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Abstract

In the thesis, we consider basic properties of Wilson lines, special attention is devoted
to the renormalization and exponentiation property. We describe the generating function
approach to non-abelian exponentiation and perform the calculation of the correlator of two
and three semi-infinite Wilson lines meeting at a single point to two-loop order. We consider
Wilson lines on lightcone and regularize infrared divergences with a δ-regulator. The three
line calculation is done within the generating function approach. Using this calculation,
we derive the cusp anomalous dimension and soft anomalous dimension at two-loop order.
The obtained result to be used for the higher order analysis of soft factor and can be used
for application in multi-hadron factorization theorems, threshold resummation, etc.
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1 Introduction

Wilson lines are natural objects in gauge theories. They are a function of the gauge field
along some specified path. This path is arbitrary, it may have endpoints or it may be a
loop, a particularly important example. In this thesis, we will consider properties of Wilson
lines within perturbation theory.

In this paragraph, we write down the definition of a Wilson line and introduce necessary
notation. A Wilson line between points a and b along the path C looks like

Φ(a, b;C) = P exp

(
−ig

∫ b

a

dzµAµ(z)

)
(1.1)

= 1− ig
∫ b

a

dzµAµ(z)− g2

∫ b

a

dzµ11

∫ b

z1

dzµ22 Aµ1(z1)Aµ2(z2) + ... (1.2)

where the symbol P denotes path-ordering, Aµ is the gauge field and g is the coupling
constant. The gauge field Aµ is a matrix valued field, it can be written in terms of a
basis of matrices ta, called generators, as Aaµt

a. The generators ta can belong to any
representation of the gauge group. In general, generators do not commute. Path-ordering
specifies that the fields further along the path should be written to the right of earlier
fields. The function P exp should be interpreted as the application of P to the power
series of the exponential.

Wilson lines possess important properties under gauge transformations. The corre-
sponding transformation for the gauge field has the form

Aµ(z)→ U(z)Aµ(z)U †(z)− i

g
(∂µU(z))U †(z),

where U(z) is a matrix of the gauge group. It implies that the Wilson line transforms as

Φ(a, b)→ U(a)Φ(a, b)U †(b),

which we prove in section 3. In particular, it implies that Wilson loops (lines where the
endpoints coincide) are gauge invariant. A reformulation of gauge theories in terms of loops
rather than the gauge field has been sought [1, 2, 3, 4, 5]. Nowadays, Wilson lines are used
in nearly all branches of quantum field theory (QFT), from the study of confinement [6]
to lattice calculations.

Wilson lines and loops have a lot of applications in description of hadronic processes in
quantum chromodynamics (QCD). In QCD, many processes factorize into a soft and a hard
part, or a long-distance and a short-distance part [7] [8]. The hard part can be treated
within perturbation theory. The soft part involves non-perturbative effects and usually
parametrized by phenomenological functions (parton distributions). Wilson lines are an
important ingredient in factorization theorems, since they help to reconstruct the infrared
divergences of hadronic processes [9]. Wilson lines encode the effect of soft radiation, the
emission of low energy gauge bosons, in any gauge theory. The detailed description of how
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Figure 1: Some important classes of loops. A smooth, a cusped, and a cusped crossed loop.

soft emissions of a highly energetic particle is described by a Wilson line along the path of
the particle, can be found in introductory textbooks on QFT such as [7, 10, 11].

One of the most involved problems in perturbative descriptions of Wilson lines is the
consideration of their renormalization properties. The main difficulty is that Wilson lines
do not a natural scale. Therefore, infrared singularities mix with ultraviolet singularities.
On the other hand, ultraviolet singularities can be described with the renormalization
group equation, which give us hope to resolve the infrared singularities as well [12].

It is known that smooth Wilson loops (left diagram in figure 1) are ultraviolet finite in
the renormalized theory [4, 13]. However, the cusped Wilson line or self-intersecting Wilson
lines (center and right diagram of figure 1, correspondingly) needs additional renormaliza-
tion constant [14]. The renormalization constants are governed by the cusp anomalous
dimension. The cusp anomalous dimension has been known to two loop-order for a long
time [15]. Recently, the three-loop cusp anomalous dimension was found [16].

Wilson lines on lightcone are of special interest. Wilson lines of such configurations
appear in the description of hard processes where one can neglect the mass of partons, which
is the most typical case. The lightcone Wilson lines has additional infrared divergences
[15]. Although this problem has been known for 30 years, there is no clear description
of renormalization in this case. This thesis is devoted to the derivation of the anomalous
dimension of several lightlike Wilson lines meeting at a point.

In this thesis, we consider the basic properties of Wilson lines. Our main interest is
devoted to the renormalization of Wilson lines, especially to the case of several lightlike
Wilson lines meeting at a single point. Such a configuration is called soft anomalous di-
mension matrix, and is of great importance in the phenomenology of high energy processes
with many jets (for recent reviews, see [17, 18]).

We describe a generating function approach to non-abelian exponentiation, which was
recently presented in [19, 20]. With the help of that method, we perform detailed two-loop
analysis of soft anomalous dimension for lightlike Wilson loops. As regulator for soft diver-
gences, we use a modified δ-regularization. For regulation of ultraviolet (UV) divergences,
we use dimensional regularization. The two-loop calculation of this combination of regu-
larizations is novel. We have shown that the δ-regulator has a number of problems arising
at two-loops, such as violation of gauge invariance and scale invariance. These problems
haven’t been observed earlier in the one-loop calculations. We present solutions to these
problems. Although we observe artificial terms in the two-loop cusp anomalous dimension.
The dipole factorization of soft anomalous dimension at two-loops is confirmed [21, 22, 23].

The structure of the thesis is the following. In the first section, we review neccessary
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elements of non-abelian gauge theories and perturbative expansion. In section two, we
present derivations of important properties of Wilson lines and following that we introduce
generating function for Wilson line [19, 20]. Section 3 is the main section of the thesis
where we present our approach to lightlike Wilson lines and give details on the two-loop
calculation of the soft anomalous dimension. The collection of equations needed are given
in the appendices.
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2

2.1 Renormalization

Two kinds of divergences are encountered in QFT, infrared and ultraviolet. UV singulari-
ties come from the high energy regime. This may signal that the theory is incomplete at
high energies, and can be handled through renormalization. IR divergences in QCD may
be soft or collinear. Soft divergences come from the emission of low energy gluons, while
collinear divergences arise when a particle emits a gluon in the direction it travels. IR
divergences should cancel in sums of diagrams corresponding to well-defined observables.

In a sense, UV divergences are also solved by careful analysis of what is observable. The
lagrangian specifying the theory includes several parameters, such as coupling constants
and masses. The quantities calculated from the theory with these parameters will often be
infinite. Through renormalization, one can find finite relations between physical values.

The first step is to regularize the integrals, so that we may manipulate these results
algebraically. This can be done in many ways. The conceptually simplest regularization
is to cut the integral off at some value λ. The integrals now converge and we calculate
observables as a function of λ and the Lagrangian parameters. If we add this λ-dependence
into the parameters, observables are finite functions of the new parameters. The new
parameters are finitely related to experimental outcomes and can be measured.

The cut-off λ may be unphysical, or it may represent a true physical cut-off, signaling
that the theory is incomplete. Renormalization can be done in either case. We can choose
other types of regularization. The final result does not depend on the specific way.

Dimensional regularization is based on the fact that integrals may be divergent in
some dimensions, but convergent in others. In dimensional regularization, the integral
is considered as a function of it’s dimension d. This function can be evaluated for d
where it converges and analytically continued to other values. Typically, we start with
4-dimensional integrals. By analytically continuing to d = 4 − 2ε, where ε is small, the
divergence of the original integral is represented by terms like ε−1.

