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Abstract

We review the factorization theorem for the production of a heavy color-neutral final
state with a transverse momentum much smaller than its invariant mass in the frame-
work of soft collinear effective field theory (SCET). This phase space region is plagued by
large logarithms of widely separated scales, including large logarithms of rapidity ratios,
that need to be resummed for sensible results. In this thesis we use a recently developed
formalism that introduces a rapidity regulator in addition to dimensional regularization.
This results in an additional renormalization scale, which enables one to also resum ra-
pidity logarithms. The factorized cross sections can be written as a product (convolution)
of hard, beam and soft functions in position (momentum) space. We compute the soft
function to next-to-next-to-leading-order (NNLO) and determine all relevant anomalous
dimensions. Based on the known renormalization group structure, we perform an im-
portant cross check of the results by deriving an all order formula for the logarithmic
structure of the soft and beam functions. This also allows us to obtain the beam func-
tions to NNLO by comparing to known results in another scheme. With our results, one
can now compute the transverse momentum distribution of Higgs production to next-to-
next-to-leading-log-prime (NNLL′) accuracy. A new feature in this formalism is that one
can directly perform the complete set of relevant scale variations in order to estimate the
uncertainty in the resummed cross section.
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Figure 1: Med en effektiv teori kan man förenkla beräkningar av partikelkollisioner genom
att faktorisera uträkningen till en hard-, två beam- och en soft-funktion.

Precisionsberäkningar för
stark växelverkan
År 2012, efter många decenniers forskning, annon-
serades upptäckten av en Higgspartikel i Large
Hadron Collider (LHC) vid Geneva. Första delen,
av vad som kallas världens största experiment, var
då klar och man kunde fastställa att man hade
upptäckt en ny partikel med spin 0, en så kal-
lad skalärpartikel. Denna partikel är oerhört be-
tydelsefull då dess tillhörande fält är grundstenen
Higgs-mekanism, en mekanism vars teoretiska ur-
sprung belönades med nobelpriset 2013. Higgsfäl-
tet är grunden för att förena den svaga med den
elektromagnetiska kraften och är ansvarig för att
ge alla fundamentala partiklar dess massa. Detta
är den sista pusselbiten i standardmodellen som
beskriver de två nämnda krafterna plus den star-
ka växelverkan.

Men även då standardmodellen stämmer över-
ens med många experiment till oerhörd precision
så finns det exempel på fenomen som den inte kan
förklara. Ett exempel är mörk materia som det
finns bevis för från astrofysiken men som hitintills
inte har visat sig i några experiment utförda med
acceleratorer. Det finns alltså nya upptäckter att
göra vilket ytterligare betonar vikten av att stu-
dera Higgspartikeln för att finna ledtrådar till ny
fysik.

LHC startade igen år 2015, efter en rad av
uppgraderingar, med dubbla energin. Medan de
experimentella fysikerna är upptagna med att ta
fram bättre experimentella resultat så kommer te-
oretiska fysiker att uppfinna nya metoder att ut-
föra precisionsberäkningar. Den största teoretis-
ka utmaningen är att förstå den starka växelver-
kan vid partikelkollisioner. Det är nämligen väldigt
komplicerat att göra analytiska beräkningar för
hur kvarkar och gluoner interagerar med varand-
ra, just därför att de interagerar med varandra så
starkt. Detta är ett väsentligt problem i LHC då
de där kolliderar protoner som består av kvarkar

och gluoner. En bra förståelse för den starka väx-
elverkan vid kollisioner är därför nödvändig för att
kunna göra några slutsatser överhuvudtaget.

För att få kvantitativa resultat kan man an-
vända Monte Carlo metoder och datorkraft för att
simulera kollisioner. En annan väg är att förenkla
teorin för det starka växelverkan med en effektiv
teori. Genom att separera olika fysikaliska proces-
ser vid en partikelkollision kan man få fram en
modell vilket möjliggör analytiska beräkningar.

I detta arbete har “Soft Collinear Effective Fi-
eld Theory” använts, vilket är en nyutvecklad mo-
dell för att studera partikelkollisioner. Med hjälp
av denna modell kan man beräkna olika processer
som inneträffar i en kollision separat, vilket möj-
liggör förbättrad teoretisk precision jämfört med
tidigare beräkningar.

Till exempel vid beräkningar av exakta san-
nolikheter för att producera en Higgspartikel vid
LHC kan man säga att det finns tre distinkta fak-
torer. En så kallad hard-funktion som beskriver
hur en kvark eller gluon skapar en Higgs. Innan
de fusionerar till en Higgs så är de dock samman-
satta till två separata protoner och man har två,
i princip likadana, beam-funktioner som beskri-
ver vardera kvark eller gluon. Till sist så behöver
man inkludera hur dessa protoner interagerar med
varandra genom svag strålning vilket sammanfat-
tas med en soft-funktion.

Detta arbete kretsar runt denna sistnämnda
faktor i en kollisionsprocess, en soft-funktion. För
att beräkna den så använder man störningsräk-
ning, vilket i kvantfältteori innebär att man kan
uttrycka soft-funktionen som en summa av pro-
cesser med minskande sannolikhet för att inträffa.
Till en första approximation tar man endast med
det största bidraget där man inte har någon soft
strålning alls. Genom att ta med mer strålning i
beräkningen så vinner man teoretisk precision och
minskad osäkerhet i resultatet. Huvudmålet med
detta arbete är att beräkna de första tre termerna
av soft-funktionen.
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Chapter 1

Introduction

The discovery of a Higgs boson in 2012 at the Large Hadron Collider (LHC) [1][2] marked
the beginning of a new paradigm in high energy physics. Never before has a fundamental
scalar been observed in nature and this is a remarkable achievement, both experimen-
tally and theoretically. Two of the physicists behind the mechanism that generates the
masses of the W and Z gauge bosons were awarded the nobel prize in physics 2013 [3][4].
However, what kind of Higgs that has been found is now up for debate and precision mea-
surements of its properties is necessary to discover its origin. So far the Higgs resembles
the Standard Model (SM) Higgs, but questions remain about the exact structure of the
Higgs sector. Even though the SM describes the electromagnetic, weak and strong force
and agrees with collider experiments to an incredible accuracy, it cannot be the complete
picture. New physics is needed to explain the big open questions in physics today; Such
as the nature of dark matter and incorporation of gravity in a quantum theory.

Now in 2015, the LHC has started again after its first upgrade. To get hints of any
new physics, physicists will continue to study collisions of protons at the LHC to probe
nature at unprecedented energies. In any collision process at the LHC, precise theoretical
predictions are important for comparing theory to the experimental data. One observable
that is being measured is the differential cross section for the production of a Higgs boson
as a function of its transverse momentum, p⊥. Such a study can be used to acquire a
good understanding of the underlying production mechanism; as well as to search for
new physics. To identify the Higgs’ decays, the collision events are organized according
to their highest-momentum jet and the bin with zero central jets over a certain threshold
plays an essential role in the analysis since the region of small p⊥ dominates the number
of events.

To make a theoretical prediction for this observable, or any other observable at
the LHC, one requires precision calculations of processes in Quantum Chromodynam-
ics (QCD). Since protons are made up out of strongly interacting particles, a good un-
derstanding of QCD processes is of utmost importance since QCD physics dominate at
a proton collider. The fact that QCD is a strongly interacting theory however poses
theoretical challenges. At large energies one can use perturbation theory to compute
observables but in a collision process there are several separate energy scales that enter
the calculations. These enter through large logarithms, of ratios of energy scales, that
spoil the convergence of perturbation theory and in order to get a quantitative predic-
tion one needs to account for all the largest terms in a perturbative expansion. This is
referred to as resummation. The p⊥ spectrum of Higgs production is plagued by such
large logarithms when p⊥ is much smaller than the Higgs mass and this thesis revolves
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around making better precision calculations for such an observable with the help of an
effective field theory.

Resummation and Effective Field Theories

To describe physics at the LHC, physicists have been doing lots of precision calculations
in the SM. However it is sometimes very cumbersome to compute observables directly in
the full theory. With good physical arguments one can separate the important degrees of
freedom to get an Effective Field Theory (EFT), which makes calculations easier while
still describing the same physics. It is not only an advantage in clearly separating the
physics in a process, but EFTs can sometimes be crucial when the calculations in the full
theory are too hard. One problem with different degrees of freedom that are associated
with different energy scales is that perturbation theory can breakdown because of large
logarithms. As an example, we write the p2

⊥ cross section for Higgs boson production
schematically as

dσ

dp2
⊥
∼ 1 + αsL

2 + α2
sL

3 + α3
sL

4 + . . . (LL)

+ αsL + α2
sL

2 + α3
sL

3 + . . . (NLL)

+ α2
sL + α3

sL
2 + . . . (NNLL).

Now, if L is a logarithm of the hard scale, mh, over momentum like L = log(m2
h/p

2
⊥) that

is O (α−1
s ), then all the terms in the first row, except the first unity term, are O (α−1

s ) and
all terms in the second row are O(1). To get a sensible result, both the first and second
row need to be included in the result. Summing up the first row would corresponds
to resummation of leading-logarithmic (LL) terms. To include the next row would be
next-to-leading-logarithmic (NLL) resummation and so on.

One way of doing this resummation is to split up the logarithms into parts by intro-
ducing a renormalization scale that then acts as a cut off for the effective theory. An
operator product expansion of the full theory matrix element does this by putting all the
high energy physics in Wilson coefficients while keeping the low energy dynamical degrees
of freedom in the EFT matrix elements. This can be sketched up for some observable O
in the case of a single logarithm as

〈O〉full ∼ 1 + αs log
m2
h

p2
⊥

+ . . .

∼
(

1 + αs log
m2
h

µ2
+ . . .

)(
1 + αs log

µ2

p2
⊥

+ . . .

)
≡ C(µ) 〈O(µ)〉eff . (1.1)

The full theory clearly does not depend on the renormalization scale µ which leads to
Renormalization Group Equations (RGE) for the Wilson coefficients. All the problems
with the large logarithms can then be avoided if one matches the effective theory at the
high scale mh and then runs the Wilson coefficients down to µ2 ∼ p2

⊥ with the RGE.
This will effectively sum up all the large logarithms.

Soft Collinear Effective Theory

Soft Collinear Effective Field Theory (SCET) is a specific framework that disentangles
the collinear and soft degrees of freedom of QCD in a collision process. SCET originated
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Figure 1.1: An example of an event shape for pp→ XL with two leptons, `, in the final
state. The Beam functions, Bn,n̄ describe the incoming partons as incoming jets while all
the soft radiation is described by the Soft function, S. Hard fluctuations are integrated
out and contribute to Wilson coefficients that are collected in the hard function, H.

from B physics where it can describe light decays of a B meson in its rest frame. Today,
SCET features a range of applications such as the production of energetic jets in colliders
and the scattering of energetic particles off a target at rest.

This thesis is centered around pp → XL processes at small transverse momentum,
p⊥, of the color-singlet final state L, while X is the hadronic final state, see Fig. 1.1.
As mentioned before, one example of such an observable that is of obvious importance
is the Higgs production spectrum. The latest data from Run 1 of the LHC is displayed
in Fig. 1.2. At large p2

⊥ this can be computed with fixed order perturbation theory, but
the calculations are plagued by large logarithms in the low transverse momentum region
p2
⊥ � m2

h.
The large logarithms arise from the presence of multiple energy scales in the collision

process. We will see how one can factorize the cross section into a hard function, H,
responsible for the hard interaction; two beam functions, B, that describe an incoming
jet along each collinear direction; and a soft function, S, which collects all soft radiation
effects. For now, we write this schematically as

dσ

d2p⊥
∼ H(mh, µ)×B(p⊥, µ)⊗⊥ B(p⊥, µ)⊗⊥ S(p⊥, µ), (1.2)

where the ⊗⊥ denotes a convolution of the transverse momentum and µ is the ordinary
renormalization scale from dimensional regularization.

