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Abstract

This thesis makes an attempt to extend Hawking radiation, which has pre-
viously been studied for photons and QED charged leptons, to emission of
particles with color charge. A sufficiently hot black hole should be able to
radiate asymptotically free quarks and gluons in addition to leptons and pho-
tons. The black holes in consideration in this thesis are those hot enough
to radiate color charged particles which can be described by perturbative
quantum chromodynamics (QCD) but macroscopic enough to have a static
metric during the emission so that the process can be treated semiclassically.
For the purpose of this thesis the kinematics of the emission of color charged
particles will not be significant since the goal is to compare QCD to QED.
Therefore the color structure is studied separate from the kinematics. The
calculations are performed using the birdtrack notation which is a pictorial
representation of SU(N) tensor calculations. The radiation is assumed to
be gluons, emitted one at a time, and from a black hole of low dimensional
representation of the color group. A methodology for how to answer these
questions is supplied and in addition an outline to a solution.



Popularvetenskaplig beskrivning

I Einsteins allménna relativitetsteori uttrycks graviation som rumtidens
krokning. Kallan till gravitation ar energitathet; ju tatare materia ar kon-
centrerat desto starkare gravitation uppstar. I extrema fall kan materian
bli sa tat att rummet och tiden kroks sa att ett svart hal bildas. Vid
ett visst avstand fran ett svart hal finns en handelsehorisont. N&ar nagot
passerar handelsehorisonten ar rumstidens krokning sa stor att inte ens ljus
fran det kan na ut. Precis utanfér horisonten kan kvantmekaniska fluktua-
tioner av partiklar och antipartiklar ske ur vakuum. Sadana fluktuationer
sker i vakuum overallt under korta tider, inte bara kring svarta hal. Just
i situationer nara handelsehorisonter kan dessa fluktuationer ge upphov till
patagliga fysikaliska effekter.

Nar en av partiklarna passerar handelsehorisonten forlorar denna och
dess partner kontakten. Detta hindrar paret fran att aterga till vakuum
och den partikel som ar kvar utanfor horisonten kan undkomma det svarta
halet. Denna strom av partiklar &r en varmestralning och ar lik det ljus som
glodheta kroppar stralar. Svarta hal stralar alltsa ut fotoner, ljuspartiklar,
men ocksa partiklar med elektrisk laddning och dessutom partiklar med an-
dra liknande laddningar som forekommer i partikelfysik. En sadan liknande
laddning &r fargladdning (som bara till namnet har med farger i vardagen
att gora). Denna uppsats behandlar hur stralning av sadana fargladdade
partiklar skulle ga till.
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1 Introduction

The idea that black holes should have thermodynamic properties such as
temperature and entropy was first proposed by Jacob Bekenstein in 1972.
Stephen Hawking soon followed up with a calculation that black holes should
radiate particles due to quantum fluctuations and that the spectrum of this
radiation should be thermal. Those ideas gave rise to various calculations
for the emission of photons and leptons.

Due to the non-Abelian nature of QCD the emission of quarks and gluons
is more complicated. The aim of this report is to study if the QCD emission
case can be, by studying the SU(3) group structure separately, reduced to
the QED case. In QED there is a tendency for the emissions of charged
particles to bring the black hole to less spin and less electric charge. The
aim of this thesis is to verify if a QCD charged black hole has the tendency
to emit particles in such a way that it probably is in a lower dimensional
representation of the color group after emission. A naive comparison between
the coupling constants suggest that QCD has this same property as QED but
this needs not at all hold true under careful scrutiny. This is due to the fact
that QCD is non-Abelian, which will make it so qualitatively different that
the comparison of coupling strengths is little more than intial speculation.

Since the Hawking temperature of the black hole scales as its inverse mass
and is proportional to &, macroscopic black holes will be very cold. This the-
sis uses QCD in the perturbative limit and thus the black hole emitting the
quarks and gluons, should have a temperature such that the emitted parti-
cles will likely have energies where they are asymptotically free. Since the
QCD scale parameter is Agep = 220MeV, the Planck mass (times ¢?) is
Mpc? = 2.4-10'8GeV, and Newton’s constant is G = AZ—% then for a Hawking

3 2.2
e Ty~ 105 Mp.
This means that there are black holes hot enough to radiate perturbative
quarks and gluons. Also, at such high masses the change in mass due to
radiation of the black hole can be neglected and the metric is to good ap-
proximation static. The black hole cannot be comparable to the Planck scale
either, which is where the Schwarzschild radius and Compton wavelength are
comparable, since this would require Quantum Gravity to be taken into con-
sideration.