This shift in dimension also modifies the dimension of your Lagrangian parameters.
Previously dimensionless quantities, like the coupling constant g0, acquire a fractional
dimension. By introducing a new parameter µ, of some appropriate dimension, we can
define a dimensionless coupling constant by

αs
4π

=
µ−2εg2

0

(4π)d/2Γ(1 + ε)
. (2.3)

The factors in the denominator simplify expressions by canceling out several artificial terms.
This is called an MS-scheme.

The independence of the original parameters on µ leads to the renormalization group
equation (RGE), a differential equation for how parameters depend on µ. We show how in
the next section on the renormalization of Wilson lines. The value of the renormalization
group is in handling different scales of µ within perturbation theory. The value of µ will
impact the convergence properties of the perturbative series. The same series may not be
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valid for values of µ that are too different. The RGE solves this problem by only using
differential increments of µ.

An important property of dimensional regularization is the way it handles scaleless
integrals. Since the integral should produce an expression of fractional dimension, it must
contain dimensional parameters. If it does not, it can be set to zero. A more detailed
analysis would show that it in fact contains both UV and IR poles, but that they cancel
each other.

If the modification of the parameters can be expressed with a renormalization factor,
i.e,

g0 = Zg(ε, g(µ))g(µ) (2.4)

where g is the renormalized parameter, the theory is multiplicatively renormalizable. We
will make use of the renormalization factors for the coupling constant g and the gauge field
Aµ. these are well known in QCD to the order we need.

2.1.1 Of Wilson loops

The renormalization of Wilson loops depends on their path. The case of a smooth non-
intersecting loop is the simplest. In dimensional regularization, their renormalization is
complete when the coupling constant and the gauge field have been renormalized [4, 13].
The renormalized loop takes the form

ΦR(C) = P exp

(
−iZgZ1/2

A g

∮
dzµAµ(z)

)
. (2.5)

Wilson loops containing cusps, i.e. points where the contour is not smooth, have additional
divergences. A cusp is characterized by its two tangent vectors ν1 and ν2. The cusp
divergence is a function of the angle γ12 between the vectors. This angle is defined in
Minkowski space as cosh γ = ν12√

ν21ν
2
2

, where ν12 = (ν1 · ν2). If both vectors are off lightcone,

the cusp divergence can be multiplicatively renormalized by a factor Zγ [13]. For loops
with a finite amount of cusps off lightcone, multiply by the renormalization factor of each
cusp.

In the RGE for cusped Wilson lines, the cusp renormalization factors give rise to the
cusp anomalous dimension. The RGE comes from the independece of the original loop
Φ(C) = ZγΦR(C) on µ. Differentiating with respect to µ we have

µ
d

dµ
ZγΦR(µ2;C) =

(
µ
∂

∂µ
+ β

∂

∂g
+ Γcusp(γ,g)

)
ΦR(µ2;C) = 0 (2.6)

where Γcusp(γ, g) = µ
Zγ

dZγ
dµ

is the cusp anomalous dimension and β = µ
Zg

∂Zg
∂µ

.

The cusp anomalous dimension has been known to two-loop order for a long time [15].
To three-loop order it was calculated in [16].

When one or both of the vectors are on light cone, this is not valid anymore. This
follows from the fact that when ν approaches lightcone, γ(ν1, ν2) blows up. For large γ, it
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Figure 2: Renormalization of loops with self-intersection mixes all possible ways of con-
necting incoming with outgoing lines.

is proven in [24] that Γcusp is linear in γ to all orders in perturbation theory. Then we see
in [15] that by explicit calculation ΦR is finite. The RGE equation cannot be satisfied.

Nevertheless, it is possible to find a similar equation that does hold [15]. The trick is
to differentiate Γcusp(γ, g) with respect to ν12. This will remove all dependence on ν2. This
removes the problem of Γcusp(γ, g) blowing up. Integrate back over ν12 to find(

µ
∂

∂µ
+ β

∂

∂g
+

)
ΦR(µ2;C) = −Γcusp(g) log ν12 − Γ(g) (2.7)

where Γ(g) is some integration constant. This let’s us find Γcusp(g) from knowing ΦR.
For Wilson lines with endpoints, they will also contribute with renormalization factors

[12] and a corresponding endpoint anomalous dimension. In this thesis, we study semi-
infinite lines with endpoints at infinity. We will introduce a regulator that exponentially
suppresses these contributions.

For completeness, we also mention the case where loops self-intersect. This case reduces
to the case with cusps [14]. There is mixing between all ways of connecting the incoming
lines with outgoing lines, see figure 2.1.1.

2.2 Feynman diagrams

We are looking to calculate the vacuum averages of Wilson lines. Here is where the ma-
chinery of QFT comes in. The path integral approach takes us quickly to what we need.
As any introductory textbook on QFT explains, the vacuum average of an operator can
be calculated as

〈O〉 =
1

Z0

∫
DAOeiS0[A]+iSint (2.8)

where Z0 is the same integral without the operator O and the integration is over all
possible configurations of the fields A. This is very similar to calculating expectation
values in statistical mechanics using the partition function. With functional derivatives we
can write it as

〈TO[A]〉 = Z−1
0 e

∫
dxdx′

2
δ

δAx
∆(x,x′) δ

δAx′O[A]eiSint[A]

∣∣∣∣
A=0

. (2.9)

A derivation is in appendix C. For perturbative calculations, expand the exponentials in
a power series. The functional derivatives will act according to the ordinary product rule
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Figure 3: The Feynman graph for
∫ δO(x1)

δA(x1)
∆(x1, x2) δO

′(x2)
δA(x2)

δO′(x3)
δA(x3)

∆(x3, x4) δO
′(x4)

δA(x4)

for derivatives, generating a large amount of terms. These can be kept track of using
Feynman diagrams. When n functional derivatives act on operator, such as F or those
in Sint, denote it by a vertex with n external legs. These vertices are joined up by the
propagator ∆(x, x′). As an example, with two operators O and O′, in figure 3 the graph

corresponding to the term
∫

δ
δA1
O|A=0∆(x1, x2)∆(x3, x4) δ

δA2

δ
δA3

δ
δA4
O′
∣∣∣∣
A=0

is pictured. We

have completely glossed over the combinatorial factors.
In appendix we present the Feynman rules for QCD and a derivation of the Feynman

rules for the semi-infinite Wilson lines we study.
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3 Wilson lines

3.1 Definitions, elementary properties

Consider we have a contour consisting of the points z(τ) with τ ∈ [0, 1] and z(0) = a, z(1) =
b. At each point z on the contour we have the tangent vector γµ(z(τ)). Define the Wilson
line to satisfy

γµ(z(τ))
−→
DµΦ(z(τ), b) = 0

Φ(z(τ), z(τ)) = 1

Φ(a, z(τ))Φ(z(τ), b) = Φ(a, b)

(3.1)

for each z. Here, the covariant derivative is Dµ = ∂µ − igAµ. The reason for introducing
the parameter τ , rather than just using z, is to avoid ambiguities in the path taken. If the
contour loops back on itself, z does not specify the path. The equation Φ(z, z) = 1 only
holds when it refers to the trivial path of a single point. Being aware of this, we will drop
τ for simplicity.

Basing on these equations let us prove some basic properties of wilson lines. From
the first two equations one can derive how the covariant derivative acts on the second
argument.