The factorization due to SCET allows one to compute the three functions, H, B and
S, separately in their respective perturbative regions. With the help of RGEs, all the
factors in the cross section can then be evolved from their natural scale to a common
arbitrary renormalization scale. This effectively resums all the large logarithms from
every region. Since H describes the hard interaction at the high scale mh, it will contain
logarithms like log(m2

h/µ
2) and one can identify its natural scale which minimizes the

logarithms to be µ2
H ∼ m2

h. The beam functions describe the partons that participate
in the collisions and they are matched onto ordinary parton distribution functions at
some other, much smaller, scale µ2

B ∼ p2
⊥. All the soft interactions between the incoming

partons as well as any soft radiation in the collision are contained in a soft function with
its own natural soft scale µ2

S ∼ p2
⊥.
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Figure 1.2: Differential cross section for Higgs boson production measured by the ATLAS
collaboration. The data is from a combination of the H → γγ and H → ZZ channels.
Plot taken from [5].

Although a resummation framework has already been developed for this process a
long time ago [6, 7], we will use the modern framework of SCET in Ref. [8, 9] to factorize
the cross section. Using this framework, one encounters rapidity divergences in B and S
that need to be regulated in addition to the ordinary UltraViolet (UV) and InfraRed (IR)
divergences. The main objective of this thesis is to compute the soft function to NNLO
and we will use the same analytic regulator as in Ref. [8, 9] in addition to dimensional reg-
ularization to handle all the divergences. This results in a rapidity renormalization scale
ν, which is used much in the same way as the ordinary µ scale. The rapidity divergences
are related to logarithms that will be resummed with Rapidity Renormalization Group
Equations (RRGE). This has an advantage over previous resummation schemes because
with two renormalization scales we can cleanly separate the running associated with dif-
ferent logarithms and thus probe the size of uncertainties from sub-leading logarithms
more carefully.

The resummation of the Higgs p⊥ spectrum has previously been done in another
SCET framework where the method of resumming rapidity logarithms is not based on a
renormalization group [10]. The Beam functions have been computed to NNLO in this
framework [12, 13] and we will translate their results to retrieve the beam functions to
NNLO in our framework as well.
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Outline

We will start off in Chap. 2 by describing the SCET framework that we will be working in
and some of its features that are of importance in the following computation. In Chap. 3,
we also go through the factorization theorem for pp → XL to see how the cross section
factorizes into hard, soft and two beam functions.

The next two chapters are devoted to the computation of the soft function. The NLO
is done in Chap. 4 while the technique to do the NNLO is described in Chap. 5.

All the parts of the soft function are combined and renormalized in Chap. 6 and,
afterwards, we compute all the relevant anomalous dimensions. As a cross check of these
results, we derive a recursive formula that determines the soft function’s structure to all
orders in Sec. 6.3. The O(α2

s) structure in position space can be found in Sec. 6.3.3.
After we have the final soft function results we use them to retrieve the beam functions

in our framework to NNLO as well. We will translate the cross section, in the case of
Higgs production, from another SCET framework, where the beam functions have been
calculated to NNLO, to the framework which we use in this thesis in Chap. 7. Similar to
the case of the soft function, we derive the full structure of the beam functions in Sec. 7.2;
then match it onto the beam functions in the other scheme to retrieve the missing pieces
and present the results in Sec. 7.3.

A set of appendices are collected with relevant details to the computations throughout
the thesis. Constants and conventions regarding the renormalization procedure can be
found in App. A; the Feynman rules for Wilson lines are derived in App. B; Hyperge-
ometric functions and plus distributions, which will be used heavily in this thesis, are
presented in appendices C and D, respectively; and finally the hard function in Higgs
production through gluon fusion is written down in App. E.
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Chapter 2

Soft Collinear Effective Theory

There are multiple energy scales that are of importance in a collision process. To probe
physics at a hard scale Q we must disentangle it from other QCD physics that happens
at lower scales, such as ΛQCD or p⊥. SCET is the appropriate framework to factorize the
cross sections into distinct hard, collinear and soft factors by effectively separating the
collinear and soft degrees of freedom of quarks and gluons [14, 15, 16, 17].

In this thesis we will consider pp → XL processes, where L represents any non-
strongly interacting set of particles, while X is any hadronic final state, e.g. jets along
the beam axis. Possible scenarios are Drell-Yan-like processes or Higgs production at
the LHC. We will consider the phase-space region where the total transverse momentum,
p2
⊥, of L is much smaller than the hard interaction scale, Q2 ∼ m2

h in the case of Higgs
production. Then there are three relevant scales involved in the collision

Λ2
QCD � p2

⊥ � Q2

and our effective theory will be constructed such that λ = |p⊥|/Q is a small expansion
parameter. A good description of how the factorization works in SCETI can be found in
Ref. [18]. We will however be concerned with factorization in SCETII and the difference
between the two frameworks will be described below.

This chapter does not give a detailed review of the field-theoretic foundation and
construction of SCET, but instead describes the smallest building blocks we need to
match SCET currents onto QCD and factorize the cross section. The starting point
is however to introduce light-cone coordinates which are the natural basis to describe
collinear particles.

2.1 Light-Cone Coordinates
Collinear particles are characterized by having large energy and small invariant mass.
When working with collinear particles it is very convenient to use light-cone coordinates.
These are defined by two lightlike vectors, one nµ = (1,n) to point along one beam
direction and another n̄µ that satisfies

n2 = n̄2 = 0, n · n̄ = 2. (2.1)

We use the bold notation to denote a vector in euclidean space. Although n̄µ is an
arbitrary auxiliary vector, more often than not it is chosen to point in the opposite beam

10



2.2. SCET INGREDIENTS

direction. Any four-vector can then be decomposed in this basis by first defining

p+ ≡ n · p, p− ≡ n̄ · p.

Then we have

pµ = p+ n̄
µ

2
+ p−

nµ

2
+ pµ⊥ ≡ (p+, p−,p⊥). (2.2)

In the standard metric choice (+−−−), the vector product will take the form

p · k =
1

2
(p+k− + p−k+)− p⊥ · k⊥, p2 = p+p− − p2

⊥. (2.3)

Four-momenta Invariant mass Mode
pµn ∼ Q(λ2, 1, λ) p2 ∼ Q2λ2 n-collinear
pµn̄ ∼ Q(1, λ2, λ) p2 ∼ Q2λ2 n̄-collinear
pµs ∼ Q(λ, λ, λ) p2 ∼ Q2λ2 soft

pµus ∼ Q(λ2, λ2, λ2) p2 ∼ Q2λ4 ultra-soft
pµG ∼ Q(λ2, λ2, λ) p2 ∼ Q2λ2 Glauber

Table 2.1: Potential momenta scaling modes in light-cone coordinates.

An advantage of using light-cone coordinates is that the scaling of momenta appears
very clearly as can be seen in Tab. 2.1. We can now analyze the different physical
momenta for a final state L with small transverse momentum in terms of λ = |p⊥|/Q.
The final state of a process, for example a Higgs boson, will have a momentum that
scales as pµ ∼ Q(1, 1, λ) and radiation that recoils against this state will then have to
have similar p⊥ scaling; thus the collinear and soft are the relevant momentum modes for
the approximately massless particles in X. The EFT for these degrees of freedom goes by
the name SCETII. In contrast, SCETI includes the ultra-soft instead of the soft modes.

Even though it seems like the Glauber modes should be included in the EFT, it has
been shown that they do not contribute to the process which we are concerned with[19].

2.2 SCET Ingredients
Particles in different collinear directions can exchange large momenta, Q, in a collision
via off-shell modes. These hard fluctuations are integrated out and contribute to Wilson
coefficients in the EFT Lagrangian. This is done by matching QCD onto SCET, which
yields the hard function. In the next chapter on factorization, we will see how the degrees
of freedom below the energy scale Q are divided into distinct collinear sectors. These only
interact with each other through soft radiation, which factors out as well to yield the soft
function.

Before going through the factorization of the cross section we will review the necessary
ingredients of SCET. This discussion will be done in the framework of SCETI which later
on will be matched onto SCETII. For a detailed explanation of all these building blocks we
refer to the introduction notes in Ref. [20, 21] and the original literature [14, 15, 16, 17].
These building blocks of SCET are constructed from the full theory QCD by separating
the ordinary fields into collinear and soft fields that carry specific momenta and expanding
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2.2. SCET INGREDIENTS

systematically in some power counting parameter λ. Since the momentum components
of the fields scale differently, it is convenient to split them up into two parts, the large
label and small residual momenta.

The collinear fields in SCET are the quark and gluon fields, ξn,p̃(x) and An,p̃(x). They
are labeled by their collinear direction n and large momentum p̃. By large momentum
we here mean the collinear and transverse components, i.e. we split up the momentum
as

pµ = p̃µ + kµ = ωn
nµ

2
+ pµ⊥ + kµ. (2.4)

The fields are then written in momentum space with respect to the large momentum while
the dependence on residual momentum, kµ, is expressed in position space. This allows us
to define different derivative operations that have a definite scaling. So derivatives acting
on the field pick out the residual momentum, i∂µ ∼ kµ ∼ λ2, while the large momentum
is obtained by acting with a momentum operator on the field, Pµn ∼ p̃µn ∼ (0, 1, λ). We
also define the shorthand notation P̄n ≡ n̄ · Pn.

To construct the leading order Lagrangian for SCET one splits up all the full theory
QCD fields, identify their scaling in λ and expand. This analysis finds that the collinear
quark fields scale as ξn ∼ λ while the gluons scale as their momentum, i.e. Aµn ∼ (λ2, 1, λ)
and Aµs ∼ (λ, λ, λ). The fact that n̄ · An ∼ O(1) means that one can include an infinite
number of n-collinear gluons accompanying the n-collinear quarks at the same order in the
power counting of λ. The emission of an infinite number of n-collinear gluons generated
in the interaction of a n-collinear quark with a n̄-collinear quark organizes into a Wilson
line, which has the definition

Wn(x) =

[∑

perms

exp

(−g
P̄n

n̄ · An(x)

)]
. (2.5)

We also define a collinear covariant derivative

iDµ
n⊥

= Pµn⊥ + gAµn⊥ , (2.6)

and write collinearly gauge invariant quark and gluon fields as

χn,ω(x) =
[
δ(ω − P̄n)W †

n(x)ξn(x)
]
, (2.7)

Bµn,ω(x) =
1

g

[
δ(ω + P̄n)W †

n(x)iDµ
n⊥
Wn(x)

]
. (2.8)

Here, the momentum operator acts on every field to its right. The label momentum ω is a
continuous parameter equal to the sum over all the minus momentum inside the brackets,
while the large label momenta, p̃, of the individual fields are summed over,

ξn(x) =
∑

p̃

e−ip̃·xξn,p̃(x), (2.9)

which we suppress in our notation.
The leading-order SCETI Lagrangian for collinear quarks reads

Ln = ξ̄n

(
in ·Dus + gn · An + i /Dn⊥Wn

1

P̄n
W †
ni /Dn⊥

)
/̄n

2
ξn, (2.10)
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2.2. SCET INGREDIENTS

where the quarks couple ultra-soft gluons through the ultra-soft covariant derivative

iDµ
us = i∂µ + gAµus. (2.11)

The coupling of soft gluons and collinear particles can be removed at leading order with
the field redefinitions

χ(0)
n,ω(x) = Y †n (x)χn,ω(x),

Bµ(0)
n,ω⊥

(x) = Y †n (x)Bµn,ω⊥(x)Yn(x),
(2.12)

where Yn(x) is a ultra-soft Wilson line in the fundamental representation

Yn(x) = P exp

[
ig

∫ 0

−∞
dsn · Aus(x+ sn)

]
. (2.13)

The SCETI Lagrangian then separates as

LSCET =
∑

i

Lni + Lus + (. . .), (2.14)

where the (. . .) denotes subleading terms in λ. The leading order terms in the Lagrangian
is decomposed into distinct sectors Lni and Lus that do not interact anymore. This a
key point that allows us to factorize the cross section into collinear and soft functions.
The consequence of the field redefinitions is that ultra-soft interaction between different
collinear directions decouple by introducing ultra-soft Wilson lines in the external cur-
rents. In the cross section, these ultra-soft Wilson lines can be factored out of the matrix
elements to create a separate soft function which then will be a vacuum matrix element
of Wilson lines. The soft function is the focus of this thesis and we will calculate it to
NNLO in the following chapters.
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Chapter 3

Factorization

3.1 Cross Section in QCD
As previously stated we will consider the cross section for pp → XL, where L can be
any non-strongly interacting particles, while X stands for the hadronic final state, see
Fig. 1.1. This could be a Drell-Yan process or Higgs production through gluon fusion
where the Higgs then decays non-hadronically. A proper derivation of the factorization
theorem in SCETI can be found in Ref. [18] and we will here follow their formalism,
however with a SCETII measurement.