This thesis starts by giving a background to groups and representations,
with QCD in particular focus, as well as the notation called birdtracks. An
introduction to Hawking radiation of both neutral and QED charged particles
is also given and used to set up a formalism for simulating QED emissions
from black holes that reproduces known results. Finally the birdtrack for-

temperature of kg1’ = = Agcp the mass would be



malism is used to take the first steps to extending the emission model to

QCD.

2 Theory

2.1 Units and conventions

In this thesis so called natural units are used. In those units h = c=kg =1
where h is Planck’s constant, ¢ is the speed of light, and kg is Boltzmann’s
constant. All dimensional quantities are measured in some power of electron
volts (eV). Newton’s constant, G, in natural units has dimension of inverse
squared mass, i.e. G = 1/M%. The mass Mp is called the Planck mass.

This thesis will employ the Einstein summation convention. This is the
notion that whenever a specific index appears on one side of an equation
exactly twice then there is an implicit summation over all allowed values of
that index e.g.

N
fa,bctc = Z fabctc' (21)
c=1
This expression will turn up later in the report where f%¢ and t¢ are the so-
called structure constants, and generators, respectively, of a structure called
a Lie group.

2.2 Groups and representations

The treatment here follows the book on groups and Lie algebra by Georgi [1],
which contains a much more thorough introduction to the subject. The idea
of a group is central to the current understanding of fundamental physics.
Mathematically a group G is a set of elements and a composition, the oper-

%N

ation -7, of ordered pairs of elements fulfilling the axioms:
(i) Closure: For every pair of elements a,b € G = a-b € G

(ii) Associativity: a,b,c€e G=a-(b-c)=(a-b)-c

(iii) Identity: There is an element e € G so that Vg€ G: e-g=g-e=g

(iv) Inverse: For every g € G there is a ¢7! such that gt -g=g-g ! =e.

A group with the property that a-b =5b-a Va,b € G is called an Abelian

group. A group without this property is called non-Abelian.



A representation I' of a group is a map from the elements of the group
to some set of objects that preserves the group structure. This means that
['(g-¢)=T(g9) -T'(¢") and I'(e) = 1 where 1 is the identity of the space i.e.
1-I'(g) = I'(g). For practical purposes the representations of a group are
often taken to be matrices.

2.3 Lie groups, gauge groups and SU(3)

A Lie group is a group containing a continuous infinity of group elements that
can be characterized by smooth, differentiable functions of a finite number of
parameters. By going to a matrix representation, I', and considering group
elements close to the identity (defining ¢(0,...,0) = e), one can characterize
the group elements by Taylor expansion i.e.

or(9)

Plg(001, . 00N)] =T(0) =1+ — =| ot .. =1+id0.1"+... (22)
o 16=0

where the so-called generators t* are defined. The generators are a closed set
under commutation; they form a Lie algebra

GRASE (2.3)

where the f¢ are called the structure constants of the group. The Lie
algebra is derived from the fact that I'(g - ¢') = I'(¢)T'(¢’) and the Taylor
expansion of the group elements. Given a representation for the Lie algebra,
the representation of any element in the group (that is continuously connected
to the identity element) can be found by taking infinitely many infinitesimal
steps from the identity so that

901, ..., 05) = lim (1 4 at )" = eifat”, (2.4)
n— 00 n

A gauge group is a group of local transformations, i.e. the coefficients
in the linear combination of generators are functions of spacetime. QCD is
a non-Abelian gauge theory based on SU(3), called the color force. The U
stands for unitary; U(N) is the group defined by that it can faithfully be
represented by N x N matrices, u, with the property ufu = wu’ = 1. The S
stands for special and by this it is meant that SU(3) is the subgroup of U(3)
that fulfills the additional condition that det(u) = 1.