γµ(z)Φ(a, z)
←−
Dµ = 0 (3.2)

The transformation properties of the gauge field A determines the transformation prop-
erties of the Wilson line Φ. The gauge field A transforms as

Aµ(z)→ U(z)Aµ(z)U †(z)− i

g
(∂µU(z))U †(z). (3.3)

The covariant derivative transforms as Dµ(z) → U(z)Dµ(z)U †(z). Then if Φ → Φ′, one
has

γµ(z)U
−→
DµU

†Φ′(z, b) = 0

γµ(z)Φ′(a, z)U
←−
D†µU

† = 0.

Φ′(a, z)Φ′(z, b) = Φ′(a, b).

(3.4)

Clearly, the transformation Φ(a, b) → U(a)Φ(a, b)U †(b) satisfies all of these equations.
Under hermitian conjugate, the first equation in (3.1) becomes

γµ(z)Φ†(z, a)
←−
Dµ = 0. (3.5)

Comparing with equation (3.2), we find that

Φ(a, b)† = Φ(b, a). (3.6)

Finally, Φ is unitary: Φ(a, b)Φ(a, b)† = Φ(a, b)Φ(b, a) = Φ(a, a) = 1.
It is clear from the definition that Φ is invariant under rescaling of the tangent vector.
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We will look at semi-infinite straight Wilson lines Φν(0,∞). These are specified by the
constant tangent vector ν. The unbounded integration gives rise to an infrared divergence.
To regularize it, we introduce a regulator that exponentially suppress the integrand away
from the origin. This amounts to including a factor e−δτ for each A. The regularized
Wilson line takes the form

Φν(0,∞) = 1− ig
∫ ∞

0

Aµe
−δτ1vµdτ1 (3.7)

− g2

∫ ∞
0

dτ1

∫ ∞
τ1

dτ2Aµ(τ1)Aν(τ2)e−δ(τ1+τ2)vµvν + ... .

Using the path ordering operator, which orders the fields later along the path to the right
of earlier fields, we write the solution compactly as

Φν(0,∞) = P exp

(
−ig

∫ ∞
0

Aµe
−δτvµdτ

)
. (3.8)

The path ordering acts termwise in the expansion of the exponential.
Such a regulator is used in for example [25], but with δ

√
ν2 instead of just δ. This

factor is there to make sure the integral is invariant under rescaling of the tangent vector.
However, we consider Wilson lines on lightcone where ν2 = 0. Therefore, this factor is not
available to us. We will come back to this when we study the cusp with three lines.

WRITE THIS Infrared divergences.

3.2 Exponentiation

The exponentiation of disconnected diagrams is standard material in textbooks like [10].
We present similar arguments here, tailored to our purpose. Exponentiating means that
a sum of diagrams can be represented as the exponential of another sum of diagrams.
Connected diagrams play a crucial role here. If a diagram is made out of disconnected
pieces, the diagram is equal to the product of those pieces.

Consider an operator of the form O = eF . For a moment, we assume F to be a scalar
operator, so that there is no trouble with reordering. Expanding O in a power series, we
find terms like F

n

n!
. This operator gives rise to diagrams with n insertions of F -vertices. We

can factor such a diagram into connected pieces Ci. Denote by ki the number of F -vertices
in the piece and by mi the number of such pieces in the diagram. Taking into account
the combinatorics of how many ways one can partition the F -vertices into the connected
pieces, the diagram is ∏

i

Cmi
i

ki!mi!
. (3.9)

The series for 〈O〉 is the sum of all such diagrams. It’s easy to see that all terms are
generated by

exp

(∑
i

Ci
k!

)
. (3.10)
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Figure 4: The diagrammatic relation that allows for exponentiation at two-loop order. The
crossed diagram should be taken with a modified color factor.

where the sum runs over all connected diagrams. We conclude that operators of the
form O = eF exponentiate. The original series which includes disconnected diagrams is
generated by the exponential of a series of only connected diagrams. Abelian Wilson lines
can be exponentiated in this manner [19].

If F is a matrix, the order of F -vertices is important. Then different partitions of
F -vertices are not equivalent. Nonetheless, non-abelian Wilson lines also exponentiate
[26, ?, 27, 28], as we will see in the next section.

3.2.1 Non-abelian exponentiation

The non-abelian exponentiation theorem was proven in [27]. That renormalization may
be performed in the exponent was shown in [28].The fact that the perturbative series can
be presented by the exponential of another series is trivial. One only needs to solve the
following equation for wn.

Φ = 1 +
∞∑
n=1

(αs
π

)n
Wn = exp

∞∑
n=1

(αs
π

)n
wn. (3.11)

The non-abelian exponentiation theorem [27] [28] specifies the form of wn. It states that
wn consists of the same diagrams as Wn, but with modified color factors. The advantage of
the approach is that only a subset of diagrams, called webs, have non-zero modified color
factors. Webs are those diagrams which cannot be separated into two lower order diagrams
by two cuts of Wilson lines.

Considering cusp anomalous dimension at two-loop order with the help of webs, we can
eliminate one diagram. On the diagrammatic level, it works like figure 4 shows. The ladder
diagram can be eliminated in the exponent, while the crossed diagram must be taken with
a modified color factor.

3.2.2 Generating Function approach

This approach is explained in detail in [19, 20]. Here, we extract only the general idea and
some expressions we need.

In the previous section, the Wilson line Φ has been expressed as a path ordered expo-
nent, but it can be represented by an ordinary exponential. The price to pay is that the
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exponent is more complicated.

Φ(a, b) = exp

(
∞∑
k=0

Ωk(a, b)

)
(3.12)

where Ωk ∼ gk. The series is known as the Magnus series. It resembles the Baker-Campbell-
Hausdorff formula, but we don’t need the exact form of it. It is important to us that each
term consists of completely nested commutators of the gauge field A. Using algebra of
generators [

ta, tb
]

= fabctd, (3.13)

where fabc is the structure constant, one can extract single generator out of the commu-
tators and each Ωk can be written as Ωk = taV a

k , where V a
k ∼ gk. Only non-comutativity

of the generators prevent us from the ordinary exponentiation with connected diagrams.
The trick is to replace generators by scalars ta → Ma, one for each generator. We can at
any stage go back to matrices by means of the matrix shift operator. Action of the matrix
shift operator on a scalar function f(x) is defined by

f̃(t) = exp

(
ta

∂

∂xa

)
f(x)

∣∣
x=0

, (3.14)

where ˜ denotes the matrix function .
Following [?], we introduce the scalar Wilson line

φ = eM
aVa . (3.15)

Its vacuum expectation value can be exponentiated in the usual manner.

〈φ〉 = eW [M ] (3.16)

where W [M ] is a sum over connected diagrams with insertions of Va-vertices. Shifting back
to matrices we have

〈Φ〉 = exp

(
ta

∂

∂Ma

)
eW [M ]

∣∣
M=0

(3.17)

The matrix shift and the exponential do not commute, hence 〈Φ〉 6= exp
(
W̃ [T ]

)
. By

defining the defect of exponentiation as

δ̃W [T ] =

[
log, exp

(
ta

∂

∂Ma

)]
eW [M ]

∣∣∣∣
M=0

, (3.18)

we obtain the expectation value of the Wilson line

〈Φ〉 = eW̃ [T ]+δ̃W . (3.19)
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The defect is a function of W̃ [T ], which is called the kernel of matrix exponentiation
(MEK). For perturbative calculations, it is convenient to decompose it into orders of g:

δ̃W =
∑∞

n=1 δ̃nW , where δ̃nW ∼ gn. A recursive formula for the defect is

δ̃nW [T ] =
1

n!
{W̃ n} −

n∑
k=2

1

k!

