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Abstract

In this thesis, we consider basic properties of Wilson lines, with special attention devoted
to the renormalization and exponentiation property. We describe the generating function
approach to non-abelian exponentiation and perform the calculation of the correlator of two
and three semi-infinite Wilson lines meeting at a single point to two-loop order. We consider
Wilson lines on lightcone and regularize infrared divergences with a δ-regulator. The three
line calculation is done within the generating function approach. Using this calculation,
we derive the cusp anomalous dimension and soft anomalous dimension at two-loop order.
We discuss the problems arising from the use of the δ-regulator for lightlike Wilson lines,
and conclude that this regularization is inappropriate for higher-loop calculation. The
obtained result is to be used for higher order analysis of the soft factor and can be used
for application in multi-hadron factorization theorems, threshold resummation, etc.
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1 Introduction

Wilson lines are non-local operators in quantum field theory that may be thought of as a
string of the gauge field [1]. They play an important role in describing the long distance
behaviour of forces and can be used to reformulate quantum field theory in terms of loops.
In this thesis, we consider properties of Wilson lines within perturbation theory.

Wilson lines and loops can be applied in the description of hadronic processes in quan-
tum chromodynamics (QCD). In QCD, many processes factorize into a soft and a hard
part, or a long-distance and a short-distance part [2] [3]. The hard part can be treated
within perturbation theory. The soft part involves non-perturbative effects and is usually
parametrized by phenomenological functions (parton distributions). Wilson lines are an
important ingredient in factorization theorems, since they help to reconstruct the infrared
divergences of hadronic processes [4]. In any gauge theory, Wilson lines encode the effect
of soft radiation, i.e. the emission of low energy gauge bosons. The detailed description
of how soft emissions of a highly energetic particle is described by a Wilson line along the
path of the particle can be found in introductory textbooks on QFT such as [2, 5, 6].

In this paragraph, we write down the definition of a Wilson line and introduce necessary
notation. A Wilson line between points a and b along the path C looks like

Φ(a, b;C) = P exp

(
−ig

∫ b

a

dzµAµ(z)

)
(1.1)

= 1− ig
∫ b

a

dzµAµ(z)− g2

∫ b

a

dzµ11

∫ b

z1

dzµ22 Aµ1(z1)Aµ2(z2) + ... (1.2)

where the symbol P denotes path-ordering, Aµ is the gauge field and g is the coupling
constant. The gauge field Aµ is a matrix valued field, it can be written in terms of a
basis of matrices ta, called generators, as Aaµt

a. The generators ta can belong to any
representation of the gauge group. In general, generators do not commute, so the order is
important. Path-ordering specifies that the fields further along the path should be written
to the right of earlier fields. The function P exp should be interpreted as the application
of P to the power series of the exponential.

Wilson lines possess important properties under gauge transformations. The corre-
sponding transformation for the gauge field has the form

Aµ(z)→ U(z)Aµ(z)U †(z)− i

g
(∂µU(z))U †(z),

where U(z) is a matrix of the gauge group. It implies that the Wilson line transforms as

Φ(a, b)→ U(a)Φ(a, b)U †(b),

which we prove in section 3. In particular, it implies that Wilson loops (lines where the
endpoints coincide) are gauge invariant. Partly because of this, a reformulation of gauge
theories in terms of loops rather than the gauge field has been investigated [7, 1, 8, 9].
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Figure 1: Some important classes of loops. A smooth, a cusped, and a cusped crossed loop.

Nowadays, Wilson lines are used in nearly all branches of quantum field theory (QFT),
from the study of confinement [10] to lattice calculations.

One of the most involved problems in perturbative descriptions of Wilson lines is the
consideration of their renormalization properties. The main difficulty is that Wilson lines
do not have a natural scale. This means that infrared singularities mix with ultraviolet
singularities. On the other hand, ultraviolet singularities can be described with the renor-
malization group equation, which give us hope to resolve the infrared singularities as well
[11].

It is known that smooth Wilson loops (left diagram in figure 1) are ultraviolet finite in
the renormalized theory [1, 12]. However, the cusped Wilson line or self-intersecting Wilson
lines (center and right diagram of figure 1, correspondingly) needs additional renormaliza-
tion constants [13]. The renormalization constants are governed by the cusp anomalous
dimension. The cusp anomalous dimension has been known to two loop-order for a long
time [14]. Recently, the three-loop cusp anomalous dimension was found [15].

Wilson lines on lightcone are of special interest. Such Wilson lines appear in the
description of hard processes where one can neglect the mass of partons, which is the most
typical case. The lightlike Wilson lines have additional infrared divergences [14]. Although
this problem has been known for 30 years, there is no clear description of renormalization
in this situation. This thesis is devoted to the derivation of the anomalous dimension of
several lightlike Wilson lines meeting at a point.

In this thesis, we consider the basic properties of Wilson lines. Our main interest is
devoted to the renormalization of Wilson lines, especially to the case of several lightlike
Wilson lines meeting at a single point. Such a configuration is called soft anomalous di-
mension matrix, and is of great importance in the phenomenology of high energy processes
with many jets (for recent reviews, see [16, 17]).

We describe a generating function approach to non-abelian exponentiation, which was
recently presented in [18, 19]. With the help of that method, we perform detailed two-
loop analysis of the soft anomalous dimension for lightlike Wilson loops. As regulator for
soft divergences, we use a modified δ-regularization. For regulation of ultraviolet (UV)
divergences, we use dimensional regularization. The two-loop calculation of this particular
combination of regulators is novel. We have shown that the δ-regulator has a number of
problems arising at two-loops, such as violation of gauge invariance and scale invariance.
These problems are not observed in the one-loop calculations. We present solutions to these
problems. Although we observe artificial terms in the two-loop cusp anomalous dimension.
The dipole factorization of the soft anomalous dimension at two-loops is confirmed [20, 21].
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The structure of the thesis is the following. In the first section, we review necessary
elements of non-abelian gauge theories and perturbative expansion. In section 3, we present
derivations of important properties of Wilson lines and following that, we introduce the
generating function approach for Wilson lines [18, 19]. Sections 4 and 5 are the main parts
of the thesis where we present our approach to lightlike Wilson lines and give details on the
two-loop calculation of the soft anomalous dimension. The collection of equations needed
is given in the appendices.
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2 Elements of QFT and non-abelian gauge theories

2.1 Renormalization

This section contains a brief introduction to renormalization and dimensional regulariza-
tion, more details can be found in any textbook on QFT such as [5, 6]. Two kinds of
divergences are encountered in QFT, infrared and ultraviolet. UV singularities come from
the high energy regime. They may signal that the theory is incomplete at high energies, and
can be handled through renormalization. IR divergences in QCD may be soft or collinear.
Soft divergences come from the emission of low energy gluons, while collinear divergences
arise when a particle emits a gluon in the direction it travels. IR divergences should cancel
in sums of diagrams corresponding to well-defined observables.

In a sense, UV divergences are also solved by careful analysis of what is observable. The
Lagrangian specifying the theory includes several parameters, such as coupling constants
and masses. It is important to realize that these parameters are not physically meaningful.
Quantities calculated from the theory with these parameters will often be infinite. Through
renormalization, the dependence on unphysical parameters can be eliminated and finite
relations between physical values is obtained.