Familiar from quantum mechanics is the addition of angular momentum.
The different possible angular momenta in quantum mechanics are deter-
mined by the representation theory for the group SU(2). For instance, the
angular momentum commutation relations are [J;, J;] = i€;jxJ;. This is the
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Lie algebra of SU(2) so in the language of group theory the angular momen-
tum operators are the generators of the rotations on the quantum states. A
system consisting of two spins, j; and js, is a so-called direct product space
of two spin spaces written as j; ® jo. It is also known that this system can
be written in terms of a basis which has definite total angular momentum.
For instance, for two spin % particles one can choose a basis that decomposes
the system into a spin 0 and a spin 1 system that transform independently
under rotations, written as

1

5 ®@=-=0d1.
This procedure of choosing a basis in which the total angular momentum
operator is diagonal is called Clebsch-Gordan decomposition and carries di-
rectly over to group theory. Here the representations are characterized by
dimensionality (i.e. 2j + 1) rather than spin so the tensor product of two
spin % systems is written as

N | —

202=1¢3.

In QCD each quark has a color quantum number. This means that the
quark field ¢; for i = 1,2, 3 comes in three different color kinds. A quark can
then be associated with a three entry column matrix in the so-called color
space

7701 wred
w - ¢2 = wgreen (25)
¢3 wblue

where the v;:s are Dirac spinor fields. The color symmetry is assumed to
be a local symmetry, i.e. a gauge symmetry, so that the theory is invariant
under rotations in color space where the rotations can be different at different
points in spacetime i.e. ¥ (z) — U(z)w(x) while ¥ (z) — ¥ (z)UT(z) for the
antiquark field ¢). The generators for U(x), T, is any basis for Hermitian,
traceless 3 x 3 matrices (e.g. the so-called Gell-Mann matrices).

The Lagrangian (density) for QCD is

7 L - a a 1 a auv
L= 0G0, + gy Gy (T*)iy — mydy)] — 1G, G (2.6)
f

where f is the sum over quark species (flavors), ¢ and j are color space indices,
G}, fora = 1,2, ..., 8 are the gluon fields, v are the usual Dirac matrices and
g is the strong gauge coupling parameter. G, are the gluon field strengths
defined by

G, = 0.G) — 0,G} + gf“bCGZGf,. (2.7)
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These also transform under gauge transformations. Under an infintesimal
transformation, i.e. U(z) = e7"X"@ for some set x* of infitesimal parame-
ters, the fields transform as

1@‘ — @ez + Z'Xa(_Ta)z'j@/fj (2.8)

Vi = g — ix"Y; (Ta);-i (2.9)
1

Gy = Gy + 0" = [ (2.10)

These equations define the most important representations of SU(3) in nature
called 3, 3 and 8 in which the matrix elements of the generator t* are (T)ij,
—(T%)!; and i respectively.

2.4 Black holes, Hawking temperature, and particle
emission

Black holes need general relativity for an accurate description. An intro-
duction to the general theory of relativity can be found in [5]. In general
relativity the metric g,, in the relativistically invariant spacetime distance
ds* = da*g,,dz” is promoted to a field, i.e. it is a function of spacetime,
guw(x), and is interpreted as the gravitational field. The metric outside a
static, spherically symmetric gravitating object is in general relativity given
by the Schwarzschild solution

2GM 1
ds* = (1 - i ) dt* — mdﬁ — r2dQ? (2.11)
where t is the coordinate time, r is a coordinate representing radii of the
spheres of the spherical symmetry (the generalization of a radial coordinate)
and () is the solid angle. If the gravitating object is localized within the
Schwarzschild radius r¢ = 2G M the metric has a coordinate singularity at
the surface r = rg. This singularity is called the event horizon and the
gravitating body is called a black hole.

The name black hole arises from the fact that there are no timelike or
lightlike trajectories from spacetime points within the event horizon to out-
side it i.e. no particle can travel out of the event horizon once it is inside,
thus making the body black. Combining this generally relativistic notion of a
black hole with the principles of quantum mechanics makes the prediction of
a phenomenon called Hawking radiation. Due to quantum fluctuations near
the horizon a thermal distribution of particles are detected by a faraway ob-
server; the black hole seems to radiate. An argument for this statement is
given in the next section where the Unruh temperature is outlined and then
generalized to the Hawking temperature.