∑
i>1,

∑
i=n

(
δ̃i1W...δ̃ikW

)
, (3.20)

where δ̃1W = W̃ . We write down the explicit formula at second order as we will use it
later,

δ̃2W [T ] =
1

2

(
{W̃ 2} −

(
W̃
)2
)
. (3.21)

It is useful to represent the MEK in the following form

W̃ =
N∑
k=1

tak〈V a
γk
〉+

N∑
k,l=1
k<l

takt
b
l 〈V a

γk
V b
γl
〉+

N∑
k

(t
{ab}
k

2!
〈V a

γk
V b
γl
〉 (3.22)

+
N∑

k,l,m=1
k<l<m

takt
b
l t
c
m〈V a

γk
V b
γl
V c
γm〉+

N∑
k,l=1
k<l

t
{ab}
k

2!
tcl 〈V a

γk
V b
γk
V c
γl
〉+

N∑
k,l=1
k<l

takt
{bc}
l

2!
〈V a

γl
V b
γk
V c
γk
〉

+
N∑
k=1

t
{abc}
k

3!
〈V a

γk
V b
γk
V c
γk
〉+ ... ,

where t{a1...an} is the symmetric sum of the generators tai weighted by 1
n!

, the dots denote
the correlators with the higher number of operators V , that are not neccesary in this work.
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Figure 5: All diagrams contributing to the cusp on lightcone up to two loops. Diagram e
is the one-loop contributions to the gluon propagator including counterterms.

4 Cusp for two lines on light cone

In this section we consider a configuration of two lightlike Wilson lines forming a cusp.
Their directions will be denoted ν1 and ν2. For evaluation we will use dimensional reg-
ularization in the MS-scheme, defined in ??, for regulation of ultraviolet divergences;
δ-regularization defined in ?? for regularization of collinear divergences. Soft divergences
should not appear in our calculation, however to prevent possible problems we used a finite
shift of Feynman propagator ∆.

We will calculate the cusp on lightcone up to two loops. There are many diagrams
which contribute to this quantity. However, for our configuration all diagrams with one
or more propagators that start and end at the same Wilson line are zero, since they
are proportional to ν2 = 0. Since we are working in exponentiated form, the ladder
diagram is absent and the crossed diagram should be taken with a modified color factor
CF (CF − CA/2) → −CFCA/2. The remaining non-zero diagrams contributing to the
exponent are shown in figure ??. Diagram b comes with a modified color factor.

In the following we present the results of the calculation and comment on the course of
evaluation. In appendix A, we present the calculation of diagram c in momentum space.

4.1 One-loop

Only diagram a in figure 5 contributes at the one-loop level. Let us perform the one-loop
calculation in the coordinate space. The Feynman rules can be used in calculation can be
found in the appendix B.

The diagram a is the one-gluon-exchange diagram. Its color factor is taikt
a
kj = CF δij. Its

kinematic part is

− g2ν12

∫
dx1,2

∫ 0

∞
dτ1

∫ ∞
0

dτ2δ(ν1τ1 − x1)δ(ν2τ2 − x2)∆(x1 − x2)e−δ(τ1+τ2) (4.1)

where we introduce the shorthand notation ν12 = ν1ν2. The expression for the Feynman
propagator in the coordinate space reads

∆(x− y) =
Γ(1− ε)

4π2−ε
gµνδab

(−(x− y)2 + i0)1−ε . (4.2)
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Integrating expresion (4.1) over x we find

−g2ν12Γ(1− ε)
4π2−ε

∫ ∞
0

∫ ∞
0

dτ1dτ2
e−(τ1+τ2)δ

(2ν12τ1τ2 + i∆)1−ε = −2g2
( ν12

2δ2

)ε Γ(1− ε)
(4π)2−ε Γ(ε)2. (4.3)

The ∆ regulator can be removed, as the dimension regularization and δ-regularization is
enough to regularize the divergences of the integral. Then the evaluation of (4.3) consists
of only Γ function integrals.

From equation (2.7), we find the cusp anomalous dimension at one loop as

Γcusp(α) =
αs
π
CF . (4.4)

This expression coincides with the well known value calculated, see for example [4].

4.2 Two-loop

At two-loop order, we have three diagrams (but note that diagram c also contributes with
permuted lines).

The blob in diagram d is the renormalized gluon propagator at one-loop. It adds the
contribution of quark-, gluon- and ghost-loops, with corresponding counterterms, within
the propagator. In MS-scheme the glion-polarization operator is

Πµν
ab (k) = iδab

αs
4π

(
gµνk2 − kµkν

) [
(CA (5− ε)− 4 (1− ε)Tfnf )

(
−µ2

k2 + i∆

)ε
× Γ2(1− ε)
ε(3− 2ε)Γ(1− 2ε)

− 1

ε

(
5

3
CA −

4

3
Tfnf

)]
(4.5)

where the last term in the parenthesis represents the counterterms.
In our regularization, the kµkν part of this propagator creates problems. In fact, that

term should be removed from the calculation for the following reasons. Recall that δ
regulates collinear divergences and ∆ regulates soft divergences. The soft divergences
cancel in the sum of diagrams while the collinear may remain. With (kµ1 )(kν2) in the
numerator, the δ is not needed to regularize the integral. But, we do find a δ in the result.
We conclude that it has forcibly taken the job of ∆, regularizing a soft divergence. The soft
divergences of this diagram should cancel with those in the kµkν part of the self-interaction
diagrams. But since we are one lightcone, those diagrams disappear. We conclude that
we must set this part to zero as well, in order to support gauge invariance violated by
δ-regulation. In all expressions below, the kµkν contribution has been removed.
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The expression for individual diagrams and results of their evaluation are

w1-loop = iCFg
2ν12

∫
ddk

(2π)d
1

(k2 + i∆)(kν1 − iδ)(kν2 + iδ)
(4.6)

= −2
αs
4π
CF e

LεΓ(1− ε)Γ(ε+ 1)

ε2
(4.7)

wcross =
CFCA

2
g4ν2

12

∫
ddkddl

(2π)2d

1

(k2 + i∆)(l2 + i∆)

× 1

(kν1 − iδ)((k + l)ν1 − 2iδ)(lν2 + iδ)((k + l)ν2 + 2iδ)
(4.8)

= −
(αs

4π

)2 CACF
2

e2LεΓ
2(1− ε)Γ2(ε+ 1)

ε4
(4.9)

w3g =
CFCA

2
g4ν12

∫
ddk1,2,3

(2π)3d

δ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)

× ν1(k1 − k2)

(k1ν1 − iδ)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)
(4.10)

=
(αs

4π

)2

CACF e
2LεΓ(1 + 2ε)2Γ(1− 2ε)

4ε3Γ2(1 + ε)

(
Γ(1− ε)Γ(1 + ε)

ε

− 21−2εΓ2(1− ε)
Γ(2− 2ε)

)
(4.11)

wse + wse,ct = −CFg2

∫
ddk

(2π)d
νµ1 ν

ν
2 Πµν(k)

(k2 + i∆)2(kν1 − iδ)(kν2 + iδ)
(4.12)

wse = −
(αs

4π

)2

CF e
2Lε Γ2(1− ε)Γ2(1 + 2ε)

2ε3(1− 2ε)Γ2(1 + ε)

CA(5− 3ε)− 4nfTf (1− ε)
3− 2ε

(4.13)

wse,ct = −2
(αs

4π

)2

CF e
LεΓ(1− ε)Γ(1 + ε)

ε3

(
5CA − 4nfTf

3

)
, (4.14)

where we define for convenience

L = log

(
ν12µ

2

2δ2

)
.