The first step in the renormalization procedure is to regularize the integrals, so that the
results can be manipulated algebraically without infinities. This can be done in many ways.
The conceptually simplest regularization is to cut the integral off at some value λ. The
integrals now converge and observables are calculated as a function of λ and the Lagrangian
parameters. Adding the λ-dependence into the parameters, observables are finite functions
of the new parameters. The new parameters are finitely related to experimental outcomes
and can be measured. The shift in the parameters can also be thought of as adding extra
terms in the Lagrangian, called counterterms.

The cut-off λ may be unphysical, or it may represent a true physical cut-off, signaling
that the theory is incomplete. Renormalization can be done in either case. Other types of
regularization can be chosen, such as the dimensional regularization. The final result does
not depend on the specific method.

Dimensional regularization is based on the fact that integrals may be divergent in
some dimensions, but convergent in others. In dimensional regularization, the integral is
considered as a function of its dimension d. This function can be evaluated for d where
it converges and analytically continued to other values. By analytically continuing to
d = 4− 2ε, where ε is small, the divergence of the original integral is represented by terms
like ε−1.

An important property of dimensional regularization is the way it handles scaleless
integrals. Since the integral should produce an expression of fractional dimension, it must
contain dimensional parameters. If it does not, it can be set to zero. A more detailed
analysis would show that it in fact contains both UV and IR poles, but that they cancel
each other.

This shift in dimension also modifies the dimension of your Lagrangian parameters.
Previously dimensionless quantities, like the coupling constant g0, acquire a fractional
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dimension. By introducing a new parameter µ, of some appropriate dimension, one can
define a dimensionless coupling constant by

αs
4π

=
µ−2εg2

0

(4π)d/2Γ(1 + ε)
. (2.3)

The factors in the denominator simplify expressions by canceling out several artificial terms.
This is called an MS-scheme.

The independence of the original parameters on µ leads to the renormalization group
equation (RGE), a differential equation for how parameters depend on µ. See the next
section on the renormalization of Wilson lines for an example. The value of the renor-
malization group is that it allows one to handle different scales of µ within perturbation
theory. The value of µ impacts the convergence properties of the perturbative series. The
same series may not be valid for two values of µ that are very different. The RGE solves
this problem by only using differential increments of µ.

If the modification of the parameters can be expressed with a renormalization factor,
i.e,

g0 = Zg(ε, g(µ))g(µ) (2.4)

where g is the renormalized parameter, the theory is multiplicatively renormalizable. We
will make use of the renormalization factors for the coupling constant g and the gauge field
Aµ. these are well known in QCD to the order we need.

2.1.1 Renormalization of Wilson loops

The renormalization of Wilson loops depends on their path. The case of a smooth non-
intersecting loop is the simplest. In dimensional regularization, their renormalization is
complete when the coupling constant and the gauge field have been renormalized [1, 12].
The renormalized loop takes the form

ΦR(C) = P exp

(
−iZgZ1/2

A g

∮
dzµAµ(z)

)
. (2.5)

Wilson loops containing cusps, i.e. points where the contour is not smooth, have additional
divergences. A cusp is characterized by its two tangent vectors ν1 and ν2. The cusp
divergence is a function of the angle γ12 between the vectors. This angle is defined in
Minkowski space as cosh γ = ν12√

ν21ν
2
2

, where ν12 = (ν1 · ν2). If both vectors are off lightcone,

the cusp divergence can be multiplicatively renormalized by a factor Zγ [12]. Loops with
a finite amount of cusps off lightcone should be multiplied by the renormalization factor
of each cusp.

In the RGE for cusped Wilson lines, the cusp renormalization factors give rise to the
cusp anomalous dimension. The RGE comes from the independence of the original loop
Φ(C) = ZγΦR(C) on µ. Differentiating with respect to µ we have

µ
d

dµ
ZγΦR(µ2;C) =

(
µ
∂

∂µ
+ β

∂

∂g
+ Γcusp(γ, g)

)
ΦR(µ2;C) = 0 (2.6)
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Figure 2: Renormalization of loops with self-intersection mixes all possible ways of con-
necting incoming with outgoing lines.

where Γcusp(γ, g) = µ
Zγ

dZγ
dµ

is the cusp anomalous dimension and β = µ ∂g
∂µ

. The cusp

anomalous dimension has been known to two-loop order for a long time [14]. To three-loop
order it was calculated in [15].

When one or both of the vectors are on lightcone, this equation is not valid anymore.
This follows from the fact that as ν approaches lightcone, γ(ν1, ν2) blows up. For large γ,
it is proven in [22] that Γcusp is linear in γ to all orders in perturbation theory. In [14],
an explicit calculation shows that ΦR is finite. The RGE equation can therefore not be
satisfied.

Nevertheless, it is possible to find a similar equation that does hold [14]. The trick is
to differentiate Γcusp(γ, g) with respect to ν12. This will remove all dependence on ν2. This
removes the problem of Γcusp(γ, g) blowing up. Integrate back over ν12 to find(

µ
∂

∂µ
+ β

∂

∂g

)
ΦR(µ2;C) = −Γcusp(g) log ν12 − Γ(g) (2.7)

where Γ(g) is some integration constant. This let’s us find Γcusp(g) from knowing ΦR.
If the Wilson line has endpoints, they will contribute with renormalization factors [11]

and a corresponding endpoint anomalous dimension. In this thesis, we study semi-infinite
lines with endpoints at infinity. We will introduce a regulator that exponentially suppresses
these contributions.

For completeness, we also mention the case where loops self-intersect. This case requires
a matrix of renormalization factors [13]. This is because there is mixing between all ways
of connecting the incoming lines with outgoing lines, see figure 2.1.1.

2.2 Feynman diagrams

We are looking to calculate the vacuum averages of Wilson lines. Here is where the ma-
chinery of QFT comes in. The path integral approach takes us quickly to what we need.
As any introductory textbook on QFT explains, the vacuum average of an operator can
be calculated as

〈O〉 =
1

Z0

∫
DAOeiS0[A]+iSint (2.8)

where Z0 is the same integral but without the operator O, the integration is over all
possible configurations of the fields A, S0[A] is the free part of the action and Sint[A] is
the interaction part of the action. This is very similar to calculating expectation values

8
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Figure 3: The Feynman graph for
∫

δ
δA1
O[A]

∣∣∣∣
A=0

∆(x1, x2)∆(x3, x4) δ
δA2

δ
δA3

δ
δA4
O′[A]

∣∣∣∣
A=0

in statistical mechanics using the partition function. With functional derivatives we can
write as what is called the differential reduction formula [23]

〈TO[A]〉 = Z−1
0 e

∫
dxdx′

2
δ

δAx
∆(x,x′) δ

δAx′O[A]eiSint[A]

∣∣∣∣
A=0

. (2.9)

A derivation is presented in appendix C. For perturbative calculations, we expand the
exponentials in a power series. The functional derivatives satisfy the ordinary product
rule for derivatives, generating a large amount of terms. These can be kept track of using
Feynman diagrams. When n functional derivatives act on an operator, such as on F or
any in Sint, denote it by a vertex with n external legs. Each leg inherits the x-coordinate of
the corresponding functional derivative. The propagator ∆(x, x′) connects different legs.
As an example, with two operators O and O′, the graph in figure 3 corresponds to the

term
∫

δ
δA1
O[A]

∣∣∣
A=0

∆(x1, x2)∆(x3, x4) δ
δA2

δ
δA3

δ
δA4
O′[A]

∣∣∣
A=0

. In the series, each diagrams

will enter with some combinatorial prefactor. This factor is related to the symmetries of
the diagram and is called the symmetry factor. We do not consider them here, but we will
use combinatorial arguments when we discuss exponentiation in section 3.2.