For any process where the hard partonic interaction is through a single two-parton
QCD current, we can write the full-theory matrix element as

M(pp→ XL) =
∑

J

JL 〈X| J |pp〉 , (3.1)

where the sum runs over all color-singlet two-particle QCD currents J . The JL is the
color-singlet part of the matrix element that we will not pay any closer attention to in
this thesis.

The cross section for p⊥ measurement in full QCD can now be factorized into a
leptonic and a hadronic part like

dσ

dp2
⊥

=
1

2E2
cm

∫
d4q

(2π)4

∫
dΦL(2π)4δ(4)(q − pL)

1

4

∑

spins

∑∫

X

|M(pp→ XL)|2

× δ(p2
⊥ − p2

X⊥
)(2π)4δ(4)(Pa + Pb − q − pX)

≡ 1

8E2
cm

∑

J,J ′

∫
d4q

(2π)4
LJ,J ′(q)WJ,J ′(q,p⊥). (3.2)

The integration of dΦL is over L’s phase space and the hadronic phase space integration
is contained in ∑∫

X
. Pa and Pb are the incoming proton momenta while pX and pL are the

total hadronic and color-singlet momenta, respectively. We have defined the color-singlet
factor

LJ,J ′(q) =

∫
dΦL(2π)4δ(4)(q − pL)J†LJ

′
L, (3.3)
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3.2. MATCHING ONTO SCET

and the hadronic matrix element

WJ,J ′(q,p⊥) =
∑∫

X

〈pp| J†(0) |X〉 〈X| J ′(0) |pp〉 (2π)4δ(4)(Pa + Pb − q − pX)δ(p2
⊥ − p2

X⊥
)

=

∫
d4xe−iq·x 〈pp| J†(x)δ(p2

⊥ − P2
⊥)J ′(0) |pp〉 , (3.4)

where the 2-dimensional delta function picks out the measurement of transverse momen-
tum.

3.2 Matching onto SCET
The full QCD current can be matched onto two SCET operators, one for each collinear
direction, which means we integrate out the hard fluctuations. To go to SCETII, we will
formally match SCETI onto SCETII. This can be pictured as lowering the virtuality of
the collinear sectors to the same invariant mass scale as the soft modes. Effectively, this
works such that the factorization is done in the same way for SCETII as for SCETI, with
the substitution of soft Wilson lines, instead of ultra-soft, in the operators [17, 22], i.e.
we make the substitution

Y i
n(x)→ Sin(x) = P exp

[
ig

∫ 0

−∞
dsn · As(x+ sn)

]
(3.5)

in the SCET operators. Here, i = q for a Wilson line in the fundamental representation
and i = g in the adjoint representation.

We will write the SCET current, with operators in momentum space with respect to
the large momenta, as

J(x) =
∑

n1,n2

∫
dω1d

2p1⊥

∫
dω2d

2p2⊥

∫
d4pse

−i(p1+p2+ps)·x

×
[∑

q

Cαβ
qq̄ (ω1, ω2)Oαβ

qq̄ (p1, p2, ps, x) + Cµν
gg (ω1, ω2)Oggµν (p1, p2, ps, x)

]
. (3.6)

Here pµi = ω1
nµi
2

+ pµi⊥ , where ωi denotes the O(1) momentum while pµi⊥ is the O(λ)
momentum and ps is the soft momentum of the Wilson lines. All the x dependence now
corresponds to purely residual momenta.

The leading order operators in SCET after the field redefinitions in Eq. (2.12) are

Oαβ
qq̄ (p1, p2, ps, x) = χ̄

(0)αj
n1,−p1

(x)T
[
Sqn1

†(x)Sqn2
(x)
]jk
−ps

χ(0)βk
n2,p2

, (3.7)

Oµν
gg (p1, p2, ps, x) =

√
ω1ω2B(0)µc

n1,−p1,⊥(x)T
[
Sqn1

†(x)Sqn2
(x)
]cd
−ps
B(0)νd
n2,−p2,⊥. (3.8)

Where j and c are color indices and α, β are spinor indices. The Sq and Sg are Wilson
lines in the fundamental and adjoint representation, respectively, and the time ordering
is required to ensure the proper ordering of the soft gluon fields in the Wilson lines. The
fields are defined as

χ(0)j
ni,pi

(x) = δ(ωi − Pni)δ(2)(pi⊥ − Pni⊥)χ(0)j
ni

(x), (3.9)

B(0)µa
ni,−pi,⊥(x) = δ(ωi − Pni)δ(2)(pi⊥ − Pni⊥)B(0)µa

ni,⊥ (x), (3.10)

T
[
Sin1

†
(x)Sin2

(x)
]cd
−ps

= δ(4)(ps − P)T
[
Sin1

†
(x)Sin2

(x)
]cd

, (3.11)
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3.2. MATCHING ONTO SCET

where i = {q, g}. From here on we will suppress the (0) notation. If we just focus on the
quark operator with an implicit sum over quark flavors, we get after plugging Eq. (3.6)
into the hadronic matrix element

W (q,p⊥) =
∑

n1,n2,n′1,n
′
2

C†βαqq̄ Cα′β′

qq̄

(∏

i

∫
dωid

2pi

)∫
d4ps

∫
d4xe−iq·xei(p1+p2+ps)·x

× 〈pp|O†qq̄βαδ(p2
⊥ − P2

⊥)Oqq̄α′β′ |pp〉 . (3.12)

Now we can use the crucial fact that the different sectors of collinear and soft degrees of
freedom separate at the Lagrangian level, which allows us to split the matrix element up
into three parts with

|pp〉 = |pn〉 |pn̄〉 |0〉 . (3.13)

The measurement function can then also be split up like

δ(p2
⊥ − P2

⊥) =

∫
d2`n⊥d

2`n̄⊥d
2`s⊥δ(p

2
⊥ − |`n⊥ + `n̄⊥ + `s⊥|2)

× δ(2)(`n⊥ − Pn⊥)δ(2)(`n̄⊥ − Pn̄⊥)δ(2)(`s⊥ − Ps⊥), (3.14)

where each momentum operator Pi⊥ only picks out the momentum in its respective sector.
We are now ready to factorize the matrix element in Eq. (3.12) into two collinear and

one soft matrix elements. The sums over collinear directions gives a factor of 4 and the
result is

W (q,pT ) = 4C†βαqq̄ Cα′β′

qq̄

∫
d2`n⊥d

2`n̄⊥d
2`s⊥δ(p

2
⊥ − |`n⊥ + `n̄⊥ + `s⊥|2)

×
∫
dωnd

2pn⊥dωn̄d
2pn̄⊥

∫
d4ps

∫
d4xe−iq·xei(pn+pn̄+ps)·x

× θ(ωn) 〈pn| χ̄βkn (x)δ(ωn − P̄n)δ(2)(pn⊥ − Pn⊥)δ(2)(`n⊥ − Pn⊥)χβ
′k′

n (0) |pn〉
× θ(ωn̄) 〈pn̄|χαjn̄ (x)δ(ωn̄ − P̄n̄)δ(2)(pn̄⊥ − Pn̄⊥)δ(2)(`n̄⊥ − Pn̄⊥)χ̄α

′j′

n̄ (0) |pn̄〉

× 〈0| T̄
[
Sqn
†(x)Sqn̄(x)

]kj
δ(4)(ps − Ps)δ(2)(`s − P⊥)T

[
Sqn̄
†(0)Sqn(0)

]j′k′
|0〉

= 4C†βαqq̄ Cα′β′

qq̄

∫
d2pn⊥d

2pn̄⊥d
2ps⊥δ(p

2
⊥ − |pn⊥ + pn̄⊥ + ps⊥|2)

×
∫
dωndωn̄

∫
d4xe−iq·xei(ωnx

++ωn̄x−)/2e−i(pn⊥+pn̄⊥+ps⊥ )·x

×Mn(ωn,pn, x)Mn̄⊥(ωn̄,pn̄⊥ , x)Ms(ps⊥ , x). (3.15)

In the last step we dropped the p±s ∼ O(λ) momentum in the exponential. We have also
defined the matrix elements

Mn(ωn,pn⊥ , x
−) = θ(ωn) 〈pn| χ̄βkn (x)δ(ωn − P̄n)δ(2)(pn⊥ − Pn⊥)χβ

′k′

n (0) |pn〉 , (3.16)

Mn̄(ωn̄,pn̄⊥ , x
+) = θ(ωn̄) 〈pn̄|χαjn̄ (x)δ(ωn̄ − P̄n̄)δ(2)(pn̄⊥ − Pn̄⊥)χ̄α

′j′

n̄ (0) |pn̄〉 , (3.17)

Ms(ps⊥) = 〈0| T̄
[
Sqn
†(0)Sqn̄(0)

]kj
δ(2)(ps − P⊥)T

[
Sqn̄
†(0)Sqn(0)

]j′k′
|0〉 . (3.18)

The residual x dependence associated with the large momentum in each matrix element
have has absorbed, thus the only x dependence left is the residual in each collinear sector.
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3.2. MATCHING ONTO SCET

This can however also be dropped by Fourier transforming the matrix elements and do
the x integral in Eq. (3.15), giving
∫
d4xe−iq·xei(ωnx

++ωn̄x−)/2e−i(pn⊥+pn̄⊥+ps⊥ )·xMn(x−)Mn̄(x+)

=

∫
dk+

n

(2π)

∫
dk−n̄
(2π)

M̃n(k+
n )M̃n̄(k−n̄ )

× 2(2π)4δ(ωn − q− − k−n − k−n̄ )δ(ωn̄ − q+ − k+
n − k+

n̄ )

× δ(2)(pn⊥ + pn̄⊥ + ps⊥ + q⊥)

= Mn(0)Mn̄(0)2(2π)4δ(ωn − q−)δ(ωn̄ − q+)δ(2)(pn⊥ + pn̄⊥ + ps⊥ + q⊥) +O(λ) (3.19)

The ki ∼ O(λ2) momentum is the residual momentum and in the last step we expanded
around the momenta and only kept the lowest order in the power expansion for each
delta function. Afterwards, one can do the ki integrals which gives the matrix elements
evaluated at x = 0.

Now we can do the ω integrals to get
∫
dωnδ(ωn − q−)Mn(0) =

/nββ
′
δkk

′

4Nc

θ(q−) 〈pn| χ̄n(0)δ(q− − P̄)δ(2)(pn⊥ − Pn⊥)
/̄n

2
χn(0) |pn〉

(3.20)

and similarly for the n̄ part. Finally, the hadronic factor takes the form

W (q,p⊥) =
2(2π)4

πNc

Trspins

{
/n

2
C̄qq̄

/̄n

2
Cqq̄

}
δ(p2

⊥ − q2
⊥)

×
∫
d2pn⊥d

2pn̄⊥d
2ps⊥δ(p

2
⊥ − |pn⊥ + pn̄⊥ + ps⊥ |2)Bq(q

−,pn⊥)Bq̄(q
+,pn̄⊥)Sq(ps⊥),

(3.21)

where we have defined the quark beam and soft functions,

Bq(q
−,pn⊥) = θ(q−) 〈pn| χ̄n(0)δ(q− − P̄)δ(2)(pn⊥ − Pn⊥)

/n

2
χn(0) |pn〉 , (3.22)

Sq(ps⊥) =
1

Nc

〈0|Tr
{
T̄
[
Sqn
†(0)Sqn̄(0)

]
δ(2)(ps − P⊥)T

[
Sqn̄
†(0)Sqn(0)

]}
|0〉 . (3.23)

If we now combine everything we get a final expression for the cross section as

dσ

dp2
⊥

=

∫
d4q

(2π)4
H(q+, q−)L(q)δ(p2

⊥ − q2
⊥)

×
∫
d2pn⊥d

2pn̄⊥d
2ps⊥δ(p

2
⊥ − |pn⊥ + pn̄⊥ + ps⊥|2)Bq(q

−,pn⊥)Bq̄(q
+,pn̄⊥)Sq(ps⊥),

(3.24)

where we collected the prefactors in the hard function

H(q−, q+) =
(2π)3

2E2
cmNc

Trspins

{
/n

2
C̄qq̄

/̄n

2
Cqq̄

}
. (3.25)

After matching QCD onto SCET, the general result is a factorized cross section where the
beam functions are in two distinct collinear sectors that do not interact with each other.
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3.3. RAPIDITY DIVERGENCES

All the soft interaction is moved into the soft function. Both the beam and soft functions
are therefore process independent and only differ depending on whether we match onto
quark or gluon currents and the observable. All the process dependence is in the hard
function and the color singlet matrix element, which then can be modified to fit whatever
process one is interested in.