We observe that the parameter ∆ does not appear in our result.
At two-loop level one should also include the the renormalization constants of the gauge

field and the gauge coupling. The renormalization factor ZgZ
1/2
3 = 1 − CA

αs
4πε

+ O(α2
s)

contributes with a term proportional to the one-loop result. Adding all pieces together we
have (αs

4π

)2

w2 = wcross + 2w3g + wse + wse,ct + (Z2
gZ3 − 1)w1−loop (4.15)

= CF

(αs
4π

)2

(AL3 +BL2 + CL1) + finite terms. (4.16)
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Figure 6: The set of diagrams in the generating function approach. The ellipse means the
symmetrized sum of vertex-orderings. Figure taken from [20].

where

A =− (11CA − 4nfTf )

9
, B = CA

(
2π2

3
− 67

9
+ log(4)

)
+

20nfTf
9

,

C =− CA
(

2ζ(3) +
11π2

9
+

404

27
+ 4 log2(2)− 8 log(2)

)
+ nfTf

(
112/27 + (4π2)/9

)
.

The corresponding cusp anomalous dimension is

Γcusp = CF

(αs
π

)
+
(αs
π

)2 CF
36

(CA(67− 6π2 − 36 log(2))− 20nfTf ). (4.17)

This expression does not coincide with the well known value of Γcusp:

Γcusp =
(αs
π

)
CF +

(αs
π

)2 CF
36

(CA(67− 3π2)− 20nfTf )

for the first time calculated in [15]. One can see that we have an additional term pro-
portional to π2 and log 2. For the moment, we do not have complete explanation of this
discrepancy. However, we suppose that these terms are artificial and arise from the δ-
regulator. That observation is novel and have not been discussed in the literature to our
best knowledge.

4.2.1 In generating function approach

In the generating function approach, a different set of diagrams arises. These are shown in
figure 6. In [20], these diagrams are compared to the previous ones to find how their con-
tributions are encoded in the MEK and the defect. Here we give present short conclusion.

Diagrams F, G, H, I are zero because of the contraction of antisymmetric three-gluon
vertex with the symmetric sum of generators on one line. Diagrams A,C,D and E are equal
to their corresponding diagrams in the ordinary approach.

The main difference of the approach is in the diagram B. This is not surprising, as in
the ordinary exponentiation it is the ladder and crossed ladder diagrams that combines to
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make exponentiation possible. It has been shown in [20], that on the lightcone, diagram
B is zero. Therefore, the two-gluon exchange diagrams are given entirely by the defect,
which is a function of the one-loop result. The defect was calculated in [20] and found to
be

δ̃W2 = −CA
CF

w2
1

8
. (4.18)

This expression coincides with our expression ??. That implies that both approaches to
exponentiation are equivalent.
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5 Three cusp

We will work entirely in the generating function approach for this cusp. For three Wilson
lines, we get additional diagrams. The previous diagrams with permuted Wilson lines and
new diagrams in which all three lines are connected. Figure 7 shows the new diagrams.
We omit the cusp as it is convenient to consider each line in a different matrix space. They
can in the end be joined up in the desired order.

Compare approaches.

Figure 7: For the three-cusp in the generating function approach, these are the additional
diagrams one needs to consider. Diagram 3a reduces to a product of already calculated
diagrams. Diagram 3b is zero. Diagram 3c vanishes when we restore scale-invariance by
modifying our δ regulator.

Diagram 2b. This diagram comes from the term ta1t
b
2t
c
3〈V a

ν1
V b
ν2
V c
ν3
〉, where the subscript

on the generators denote which matrix space it’s in. The lowest order term from this
diagram takes V1 for two lines and V2 for the remaining one. On lightcone, this is zero.
This can be seen before doing any integrals. The diagram is proportional to the integral∫ ∞

0

dx1,2dy1,2
(θ(x1 > x2)− θ(x2 > x1))e−δ(x1+x2+y1+y2)

(2x1y1ν12 + i0)1−ε(2x2y2ν23 + i0)1−ε (5.19)

The +i0 can be removed since ε regularizes the integral. Removing it, the integral vanishes
by symmetry. The same argument is the reason why diagram B vanishes in figure 6. This
argument generalizes to all multiple gluon exchange webs [20], those diagrams with no
direct interaction among gluon.

Let’s consider diagram 3a. This diagram is the lowest order contribution from
1
2!
ta1t

bb′
2 tc3〈V a

ν1
V b
ν2
V b′
ν2
V c
ν3
〉.

〈V a
1 V

b
2 V

b′

2 V
c

3 〉 = −
(
δabδb

′c + δab
′
δbc
)
g4

(
Γ(1− ε)

4π2−ε

)2

(5.20)

×
∫ ∞

0

dx1,2dy1,2
e−δ(x1+x2+y1+y2)

(2x1y1ν12 + i0)1−ε(2x2y2ν13 + i0)1−ε

Up to color factors, it is essentially the product of two one-gluon exchange diagrams.

w3a = 2ta1t
c
3 (tatc + tcta)2

(αs
4π

)2 Γ2(1− ε)Γ2(1 + ε)

ε4

(
ν12µ

2

2δ2

)ε(
ν13µ

2

2δ2

)ε
(5.21)
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Diagram 3c arises in both the generating function and the ordinary approach. On
lightcone, it has been calculated in [22]. They find that is is zero.

For diagram 3c, the details are in appendix A.2. The calculation there reveals that
it vanishes when we choose a suitable δ for each line. For line 1 one should choose the
regulator δ1 = δ

√
ν12ν13
ν23

, and for the other lines cyclic permutations of it. We then have to

go back and rescale the δ’s for the previous results as well. This is very simple; the result is
that all the scalar products νij in the logs disappear. Actually, [23] finds that is zero even
keeping the scalar products. I get this numerically as well, but what symmetry-argument
works?

What remains is the defect. It is a function of the one-loop which we write as

w1 = ta1t
a
2w12 + ta2t

a
3w23 + ta1t

a
3w13 (5.22)

where wij is the one-gluon exchange diagram between lines i and j. For the defect we
need w2

1. w2
1 will contain two classes of terms, squares and cross terms. We only need to

consider one representative from each.

w2
1 = ta1t

b
1t
a
2t
b
2w

2
12 + (ta1t

b
1 + tb1t

a
1)ta2t

b
3w12w13 + ... (5.23)

Let’s look at the square.

1

2

(
1

4
(ta1t

b
1 + tb1t

a
1)(ta2t

b
2 + tb2t

a
2)− ta1tb1ta2tb2

)
=
CAt

a
1t
a
2

8
(5.24)

Need to discuss sign
The defect removes the symmetric part of the color factor. The cross term is fully

symmetric in color space, hence the cross terms disappear.
At two-loop order, the three-cusp is completely determined by the interactions between

pairs of lines.
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6 Conclusion

In the thesis, we have presented one and two loop calculation involving lightcone wilson
lines. We have considered both in traditional and generating function approach to expo-
nentiation. We found agreement between these approaches. Conclude which is better. The
two loop calculation in the generating function approach is done for the first time, and will
serve as a base for the future publication.

We have considered the problems arising from the use of the δ-regulator. These prob-
lems include violation of guage invariance and scale invariance, and we present possible
solutions to these problems. We conclude that while the δ-regulator, which has been known
as very convenient at one-loop order, it presents difficulties at two-loop order. We could
solve these at two-loop order with reasonable efforts, at higher orders they can present
serious problems, making the δ-regulator inappropriate for use for lightlike Wilson line
configurations.