In appendix B we present the Feynman rules for QCD and a derivation of the Feynman
rules for the semi-infinite Wilson lines under consideration.
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3 Wilson lines

3.1 Definitions, elementary properties

Consider a contour consisting of the points z(τ) with τ ∈ [0, 1] and z(0) = a, z(1) = b. At
each point z on the contour we have the tangent vector γµ(z(τ)). Wilson lines satisfy

γµ(z(τ))
−→
DµΦ(z(τ), b) = 0

Φ(z(τ), z(τ)) = 1

Φ(a, z(τ))Φ(z(τ), b) = Φ(a, b)

(3.1)

[24], which we take as a starting point for demonstrating their properties. Dµ = ∂µ− igAµ
is the covariant derivative. The reason for introducing the parameter τ , rather than just
using z, is to avoid ambiguities in the path taken. If the contour loops back on itself,
z does not uniquely specify where we came from. The equation Φ(z, z) = 1 only holds
when it refers to the trivial path of a single point. Being aware of this, we will drop τ for
simplicity.

Based on these equations we derive some basic properties of Wilson lines. The first two
equations determine that the covariant derivative acts on the second argument as

γµ(z)Φ(a, z)
←−
Dµ = 0 (3.2)

The transformation properties of the gauge field A determine the transformation prop-
erties of the Wilson line Φ. The gauge field A transforms as

Aµ(z)→ U(z)Aµ(z)U †(z)− i

g
(∂µU(z))U †(z), (3.3)

and the covariant derivative as Dµ(z) → U(z)Dµ(z)U †(z). If the Wilson line transforms
as Φ→ Φ′, the new line satisfies

γµ(z)U
−→
DµU

†Φ′(z, b) = 0

γµ(z)Φ′(a, z)U
←−
D†µU

† = 0.

Φ′(a, z)Φ′(z, b) = Φ′(a, b).

(3.4)

Clearly, the transformation Φ(a, b) → U(a)Φ(a, b)U †(b) satisfies all of these equations.
Under hermitian conjugate, the first equation in (3.1) becomes

γµ(z)Φ†(z, a)
←−
Dµ = 0. (3.5)

Comparing with equation (3.2), we find that

Φ(a, b)† = Φ(b, a). (3.6)
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Wilson lines are unitary, as the following line shows:

Φ(a, b)Φ(a, b)† = Φ(a, b)Φ(b, a) = Φ(a, a) = 1. (3.7)

From the definition, it is clear that, Φ is invariant under rescaling of the tangent vector.
Knowing the basic properties of Wilson lines, we specialize to the case of semi-infinite

straight Wilson lines Φν(0,∞). These are specified by the constant tangent vector ν. The
unbounded integration gives rise to a collinear divergence. To regularize it, we introduce
a regulator that exponentially suppress the integrand away from the origin. This amounts
to including a factor e−δτ for each A(τ). The regularized Wilson line takes the form

Φν(0,∞) = 1− ig
∫ ∞

0

Aµe
−δτ1vµdτ1 (3.8)

− g2

∫ ∞
0

dτ1

∫ ∞
τ1

dτ2Aµ(τ1)Aν(τ2)e−δ(τ1+τ2)vµvν + ... .

Using the path ordering operator, which orders the fields later along the path to the right
of earlier fields, we write the solution compactly as

Φν(0,∞) = P exp

(
−ig

∫ ∞
0

Aµe
−δτvµdτ

)
. (3.9)

The path ordering acts termwise in the expansion of the exponential.
A similar regularization is used in for example [25], but with δ

√
ν2 instead of just δ.

This factor is there to make sure the integral is invariant under rescaling of the tangent
vector. However, we consider Wilson lines on lightcone where ν2 = 0. Therefore, this
factor is not available to us. Thus, our regularization spoils scale invariance. We will come
back to this when we study the cusp with three lines.

3.2 Exponentiation

The exponentiation of disconnected diagrams is standard material in textbooks like [5]. We
present similar arguments here, tailored to our purpose. Exponentiating means that a sum
of diagrams can be represented as the exponential of another sum of diagrams. Connected
diagrams play a crucial role here. If a diagram consists of disconnected pieces, it is equal
to the product of those pieces.

Consider an operator of the form O = eF . For a moment, we assume F to be a scalar
operator, so that there is no trouble with reordering. Expanding O in a power series, we
find terms like F

n

n!
. This operator gives rise to diagrams with n insertions of F -vertices. We

can factor such a diagram into connected pieces Ci. Denote by ki the number of F -vertices
in the piece and by mi the number of such pieces in the diagram. Taking into account
the combinatorics of how many ways one can partition the F -vertices into the connected
pieces, the diagram is ∏

i

Cmi
i

ki!mi!
. (3.10)
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= +1
2
_

Figure 4: The diagrammatic relation that allows for exponentiation at two-loop order. The
crossed diagram should be taken with a modified color factor.

The series for 〈O〉 is the sum of all such diagrams. It’s easy to see that all terms are
generated by

exp

(∑
i

Ci
k!

)
. (3.11)

where the sum runs over all connected diagrams. We conclude that operators of the
form O = eF exponentiate. The original series which includes disconnected diagrams is
generated by the exponential of a series of only connected diagrams. Abelian Wilson lines
can be exponentiated in this manner [18].

If F is a matrix, the order of F -vertices is important. Then different partitions of
F -vertices are not equivalent. Nonetheless, non-abelian Wilson lines also exponentiate
[26, 27, 28], as we will see in the next section.

3.2.1 Non-abelian exponentiation

The non-abelian exponentiation theorem was proven in [27]. That renormalization may
be performed in the exponent was shown in [28].The fact that a perturbative series can
be presented by the exponential of another series is trivial. One only needs to solve the
following equation for wn.

Φ = 1 +
∞∑
n=1

(αs
π

)n
Wn = exp

∞∑
n=1

(αs
π

)n
wn. (3.12)

The non-abelian exponentiation theorem [27] [28] specifies the form of wn. It states that
wn consists of the same diagrams as Wn, but with modified color factors. The advantage of
the approach is that only a subset of diagrams, called webs, have non-zero modified color
factors. Webs are those diagrams which cannot be separated into two lower order diagrams
by two cuts of Wilson lines. In [28] we also learn that renormalization of the exponent is
enough to renormalize the Wilson line.

Considering the cusp anomalous dimension at two-loop order, with the help of webs
we can eliminate one diagram. On the diagrammatic level, it works like figure 4 shows.
The ladder diagram can be eliminated in the exponent, while the crossed diagram must be
taken with a modified color factor.
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3.2.2 Generating Function approach

This approach is explained in detail in [18, 19]. Here, we extract only the general idea and
some expressions we need.

In the previous section, the Wilson line Φ has been expressed as a path ordered expo-
nent, but it can be represented by an ordinary exponential. The price to pay is that the
exponent is more complicated.