3.3 Rapidity Divergences

λ

λ
0

λ λ
0

p
-

p
+

B

S

H

B

µ
ν

ν
Q

2
λ

2

Q
2

Figure 3.1: The beam (B) and soft (S) functions live on the same mass-shell hyperbola,
p2 ∼ Q2λ2, while the hard (H) function lives at the high scale p2 ∼ Q2. The arrows
represent running of the functions in rapidity, ν, and virtuality scale, µ.

The beam and soft function in the cross section exhibit rapidity divergences, which
arise from the factorization procedure. They are neither UV nor IR in nature and are
absent in the full QCD theory. They have their origin in momentum regions where the
invariant mass k2 is held fixed while k+/k− or k−/k+ diverges. The rapidity divergences
are related to logarithms from integrals such as

I =

∫ Q

µ

dk+

k+
= log

Q

µ
, (3.26)

which range over both the soft and the collinear limit. Through the factorization process
the EFT introduces a cut-off between the different regions with the scaling Q � Λ �
µ. In each respective sector one then takes the limits Λ → ∞/0, which introduces
divergences; consequently the divergent integral splits up like

I =

∫ Λ

µ

dk+

k+
+

∫ Q

Λ

dk+

k+
→
∫ ∞

µ

dk+

k+
+

∫ Q

0

dk+

k+
. (3.27)

From this picture, we see that every sector only depends on one scale and that this
generates divergences that only cancel in the sum of the soft and collinear regions.

The rapidity divergences are a feature of SCETII, where the soft and collinear sectors
share the same invariant mass scaling. One can think of the rapidity divergences as
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3.3. RAPIDITY DIVERGENCES

living on the boundary between the soft and collinear sectors1. The non-cancellation of
the divergences within each separate sector changes the renormalization group structure
of the theory and it is this fact that will allow us to perform the resummation of rapidity
logarithms.

These divergences are not regulated with dimensional regularization and we will there-
fore use a second regulator that introduces an additional renormalization scale ν. The
fact that the full theory is free of any rapidity divergences, and hence independent on ν,
makes it possible to derive a Rapidity Renormalization Group Equation (RRGE)[9, 8].
Resummation of rapidity logarithms is then done by evolving the beam and soft function
in rapidity scale. The degrees of freedom and RGE running of SCETII are illustrated in
Fig. 3.1.

3.3.1 Rapidity regulator

To compute the soft function in the following chapters, we need to regulate the rapidity
divergences. As mentioned before, dimensional regularization is not enough and we will
here use an additional rapidity regulator that was introduced in Ref. [9, 8]. The imple-
mentation of it effectively works as follows: for every Connected Web(C-Web) in a soft
eikonal diagram, we introduce a factor

w2

(
ν

|2Pg3|

)η
(3.28)

in the integrals over loop momenta. In analogy to the µ scale in dimensional regulariza-
tion, this introduces the dimensionful parameter ν that serves as a rapidity cut-off. The
momentum operator |2Pg3| picks out the group momentum component k3 = 1

2
(k+ − k−)

flowing through the C-Web. Similar to ε in dimensional regularization, the soft function
will be expanded around η = 0 in the renormalization process.

To make out what exactly a C-Web is, we first state a well known fact of the soft
function: it can be written in an exponential form in position space, see Sec. 5.3. Just as
the contributions to the soft function can be represented by diagrams, the contributions
to the exponent of the soft function can be represented by C-Webs. A useful fact about
the C-Webs is that each one contains a color factor that is not present in a C-Web of
lower order in αs; hence they can be organized by their distinct color structure. This
means that one can calculate the C2

F part of the soft function from the NLO part, since
it is proportional to CF . This is called the non-abelian exponentiation theorem[23, 24]
and we will in this thesis assume that this regulator preserves it as argued in Ref. [8]. We
will use this exponentiation theorem in Sec. 5.3 to obtain the 2-loop C2

F piece. However
it would be interesting to show that the regulator indeed preserves exponentiation by
explicit calculations of the C2

F diagrams. The computations of some of the C2
F diagrams

are however a little bit more complicated since they are composed out of two C-Webs
and thus require two factors of Eq. (3.28) in the integration. These sort of calculations
are somewhat beyond the scope of this thesis and are left to future work.

With this regulator, the soft function will exhibit 1/ηn divergences as well as the usual
dimensional regularization 1/εn terms. When expanding the result, it is very important
to expand in η before expanding in ε; more details can be found in Sec. 4.2 below.

1These kinds of integrals do not pose a problem in SCETI, where the divergences cancel within each
collinear and ultra-soft sector in the sum of all graphs including zero-bin subtractions.
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3.3. RAPIDITY DIVERGENCES

We also introduced w as a “book-keeping” parameter which will play a role when
deriving the ν anomalous dimension. It is analogous to a bare coupling constant which
is made dimensionless by introducing a dimensionful parameter ν, just as ordinary cou-
plings in the MS scheme. Requiring that the product w2νη is ν independent leads to a
“renormalization” of w, making it obey the RGE equation

ν
d

dν
w = −η

2
w. (3.29)
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Chapter 4

Soft function at NLO

n

n̄

(a)

n

n̄

(b)

Figure 4.1: NLO contributions to the soft function, S. The double lines represent Wilson
lines in the fundamental representation and the arrows denote the fermion flow. Every
cut propagator corresponds to a real emission. (a) is scaleless and vanishes in dimensional
regularization while (b) and its mirror image are the only contributing diagrams since
gluons that connect along light-like vectors vanish.

As seen in Chap. 3, all the soft radiation in a pp → XL process is factorized into a
soft function and it is the main goal of this thesis to compute the latter to NNLO. The
soft function has been calculated to NLO in Ref. [8] and we will reproduce their results;
moreover, the NLO soft function will contribute to NNLO through charge renormalization
which requires a higher order expansion in ε and η than necessary for NLO. We will
calculate it in the fundamental representation. Using Casimir scaling, one can afterwards
obtain the result for the soft function in the adjoint representation as well.

The soft function is the vacuum expectation value of four soft Wilson line operators.
We can organize the computation in momentum space in so called cut diagrams. Inserting
a complete set of states in the matrix element we can express the soft function as

S(p⊥) =
1

Nc

∑∫

X

Tr 〈0| T̄
[
S†nSn̄

] 1

π
δ(p2

⊥ − P2
⊥) |X〉 〈X|T

[
S†n̄Sn

]
|0〉 . (4.1)

The integration is independent on the azimuthal angle of the transverse plane so we
have simplified the measurement function to a one dimensional delta function with the
substitution δ(2)(p⊥ − P⊥) = δ(p2

⊥ − P2
⊥)/π. In our scheme, the transverse integration

momentum is always in 2− 2ε dimensions.
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To compute S, one simply expands the Wilson lines in αs; see App. B for a derivation
of the Feynman rules. Every contribution can then be represented as a cut diagram,
where every cut propagator results in a real emission and gives a factor of an on-shell
delta function, −(2π)δ+(k2) ≡ −(2π)θ(k0)δ(k2).

4.1 Computation
To the lowest order, S trivially reduces to a simple delta function in momentum space,

S(p⊥) = δ(2)(p⊥) +O(αs). (4.2)

The NLO contributions can be organized into pure real emission and pure virtual
diagrams, see Fig. 4.1. First we will look closer at the pure virtual diagrams. They
are scaleless diagrams that consequently vanish in dimensional regularization. Thus in
the end, we are only left with the pure real emission diagrams, which there are two
permutations of.

4.1.1 Pure virtual

The pure virtual diagrams contain integrals that does not depend on any dimensionful
parameter, hence they are scaleless. That scaleless integrals vanish is a general feature
of dimensional regularization. To show it explicitly we compute its integral which is

V ≡
∫
ddk|2k3|−η 1

(k− − iε)(k+ + iε)(k2 + iε)
. (4.3)

We can use the residue theorem to compute the k0 integral,

V =

∫
dk0

∫
dk3

∫
dd−2k⊥|2k3|−η 1

(k0 − k3 − iε)(k0 + k3 + iε)((k0)2 − k2 + iε)

= −iπ
∫
dk3

∫
dd−2k⊥|2k3|−η 1

|k|(|k| − k3)k3
. (4.4)

With the change of variables x = k3/|k⊥| and integrating over the angles this becomes

V
∣∣∣
d=4−2ε

= −iπΩ2−2ε2
−η
∫ ∞

0

d|k⊥||k⊥|−1−2ε−η
∫ ∞

−∞
dx

|x|−η√
1 + x2(

√
1 + x2 − x)x

= −iπΩ2−2ε2
−η
(

2

η
+ log 4 +O(η)

)∫ ∞

0

d|k⊥||k⊥|−1−2ε−η

= −iπΩ2−2ε2
−η
(

2

η
+ log 4 +O(η)

)(
− 1

2ε+ η
+

1

2ε+ η

)
= 0, (4.5)

where the solid angle is Ωd ≡ 2πd/2/Γ(d/2). The parameters ε and η need to have different
signs in different parts of the integration range for this to converge. But in the end we can
use analytic continuation to set them equal in all regions, essentially setting εIR = εUV.
With this equality, the diagram vanishes and in the future we will set all the dimensionless
diagrams to zero.
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4.2. EXPANSION

4.1.2 Single emission

The only contributing diagram at NLO is the one where a single gluon is emitted from one
Wilson line to another along the opposite light-cone direction since gluons that propagate
along a light-like vector give factors of n2 = 0 and vanish as well. In the end there is only
one diagram and its mirror image that need to be computed and summing up the two
gives the expression

SNLO(p⊥) =
2(n · n̄)g2w2νηµ2ε

π

Tr(tata)

Nc

∫
ddk

(2π)d
|k− − k+|−η (2π)δ+(k2)δ(p2

⊥ − k2
⊥)

k−k+
.