2.5 The Unruh effect and Hawking temperature

The Unruh effect is a special relativistic effect saying that a uniformly ac-
celerated observer in Minkowski spacetime will see a thermal distribution
of particles where an inertial observer would see the vacuum. The reason
for this temperature is that the field equation describing the particles will
have different orthogonal function expansions for the inertial and the accel-
erated observer and therefore the Fock creation and annihilation operators
will be different. Different annihilation operators will result in different vac-
uum states and particle number in the same state for the different observers.
Thus the Minkowski ground state will be a superposition of so-called Rindler
states, which are states perceived by a uniformly accelerated observer, of
thermal particle number distributions.

To see how this arises consider the toy theory of a massless scalar field in
141 dimensional Minkowski spacetime. The Lagrangian is

1
L= 50" 9,00,0 (2.12)

(with Minkowski metric 1o = 15101 = 1710 = 0;711 = —1). The equation of
motion is O¢p = 0 and a basis for solutions is the plane wave Fourier basis
eFF with k° = |k'| = wg. The quantum field is then

dk 1

where a,t; and ay, are the usual creation and annihilation operators for particles
in momentum state k and the (Minkowski) vacuum is defined by a|0y) =
0; VEk.

The worldline of a particle experiencing uniform proper acceleration, «,
can be written as

(ake—zkm + CLL@Zk.Z)

, (2.13)

kO=wy,

t(r) = ésinh(om') and z(7) = écosh(om-). (2.14)

A suitable coordinate system, called Rindler coordinates, for an accelerated
frame is then given by 7 and £ defined by

1 1
t = —e*sinh(ar) and z = —e* cosh(ar). (2.15)
a a

In this frame the metric is given by ds? = €2*¢(dr2 — d£?) and the equation of
motion becomes 0 = V,VHi¢p = e~2% (872_ — 8§>¢ where V, is the coordinate

covariant derivative. In this coordinate system one can find new Fourier



modes of the field equation. Associated with these modes come creation and
annihilation operators agj, a%yk and a vacuum |Og). Now it can be seen
that the mode expansions in the inertial and Rindler frames do not coincide
and they will thus have different notions of particle number in the given
states and what the vacuum is. The details are supplied by Carroll [3]. The
expectation value of particle number of a Rindler observer in the inertial
vacuum is shown to be

(Onrlanag|On)
e2nwg/a _ 1

(Onlal pan x|0r) = 627|'wk/—a_12ﬂ-5(0) = (2.16)
The 6(0) factor arises from the non-proper norm of the momentum states.
The expectation number of particles detected by an observer with uniform

acceleration then has the thermal Bose-Einstein occupation number i.e.

(N(w)) = ——— (2.17)

Coew/T —

with the Unruh temperature
«

2
The thermal factor should be a bosonic occupation number, which can be
traced to the so-called spin-statistics theorem which states that particles of
integer spin (like scalars) are bosons.

The equivalence principle of general relativity can be used to argue that
the Hawking effect should arise from the Unruh effect since gravity and uni-
form acceleration are equivalent locally. If an observer falling freely near the
horizon sees the Minkowski vacuum then an observer stationary with respect
to the horizon will behave as an accelerated observer in special relativity.
This observer will see a thermal spectrum of particles emitted from the black
hole horizon. This thermal distribution of particles can escape and reach a
distant observer at a finitely redshifted temperature. The redshifted accel-
eration that the distant observer measures is equal to the surface gravity.
For a Schwarzschild black hole this is given by a = @ so the Hawking
temperature is

(2.18)

1
Ty = .
B 8rGM

(2.19)
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2.6 Emission of electrically charged leptons from black
holes

Page [2] presents the following equation for the emission of QED charged
leptons from non-rotating black holes

Mow 2 eSTGMwTdraZ | 1’

)

Here N is the number of charged leptons of charge +|e| emitted, w is the en-
ergy of the lepton, I'; is a so-called greybody factor (its frequency dependence
prevents the radiation from being purely blackbody), o = %, the sum over
7 is a sum over angular momentum modes of the lepton, and Z is defined by
Q) = Z|e| where @ is the charge of the black hole after emission. The thermal
occupation is now ew/—§+1 from Fermi-Dirac statistics in a direct generaliza-
tion of equation (2.16). The origin of 4mraZ is the electrostatic potential
energy at the surface of magnitude <. ;”TS = e?/ngG% =eQ = Ze? = 4nZa.