We have observed that the two-loop cusp anoamlous dimension calculated within δ-
regulator differs from the standard value by terms proportional to π2 and log 2. We con-
clude that this terms are artificial and are a result of the usage of δ-regularization for
lightlike Wilson lines. This observation is novel.

The results of our presented work are to be used for three-loop anomalous dimension.
Within the generating function approach, the results of the calculation can be used for
calculation of defect of exponentiation at all loop order, which may have important appli-
cations in diffractive processes. Our calculation confirms the dipole formula for soft factor
[?], which is widely used for description of multi-hadron processes at high energies.
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A Sample calculations

A.1 W3g calculation

In this section, we show in detail one way of calculating diagram c in figure 5.

I3g =

∫
ddk1,2,3

(2π)3d

(2π)dδ(k1 + k2 + k3)((2k1ν1 − iδ)− ((k1 + k2)ν1 − 2iδ))

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)

(A.1)
The integral splits in two simpler ones by cancellation of numerator and denominator.

I3g = 2I3g1 − I3g2 (A.2)

Calculation is basically the same, so we only consider

I3g1 =

∫
ddk1,2,3

(2π)3d

(2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)

. (A.3)

Use α-representation (equation E.7) for each propagator, introducing 5 new integration
parameters going from 0 to ∞. For notational simplicity, we will not explicitly write the
new integration variables and intervals. In addition, represent the Dirac delta function by
δ(a) =

∫∞
−∞

ddx
(2π)d

e−ixa. With all momentum in the exponent, complete the squares to get
Gaussian integrals over momentum

I3g1 = i−1

∫
ddk1,2,3d

dx

(2π)3d
exp

(
iα1

(
k1 −

x+ β1ν1

2α1

)2

+ iα2

(
k2 −

x+ β1ν1

2α2

)2

+ iα3

(
k3 −

x− β2ν2

2α3

)2

− i α123

4α1α2α3

(
x+

α1α2α3

α123

(
β1ν1

α1

+
β1ν1

α2

− β2ν2

α3

))2

− iα1 + α2

2α123

β1β2ν12 −∆(α1 + α2 + α3)− δ(2β1 + β2)

)
(A.4)

where α123 = α1α2 +α2α3 +α3α1. Doing the Gaussian integrals as in equation E.9 we find

I3g1 =
i−1+d−2

(4π)d

∫
α
−d/2
123 exp

(
− iα1 + α2

2α123

β1β2ν12−∆(α1 + α2 + α3)− δ(2β1 + β2)
)
. (A.5)

Inserting 1 =
∫∞

0
dλ
λ
δ(1− λ

∑
α) and rescaling αn → αn/λ we find

I3g1 =
id−3

(4π)d

∫
λ−4+dα

−d/2
123 δ(1−

∑
α) exp

(
− iλα1 + α2

2α123

β1β2ν12 −∆/λ− δ(2β1 + β2)
)
.

(A.6)
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The regulator ∆ is used only for it’s sign. So we may change ∆/λ → ∆λ. The λ integral
followed by the β integrals is straightforward, resulting in

I3g1 =
22d−7

(4π)d
Γ(d− 3)Γ(4− d)2δ2d−8ν3−d

12

∫
α
d/2−3
123 (α1 + α2)3−dδ(1−

∑
α). (A.7)

The Cheng-Wu theorem [29] can be applied here, which states that we may choose any
subset of α’s in the delta function. Choose α1 +α2. Then the remaining α integrals present
no difficulties. The result is

22d−7

(4π)d
Γ(d− 3)Γ(4− d)2δ2d−8 ν3−d

12

2− d/2
Γ(d/2− 1)2

Γ(d− 2)

= ν−1
12

21−2ε

(4π)4−2ε
Γ(1− 2ε)Γ(2ε)2

( ν12

2δ2

)2ε 1

ε

Γ(1− ε)2

Γ(2− 2ε)
.

(A.8)

A.2 Calculation of 3cusp with 3gluon vertex

Figure 8: The only diagram requiring some effort of those where all three lines interact.

V1 on each line, 3 gluon vertex:

− g4δaa
′
δbb
′
δbb
′
fa
′b′c′νµ11 νµ22 νµ33 Iµ1µ2µ3 (A.9)

where

Iµ1µ2µ3 =

∫
ddpddk

(2π)2d

Vµ1µ2µ3(−k, p, k − p)
(k2 + i∆)(p2 + i∆)((p− k)2 + i∆)(kν1 − iδ)(pν2 + iδ)((p− k)ν3 − iδ)

(A.10)

Iµ1µ2µ3 =

∫
ddk1d

dk2d
dk3

(2π)3d

Vµ1µ2µ3(−k1,−k2,−k3)(2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)(k2ν2 − iδ)(k3ν3 − iδ)

.

(A.11)
All terms from coming from the three gluon vertex can be obtained by substitutions from
the integral

Iµ1 =

∫
ddk1d

dk2d
dk3

(2π)3d

kµ1 (2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)(k2ν2 − iδ)(k3ν3 − iδ)

.

(A.12)
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The index on Iµ refers to the which line the kµ in the numerator is related to. It is
convenient to use kµ = ∂

∂zµ
ekz
∣∣
z=0

to write the integral as

I1µ =
∂

∂zµ

∫
ddk1d

dk2d
dk3

(2π)3d

(2π)dδ(k1 + k2 + k3)ek1z

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)(k2ν2 − iδ)(k3ν3 − iδ)

∣∣∣∣∣
z=0

.

(A.13)
This can be decomposed into

Iµ1 = I11ν
µ
1 + I12ν

µ
2 + I13ν

µ
3 . (A.14)

Contracting the ν’s with the three-vertex shows that the diagram is proportional to

ν12ν23(I12 − I32) + ν23ν31(I23 − I13) + ν31ν12(I31 − I21) (A.15)

= (ν12ν23I12 − ν23ν31I13) + (ν23ν31I23 − ν31ν12I21) + (ν31ν12I31 − ν12ν23I32). (A.16)

Let’s manipulate I1 into a form where we can extract I12. All Iij with i 6= j can
be obtained from it by substitutions. We represent the Dirac delta function by δ(k) =∫∞
−∞

ddx
(2π)d

e−ixk. Send all propagators to α-representation, introducing 6 new parameters
with integration regions from 0 to ∞. Completing the squares in the exponent we get

I1µ =
∂

∂zµ

∫
ddk1,2,3d

dx

(2π)d
dα1,2,3dβ1,2,3 exp

{
iα1

(
k1 −

x+ β1ν1 − z
2α1

)2

+ iα2

(
k2 −

x+ β2ν2

2α2

)2

+ iα3

(
k3 −

x+ β3ν3

2α3

)2

− i α123

4α1α2α3

(
x+

α1α2α3

α123

(
− z

α1

+
β1ν1

α1

+
β2ν2

α2

+
β3ν3

α3

))2

+i
α1α2α3

2α123

(
β1β2ν12

α1α2

+
β2β3ν23

α2α3

+
β3β1ν31

α3α1

)
−i z
α1

α1α2α3

2α123

(
−β1ν1

(
1

α2

+
1

α3

)
+
β2ν2

α2

+
β3ν3

α3

)
−∆Σα− δΣβ

}∣∣∣∣
z=0

(A.17)

where α123 = α1α2 + α2α3 + α3α1. Terms with z2 have been removed as they will vanish
when we take the z derivative. First we do the Gaussian integrals.