(4.6)

Here and in the future we will always hide the +iε terms in the propagator when they
can be ignored. Because of the analytic regulator that picks out a distinct direction, k3,
one needs to be consistent when using dimensional regularization. We choose to always
put the transverse components in 2− 2ε dimensions. The result is

SNLO(p⊥) =
8CFαsw

2νηµ2ε

(2π)d−1

∫ ∞

−∞
dk−

∫ ∞

−k−
dk+|k− − k+|−ηΩd−2

×
∫ ∞

0

d|k⊥||k⊥|d−3 δ(k
+k− − k2

⊥)

k−k+

δ(|k⊥| − |p⊥|)
2k⊥

∣∣∣
d=4−2ε

=
8CFαsw

2νηµ2ε

(2π)3−2ε

Ω2−2ε

2
(p2
⊥)−1−ε

∫ ∞

0

dk−
∣∣∣∣k− −

p2
⊥
k−

∣∣∣∣
−η

1

k−
. (4.7)

The last integral is precisely the kind of divergent rapidity integral that was mentioned
in Sec. 3.3; now, we can do the integral with the rapidity regulator and find

SNLO(p⊥) =
8CFαsw

2νηµ2ε

(2π)3−2ε

2π1−ε

2Γ(1− ε)
1

(p2
⊥)1+ε+η/2

Γ(1
2
− η

2
)Γ(η

2
)

2η
√
π

. (4.8)

4.2 Expansion
The bare soft function contains divergences both in ε and η. To renormalize it, we need to
expand the bare result in Eq. (4.8) in ε and η; however, in which order to take their limit to
zero is of crucial importance. Since the rapidity divergences arise on the mass hyperbola
of SCETII we need to remain on the hyperbola when we take the rapidity cut-off to its
limit. Thus we take the η → 0 limit before ε → 0 with η/εn → 0,∀n > 0. Moreover,
care must be taken when doing so to avoid getting factors like δ(2)(p⊥) log(p2

⊥/µ
2) which

are ill-defined and a proper way of doing everything is to make use of plus distributions
that regulate the divergences at p2

⊥ = 0. Details about plus distributions can be found in
App. C and throughout this thesis we will make use of a certain class of plus distributions
which we define to be

Ln(p2, µ2) =
1

2πµ2

[
µ2

p2
logn

(
µ2

p2

)]

+

. (4.9)

We also need to include the MS factor and the renormalization of αs. This is done by
the following replacement in the bare function

αbsµ
2ε → µ2εαs(µ)

eεγE

(4π)ε

(
1− β0

αs
4π

1

ε
+O(α2

s)

)
. (4.10)
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4.2. EXPANSION

From this it is clear that the NLO result contributes to NNLO. In addition we will see
in Sec. 5.3 that by using the non-abelian exponentiation theorem, we can get the total
C2
F part of the soft function from the NLO result. The exact relation is a convolution

of two NLO renormalized soft functions in momentum space, see Eq. (5.47). One needs
to be careful when expanding SNLO because of this and additional convolutions in the
renormalization procedure. In order not to miss any non-zero terms, SNLO needs to be
expanded all the way up to and including O(η) and O(ε4), for NNLO.

Now when expanding Eq. (4.8), we first write out 1/(p2
⊥)1+ η

2
+ε as a series of plus

distributions with Eq. (C.6). Since the full expansion that is needed is rather lengthy,
we only show the derivation of the divergent and finite terms to first order in αs as an
example of the method. The plus distribution series is then

1

(p2
⊥)1+ η

2
+ε

= µ−2−2ε−η
(
µ2

p2
⊥

)1+ε+η/2

= µ−2ε−η

(
−πδ

(2)(p⊥)

ε+ η/2
+ 2π

∞∑

n=0

(ε+ η/2)n

n!
Ln
)

= µ−2ε−η
[
−πδ

(2)(p⊥)

ε
+

(
πδ(2)(p⊥)

2ε2
+ πηL1

)
η

]
+O(η2) +O(ε). (4.11)

Inserting this in Eq. (4.8) gives the final bare NLO result

SNLO(p⊥) = αsCFw
2

[
δ(2)(p⊥)

π

(
1

ε2
+

1

ε
log

µ

ν

)
+

1

η

(
− 2

πε
δ(2)(p⊥) +

4

π
L0

)

−πδ
(2)(p⊥)

12
− 4

π
L0 log

µ

ν
+

2

π
L1

]
+O(η) +O(ε). (4.12)

This agrees with the computation of the NLO soft function in Ref. [8]1.

1Up to potential typos in their article. They compute it in the adjoint representation, which translates
to the fundamental if one substitute CF for CA. However, they are missing the w2 factor as well as a
factor of π in the finite δ(2)(p⊥) term, compared to our result.
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Chapter 5

Soft Function at NNLO

The number of diagrams in a computation increases rapidly for every order. At NNLO
we will divide them into different groups that we will compute separately with different
techniques. As in the NLO case, we do not compute any purely scaleless diagrams. The
simplest non-trivial diagrams have a single real gluon and will be denoted by R, see
Fig. 5.1. We will use the non-abelian exponentiation theorem as well as the known soft
current at one loop to compute them.

For the more involved case with two real particles we will develop a calculation scheme
which can be applied to all diagrams. They will be divided into five groups that we
compute separately for convenience.

The color structure of all the diagrams can be seen in Tab. 5.1.

Color Factor Diagrams
CF (NLO)
C2
F I and R

CFCA I, T , G, H and R
CFTFnf Q

Table 5.1: The diagrams that contain the respective color factor. All of the diagrams are
collected in Fig. 4.1, 5.1 and 5.2. After renormalization, the NLO diagram contributes to
both CFCA and CFTFnf through the αs beta function; moreover, we will use the NLO
results to get the full C2

F part of the soft function by using the non-abelian exponentiation
theorem.

5.1 Single Real Emission
Two types of single real emission diagrams are shown in Fig. 5.1 and we will denote all
permutations of them as R. The non-abelian exponentiation theorem states that the
total C2

F term of the soft function can be retrieved by squaring the CF term, i.e. the NLO
result [23, 24]. Thus the C2

F part of both the single and double emission diagrams will
therefore not be considered any further. See Sec. 5.3 for the computation of the C2

F part.
For the CFCA part of the R diagrams we will use the known soft current at one loop,

which we can extract from [25]. In the end it only results in an overall factor multiplied
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5.2. DOUBLE REAL EMISSION

(a) (b)

Figure 5.1: The simplest diagrams at NNLO are the ones with a single real gluon. Their
sum is denoted byR. We will compute them with the non-abelian exponentiation theorem
as well as the known 1-loop soft current.

by the bare NLO diagram. It is evaluated to

RCFCA = −2−1−2επ−1+εαsµ
2εCA

Γ(1− ε)4Γ(1 + ε)3

ε2Γ(1− 2ε)2Γ(1 + 2ε)

4CF (4π)αsw
2νηµ2ε

π

×
∫

ddk

(2π)d
|k− − k+|−η (2π)δ+(k2)δ(p2

⊥ − k2
⊥)

(k−k+)1+ε

∣∣∣
d=4−2ε

= −α2
sCFCAw

2π2ε− 7
2 2−η+4ε−1µ4ενη

Γ(1
2
− η

2
)Γ(η

2
)Γ(1− ε)3Γ(1 + ε)3

ε2Γ(1− 2ε)2Γ(1 + 2ε)

1

(p2
⊥)1+2ε+ η

2

. (5.1)

5.2 Double Real Emission
The diagrams with two real particles emitted are shown in Fig. 5.2; they are the most
complicated cases that need to be calculated. We will introduce a parametrization scheme
similar to that used in Ref. [12] and [26]. This will result in a master integral that will
allow us to express all these diagrams in a closed form with the help of Hypergeometric
functions.

The double emission diagrams have two integrals, one over each real particle momen-
tum k1 and k2. However, due to our regulator and measurement, we find it useful to use
the variables ` = k1 and k = k1 + k2. Then the integral that needs to be performed takes
the form

IRR ≡ 4π

∫
dd`

(2π)d

∫
ddk

(2π)d
|k− − k+|−ηδ+(`2)δ+

(
(k − `)2

)
δ(p2

⊥ − k2
⊥)A(`, k, k · `).

(5.2)

The factor of 4π in front comes from the two cut propagators and the measurement
function. All the amplitudes of the diagrams in Fig. 5.2 can be found in Ref. [27].
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5.2. DOUBLE REAL EMISSION

(a) (b) (c)

(d) (e) (f)

Figure 5.2: All the double real emission diagrams contributing at NNLO. The free gluons
can connect to any of the + points on their side of the cut. We divide them into five
groups: three double gluon groups I: (a), T : (b) & (c) and G: (d); one with ghosts H:
(e); and one with fermions Q: (f)

5.2.1 Kinematics and parameterization

From the delta functions we now have the on-shell condition on ` and (k − `) which
implies that

`2 = 0, (k − `)2 = 0,

`0 ≥ 0, (k − `)0 ≥ 0. (5.3)

In the center-of-mass frame of the two particles, where

kµ = (k0, 0, 0, 0), (5.4)

we have 1
2
k0 = `0 ≥ 0, which implies k2 ≥ 0. Given that the zero components of n and n̄

are positive we can conclude that we have

k+ ≥ 0, (5.5)
k− ≥ 0, (5.6)

in any frame. In evaluating the k integral in Eq. (5.2) we find a set of convenient variables
to be

y =
k2
⊥

k−k+
≥ 0, (5.7)

v =k− − k+. (5.8)
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5.2. DOUBLE REAL EMISSION

The integration over the light-cone components then takes the form
∫
dk0

∫
dk3 =

1

2

∫ ∞

0

dk−
∫ ∞

k2
⊥/k

−
dk+ =

∫ 1

0

dy

∫ ∞

−∞
dv|J |, (5.9)

where the Jacobian is

|J | = k2
⊥

y3/2
√
yv2 + 4k2

⊥
. (5.10)

We will see in sections below that nothing else except the regulator factor |v|−η is depen-
dent on the variable v. This is the major advantage of our choice of variables, because
now we can compute the v integral independently. It evaluates to
∫ ∞

−∞
dv|J ||v|−η =

∫ ∞

−∞
dv

k2
⊥

y3/2
√
yv2 + 4k2

⊥
|v|−η = 2−η(k2

⊥)1− η
2 y−2+ η

2β

(
1− η

2
,
η

2

)
.

(5.11)

The y and k⊥ integral receives contributions from the ` integral, which we consider next.
The ` integration in Eq. (5.2) has the form

∫
dd`δ+(`2)δ+

(
(k − `)2

)
A(`, k, k · `). (5.12)

The amplitude is a function of the scalar product of ` and k with the light-cone vectors
n and n̄; as well as ` · k. We are free to rotate the coordinate system of ` with respect
to k as we like and we can thus set up k in the most convenient reference frame. The
center-of-mass frame of k which we discussed earlier is clearly the simplest choice. Thus
we parametrize k as

kµ = |k⊥|
√

1− y
y

(1, 0, 0, 0). (5.13)

The momenta k and ` are vectors in d dimensions. Here, we will put the k1 and `1

components in d − 3 dimensions. After going to the center of mass frame, there still
remains freedom in rotating in d− 1 dimensions. The ` vector will be expressed in terms
of d dimensional spherical coordinates and the next step is to choose a parameterization
of n and n̄ in terms of k components with as many zero components as possible. We
start by setting up n̄ such that it only has two components. Then, n can be rotated in
the remaining plane and will contain three components. This is parametrized as

n̄µ =cn̄(1, . . . , 0, x3),

nµ =cn(1, . . . , y2, y3),

`µ =c`(z0, . . . , sin θ1 cos θ2, cos θ1), (5.14)

where the dots denotes the components of a d− 3 vector in spherical coordinates. To fix
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5.2. DOUBLE REAL EMISSION

all these 7 coefficients we will apply the conditions

`0 =
|k⊥|

2

√
1− y
y

,

n̄ · n̄ = n · n = ` · ` = 0,

n̄ · n = 2,

n̄ · k = k− =
1

2



√
v2 +

4k2
⊥
y

+ v


 ,

n · k = k+ =
1

2



√
v2 +

4k2
⊥
y
− v


 . (5.15)

Which gives us the vectors

n̄ =
k−

|k⊥|

√
y

1− y (1, . . . , 0, 1),

n =
|k⊥|
k−

1√
y(1− y)

(1, . . . ,−2
√
y(1− y), 2y − 1),

` =
|k⊥|

2

√
1− y
y

(1, . . . , sin θ1 cos θ2, cos θ1). (5.16)

Now we can express the amplitude in terms of |k⊥|, k− and y, as well as the angles θ1,
θ2 and θ3. All angle dependent factors that can appear in the amplitudes are now

n̄ · ` = k−D1, n · ` =
k2
⊥

k−y
D2,

n̄ · (k − `) = k−D3, n · (k − `) =
k2
⊥

k−y
D4, (5.17)

where we have defined the following functions

D1 =
1− cos θ1

2
,

D2 =
1

2

(
1 + 2

√
y(1− y) sin θ1 cos θ2 + (2y − 1) cos θ1

)
,

D3 = 1−D1,

D4 = 1−D2.