Φ(a, b) = exp

(
∞∑
k=0

Ωk(a, b)

)
(3.13)

where Ωk ∼ gk. The series is known as the Magnus series. It resembles the Baker-Campbell-
Hausdorff formula, but we don’t need the exact form of it. It is important to us that each
term consists of completely nested commutators of the gauge field A. Since the generators
satisfy [

ta, tb
]

= fabctd, (3.14)

where fabc is the structure constant (see appendix D for more details), one can extract
a single generator out of the nested commutators. Each Ωk can therefore be written as
Ωk = taV a

k , where V a
k ∼ gk. Only the non-commutativity of the generators prevents the

ordinary exponentiation with connected diagrams. The trick is to replace generators by
scalars ta → Ma, one for each generator. We can at any stage go back to matrices by
means of the matrix shift operator. The action of the matrix shift operator on a scalar
function f(x) is defined by

f̃(t) = exp

(
ta

∂

∂xa

)
f(x)

∣∣
x=0

, (3.15)

where ˜ denotes the matrix function. Following [19], we introduce the scalar Wilson line

φ = eM
aVa . (3.16)

Its vacuum expectation value can be exponentiated in the usual manner.

〈φ〉 = eW [M ] (3.17)

where W [M ] is a sum over connected diagrams with insertions of Va-vertices. Shifting back
to matrices we have

〈Φ〉 = exp

(
ta

∂

∂Ma

)
eW [M ]

∣∣∣M = 0 (3.18)

The matrix shift and the exponential do not commute, hence 〈Φ〉 6= exp
(
W̃ [t]

)
. By

defining the defect of exponentiation as

δ̃W [t] =

[
log, exp

(
ta

∂

∂Ma

)]
eW [M ]

∣∣∣∣
M=0

, (3.19)
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we obtain the expectation value of the Wilson line as

〈Φ〉 = eW̃ [t]+δ̃W . (3.20)

The defect is a function of W̃ [t], which is called the kernel of matrix exponentiation (MEK).

For perturbative calculations, it is convenient to decompose it into orders of g: δ̃W =∑∞
n=1 δ̃nW , where δ̃nW ∼ gn. A recursive formula for the defect is

δ̃nW [t] =
1

n!
{W̃ n} −

n∑
k=2

1

k!

∑
i>1,∑
i=n

(
δ̃i1W...δ̃ikW

)
, (3.21)

where δ̃1W = W̃ . We write down the explicit formula at second order as we will use it
later,

δ̃2W [t] =
1

2

(
{W̃ 2} −

(
W̃
)2
)
. (3.22)

It is useful to represent the MEK in the following form

W̃ =
N∑
k=1

tak〈V a
γk
〉+

N∑
k,l=1
k<l

takt
b
l 〈V a

γk
V b
γl
〉+

N∑
k

(t
{ab}
k

2!
〈V a

γk
V b
γl
〉 (3.23)

+
N∑

k,l,m=1
k<l<m

takt
b
l t
c
m〈V a

γk
V b
γl
V c
γm〉+

N∑
k,l=1
k<l

t
{ab}
k

2!
tcl 〈V a

γk
V b
γk
V c
γl
〉+

N∑
k,l=1
k<l

takt
{bc}
l

2!
〈V a

γl
V b
γk
V c
γk
〉

+
N∑
k=1

t
{abc}
k

3!
〈V a

γk
V b
γk
V c
γk
〉+ ... ,

where t{a1...an} is the symmetric sum of the generators tai weighted by 1
n!

. The dots denote
the correlators with higher number of operators V , that are not necessary in this work.
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a b dc

Figure 5: All diagrams contributing to the cusp on lightcone up to two loops. Diagram d
is the one-loop contributions to the gluon propagator including counterterms.

4 Cusp for two lines on light cone

In this section we consider a configuration of two lightlike Wilson lines forming a cusp.
Their directions will be denoted ν1 and ν2. For regulation of ultraviolet divergences we
will use dimensional regularization in the MS-scheme, defined in equation 2.3. Collinear
divergences are handled by δ-regularization defined in 3.9. Soft divergences should not
appear in our calculation, however to prevent possible problems we used a finite shift of ∆
in the Feynman propagator.

We will calculate the cusp on lightcone up to two loops. There are many diagrams
which contribute to this quantity. However, for our configuration all diagrams with one
or more propagators that start and end at the same Wilson line are zero, since they
are proportional to ν2 = 0. Since we are working in exponentiated form, the ladder
diagram is absent and the crossed diagram (b) should be taken with a modified color
factor CF (CF −CA/2)→ −CFCA/2. The constants CF and CA are the quadratic Casimirs
of the fundamental and adjoint representation respectively D. The remaining non-zero
diagrams contributing to the exponent are shown in figure 5.

In the following we present the results of the calculation and comment on the course of
evaluation. In appendix A, we present the calculation of diagram c in momentum space.

The same configuration is studied in [29]. The non-lightlike case can be found in [22].
Lightlike polygonal loops are considered in [30] [14] [31] [32].

4.1 One-loop

Only diagram a in figure 5 contributes at the one-loop level. Let us perform the one-loop
calculation in coordinate space. The Feynman rules used in the calculation can be found
in the appendix B.

The diagram a is the one-gluon-exchange diagram. Its color factor is taikt
a
kj = CF δij. Its

kinematic part is

− g2ν12

∫
dx1,2

∫ 0

∞
dτ1

∫ ∞
0

dτ2δ(ν1τ1 − x1)δ(ν2τ2 − x2)DF (x1 − x2)e−δ(τ1+τ2) (4.1)

where we introduce the shorthand notation ν12 = ν1ν2. The expression for the Feynman
propagator in coordinate space reads

DF (x− y) =
Γ(1− ε)

4π2−ε
gµνδab

(−(x− y)2 + i0)1−ε . (4.2)
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Integrating expression (4.1) over x we find

−g2ν12Γ(1− ε)
4π2−ε

∫ ∞
0

∫ ∞
0

dτ1dτ2
e−(τ1+τ2)δ

(2ν12τ1τ2 + i∆)1−ε = −2g2
( ν12

2δ2

)ε Γ(1− ε)
(4π)2−ε Γ(ε)2. (4.3)

The ∆ regulator can be removed, as the dimension regularization and δ-regularization is
enough to regularize the divergences of the integral. Then the evaluation of (4.3) consists
of only Γ-function integrals.

From equation (2.7), we find the cusp anomalous dimension at one loop as

Γcusp(α) =
αs
π
CF . (4.4)

This expression coincides with the well known value, see for example [1].

4.2 Two-loop

At two-loop order, we have three diagrams (but note that diagram c also contributes with
permuted lines).

The blob in diagram d is the renormalized gluon propagator at one-loop. It adds the
contribution of quark-, gluon- and ghost-loops, with corresponding counterterms, within
the propagator. In our MS-scheme the gluon-polarization operator is

Πµν
ab (k) = iδab

αs
4π

(
gµνk2 − kµkν

) [
(CA (5− ε)− 4 (1− ε)Tfnf )

(
−µ2

k2 + i∆

)ε
× Γ2(1− ε)
ε(3− 2ε)Γ(1− 2ε)

− 1

ε

(
5

3
CA −

4

3
TFnf

)]
(4.5)

where the last term in the parenthesis represents the counterterms. nf is the number of
quark flavors and TF is the index of the representation D.