The peak of the distribution of the product GMw is shown by Page [2] to
be much larger than zero so that the +1 in the denominator can be ignored
as long as aZ < 1. Carroll [3] states that for a scalar field the greybody
factor is

Mw)~1; w>»—— (2.21)

Aw? 1

where the factors arise from backscattering of waves and A is the surface
area of the black hole. Since fermions and gauge bosons both obey the
Klein-Gordon equation (in addition to their own equations of motion) these
expressions for grey-body factors can give an estimate for other particles.

If the greybody factor can be treated as constant then

aN 1 —8m wtdra
8t8ciu ~ % effective€ SrGMwtdraZ (223)

where Tegective 1S the effective greybody factor. Furthermore, this can be
averaged over all energies of the emitted lepton yielding

dN4
—= — constant - ™47,

- (2.24)

This equation allows for a simple interpretation. The product in the exponent
is the product of the charge of the black hole (after emission) and the charge

11



of the emitted lepton. The black hole repels virtual leptons of the same
charge as itself and is therefore more likely to radiate leptons of the same
charge.

Since the model assumes Z to be the charge after emission of the charged
particle and it remains Z until the charged particle can be detected by a far
away observer one has assumed that the black hole emits charged particles
one at the time. The same assumption is assumed to carry over to the study
of gluon emission in QCD.

2.7 Birdtracks

Birdtracks are diagrammatic ways to perform group theoretic calculations.
In appearance birdtrack resemble Feynman diagrams but in spirit they are
different. While Feynman diagrams symbolize numbers or integrals that have
to be written down using Feynman rules, birdtracks, on the other hand, is a
way to perform group theoretic calculations in a diagrammatic fashion. The
birdtrack notation is thoroughly developed in [4].

Representations of a group element will have matrix indices (in various
vector spaces) which in birdtrack notation will be symbolized by external
lines in the diagram. The generators of the group has a notation analogue
to Feynman diagram vertices. To exemplify, in the birdtrack notation the
generator in the 3 representation, 7, is written

(T = N

and the so-called adjoint representation of the same generator (i.e. the gen-
erator for the 8 representation) is represented by

/ (2.25)

i (220
9 b

Matrix multiplication in the color indices is represented by connecting the
vertices by internal lines so for instance

(Tt (T = (2.27)

a b

Thus internal lines represent sums over the states in color space. Closing the
identity (2.27) (i.e. contracting by inserting the tensor ¢;;0°) yields a color

12



invariant known as a Wigner 3j-coefficient. Those are structures of the form

o
(2.28)

14

where p, v and A label representations. In this thesis the normalization of
the vertices is chosen such that the non-zero Wigner 3j-coefficients are all
equal to one. Another important contraction of vertices is a trace over four
of them, called the Wigner 6j-coefficient

(2.29)

One reason to choose this normalization of the vertices is that the basis for
color space become orthonormal and another is the availability of Wigner
coefficients in this normalization. In the Wigner coefficients as well as in the
remainder of the thesis a general representation of SU(3) is depicted by a
double line while a gluon is represented by a single line (replacing the usual
curly line used above). This is illustrated in the birdtrack below

8 (2.30)
1

Two equations that are of great importance to this report are the com-
pleteness relation

f h p
(

and an identity based on Schur’s lemma

L (2.32)



The completeness relation is founded in the statement that the Clebsch-
Gordan decomposition of a direct product into a direct sum is complete. In
both cases d, is the dimension of the representation . The proof of these
relations and more on the birdtrack notation can be found in [4].