(5.18)

Note that none of these factors depend on the d − 3 spherical coordinates. It is also
convenient to define

D5 = y,

D6 = 1− y. (5.19)

All the double real emission amplitudes can be expressed in terms of these Di-factors.
The k⊥ can be factored out and the amplitudes can be written as

A(k, `, k · `) =
1

k4
⊥
Ã ({Di}) (5.20)

The whole computation of Eq. (5.2) factorizes nicely and we can do the ` and y integrals
independently from the v and k⊥ integrals.
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5.2.2 The ` and y integrals

We can now perform two integrals in Eq. (5.12) with the help of the delta functions which
reduces them to
∫
dd`δ+(`2)δ+

(
(k − `)2

)
=

∫
d`0 1

2k0
δ(`0 − 1

2
k0)

∫
d|`||`|d−2 1

2|`|δ(|`| − `
0)

∫
dΩd−1

= 2−3+2ε(k0)−2ε

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2

∫
dΩd−3. (5.21)

The fact that nothing depends on the d−3 angular components lets us do the last integral
straight away. After substituting (k0)2 = k2 = k2

⊥
1−y
y

= k2
⊥D

−1
5 D6 and going to d = 4−2ε

we get

2−2(πk2
⊥)−εDε

5D
−ε
6

Γ(1− ε)
Γ(1− 2ε)

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2. (5.22)

We will find it useful to define a main integral over the remaining angles as well as
the integral over y in Eq. (5.9). Thus we define

I(a1, a2, a3, a4, a5, a6) =

∫ 1

0

dy
1

2π

Γ2(1− ε)
Γ(1− 2ε)

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2

6∏

i=1

D−aii .

(5.23)

The arbitrary factors are only there for convenience to avoid certain γE factors when
expanding. This integral will in the end act as the master formula that can express all
amplitudes in terms of Hypergeometric functions.

5.2.3 The I integral

Here we will compute the I integral in Eq. (5.23). Before computing it we can pause to
consider some of its properties that are useful when one wants to express amplitudes in
terms of it.

Relabeling

In our parameterization of the light-cone vectors n and n̄ we could have just as well
switched one for the other. This leads to an identity for our I-integral where we can
relabel it as follows:

I(a1, a2, a3, a4, a5, a6) = I(a2, a1, a4, a3, a5, a6). (5.24)

The fact that our initial choice of setting ` = k1 was arbitrary and symmetrical to setting
` = k2 leads in a similar way to

I(a1, a2, a3, a4, a5, a6) = I(a3, a4, a1, a2, a5, a6). (5.25)

These relations are very useful to minimize the number of terms in the computation when
matching the amplitudes to the I integrals.
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Evaluation

To simplify the computation of I, we first split it up like

I(a1, a2, a3, a4, a5, a6) =

∫ 1

0

dyy−a5(1− y)−a6I1(a1, a2, a3, a4), (5.26)

where

I1(a1, a2, a3, a4) =
1

2π

Γ2(1− ε)
Γ(1− 2ε)

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2D
−a1
1 D−a2

2 D−a3
3 D−a4

4 .

(5.27)

Note however that I1 depends on y, through D2 and D4, and must be integrated over.
When writing down the amplitudes we can use partial fraction decomposition such that
two of the indices in I1 are zero. This has a convenient consequence, because by relabeling
the indices we can freely choose such that we only need to compute integrals with a4 = 0.
Hence, in total there are three combinations of possible non-zero indices.

The simplest combination is when a2 = a4 = 0, since in that case I1 does not depend
on y. Then I1 evaluates to

I1(a1, 0, a3, 0) =
Γ(1− ε− a1)Γ(1− ε− a2)

Γ(2− 2ε− a1 − a3)
(5.28)

and the final expression for I is simply a collection of gamma functions,

I(a1, 0, a3, 0, a5, a6) =
Γ(1− a5)Γ(1− a6)

Γ(2− a3 − a6)

Γ(1− ε− a1)Γ(1− ε− a2)

Γ(2− 2ε− a1 − a3)
. (5.29)

For the other cases we find

I1(a1, a2, 0, 0) =
Γ(1− ε− a1)Γ(1− ε− a2)

Γ(2− 2ε− a1 − a2)
2F1(a1, a2; 1− ε; y), (5.30)

I1(0, a2, a3, 0) =
Γ(1− ε− a2)Γ(1− ε− a3)

Γ(2− 2ε− a2 − a3)
2F1(a2, a3; 1− ε; 1− y). (5.31)

Some relevant details about Hypergeometric functions can be found in App. D and by
using the integral representation in Eq. (D.6), we can do the last remaining integral over
y to get a final closed form in terms of a 3F2 function. However, one needs to be careful
about singularities in the 2F1(a, b; c; z) when integrating over it. When −1 < c−a−b ≤ 0,
the 2F1 diverges at z = 1 which is inside the integration range. Naively applying the
integral representation then gives a divergent 3F2. Instead, one can extract the singularity
with the Euler transformation in Eq. (D.5) before integrating over y, to yield a well
behaved 3F2. By doing this, we end up with

I(a1, a2, 0, 0, a5, a6) =
Γ(1− ε− a1)Γ(1− ε− a2)

Γ(2− a1 − a2 − 2ε)

Γ(1− a5)Γ(2− a1 − a2 − a6 − ε)
Γ(3− a1 − a2 − a5 − a6 − ε)

× 3F2

(
1− a5, 1− ε− a1, 1− ε− a2

3− a1 − a2 − a5 − a6 − ε, 1− ε ; 1

)
, (5.32)

I(0, a2, a3, 0, a5, a6) =
Γ(1− ε− a2)Γ(1− ε− a3)

Γ(2− a2 − a3 − 2ε)

Γ(1− a6)Γ(2− a2 − a3 − a5 − ε)
Γ(3− a1 − a2 − a5 − a6 − ε)

× 3F2

(
1− a6, 1− ε− a2, 1− ε− a3

3− a2 − a3 − a5 − a6 − ε, 1− ε ; 1

)
. (5.33)
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5.2.4 The k⊥ integral

The integral over k⊥ is the only remaining integral to do. First note that all the am-
plitudes are proportional to (k2

⊥)−2, but we also pick up additional factors. A factor of
(k2
⊥)1− η

2 from the v integral in Eq. (5.11) and a factor (k2
⊥)−ε from the angle integrations,

see Eq. (5.22). In the end we are left with the following integral which is easily evaluated
with the standard dimensional regularization technique:
∫
dd−2k⊥(k2

⊥)−1−ε− η
2 δ(p2

⊥ − k2
⊥) =

Ωd−2

2

∫ ∞

0

d|k⊥||k⊥|d−5−2ε−ηδ(|p⊥| − |k⊥|)

=
Ωd−2

2

1

(p2
⊥)−

d
2

+ 5
2

+ε+ η
2

∣∣∣
d=4−2ε

=
π1−ε

Γ(1− ε)
1

(p2
⊥)1+2ε+ η

2

. (5.34)

5.2.5 Final form

In previous sections we have seen that the computation of the double real emission dia-
grams in the end results in a closed expression. All diagrams can be divided into separate
groups for convenience but they all share the same fundamental 2-loop integral. The
integrals factorize nicely though. By first using the two on-shell delta functions, one can
reduce the integral over one momentum ` to an integration over 2 angles. These can
then be combined with one integral of the k components to get a master formula that
evaluates to Hypergeometric functions. Another component of the k momentum can also
be done independently and finally there is the 2 − 2ε integral over k⊥ which is trivially
done with the help of the measurement delta function. In the end, the full IRR integral
takes the form

IRR =
2−9+4ε−ηπ−6+2ε

Γ2(1− ε) β

(
1− η

2
,
η

2

)
1

(p2
⊥)1+2ε+ η

2

Iyθ1θ2 , (5.35)

where each term in

Iyθ1θ2 ≡
∫ 1

0

dy
1

2π

Γ2(1− ε)
Γ(1− 2ε)

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2D
−2+ε+η/2
5 D−ε6 Ã({Di})

(5.36)

can be matched onto the I integrals in Eq. (5.23) and Ã is defined by Eq. (5.20).
The amplitudes for the double real emission diagrams in Fig. 5.2 can be found in

Ref. [27]. Here, we express them in terms of the Di factors that are defined in Sec. 5.2.1.
Some terms between the ghost and gluon loop diagrams cancel so we add them together.
We also split the I diagrams into distinct color factors. All the double real emission
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amplitudes are in Feynman gauge

AICFCA =
1

k4
⊥

(
−2(4π2)α2µ4ενηw2CFCA

)
D2

5

(
3D−1

1 D−1
2 + 2D−1

2 D−1
3 +D−1

3 D−1
4

)
, (5.37)

AT =
1

k4
⊥

(
2(4π)2α2µ4ενηw2CFCA

)
D2

5D
−1
6

×
(
D1D

−1
3 +D−1

2 D−1
3 +D−1

1 D3 +D−1
1 D−1

4 +D2D
−1
4 +D−1

2 D4

)
, (5.38)

AG+H =
1

k4
⊥

[
(4π2)α2µ4ενηw2CFCA

]
D2

5D
−2
6

×
(
4D2

1 − 8D1D2 + 4D2
2 − 8D6 − 4D2

1ε+ 8D1D2ε− 4D2
2ε
)

(5.39)

AQ =
1

k4
⊥

(
8(4π2)α2µ4ενηw2TFnfCF

)
D2

5D
−2
6

(
−D2

1 + 2D1D2 −D2
2 +D6

)
. (5.40)

5.2.6 Results

After plugging the amplitudes into Eq. (5.35) and matching onto the I integrals, the
double real emission diagrams are evaluated to

ICFCA =4CFCAKRR

[
3I(1, 1, 0, 0,−ε− η

2
, ε) + 2I(0, 1, 1, 0,−ε− η

2
, ε)
]
, (5.41)

T =4CFCAKRR

[
2I(−1, 0, 1, 0,−ε− η

2
, 1 + ε) + I(0, 1, 1, 0,−ε− η

2
, 1 + ε)

]
, (5.42)

G +H =4CFCAKRR

[
I(−2, 0, 0, 0,−ε− η

2
, 2 + ε)− 2I(−1,−1, 0, 0,−ε− η

2
, 2 + ε)

+ I(0,−2, 0, 0,−ε− η

2
, 2 + ε)− 2I(0, 0, 0, 0,−ε− η

2
, 1 + ε)

− εI(−2, 0, 0, 0,−ε− η

2
, 2 + ε) + 2εI(−1,−1, 0, 0,−ε− η

2
, 2 + ε)

−εI(0,−2, 0, 0,−ε− η

2
, 2 + ε)

]
, (5.43)

Q =8CFTFnfKRR

[
−I(−2, 0, 0, 0,−ε− η

2
, 2 + ε) + 2I(−1,−1, 0, 0,−ε− η

2
, 2 + ε)

−I(0,−2, 0, 0,−ε− η

2
, 2 + ε) + I(0, 0, 0, 0,−ε− η

2
, 1 + ε)

]
, (5.44)

where the common prefactor is

KRR =
2−4+4ε−ηπ−3+2εα2

sµ
4ενηw2β(1−η

2
, η

2
)

Γ(1− ε)2

1

(p2
⊥)1+2ε+ η

2

. (5.45)

5.3 Non-Abelian Exponentiation Theorem
Throughout the previous calculations of diagrams we have neglected any C2

F pieces. We
will instead retrieve these terms through the non-abelian exponentiation theorem [23, 24].
We discussed this briefly in Sec. 3.3.1 and according to this theorem the soft function
can be written as an exponential of C-Webs in position space. The C-Webs are sets of
diagrams at a certain order in αs and each C-Web carries a distinct color factor. We
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write this exponent as

S(αs) =
1

(2π)2
exp

[
∞∑

n=1

s(n)
(αs

4π

)n
]

=
1

(2π)2

[
1 + s(1)

(αs
4π

)
+

(
1

2
(s(1))2 + s(2)

)(αs
4π

)2

+O(α3
s)

]
,

(5.46)

The factor of 1/(2π)2 is a normalization factor. Here, we can identify the O(αs) term as
the Fourier transform of SNLO. The non-abelian exponentiation theorem states that the
s(1) is purely CF while s(2) is purely CFCA and CFnf . Hence the total C2

F part of the soft
function is equal to the (s(1))2 term in Eq. (5.46). We can use this fact and simply square
the NLO result to obtain the full C2

F part. When we Fourier transform to momentum
space the square will turn into a convolution and we get

SC2
F

(p) = F
[

1

(2π)2

1

2
s(1)(b)2

(αs
4π

)2
]

=
(2π)2

2
SNLO ⊗⊥ SNLO(p). (5.47)

The convolution in momentum space is defined as

g ⊗⊥ f ≡
∫

d2q

(2π)2
f(q− p)g(q). (5.48)

We also define a compact notation for the identity in this 2-dimensional space as

Ip ≡ (2π)2δ(2)(p). (5.49)
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Chapter 6

Results

The final results for the bare NNLO soft function can then be collected and written down
as

SB = δ(2)(p⊥) + SNLO

(
1− β0

αs
4π

1

ε

)
+

(2π)2

2
SNLO ⊗⊥ SNLO

+RCFCA + ICFCA + T + G +H +Q, (6.1)

where we have introduced the subscript B for bare. From now on we will also use the
subscript R for renormalized. The NLO bare result, SNLO, can be found in Eq. (4.8) and
in Ref. [8]. The CFCA part of the NNLO real-virtual diagrams, RCFCA , is written down
in Eq. (5.1). As shown in Sec. 5.3, we can use the non-abelian exponentiation theorem
to get the C2

F part from SNLO, which produces the convolution term. All the double real
emission diagrams, ICFCA , T ,G,H and Q, are written down in Eq. (5.41)-(5.44).