In our regularization, the kµkν part of this propagator creates problems. In fact, that
term should be removed from the calculation for the following reasons. Recall that δ
regulates collinear divergences and ∆ regulates soft divergences. The soft divergences
cancel in the sum of diagrams while the collinear may remain. With (kν1)(kν2) in the
numerator, δ is not needed to regularize the integral. But, we do find a δ in the result. We
conclude that it has taken over the role of ∆, in regularizing a soft divergence. The soft
divergences of this diagram should cancel with those in the kµkν part of the self-interaction
diagrams. But since we are one lightcone, those diagrams disappear. We conclude that
we must set this part to zero as well, in order to enforce the gauge invariance that was
violated by the δ-regularization. In all expressions below, the kµkν contribution has been
removed.
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The expression for individual diagrams and results of their evaluation are

w1-loop = iCFg
2ν12

∫
ddk

(2π)d
1

(k2 + i∆)(kν1 − iδ)(kν2 + iδ)
(4.6)

= −2
αs
4π
CF e

LεΓ(1− ε)Γ(ε+ 1)

ε2
(4.7)

wcross =
CFCA

2
g4ν2

12

∫
ddkddl

(2π)2d

1

(k2 + i∆)(l2 + i∆)

× 1

(kν1 − iδ)((k + l)ν1 − 2iδ)(lν2 + iδ)((k + l)ν2 + 2iδ)
(4.8)

= −
(αs

4π

)2 CACF
2

e2LεΓ
2(1− ε)Γ2(ε+ 1)

ε4
(4.9)

w3g =
CFCA

2
g4ν12

∫
ddk1,2,3

(2π)3d

δ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)

× ν1(k1 − k2)

(k1ν1 − iδ)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)
(4.10)

=
(αs

4π

)2

CACF e
2LεΓ(1 + 2ε)2Γ(1− 2ε)

4ε3Γ2(1 + ε)

(
Γ(1− ε)Γ(1 + ε)

ε

− 21−2εΓ2(1− ε)
Γ(2− 2ε)

)
(4.11)

wse + wse,ct = −CFg2

∫
ddk

(2π)d
νµ1 ν

ν
2 Πµν(k)

(k2 + i∆)2(kν1 − iδ)(kν2 + iδ)
(4.12)

wse = −
(αs

4π

)2

CF e
2Lε Γ2(1− ε)Γ2(1 + 2ε)

2ε3(1− 2ε)Γ2(1 + ε)

CA(5− 3ε)− 4nfTF (1− ε)
3− 2ε

(4.13)

wse,ct = −2
(αs

4π

)2

CF e
LεΓ(1− ε)Γ(1 + ε)

ε3

(
5CA − 4nfTf

3

)
, (4.14)

where we define for convenience

L = log

(
ν12µ

2

2δ2

)
.

We observe that the parameter ∆ does not appear in our result.
At two-loop level one should also include the the renormalization constants of the gauge

field and the gauge coupling. The renormalization factor ZgZ
1/2
3 = 1 − CA

αs
4πε

+ O(α2
s)

contributes with a term proportional to the one-loop result. Adding all pieces together we
have (αs

4π

)2

w2 = wcross + 2w3g + wse + wse,ct + (Z2
gZ3 − 1)w1−loop (4.15)

= CF

(αs
4π

)2

(AL3 +BL2 + CL1) + finite terms. (4.16)
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Figure 6: The set of diagrams in the generating function approach. The ellipse means the
symmetrized sum of vertex-orderings. Figure taken from [19].

where

A =− (11CA − 4nfTf )

9
, B = CA

(
2π2

3
− 67

9
+ log(4)

)
+

20nfTf
9

,

C =− CA
(

2ζ(3) +
11π2

9
+

404

27
+ 4 log2(2)− 8 log(2)

)
+ nfTF

(
112/27 + (4π2)/9

)
.

The corresponding cusp anomalous dimension is

Γcusp = CF

(αs
π

)
+
(αs
π

)2 CF
36

(CA(67− 6π2 − 36 log(2))− 20nfTF ). (4.17)

This expression does not coincide with the well known value of

Γcusp =
(αs
π

)
CF +

(αs
π

)2 CF
36

(CA(67− 3π2)− 20nfTF )

first calculated in [14]. One can see that we have an additional term proportional to π2 and
log 2. For the moment, we do not have complete explanation of this discrepancy. However,
we suppose that these terms are artificial and arise from the δ-regulator. That observation
is novel and have not been discussed in the literature to our best knowledge.

4.2.1 In generating function approach

In the generating function approach, there is a different set of diagrams. These are shown
in figure 6. In [19], these diagrams are compared to the previous ones to find how their
contributions are encoded in the MEK and the defect. Here we give present short conclu-
sion.

Diagrams F, G, H, I are zero because of the contraction of the anti-symmetric three-
gluon vertex with the symmetric sum of generators on one line. Diagrams A,C,D and E
are equal to their corresponding diagrams in the ordinary approach.

The main difference of the approach is in the diagram B. This is not surprising, as in
the ordinary exponentiation it is the ladder and crossed ladder diagrams that combine to
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make exponentiation possible. It has been shown in [19] that on lightcone, diagram B is
zero. Therefore, the two-gluon exchange diagrams are given entirely by the defect, which
is a function of the one-loop result. The defect was calculated in [19] and found to be

δ̃W2 = −CA
CF

w2
1

8
. (4.18)

This expression coincides with our expression 4.8. That implies that both approaches to
exponentiation are equivalent.
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V2

3a 3b

Figure 7: For the three-cusp in the generating function approach, these are the additional
diagrams one needs to consider. Both diagrams are zero.

5 Three cusp

We will work entirely in the generating function approach in this case. In the ordinary
approach, this case has been studied in [21]. The diagrams contributing to the MEK can
be read from equation 3.24. First of all, the diagrams of the previous section should be
taken between all pairs of lines. Second, there are three diagrams that connect all three
Wilson lines. These are shown in figure 7. We omit the cusp from the diagram, as it is
convenient to consider each line in a different matrix space. They can in the end be joined
up in the desired order. We will show that the new diagrams either reduce to previously
calculated diagrams or vanish.

Diagrams 3a and 3b come from the term ta1t
b
2t
c
3〈V a

ν1
V b
ν2
V c
ν3
〉, where the subscript on the

generators denote which matrix space it’s in. These diagrams are the two lowest order
contributions from this term from this term. Diagram 3b is considered in appendix A.2.

Diagram 3a is proportional to the integral∫ ∞
0

dx1,2dy1,2
(θ(x1 > x2)− θ(x2 > x1))e−δ(x1+x2+y1+y2)

(2x1y1ν12 + i0)1−ε(2x2y2ν23 + i0)1−ε . (5.19)

The +i0 can be removed since ε regularizes the integral. Removing it, the integral vanishes
by symmetry. The same argument is the reason why diagram B vanishes in figure 6. This
argument generalizes to all multiple gluon exchange webs [19], i.e. those diagrams with no
direct interaction among gluons.