I1µ =
id−2

(4π)d
∂

∂zµ

∫
dαdβα

−d/2
123 exp

{
i
α1α2α3

2α123

(
β1β2ν12

α1α2

+
β2β3ν23

α2α3

+
β3β1ν31

α3α1

)
− i z

α1

α1α2α3

2α123

(
−β1ν1

(
1

α2

+
1

α3

)
+
β2ν2

α2

+
β3ν3

α3

)
−∆Σα− δΣβ

}∣∣∣∣
z=0

(A.18)

Now the z-derivative

I1µ =
id−3

2(4π)d

∫
dαdβα

−d/2−1
123 (−β1ν1µ (α2 + α3) + α3β2ν2µ + α2β3ν3µ)

exp

{
iω

2α123

−∆Σα− δΣβ
}
. (A.19)
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Where ω = β1β2ν12α3 + β2β3ν23α1 + β3β1ν31α2. From here we can read off I12 as

I12 =
id−3

2(4π)d

∫
dαdβα

−d/2−1
123 α3β2 exp

{
iω

2α123

−∆Σα− δΣβ
}

(A.20)

Rescale the β’s by β1 →
√

ν23
ν12ν13

β1 and similar for the other β’s. This removes all scalar

products from ω, call it ω′.

I12 =
id−3

2(4π)d
1

ν12ν23

∫
dαdβα

−d/2−1
123 α3β2 exp

{
iω′

2α123

−∆Σα

− δ

(
β1

(
ν23

ν12ν13

)1/2

+ β2

(
ν13

ν21ν23

)1/2

+ β3

(
ν12

ν13ν23

)1/2
)}

(A.21)

Taking the first parenthesis from equation A.16, it is proportional to

(ν12ν23I12 − ν23ν31I13) ∝
∫
dαdβα

−d/2−1
123 (α3β2 − α2β3) exp

{
iω′

2α123

−∆Σα

− δ

(
β1

(
ν23

ν12ν13

)1/2

+ β2

(
ν13

ν21ν23

)1/2

+ β3

(
ν12

ν13ν23

)1/2
)}

. (A.22)

This would be antisymmetric (and therefore =0) under the trivial operation of α1 ↔ α2,
β1 ↔ β2 if it werent for the scalar products in the exponent. This can be fixed by using
a different δ for each line or by making the scalar products equal to each other. Then the
diagram vanishes.

Checking numerically, the following integral seems to vanish even without rescaling,
but I haven’t found the right symmetry-argument.

diagram ∝
∫
dαdβα

−d/2−1
123 ((α3β2+α2β1+α1β3)−(α2β3+α1β2+α3β1)) exp

{
iω′

2α123

−∆Σα

− δ

(
β1

(
ν23

ν12ν13

)1/2

+ β2

(
ν13

ν21ν23

)1/2

+ β3

(
ν12

ν13ν23

)1/2
)}

. (A.23)
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B Feynman rules

B.1 QCD

Quark propagator

i
γµpµ
p2

(B.1)

Gluon propagator
−iδab
p2

gµν (B.2)

Renormalizing to one-loop order adds the contribution Πµν
ab (p) =

iδabαs
(
gµνp2 − pµpν

) [(
CA(

5

3
− ε)− 4

3
(1− ε)Tfnf

)(
−µ2

p2

)ε
Γ2(1− ε)

ε(1− 2ε
3

)Γ(1− 2ε)

− 1

ε

(
5

3
CA −

4

3
Tfnf

)]
(B.3)

Ghost propagator
iδab
p2

(B.4)

Quark-gluon vertex
taig0γ

µ (B.5)

Three gluon vertex

V a1a2a3
µ1µ2µ3

(k1, k2, k3) = −g0f
a1a2a3 ((k3 − k2)µ1gµ2µ3 + (k1 − k3)µ2gµ3µ1 + (k1 − k3)µ2gµ3µ1)

(B.6)
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B.2 Semi-infinite Wilson lines

Image of incoming Wilson line

δ

δA(x1)
. . .

δ

δA(xn)
Φ†ν [0,∞]|A=0θ(xn > · · · > x1) =

(−ig)nta1ik1 . . . t
an
kn−1j

νµ1 . . . νµn×∫ 0

∞
dτ1

∫ 0

τ1

dτ2 . . .

∫ 0

τn−1

dτnδ(τ1ν − x1) . . . δ(τnν − xn)e−δ
∑
i τi (B.7)

ν points from 0 to ∞.
In momentum space:

gnta1ik1 . . . t
an
kn−1j

νµ1 . . . νµn
1

p1ν − iδ
. . .

1

(p1 + · · ·+ pn)ν − inδ
(B.8)

Image of outgoing Wilson line

δ

δA(x1)
. . .

δ

δA(xn)
Φν [0,∞]|A=0θ(x1 > · · · > xn) =

(−ig)ntanikn−1
. . . ta1k1jν

µn . . . νµ1×∫ ∞
0

dτn

∫ ∞
τn

dτn−1 . . .

∫ ∞
τ2

dτ1δ(τ1ν − x1) . . . δ(τnν − xn)e−δ
∑
i (B.9)

In momentum space:

(−g)ntanikn−1
. . . ta1k1jν

µn . . . νµ1
1

p1ν − iδ
. . .

1

(p1 + · · ·+ pn)ν − inδ
(B.10)

In generating function approach: For semi-infinite Wilson lines, the Feynman rules for
V1 and V2 are in position space

V µ1
a,a1

(x1) =− igδaa1νµ1θ(x1 > 0)

V µ1µ2
a,a1a2

(x1, x2) =− ig2faa1a2ν
µ1νµ2(θ(x1 > x2 > 0)− θ(x2 > x1 > 0))

(B.11)

and in momentum space

V a,a1
µ1

(p1) =δaa1νµ1
−ig

(p1ν − iδ)

V a,a1a2
µ1µ2

(p1, p2) =faa1a2νµ1νµ2
ig2

(p1 + p2)ν − 2iδ

(
1

p1ν1 − iδ
− 1

p2ν1 − iδ

) (B.12)
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C Dimensional reduction formula

Z[J ] =

∫
DΦeiS[Φ] (C.1)

where S[Φ] is the action of the theory, DΦ tells us to integrate over all field configurations.
The time ordered expectation value of some operator is then

〈F 〉 =
1

Z[0]

∫
DAF [A]eiS[A]. (C.2)

Dimensional reduction formula.

〈TF [A]〉 =
1

Z[0]

∫
DAF [A]eiS[A] (C.3)

Use functional derivative to shift the argument.

〈TF [A]〉 =
1

Z[0]

∫
DA′eiS0[A′]e

∫
dxA′x

δ
δAxF [A]eiSint[A]

∣∣∣∣
A=0

=
〈
e
δ
δA

〉
0
F [A]eiS[A]

∣∣∣
A=0

(C.4)

The 0 on the brackets means expectation value taken in the free theory. Expanding the
exponential, we get terms proportional to factors like∫

dxk...dx1
1

k!
〈A(xk)...A(x1)〉0 . (C.5)

By Wick’s theorem, the correlator is the product of Feynman propagators summed over
all pairings of fields. Odd terms vanish. The integral over x’s makes all pairs identical,
replacing the sum over pairs by the combinatorial factor k!

2k/2( k
2

)!
. Each term then looks like

1

(k
2
)!