3 Method

3.1 Simulation of QED emission from Schwarzschild
black holes

From equation (2.24) one can see that the emission rate is unchanged while
the system is between emissions. Thus the average number of emitted parti-
cles of charge +|e| in time ¢ is

N = constant - te*4™Z (3.1)

The probability that the next particle emitted from the black hole has a
charge of +|e| will then be Py = N./(N, + N_) i.e.

tdraZ
e
Py

- edraz 4 e—draZ’ (32)
The emission process can be simulated numerically by drawing random num-
bers and iterate over many emitted particles. From this one can get values
for the root-mean-square and and the average charge of the black hole. For
simplicity the time between emission of charges is assumed to be constant.
This is not completely correct since higher values of charge of the black hole
will lead to faster emissions but will hold as long as a«Z < 1 so that the
emission probabilities are not radically different.

3.2 Gluon exchange and diagonalization of the exchange
matrix

If the black hole in QED only emits leptons one at the time then the charge
of the black hole is unchanged by any exchange of virtual photons as can be
seen in (3.3) (where the charge ¢ = @) — ). This is, however, not the case in
QCD since the virtual exchange of gluons (like all gluons) carry color charge.
This means that the black hole can change not only color charge state within
a given representation of the color SU(3) but also change representation by
the exchange of virtual gluons. This is illustrated in (3.4)

14



D D S S U (3.3)
w . Z e
M’ M M(ZS) M(n)
M e —— (3.4)

where M labels the SU(3) representation of the black hole.

Below the emission of gluons from black holes is studied under the as-
sumption that the gluons are emitted one at a time. That is, the emitted
gluon reaches a distant observer and the state collapses before a new gluon
is emitted. The gluons are also exchanged one at the time meaning that pro-
cesses where two virtual gluons exist at the same time (i.e. another exchange
gluon is emitted before the first exchange gluon is absorbed) are disregarded.
Thus the exchange is of the form (3.4).

After emitting a gluon the black hole will have some color charge and be in
some representation of SU(3). Since nothing collapses until the gluon reaches
a distant observer the black hole will be in a superposition of color representa-
tions. If the black hole was initially in 8 then it is immediately after emission
in a linear combination of states in 8 8 =1 H 8 S8 D 10 ® 10 & 27. The
color structure immediately after the emission of a gluon by the black hole

is thus
A= ZCi M ¥

for some ¢; and where M = 8. This color structure is a vector in a vector
space and a natural first choice of basis is

M;

¢— M K M (3.5)

were 1 = 1,2,3,4,5,6 for M; = 1,8(f),8(d), 10,10, 27. The representations
8(f) and 8(d) are the states coupling with a completely antisymmetric and
completely symmetric triple gluon vertex, respectively. The above basis is
referred to as the multiplet basis.

In the following section the summation convention is no longer in effect,
that is expressions like G;;€' do not have an implicit summation attached.

15



This is in order to be able to have quantities of twice (or more) repeated in-
dices without explicitly stating that no summation is intended. The implicit
summations inherent to the birdtrack notation are still performed. After the
gluon is emitted a virtual gluon can be exchanged between the black hole
and the emitted gluon

M;

N

The new state is an element of the same vector space since it has the same
external lines (tensor indices). Therefore, given some state, A = > A;e’, be-
fore exchange the state after, A’ = ", Ale’, is given by some linear operator
acting on the original state A. This can be written

i J

i

where G;; are the elements of a matrix which will be referred to as the gluon
exchange matrix. One way to find Gj; is to study the action of gluon exchange
on €, i.e. to treat the projections of A onto the basis vectors one at the
time.

M;

eiGij =M \_{ M; . (37)

Inserting the completeness relation, equation (2.31), on the right yields

M.i M; « M;
M . (3.8)

e'Gy = Z da
: M I
S

By connecting the M and the « lines with each other by using equation
(2.32) one arrives at

16



Letting the sum collapse using the Kronecker delta

(3.10)

(3.11)

Since this must be true for any of the basis vectors ¢ the identity must be an
equation for the matrix element

(3.12)

This expression for the gluon exchange matrix is the primary result of this
thesis. In what follows an outline for how gluon emissions affects the (final)
color representations of black holes is given.

Due to symmetries of the Wigner 6j-coefficients the matrix G;; = Gj; is
symmetric and can thus be diagonalized by a orthogonal matrix, Rz;. The
basis vectors of the new basis are €™ and A = Y - Aze™. In this basis the
gluon exchange matrix is diagonal Grz = ). Zj R#iGii(RY) ;7 = gmbmm
where g is the eigenvalue of the exchange matrix beloning to e™. In this
basis the gluon exchange matrix acts as trivially as possible on the states,
ie.