Diagram 3b arises in both the generating function and the ordinary approach. On
lightcone, it has been calculated in [21]. They find that it is zero. The details of our
calculation is given in appendix 5. Our calculation does not succeed in demonstrating that
it vanishes, but numerical tests supports that fact. The stumbling block is related to the δ-

regularization. Had we chosen an appropriate δ for each line (e.g. choose δ1 = δ
(
ν12ν13
ν23

)1/2

for line 1), it would vanish by simple symmetry arguments.
We note here a connection to the scale invariance of Wilson lines. As we noted above,

the δ-regulator violates this invariance. With factors that scale linearly in ν, such as
√
ν2,

a regulator that respects scale invariance can be defined. A lightlike Wilson line does not
have such a factor. In a configuration of several Wilson lines however, such terms are

available in the form of
(
ν12ν13
ν23

)1/2

. Thus, the same factors that restore scale invariance

also greatly simplifies the calculation of diagram 3b. In this case, this violation of scale
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invariance does not affect the final result, but this may not hold for more complicated
diagrams.

We move on to the defect. It is a function of the one-loop expression which we write as

w1 = ta1t
a
2w12 + ta2t

a
3w23 + ta1t

a
3w13 (5.20)

where wij is the one-gluon exchange diagram between lines i and j. For the defect we need
w2

1. It contains two classes of terms, squares and cross terms. We only need to consider
one representative from each.

w2
1 = tb1t

a
1t
a
2t
b
2w

2
12 + (ta1t

b
1 + tb1t

a
1)ta2t

b
3w12w13 + ... . (5.21)

The squared term contributed to the defect in the previous section, and the expression
here is the same:

1

2

(
1

4
(ta1t

b
1 + tb1t

a
1)(ta2t

b
2 + tb2t

a
2)− tb1ta1ta2tb2

)
w2

12 = −CAt
a
1t
a
2

8
w2

12. (5.22)

For the cross terms, note that the defect contains only the antisymmetric part of the color
factor. The cross term is fully symmetric in color space, hence it cannot contribute to the
defect.

Thus, at two-loop order the three-cusp is completely determined by the interactions
between pairs of lines. The soft anomalous dimension can be written as

Γ =
∑
i 6=j

tai t
b
jΓcusp(vij), (5.23)

This expression is known as the dipole formula. The violation of the dipole formula is
possible at three-loop order. Nowadays, it serves as one of the main tools in the study of
multi-hadron processes. This is why any statement about the status of the dipole formula
is of great importance.
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6 Conclusion

In the thesis, we have presented one- and two-loop calculations involving lightlike Wilson
lines. The considered configurations were the cusp, i.e. two Wilson semi-infinite lines
merged at origin, and the three-cusp, i.e. three semi-infinite Wilson lines merged at origin.
The latter case can be easily generalized on the arbitrary number of Wilson lines. We
have considered these configurations both in the traditional approach and in the generat-
ing function approach to the exponentiation. We found that these methods agree in the
final result, but distribute the contributions differently among diagrams. The generating
function approach takes into account the exponentiation structure already at the level of
individual diagrams, what makes the analysis simpler.

The two-loop calculation in the generating function approach is done for the first time.
As an additional result, our calculation confirms the dipole formula for the soft anomalous
dimension [21, 20]. The obtained results will serve as a base for the future publication.

We have considered the problems arising from the use of the δ-regulator. These prob-
lems include the violation of gauge invariance and the violation of scale invariance. While
for the presented calculation we enforce these manually, we also have discussed possible
general solutions to these problems. Summarizing our experience with the δ-regulator,
which has been known to be very efficient at one-loop order, we conclude that it may
present serious difficulties at higher orders. These difficulties can be solved at two-loop
order with reasonable efforts, but in general, they make the use of δ-regulator inconvenient
for more involved calculations, such as three-loop calculations or polygons of Wilson loops.
We stress that the discussed difficulties arise only for the case of lightlike Wilson lines.

We have observed that the two-loop cusp anomalous dimension calculated within δ-
regularization differs from the standard value by terms proportional to π2 and log 2. Si-
multaneously, we are fully convinced in the correctness of the presented calculation, since
it satisfies all possible checks, and to a high extent can be compared with the similar cal-
culation made by Sterman and Erdoğan [29]. Thus, we conclude that the additional terms
are artificial; they are a consequence of the usage of δ-regularization for lightlike Wilson
lines. This observation is novel, and puts further doubts on the usage of δ-regulators for
lightlike Wilson lines.

The results of the presented work are to be used for the planned calculation of the
three-loop soft anomalous dimension. The three-loop soft anomalous dimension is currently
unknown, and is one of the most desired object for the high-energy community. The main
point is that at three-loop order the soft-anomalous dimension may contain signals of
factorization violation [33]. The confirmation of these signals is of utmost importance for
the phenomenology of high-energy experiments, such as ALICE or ATLAS at the LHC,
where precise predictions of hadronic jets are necessary to interpret experimental data (for
a review of recent status see [17]).

Within the generating function approach, the results of the thesis can be used for the
calculation of the defect of exponentiation at all-loop order. This is a novel branch of
theoretical investigation [19], that may have important applications for low-energy parton
dynamics.
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A Sample calculations

A.1 w3g calculation

In this section, we show in detail one way of calculating diagram c in figure 5.

I3g =

∫
ddk1,2,3

(2π)3d

(2π)dδ(k1 + k2 + k3)((2k1ν1 − iδ)− ((k1 + k2)ν1 − 2iδ))

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)

(A.1)
The integral splits into two simpler ones by cancellation of numerator and denominator.
We write it as

I3g = 2I3g1 − I3g2. (A.2)

The calculation is very similar for both integrals, so we will only consider

I3g1 =

∫
ddk1,2,3

(2π)3d

(2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)((k1 + k2)ν1 − 2iδ)(−k3ν2 − iδ)

. (A.3)

Use α-representation (equation E.1) for each propagator, introducing 5 new integration
parameters each with interval (0,∞). For notational simplicity, we will not explicitly write
the corresponding differentials and intervals. In addition, represent the Dirac delta function
by δ(a) =

∫∞
−∞

ddx
(2π)d

e−ixa. With every momentum in the exponent, complete the squares
to get Gaussian integrals over momentum

I3g1 = i−1

∫
ddk1,2,3d

dx

(2π)3d
exp

(
iα1

(
k1 −

x+ β1ν1

2α1

)2

+ iα2

(
k2 −

x+ β1ν1

2α2

)2

+ iα3

(
k3 −

x− β2ν2

2α3

)2

− i α123

4α1α2α3

(
x+

α1α2α3

α123

(
β1ν1

α1

+
β1ν1

α2

− β2ν2

α3

))2

− iα1 + α2

2α123

β1β2ν12 −∆(α1 + α2 + α3)− δ(2β1 + β2)

)
(A.4)

where α123 = α1α2 + α2α3 + α3α1. These integrals can be done using equation E.3 giving

I3g1 =
i+d−3

(4π)d

∫
α
−d/2
123 exp

(
− iα1 + α2

2α123

β1β2ν12 −∆(α1 + α2 + α3)− δ(2β1 + β2)
)
. (A.5)

Inserting 1 =
∫∞

0
dλ
λ
δ(1− λ

∑
α) and rescaling αn → αn/λ we find

I3g1 =
id−3

(4π)d

∫
λd−4α

−d/2
123 δ(1−

∑
α) exp

(
−iλα1 + α2

2α123

β1β2ν12−∆/λ−δ(2β1+β2)
)
. (A.6)

The regulator ∆ is used only for its sign. So we may change ∆/λ → ∆λ. The λ integral
followed by the β integrals is straightforward, resulting in

I3g1 =
22d−7

(4π)d
Γ(d− 3)Γ(4− d)2δ2d−8ν3−d

12

∫
α
d/2−3
123 (α1 + α2)3−dδ(1−

∑
α). (A.7)
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The Cheng-Wu theorem [34] can be applied here, which states that we may choose any
subset of α’s in the delta function. It is convenient to choose α1 +α2. Then the remaining
α integrals present no difficulties. The result is

22d−7

(4π)d
Γ(d− 3)Γ(4− d)2δ2d−8 ν3−d

12

2− d/2
Γ(d/2− 1)2

Γ(d− 2)

= ν−1
12

21−2ε

(4π)4−2ε
Γ(1− 2ε)Γ(2ε)2

( ν12

2δ2

)2ε 1

ε

Γ(1− ε)2

Γ(2− 2ε)
.

