-ph]].

[8] E. Gardi, J. M. Smillie and C. D. White, JHEP 1306 (2013) 088 [arXiv:1304.7040 [hep-ph]].

[9] A. A. Vladimirov, Phys. Rev. D 90 (2014) 066007 [arXiv:1406.6253 [hep-th]].

[10] E. Gardi and C. D. White, JHEP 1103 (2011) 079 [arXiv:1102.0756 [hep-ph]].

[11] G. Falcioni, E. Gardi, M. Harley, L. Magnea and C. D. White, JHEP 1410 (2014) 10

[arXiv:1407.3477 [hep-ph]].

[12] A. N. Vasil’ev, The field theoretic renormalization group in critical behavior theory and

stochastic dynamics. CRC Press, Boca Raton, Chapman and Hall, 2004.

[13] A. V. Belitsky, Phys. Lett. B 442 (1998) 307 [hep-ph/9808389].

[14] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of noncommutative analysis :

theory and applications. - Berlin, New York: Walter de Gruyter, 1996.

[15] A. V. Belitsky, X. Ji and F. Yuan, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038].

[16] A. Grozin, J. M. Henn, G. P. Korchemsky and P. Marquard, Phys. Rev. Lett. 114 (2015) 6,

062006 [arXiv:1409.0023 [hep-ph]].

[17] D. Knauss and K. Scharnhorst, Annalen Phys. 41 (1984) 331.

[18] I. A. Korchemskaya and G. P. Korchemsky, Phys. Lett. B 287 (1992) 169.

[19] G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B 283 (1987) 342.

[20] O. Erdogan and G. Sterman, arXiv:1112.4564 [hep-th].

– 31 –



[21] J. M. Henn and T. Huber, JHEP 1309 (2013) 147 [arXiv:1304.6418 [hep-th]].

[22] E. Gardi, JHEP 1404 (2014) 044 [arXiv:1310.5268 [hep-ph]].

[23] M. Sjödahl, Eur. Phys. J. C 73 (2013) 2, 2310 [arXiv:1211.2099 [hep-ph]].

[24] S. M. Aybat, L. J. Dixon and G. F. Sterman, Phys. Rev. Lett. 97 (2006) 072001

[hep-ph/0606254].

[25] S. M. Aybat, L. J. Dixon and G. F. Sterman, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309].

[26] T. Becher and M. Neubert, Phys. Rev. Lett. 102 (2009) 162001 [Erratum-ibid. 111 (2013)

19, 199905] [arXiv:0901.0722 [hep-ph]].

[27] E. Gardi and L. Magnea, JHEP 0903 (2009) 079 [arXiv:0901.1091 [hep-ph]].

[28] L. J. Dixon, E. Gardi and L. Magnea, JHEP 1002 (2010) 081 [arXiv:0910.3653 [hep-ph]].

[29] L. Magnea, PoS LL 2014 (2014) 073 [arXiv:1408.0682 [hep-ph]].

[30] E. Gardi, J. M. Smillie and C. D. White, JHEP 1109 (2011) 114 [arXiv:1108.1357 [hep-ph]].

– 32 –


	1 Introduction
	2 Brief review of exponentiation methods
	3 Generating function approach to exponentiation
	3.1 The foundation of exponentiation
	3.2 Exponentiation of Wilson lines in QED
	3.3 Exponentiation of real exchanges

	4 Exponentiation of Wilson lines in non-Abelian gauge theories
	4.1 Wilson line as exponent
	4.2 Matrix exponentiation
	4.3 Structure of MEK
	4.4 Structure of the defect

	5 Application of GF exponentiation
	5.1 Cusp at two loops
	5.2 Multiple gluon exchange webs for light-like Wilson lines

	6 Conclusion
	A Operator Vn at low orders