= Z Gradn = gndnm. (3.13)

Upon emission of a gluon, the probability of being in state €™ is propor-
tional to |Am|? and the analogue of the QED charge weight is e*™9m% so the
probability of the state being €™ is

17



|Am|2e47rgﬁas

¥, [AnPeroes

However, the expression in equation (3.14) is not complete. No compensation
has been made for the choice of normalizing the 3j-coefficients to one. This
choice affects the vertex factors and makes them different from the usual
QCD normalization. The vertices in the 6j-coefficients in the gluon exchange
matrix will change value and the matrix elements and eigenvalues will be
different. This can, in principle, be compensated for but it is left for future
work.

The amplitude for the different states is proportional to the square root
/P(m). Tt is possible to imagine a phase factor on this amplitude but since
the origin of such a phase must be kinematic it is the same for all states.
Thus it is possible to make the choice to be unity.

Since the state is not collapsed between the initial emission of a gluon and
the exchange of gluons between the emitted gluon and the black hole, the
probability amplitudes must be summed before they are norm-squared. Just
before the state collapses, by the initially emitted gluon reaching a distant

observer, it is
> Any/P(m)e™ (3.15)

When the gluon reaches a distant observer and the state collapses it does so
into a color representation eigenstate. The probability amplitude for going
from the state in (3.15) to the black hole being in representation M; is the
scalar product with e’. Thus the probability is

P(m) = (3.14)

2
P(M — M;) =

e’ Z Asn/P(m)e™

2

2

= Z Rye” - ZAm\/meﬁl

2

Z Z Rizi A/ P(M) 655

= Z RiiAm/P(m)

Here it has been used that due to the choice of normalization of 3j-coefficients
the basis e’ is orthonormal and thereby the basis €™ also has this property
since they are related by an orthogonal transformation.
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4 Results

4.1 Emission of QED charged particles from Schwarzschild
black holes

The method described in section 3.1 was used to calculate the root mean
square electric charge of a black hole. A simulation using 10® emitted par-
ticles (corresponding to 10® iterations in the program) yielded a root-mean-
square of electric charge on the black hole being 2.382 in units of the elemen-
tary charge. The average charge was 2.89-10~* in the same units, consistent
with the zero charge plus the statistical 1/ V/N sample spread.

The results of the simulation of the QED emission seem to be consistent
with the results by Page [2] (at 2.33 elementary charges). The reproduction
of the result in the QED case was performed in order to verify that the
method gave the correct prediction in a domain where the predictions are
well-known. This becomes important when the simulation will be generalized
to QCD where the predictions are unknown.

4.2 Gluon exchange matrix and vertex normalization

The choice of normalizing all the QCD vertices in such a way that the 3j-
coefficients are equal to one will affect the elements of the gluon exchange
matrix. This is essentially due to the fact that setting the 3j-coefficients to
one obscures how strongly the different multiplet representations couples to
the gluon. All these normalization issues will affect the probability of finding
the black hole in a given multiplet representation of the color group. Even so,
the method for finding the gluon exchange matrix is schematically correct

and can be used as a foundation for upcoming attempts to figure out the
QCD properties of black holes.

5 Conclusions and Outlook

Many steps remain before anything conclusive can be said about gluon emis-
sion from black holes. For instance, the normalization chosen here, setting
the Wigner 3j-coefficients to unity, is not the standard choice in QCD and
in particular not one that is consistent with a universal strong coupling con-
stant. The trouble with this choice is determining how the components of
the vector A in the e” basis would look and how the vertices has to be
compensated for. Since the amplitudes for finding the black hole in differ-
ent representations is greatly dependent on the structure of this vector these
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issues need to be sorted out in order to know the color properties of black
holes.

This thesis has covered gluon emissions only. For completeness quark
emissions must also be studied. These emissions are not treated in this
thesis; the most obvious problem is that the Wigner 6j-coefficients for the 3
and 3 contracted with higher multiplet representations where not available.
The gluon exchange matrix for quark emissions could be obtained by only a
small modification of the analogous derivation for gluons.
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