(A.8)
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Figure 8: In the configuration of three lightlike Wilson lines with a cusp, this diagram is
the most difficult. It cannot be reduced to the exchanges of only two lines. For lightlike
lines, it vanishes.

A.2 Three lines connected with a three-gluon vertex

The diagram in figure A.2 is proportional to the expression

νµ11 νµ22 νµ33 Iµ1µ2µ3 (A.9)

where

Iµ1µ2µ3 =

∫
ddk1d

dk2d
dk3

(2π)3d

Vµ1µ2µ3(−k1,−k2,−k3)(2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)(k2ν2 − iδ)(k3ν3 − iδ)

.

(A.10)
The three gluon vertex give rise to terms with the form

Iµ1 =

∫
ddk1d

dk2d
dk3

(2π)3d

kµ1 (2π)dδ(k1 + k2 + k3)

(k2
1 + i∆)(k2

2 + i∆)(k2
3 + i∆)(k1ν1 − iδ)(k2ν2 − iδ)(k3ν3 − iδ)

.

(A.11)
where index 1 on Iµ refers to the which line the kµ in the numerator is related to. We may
decompose this integral into terms proportional to the vectors νµ as

Iµ1 = I11ν
µ
1 + I12ν

µ
2 + I13ν

µ
3 . (A.12)

Contracting the ν’s with the three-vertex shows that the diagram is proportional to

ν12ν23(I12 − I32) + ν23ν31(I23 − I13) + ν31ν12(I31 − I21). (A.13)

Let’s manipulate I1 into a form where we can extract I12. All Iij with i 6= j can
be obtained from it by substitutions. We represent the Dirac delta function by δ(k) =∫∞
−∞

ddx
(2π)d

e−ixk and use kµ = ∂
∂zµ

ekz
∣∣
z=0

to send all momenta to the exponent. Use α-
representation for all propagators, introducing 6 new parameters with integration regions
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(0,∞). Completing the squares in the exponent we get

I1µ =
∂

∂zµ

∫
ddk1,2,3d

dx

(2π)d
dα1,2,3dβ1,2,3 exp

{
iα1

(
k1 −

x+ β1ν1 − z
2α1

)2

+ iα2

(
k2 −

x+ β2ν2

2α2

)2

+ iα3

(
k3 −

x+ β3ν3

2α3

)2

− i α123

4α1α2α3

(
x+

α1α2α3

α123

(
− z

α1

+
β1ν1

α1

+
β2ν2

α2

+
β3ν3

α3

))2

+i
α1α2α3

2α123

(
β1β2ν12

α1α2

+
β2β3ν23

α2α3

+
β3β1ν31

α3α1

)
−i z
α1

α1α2α3

2α123

(
−β1ν1

(
1

α2

+
1

α3

)
+
β2ν2

α2

+
β3ν3

α3

)
−∆Σα− δΣβ

}∣∣∣∣
z=0

(A.14)

where α123 = α1α2 + α2α3 + α3α1. Terms with z2 have been removed as they will vanish
when we take the z derivative. With equation E.3 we perform the gaussian integrals to
find

I1µ =
id−2

(4π)d
∂

∂zµ

∫
dαdβα

−d/2
123 exp

{
i
α1α2α3

2α123

(
β1β2ν12

α1α2

+
β2β3ν23

α2α3

+
β3β1ν31

α3α1

)
− i z

α1

α1α2α3

2α123

(
−β1ν1

(
1

α2

+
1

α3

)
+
β2ν2

α2

+
β3ν3

α3

)
−∆Σα− δΣβ

}∣∣∣∣
z=0

(A.15)

Taking the z-derivative, we will be able to extract I12,

I1µ =
id−3

2(4π)d

∫
dαdβα

−d/2−1
123 (−β1ν1µ (α2 + α3) + α3β2ν2µ + α2β3ν3µ)

exp

{
iω

2α123

−∆Σα− δΣβ
}
. (A.16)

Where ω = β1β2ν12α3 + β2β3ν23α1 + β3β1ν31α2. From here we read off I12 as

I12 =
id−3

2(4π)d

∫
dαdβα

−d/2−1
123 α3β2 exp

{
iω

2α123

−∆Σα− δΣβ
}

(A.17)

Rescale the β’s by β1 →
√

ν23
ν12ν13

β1 and similar for the other β’s. This removes all scalar

products from ω, call the new expression ω′. It is now written as

I12 =
id−3

2(4π)d
1

ν12ν23

∫
dαdβα

−d/2−1
123 α3β2 exp

{
iω′

2α123

−∆Σα

− δ

(
β1

(
ν23

ν12ν13

)1/2

+ β2

(
ν13

ν21ν23

)1/2

+ β3

(
ν12

ν13ν23

)1/2
)}

(A.18)
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We can take this expression and substitute it into A.13 to find that the diagram is
proportional to

(ν12ν23I12 − ν23ν31I13) ∝
∫
dαdβα

−d/2−1
123 (α3β2 − α2β3) exp

{
iω′

2α123

−∆Σα

− δ

(
β1

(
ν23

ν12ν13

)1/2

+ β2

(
ν13

ν21ν23

)1/2

+ β3

(
ν12

ν13ν23

)1/2
)}

. (A.19)

This would be antisymmetric (and therefore =0) under the trivial operation of α1 ↔ α2,
β1 ↔ β2 if it were not for the scalar products in the exponent. This obstacle could be
solved by using a different δ for each line or if the scalar products were equal to each other.
Then the diagram vanishes by symmetry. Checking numerically, the expression seems to
vanish in the form that it is, which is consistent with the conclusions of [21].
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B Feynman rules

B.1 QCD

The Feynman rules for QCD is given in any QFT textbook such as [5, 6]. For convenience
we reproduce the ones we need here.

Gluon propagator: −iδab
k2+i∆

gµν

This is also called the Feynman propagator and we need it in coordinate space as well:

DF
µν
ab (x− y) =

∫ ∞
∞

ddp

(2π)d
i

p2 + i0
e−ip(x−y) =

Γ(1− ε)
4π2−ε

gµνδab
(−(x− y)2 + i0)1−ε (B.1)

For two-loop calculations, we need to include the renormalized gluon propagator to
one-loop. This term is also called the gluon self-energy. It includes the contributions of all
possible loops that can replace the shaded blob. These are gluon, ghost and fermion loops.
The number of fermions that contribute is denoted by nf .