The bare closed form in d dimensions, though compact, is not very useful and even-
tually we are interested in the renormalized soft function, i.e. we want to send η → 0
and go to d = 4. Thus we need to expand all the contributions. The procedure works
the same way as in the NLO case which is explained in Sec. 4.2; it is important to take
the limit η → 0 before ε→ 0. Some Hypergeometric functions can be expanded with the
mathematica package HypExp [28], while others require some more work. See App. D.1
for details.

6.1 Renormalization
The full bare result can be split into a renormalization factor, Z, that contains all the
divergences and a renormalized soft function, SR, that only contains finite terms,

SB(p⊥) = Z(µ, ν)⊗⊥ SR(p⊥, µ, ν). (6.2)

We will write the renormalized soft function and renormalization factor as a power series
in αs,

SR(p⊥, µ, ν) =
∞∑

n=0

S
(n)
R (p⊥, µ, ν)

(
αs(µ)

4π

)n
, Z(p⊥, µ, ν) =

∞∑

n=0

Z(n)(p⊥, µ, ν)

(
αs(µ)

4π

)n
.

(6.3)
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To zeroth order we have S(0)
R (p⊥) = δ(2)(p⊥) and Z(0)(p⊥) = Ip ≡ (2π)2δ(2)(p⊥). Hence,

an expansion of the bare function in Eq. (6.2) takes the form

SB = δ(2)(p⊥) +
(αs

4π

)(
S

(1)
R +

1

(2π)2
Z(1)

)

+
(αs

4π

)2
(
S

(2)
R + Z(1) ⊗⊥ S(1)

R +
1

(2π)2
Z(2)

)
+O(α3

s). (6.4)

This can be matched up to the full expanded bare result in Eq. (6.1) and we get the
renormalized NLO soft function coefficient

S
(1)
R =CFw

2

[
−π

2δ(2)(p⊥)

3
+ 8L1 − 16L0 log

µ

ν

]
+O

( η
εn

)
+O(ε), (6.5)

where n ≤ 3. The terms that are proportional to η and ε are important since they
produce finite terms in the Z(1) ⊗⊥ S(1) term in Eq. (6.4) and are thus needed to extract
S

(2)
R and Z(2), but they play no further role since η/εn → 0 for all n and we will therefore

not write them down. In addition, one needs to keep the O(ε3/η) terms in Z(1). The
next coefficient is

S
(2)
R =w2

{
C2
Fw

2

[
−16L3 + 96 log

µ

ν
L2 −

(
8π2

3
+ 128 log2 µ

ν

)
L1

+

(
64ζ(3) +

16π2

3
log

µ

ν

)
L0 +

(
π4

18
+ 64ζ(3) log

µ

ν

)
δ(2)(p⊥)

]

+ 8CFβ0L2 +
[
2Γq1 − 16CFβ0 log

µ

ν

]
L1 +

[
4π2CFβ0

3
− 4Γq1 log

µ

ν

]
L0

+ CF

[
53π4CA

360
− (67CA − 20TFnf )π

2

18
+

2428CA − 656TFnf
81

+
2β0ζ(3)

3
+

(
(1616CA − 448TFnf )

27
− 56ζ(3)CA

)
log

µ

ν

]
δ(2)(p⊥)

}
, (6.6)
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while the divergent terms are contained in

Z(1) =16π2CFw
2

[
1

η

(
4L0 −

2

ε
δ(2)(p⊥) +O(ε)

)
+

(
1

ε2
+

2

ε
log

µ

ν

)
δ(2)(p⊥)

]
, (6.7)

Z(2) =w2

{
32π2C2

Fw
2

[
1

η2

(
−32L1 −

16

ε
L0 +

(
4

ε2
− 2π2

3

)
δ(2)(p⊥)

)

+
1

η

(
4L2 +

(
8

ε
+ 16 log

µ

ν

)
L1 +

(−2π2

3
+

8

ε2
+

16

ε
log

µ

ν

)
L0

+

(
− 4

ε3
+
π2

3ε
+

4ζ(3)

3
+

(
2π2

3
− 8

ε2

)
log

µ

ν

)
δ(2)(p⊥)

)

+δ(2)(p⊥)

(
1

ε4
+

4

ε3
log

µ

ν
+

4

ε2
log2 µ

ν

)]
+

16π2

η

[
4CFβ0L1 + Γq1L0

+CF

(−404CA
27

+
112TFnf

27
+
β0

ε2
− Γq1

4CF ε
+ 14CAζ(3)

)
δ(2)(p⊥)

]

+ 16π2δ(2)(p⊥)

[
−3CFβ0

4ε3
+
CF
ε2

[(
4nfTF

3
− 11CA

3

)
log
(µ
ν

)
− π2CA

12
+

67CA
36

−5nfTF
9

]
+
CF
ε

((
−π

2CA
3

+
67CA

9
− 20nfTF

9

)
log
(µ
ν

)
+ π2

(
nfTF

18
− 11CA

72

)

−7CAζ(3)

2
+

101CA
27

− 28nfTF
27

)]}
. (6.8)

At this stage, we could set w = 1 in the renormalized result. However it is important to
keep it in Z since it will play a role when deriving the ν anomalous dimension. The Ln
factors are plus distributions which can be found in App. C.

6.2 Anomalous Dimensions
The fact that the bare soft function should not depend on the renormalization scale allows
one to derive a RGE for the renormalized soft function. Demanding this of Eq. (6.2) gives

0 = µ
d

dµ
SB(p⊥) =

(
µ
d

dµ
Z(µ, ν)

)
⊗⊥ SR(p⊥, µ, ν) + Z(µ, ν)⊗⊥

(
µ
d

dµ
SR(p⊥, µ, ν)

)
.

(6.9)

The RGE can then be obtained by just rearranging the above equation and an analogous
argument holds for the parameter ν which results in a RRGE. We will write these as

µ
d

dµ
SR(p⊥, µ, ν) =γSµ(µ, ν)⊗⊥ SR(p⊥, µ, ν), (6.10)

ν
d

dν
SR(p⊥, µ, ν) =γSν(µ)⊗⊥ SR(p⊥, µ, ν), (6.11)

where we have defined the two anomalous dimensions

γSµ(p⊥, µ, ν) ≡ −Z−1(µ, ν)⊗⊥
(
µ
d

dµ
Z(p⊥, µ, ν)

)
, (6.12)

γSν(p⊥, µ) ≡ −Z−1(µ, ν)⊗⊥
(
ν
d

dν
Z(p⊥, µ, ν)

)
. (6.13)
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The anomalous dimensions are however connected and we will eventually derive the struc-
ture of γSν from γSµ.

With the results from Sec. 6.1 we can compute the anomalous dimensions. The
expanded RGE takes the form

γSµ =− µ d

dµ

[
Z(1)

(
αs(µ)

4π

)]
− µ d

dµ

[
Z(2)

(
αs(µ)

4π

)2
]

+

(
αs(µ)

4π

)
Z(1) ⊗⊥ µ

d

dµ

[
Z(1)

(
αs(µ)

4π

)]
+O(α3

s). (6.14)

Because of the last term, one should remember to expand Z(1) to sufficient order. Here,
one needs up to and including O(ε2/η). All the µ dependence sits in factors of Ln,
log(µ/ν) and αs(µ), which obeys Eq. (A.6). In the end, we arrive at the result1

γSµ(p⊥, µ, ν) =Ip

{
4

[
Γq0

(
αs(µ)

4π

)
+ Γq1

(
αs(µ)

4π

)2
]

log
µ

ν

+

(
αs(µ)

4π

)2

CF

[
CA

(
1616

27
− 22π2

9
− 56ζ(3)

)
+ TFnf

(
8π2

9
− 448

27

)]}
.

(6.15)

The same can be done for γν . One thing to remember is that the w book keeping
parameter is ν dependent through Eq. (A.6), while all the other ν dependence is in log µ

ν
.

The result is

γSν(p⊥, µ) =4(2π)2

{
L0

[
Γq0

(
αs(µ)

4π

)
+ Γq1

(
αs(µ)

4π

)2
]

+ 4L1CFβ0

(
αs(µ)

4π

)2
}

+ Ip
(
αs(µ)

4π

)2

CF

[
CA

(
56ζ(3)− 1616

27

)
+

448TFnf
27

]
. (6.16)

6.3 Cross Checks
Given that the structures of the µ anomalous dimensions are known in our scheme, and
that we can derive a relation between them, allows us to fully derive the structure of the
soft and beam functions to all orders [29, 30]. This will be done by deriving a recursive
relation for the soft function, and similarly for the beam functions in Sec. 7.2, which
we will use to get the full structure up to NNLO. That this structure then matches our
results from the actual computation will be a very strong cross check of our calculations.
The only missing pieces will be the constants of the anomalous dimensions and the soft
function, i.e. terms that are independent of b, µ and ν.

6.3.1 Structure of γSν
First of all, we will derive γSν from the µ anomalous dimension. Because of the convo-
lutions in momentum space, we will here go to position space where convolutions turn
into simple products and plus distributions turn into ordinary logarithms, see Tab. C.1

1In all final results we set w = 1.
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and C.2. Translation between the soft function in the fundamental and adjoint represen-
tation is straightforward and we will here express everything in full generality. We begin
by writing the µ anomalous dimension as a power series in αs, which in position space
takes the Sudakov form[8]

γiSµ(µ, ν) = 4Γicusp[αs(µ)] log
µ

ν
+ γiS =

∞∑

n=0

(
4Γin log

µ

ν
+ γiSn

)(αs(µ)

4π

)n+1

, (6.17)

where the index i denotes the fundamental, i = q, or the adjoint representation, i = g.
The cusp anomalous dimension is known up to three loops, while the non-cusp terms are
something that we need to calculate. The fact that the cross section is independent of µ
and ν and that derivatives commute,

[
d

dµ
,
d

dν

]
= 0, (6.18)

gives us the relation [8]

µ
d

dµ
γiS/Bν = ν

d

dν
γiS/Bµ = −nΓicusp, (6.19)

where n = 2 for the beam function and n = 4 for the soft function. We will use this to
derive the structure of the ν anomalous dimension. First we note that γSν is ν independent
and can thus be written as

γiSν(b, µ) ≡ γiν(b, µ) =
∞∑

n=0

γiν
(n)

(b, µ)

(
αs(µ)

4π

)n+1

. (6.20)

If we then take the µ derivative of this we get

µ
d

dµ
γiν =

∞∑

n=0

[
µ
dγiν

(n)

dµ

(αs
4π

)n+1

− 2γiν
(n) (n+ 1)

4π

(αs
4π

)n
µ
dαs
dµ

]

=
∞∑

n=0

[
µ
dγiν

(n)

dµ
− 2(n+ 1)γiν

(n)
∞∑

m=0

βm

(αs
4π

)m+1
](αs

4π

)n+1

=µ
dγiν

(0)

dµ

(αs
4π

)
+
∞∑

n=1

[
µ
dγiν

(n)

dµ
− 2

n−1∑

m=0

(m+ 1)γiν
(m)
βn−m−1

](αs
4π

)n+1

. (6.21)