(∫
dxdx′

2

δ

δAx
∆(x, x′)

δ

δAx′

)k/2
(C.6)

This is again an exponential function which gives the result

〈TF [A]〉 =
1

Z[0]
e
∫
dxdx′

2
δ

δAx
∆(x,x′) δ

δAx′ F [A]eiSint[A]

∣∣∣∣
A=0

. (C.7)
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D Algebra

We present here some of the formulas used in the SU(n) algebra SU(N) algebra:

[ta, tb] = ifabctc (D.1)

taikt
a
kj = CF δij (D.2)

taikt
b
kjf

abc = CAδijt
c (D.3)

fabcfabd = CAδ
cd (D.4)

CF =
N2 − 1

2N
(D.5)

CA = N (D.6)

tr[tart
b
r] = C(r)δabd(SU(N)) = N2 − 1 (D.7)
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E Various formulas

Gamma, beta function:

Γ(z) =

∫ ∞
0

tz−1e−tdt (E.1)

Γ(z + 1) = zΓ(z) (E.2)

ln Γ(1 + z) = −γz +
∞∑
k=2

ζ(k)

k
(−z)k (E.3)

Γ(z) =
1

z
− γz +

1

2
(γ2 +

π2

6
)z2 + . . . (E.4)

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
(E.5)

(E.6)

α-representation.
i±λ

(A± i0)λ
=

∫ ∞
0

dααλ−1e±iαA (E.7)

Gaussian integral, k2 = k2
0 − ~k2:∫ ∞
−∞

dxeiax
2

=

√
π

ia
, Im[a] > 0 (E.8)∫ ∞

−∞

ddk

(2π)d
eiak

2

=
1

(4π)d/2
(ia)−1/2(−ia)−(d−1)/2 =

id/2−1

(4π)d/2
a−d/2 (E.9)

Feynman propagator:

∆µν
ab (x− y) =

∫ ∞
∞

ddp

(2π)d
i

p2 + i0
e−ip(x−y) =

Γ(1− ε)
4π2−ε

gµνδab
(−(x− y)2 + i0)1−ε (E.10)

References

[1] S. Mandelstam, “Quantum electrodynamics without potentials,” Annals of Physics,
vol. 19, pp. 1–24, July 1962.

[2] R. A. Brandt, A. Gocksch, M. A. Sato, and F. Neri, “Loop space,” Physical Review
D, vol. 26, pp. 3611–3640, Dec. 1982.

[3] R. Brandt, A. Gocksch, M.-A. Sato, and F. Neri, “Loop space,” Physical Review D,
vol. 26, no. 12, pp. 3611–3640, 1982.

[4] A. M. Polyakov, “Gauge fields as rings of glue,” Nuclear Physics B, vol. 164, pp. 171–
188, 1980.

31



[5] Y. M. Makeenko and A. A. Migdal, “Quantum chromodynamics as dynamics of loops,”
Nuclear Physics B, vol. 188, pp. 269–316, Sept. 1981.

[6] K. G. Wilson, “Confinement of quarks,” Physical Review D, vol. 10, pp. 2445–2459,
Oct. 1974.

[7] J. Collins, “Foundations of perturbative QCD,” 2011.

[8] J. C. Collins, D. E. Soper, and G. Sterman, “Factorization of Hard Processes in QCD,”
arXiv:hep-ph/0409313, Sept. 2004. arXiv: hep-ph/0409313.

[9] J. C. Collins, D. E. Soper, and G. F. Sterman, “Transverse Momentum Distribution
in Drell-Yan Pair and W and Z Boson Production,” Nucl.Phys., vol. B250, p. 199,
1985.

[10] M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory. Read-
ing, Mass: Westview Press, first edition edition ed., Oct. 1995.

[11] M. D. Schwartz, Quantum Field Theory and the Standard Model. New York: Cam-
bridge University Press, 1 edition ed., Dec. 2013.

[12] G. P. Korchemsky and A. V. Radyushkin, “Loop-space formalism and renormalization
group for the infrared asymptotics of QCD,” Physics Letters B, vol. 171, pp. 459–467,
May 1986.

[13] V. S. Dotsenko and S. N. Vergeles, “Renormalizability of phase factors in non-abelian
gauge theory,” Nuclear Physics B, vol. 169, pp. 527–546, Aug. 1980.

[14] R. A. Brandt, F. Neri, and M.-a. Sato, “Renormalization of Loop Functions for All
Loops,” Phys.Rev., vol. D24, p. 879, 1981.

[15] I. A. Korchemskaya and G. P. Korchemsky, “On light-like Wilson loops,” Physics
Letters B, vol. 287, pp. 169–175, Aug. 1992.

[16] A. Grozin, J. M. Henn, G. P. Korchemsky, and P. Marquard, “The three-loop cusp
anomalous dimension in QCD,” Physical Review Letters, vol. 114, Feb. 2015. arXiv:
1409.0023.

[17] E. Gardi, “Progress on soft gluon exponentiation and long-distance singularities,”
arXiv:1401.0139 [hep-ph, physics:hep-th], Dec. 2013. arXiv: 1401.0139.

[18] L. Magnea, “Progress on the infrared structure of multi-particle gauge theory ampli-
tudes,” arXiv:1408.0682 [hep-ph], Aug. 2014. arXiv: 1408.0682.

[19] A. A. Vladimirov, “Generating function for web diagrams,” Physical Review D, vol. 90,
Sept. 2014. arXiv: 1406.6253.

32



[20] A. A. Vladimirov, “Exponentiation for products of Wilson lines within the generat-
ing function approach,” arXiv:1501.03316 [hep-ph, physics:hep-th], Jan. 2015. arXiv:
1501.03316.

[21] T. Becher and M. Neubert, “Infrared singularities of scattering amplitudes in pertur-
bative QCD,” Physical Review Letters, vol. 102, Apr. 2009. arXiv: 0901.0722.

[22] S. M. Aybat, L. J. Dixon, and G. Sterman, “The Two-loop Anomalous Dimension
Matrix for Soft Gluon Exchange,” Physical Review Letters, vol. 97, Aug. 2006. arXiv:
hep-ph/0606254.

[23] S. M. Aybat, L. J. Dixon, and G. Sterman, “The Two-loop Anomalous Dimension
Matrix for Soft Gluon Exchange,” Physical Review Letters, vol. 97, Aug. 2006. arXiv:
hep-ph/0606254.

[24] G. P. Korchemsky and A. V. Radyushkin, “Renormalization of the Wilson loops be-
yond the leading order,” Nuclear Physics B, vol. 283, pp. 342–364, 1987.

[25] E. Gardi, J. M. Smillie, and C. D. White, “On the renormalization of multiparton
webs,” arXiv:1108.1357 [hep-ph, physics:hep-th], Aug. 2011. arXiv: 1108.1357.

[26] G. F. Sterman, “Infrared Divergences in Perturbative {QCD}. (Talk),” AIP
Conf.Proc., vol. 74, pp. 22–40, 1981.

[27] J. G. M. Gatheral, “Exponentiation of eikonal cross sections in nonabelian gauge
theories,” Physics Letters B, vol. 133, pp. 90–94, Dec. 1983.

[28] J. Frenkel and J. C. Taylor, “Non-abelian eikonal exponentiation,” Nuclear Physics
B, vol. 246, pp. 231–245, Nov. 1984.

[29] V. A. Smirnov, “Evaluating multiloop Feynman integrals by Mellin-Barnes represen-
tation,” arXiv:hep-ph/0406052, June 2004. arXiv: hep-ph/0406052.

33


	Introduction
	 
	Renormalization
	Of Wilson loops

	Feynman diagrams

	Wilson lines
	Definitions, elementary properties
	Exponentiation
	Non-abelian exponentiation
	Generating Function approach


	Cusp for two lines on light cone
	One-loop
	Two-loop
	In generating function approach


	Three cusp
	Conclusion
	Sample calculations
	W3g calculation
	Calculation of 3cusp with 3gluon vertex

	Feynman rules
	QCD
	Semi-infinite Wilson lines

	Dimensional reduction formula
	Algebra
	Various formulas