Self-energy: Πµν
ab (k) =

= iδab
αs
4π

(
gµνk2 − kµkν

) [
(CA (5− ε)− 4 (1− ε)Tfnf )

(
−µ2

k2 + i∆

)ε
× Γ2(1− ε)
ε(3− 2ε)Γ(1− 2ε)

− 1

ε

(
5

3
CA −

4

3
TFnf

)]
(B.2)

Three-gluon vertex: V a1a2a3
µ1µ2µ3

(k1, k2, k3) =

= −gfa1a2a3 ((k3 − k2)µ1gµ2µ3 + (k1 − k3)µ2gµ3µ1 + (k1 − k3)µ2gµ3µ1) (B.3)
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B.2 Semi-infinite Wilson lines

In this section we present the Feynman rules in both coordinate and momentum space for
the lightlike Wilson lines we study. Any number of external gluons may be attached to the
line, each case with a different Feynman rule. For n external gluons, the rules for outgoing
and incoming Wilson lines are

Outgoing:
0

...
1 n

δ
δA(x1)

. . . δ
δA(xn)

Φν [0,∞]

∣∣∣∣
A=0

θ(x1 > · · · > xn) =

= (−ig)ntanikn−1
. . . ta1k1jν

µn . . . νµ1 ×
∫ ∞

0

dτn . . .

∫ ∞
τ2

dτ1δ(τ1ν − x1) . . . δ(τnν − xn)e−δ
∑
i τi

(B.4)
Outgoing Wilson line in momentum space:

(−g)ntanikn−1
. . . ta1k1jν

µn . . . νµ1
1

p1ν − iδ
. . .

1

(p1 + · · ·+ pn)ν − inδ
(B.5)

Incoming:
0

...
1n

δ
δA(x1)

. . . δ
δA(xn)

Φ†ν [0,∞]

∣∣∣∣
A=0

θ(xn > · · · > x1) =

(−ig)nta1ik1 . . . t
an
kn−1j

νµ1 . . . νµn×
∫ 0

∞
dτ1 . . .

∫ 0

τn−1

dτnδ(τ1ν−x1) . . . δ(τnν−xn)e−δ
∑
i τi (B.6)

Incoming Wilson line in momentum space:

gnta1ik1 . . . t
an
kn−1j

νµ1 . . . νµn
1

p1ν − iδ
. . .

1

(p1 + · · ·+ pn)ν − inδ
(B.7)

In the generating function approach, one needs the Feynman rules for the operators Vn.
These have more complicated expressions at higher orders. To fourth order, they can be
found in [19]. We need only V1 and V2, which in coordinate space have the form

V µ1
a,a1

(x1) =− igδaa1νµ1θ(x1 > 0)

V µ1µ2
a,a1a2

(x1, x2) =− ig2faa1a2ν
µ1νµ2(θ(x1 > x2 > 0)− θ(x2 > x1 > 0))

(B.8)

and in momentum space

V a,a1
µ1

(p1) = δaa1νµ1
−ig

(p1ν − iδ)

V a,a1a2
µ1µ2

(p1, p2) = faa1a2νµ1νµ2
ig2

(p1 + p2)ν − 2iδ

(
1

p1ν1 − iδ
− 1

p2ν1 − iδ

)
.

(B.9)
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C Differential reduction formula

We present here a derivation of the differential reduction formula [23], used to calculate
vacuum expectation values. In the path-integral formalism, the time ordered expectation
value of an operator F is

〈TF [A]〉 =
1

Z[0]

∫
DAF [A]eiS[A] (C.1)

With functional derivatives, we can express F [A] as a shift from F [0],

〈TF [A]〉 =
1

Z[0]

∫
DA′eiS0[A′]e

∫
dxA′x

δ
δAxF [A]eiSint[A]

∣∣∣∣
A=0

=
〈
e
∫
dxA′x

δ
δAx

〉
0
F [A]eiS[A]

∣∣∣
A=0

(C.2)
The subscript 0 on the brackets means that the expectation value is taken in the free
theory, without interactions. Expanding the exponential in a series, we find terms like∫

dxk...dx1
1

k!
〈A(xk)...A(x1)〉0

δ

δAxk
...

δ

δAx1
. (C.3)

By Wick’s theorem, the correlator is the product of Feynman propagators DF summed
over all pairings of fields. The terms with an odd number of A vanish. The integral over
x’s makes all pairings identical, replacing the sum over pairings by the number of them,
which is k!

2k/2( k
2

)!
. Each term then looks like

1

(k
2
)!

(∫
dxdx′

2

δ

δAx
DF (x, x′)

δ

δAx′

)k/2
. (C.4)

This is the expansion of the differential reduction formula

〈TF [A]〉 =
1

Z[0]
e
∫
dxdx′

2
δ

δAx
DF (x,x′) δ

δAx′ F [A]eiSint[A]

∣∣∣∣
A=0

. (C.5)
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D Algebra

We summarize here some of algebra of the gauge group that we have frequently needed.
The algebra is explained in detail in any QFT textbook, see for example. [5, 6]. The
generators ta belong to a representation of the Lie algebra of the SU(n) group. Their
commutation relation is

[ta, tb] = ifabctc (D.1)

where fabc are pure numbers, called the structure constants of the group. fabc antisym-
metric under permutation of any two indices.

The sum of the squares of all generators is proportional to the identity matrix

taikt
a
kj = CF δij, (D.2)

where the coefficient CF is called the quadratic Casimir of the fundamental representation.
The structure constants obey a similar relation

fabcfabd = CAδ
cd, (D.3)

where CA is the quadratic Casimir of the adjoint representation.
The convolution of structure constants and generators is

taikt
b
kjf

abc = i
CACF

2
tcij. (D.4)

The index of representation TF is defined by

tr[tart
b
r] = TF δ

ab. (D.5)
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E Useful formulas

This section contains several formulas that have been many times during the course of
calculation. An important tool has been the α- or Schwinger representation,

i±λ

(A± i∆)λ
=

∫ ∞
0

dααλ−1e±iαA−i∆. (E.1)

After the use of α-representation, one encounters Gaussian integrals. In one dimension
and in Minkowski space we have∫ ∞

−∞
dxeiax

2

=

√
π

ia
, Im[a] > 0 (E.2)∫ ∞

−∞

ddk

(2π)d
eiak

2

=
1

(4π)d/2
(ia)−1/2(−ia)−(d−1)/2 =

id/2−1

(4π)d/2
a−d/2 (E.3)

respectively.
Almost all integrals we consider evaluates to products of the Γ function. This is a

generalization of the factorial function to the complex plane. As such, it satisfies

Γ(z + 1) = zΓ(z). (E.4)

We will often encounter the integral representation

Γ(z) =

∫ ∞
0

tz−1e−tdt. (E.5)

For small values of z, it may be expanded in a Laurent series as

Γ(z) =
1

z
− γz +

1

2
(γ2 +

π2

6
)z2 + . . . (E.6)

ln Γ(1 + z) = −γz +
∞∑
k=2

ζ(k)

k
(−z)k + . . . (E.7)

A related function is the Euler B-function. It can be written as a product of Γ-functions
and has a useful integral representation

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
. (E.8)
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