By comparing this to Eq. (6.19) and matching up the αs coefficients we get a recursive
relation for the γiν

(n) functions which we can integrate and obtain

γiν
(0)

(b, µ) =− 2Γi0 log
µ2

µ2
S

+ γiν
(0)

(b, µS), (6.22)

γiν
(n)

(b, µ) =− 2Γin log
µ2

µ2
S

+ 2
n−1∑

m=0

(m+ 1)βn−m−1

∫ µ

µS

d log µ′γiν
(m)

(µ′) + γiν
(n)

(b, µS), n ≥ 1. (6.23)
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The γiν
(n)

(b, µS) are the boundary conditions of the integration. Guided by the results
from the calculation of the soft function and the Fourier transform of the plus distribu-
tions, we set the canonical boundary condition µ2

S = 4b−2e−2γE . This will ensure that
these terms are b independent since they are dimensionless; hence they are the pure
numbers that need to be calculated explicitly and we denote them with a new notation

γiν
(n)

(b, µS)

∣∣∣∣
µS=4b−2e−2γE

≡ γiνn. (6.24)

For later convenience, we also define the logarithm

Lb ≡ log

(
b2µ2e2γE

4

)
. (6.25)

6.3.2 Structure of the soft function

Since we now know the structure of both the µ and ν anomalous dimensions we can
derive a recursive relation for the renormalized soft function as well. From here on we
will suppress the R notation for renormalized; moreover, we introduce an index i for
quark, i = q, or gluon, i = g, soft function. In position space we write the soft function
as

Si(b, µ, ν) =
1

(2π)2

∞∑

n=0

Si
(n)

(b, µ, ν)
(αs

4π

)n
. (6.26)

The µ derivative of this leads to

µ
dSi

dµ
=

1

(2π)2
µ
dSi

(0)

dµ
+

1

(2π)2

∞∑

n=1

[
µ
dSi

(n)

dµ
− 2

n−1∑

m=0

mβn−m−1S
i(m)

](αs
4π

)n
. (6.27)

Which by the RGE should be equal to

µ
dSi

dµ
= γiSµS

i =
1

(2π)2

∞∑

n=1

n−1∑

m=0

(
4Γim log

µ

ν
+ γiSm

)
Si

(n−m−1)
(αs

4π

)n
. (6.28)

Integrating this leads to the first recursive relation for the soft function. For n ≥ 1 the
soft coefficients obey

Si
(n)

(b, µ, ν) =
n−1∑

m=0

[
(2mβn−m−1 + γiSn−m−1)

∫ µ

µS

dµ′

µ′
Si

(m)
(b, µ′, ν)

+4Γin−m−1

∫ µ

µS

dµ′

µ′
log

µ′

ν
Si

(m)
(b, µ′, ν)

]
+ Si

(n)
(b, µS, ν). (6.29)

Similar manipulation of the RRGE gives a second recursive relation

Si
(n)

(b, µ, ν) =
n−1∑

m=0

γiν
(n−m−1)

(b, µ)

∫ ν

νS

dν ′

ν ′
Si

(m)
(b, µ, ν ′) + Si

(n)
(b, νS, µ). (6.30)

The complete solution for the soft function is obtained by substituting the boundary term
in Eq. (6.29) for Eq. (6.30). We fix the final boundary term with the canonical choice
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µS = νS = 4b−2e−2γE which means that they are pure numbers. This results in the full
solution of the soft function for n ≥ 1:

Si
(n)

(b, µ, ν) =
n−1∑

m=0

{[
2mβn−m−1 + γiSn−m−1

] ∫ µ

µS

dµ′

µ′
Si

(m)
(b, µ′, ν)

+4Γin−m−1

∫ µ

µS

dµ′

µ′
log

µ′

ν
Si

(m)
(b, µ′, ν) + γiνn−m−1

∫ ν

νS

dν ′

ν ′
Si

(m)
(b, µS, ν

′)

}
+ Sin, (6.31)

where Sin is a pure number.

6.3.3 Results in position space

With the recursive relation for the γiν in Eq. (6.22), we get to O(α2
s):

γiν [Lb, αs(µ)] =
(
−2Γi0Lb + γiν0

)(αs(µ)

4π

)
+
(
−β0Γi0L

2
b − 2Γi1Lb + γiν1

)(αs(µ)

4π

)2

.

(6.32)

With this and the recursive relation in Eq. (6.31), one can also derive the structure
of the NNLO renormalized soft function. Both the soft function and γν are in perfect
agreement to the results from our explicit calculations in Eq. (6.5), (6.6) and (6.16), once
transformed to momentum space. Here, we present the soft function in position space
where we write it as

Si [Lb, µ/ν, αs(µ)] =
1

(2π)2

{
1 +

(
αs(µ)

4π

)[
Si1 + 2Γi0 log

µ

ν
Lb −

Γi0
2
L2
b

]

+

(
αs(µ)

4π

)2 [
Si2 − γiν1 log

µ

ν

+

(
γiν1

2
+ β0S

i
1 +

γiS1

2
+ 2(Si1Γi0 + Γi1) log

µ

ν

)
Lb

+

(
−S

i
1Γi0
2
− Γi1

2
+ β0Γi0 log

µ

ν
+ 2Γi0 log2 µ

ν

)
L2
b

+

(
−β1Γi0

3
− Γi0

2
log

µ

ν

)
L3
b +

Γi0
2

8
L4
b

]}
. (6.33)

The cusp anomalous dimension can be found in App. A while the new terms that we
calculated in this thesis are the non-cusp terms which are defined by Eq. (6.17) and (6.32),
as well as the Sin constant terms. Matching onto the results from our momentum space
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NNLO calculation, in Eq. (6.5),(6.6), (6.15) and (6.16), gives

γiS0 =γiν0 = 0,

γiS1 =Ci
[
CA

(
1616

27
− 22π2

9
− 56ζ(3)

)
+ TFnf

(
8π2

9
− 448

27

)]
, (6.34)

γiν1 =Ci
[
CA

(
56ζ(3)− 1616

27

)
+

448TFnf
27

]
, (6.35)

Si1 =− C
iπ2

3
, (6.36)

Si2 =
Ci2π4

18
+ Ci

{
[CA(97120− 12060π2 + 477π4 − 55440ζ(3)]

3240

+
2TFnf

81

[
−328 + 45π2 + 252ζ(3)

]}
. (6.37)

The color factors are here expressed in a more general form with the index i. For a soft
function in the fundamental representation we can identify Cq = CF and for the adjoint
representation we have Cg = CA.
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Chapter 7

Beam Functions and Higgs Production

One important example where SCET has been successfully applied to resum large log-
arithms is Higgs production at low p⊥ [8, 11, 31, 10] and the differential cross section
dσ/dp2

T has been computed up to NNLL+NNLO in two different frameworks [10, 11].
The work in Ref. [10] has been done in the framework layed out in Ref. [31, 32], which
we will call the BNW1 formalism; While Ref. [11] uses the same framework as we have
been using in this thesis [8, 9], which we will call the CJNR2 formalism.

In contrast to the CJNR formalism, BNW’s resummation of rapidity logarithms is
not based on a renormalization group. The method of resumming rapidity logarithms
in BNW essentially fixes the renormalization scale ν to its natural scale. This can be
compared to CJNR where one is free to choose ν and this provides the possibility to
perform an extended set of scale variations to probe the uncertainties related to the
resummation.

The beam functions also goes by the name Transverse Momentum Dependent Parton
Distribution Functions (TMDPDF) and have been calculated to NNLO in the BNW
formalism [12, 13]. In this chapter, we will see how the two formalisms are related and we
will translate the beam functions from the BNW scheme to the CJNR scheme. Similar
to the case of the soft function, we can derive the structure of the beam functions to
NNLO straight from its anomalous dimensions. The hard function in the factorization
theorem does not differ between the two formalisms and thus the product of beam and
soft functions must agree in the end. Hence, we can then find all the missing constants in
our beam functions by comparing the full combined result of our beam and soft functions
to the beam functions in Ref. [12].

With the beam and soft functions to NNLO, all necessary ingredients are known to
compute the cross section to NNLL′+NNLO. The prime denotes that in addition to the
NNLL resummation one also includes all the O(α2

s) terms of the hard, soft and beam
functions appearing in the factorization theorem. This contribution is formally part of
the N3LL resummation but this prime way of counting is in many ways more systematic
[33]. The counting prescription and necessary ingredients to perform the full resummation
at each order can be read off Tab. 7.1.

1Thomas Becher, Matthias Neubert and Daniel Wilhelm.
2Jui-yu Chiu, Ambar Jain, Duff Neill and Ira Z. Rothstein

43



7.1. CROSS SECTION

Resummation H, B, S Γcusp γH , γB, γS, γν β[αs]
LL Tree-level 1-loop - 1-loop
NLL Tree-level 2-loop 1-loop 2-loop
NLL′ 1-loop 2-loop 1-loop 2-loop
NNLL 1-loop 3-loop 2-loop 3-loop
NNLL′ 2-loop 3-loop 2-loop 3-loop
N3LL 2-loop 4-loop 3-loop 4-loop

Table 7.1: Necessary ingredients to aquire NnLL and NnLL′ resummation accuracy. With
the results from this thesis, one can now perform NNLL′ resummation in this formalism
which we are working in.

7.1 Cross Section
The derivation of the p2

⊥ differential cross section for Higgs production in SCET can
be found in Ref. [8, 10]. Here we follow a similar path and consider Higgs production
through gluon fusion. The factorization of pp→ XH is done essentially in the same way
as in Chap. 3 but with gluon beam functions instead of quark beam functions and the
color-singlet L corresponds to the Higgs. Here we simply present the final form of the
differential cross section:

dσ

dp2
⊥dy

= σ0(µ)C2
t (m2

t , µ)|Cs(−m2
h, µ)|2(2π)6

∫
d2b

(2π)2
e−ib·p⊥

× 2Bµν
g

(
mh√
s
ey,b

)
Bgµν

(
mh√
s
e−y,b

)
S(b). (7.1)

All Wilson coefficients and constants that are relevant to NNLL′ can be found in App. E.
The beam functions are matched onto standard non-perturbative PDFs like[8, 34]

Bµν
g (z,b, µ, ν, ω) =

∑

i=g,q,q̄

[
gµν⊥
2
Igi(µ, ν/ω,b) +

(
gµν

2
− bµbν

b2

)
Jgi(µ, ν/ω,b)

]
⊗z fi(µ, z),

(7.2)

where we have defined the convolution for the light-cone component z± = mh√
s
e±y as

f ⊗z g(z) ≡
∫ 1

z

dw

w
f(w)g

( z
w

)
. (7.3)

The two different tensor structures in Eq. (7.2) correspond to polarization independent,
Igi, and dependent, Jgi, parts. The large momentum component that enters the hard
process is denoted by ω.

7.1.1 RG evolution

Since the resummation of the rapidity logarithms has already been performed in Ref. [10],
we need to do that as well before comparing our two formalisms. Our rapidity regulator
gives rise to a RRGE that enables us to sum up all rapidity logarithms by evolving the
beam and soft function from their natural scale to a common arbitrary point in the 2-
dimensional RG-space, see Fig. 7.1. The natural scale for each function can be identified
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7.1. CROSS SECTION

pT

Q

pT Q

µ
 [

G
eV

]

ν [GeV]

BS

H

RRGE

RGE

νS,

µS,

νB,

µB,

µH,

Figure 7.1: Evolution of the hard, soft and beam functions in the µ, ν-space through RGE
and RRGE. Note that the hard function is ν independent.

by looking at the arguments of the logarithms in the fixed order result; thus we can fix
the canonical values for the soft scales µS and νS from our previous calculations. The
beam function will be derived in Sec. 7.2 and, using this result, we find the natural scales

νS ∼ µS ∼ µB ∼ |p⊥| ∼ 1/|b|,
νB ∼ ω± ∼ Q, (7.4)
µH ∼ Q ∼ mh. (7.5)

Solving the RGE/RRGE is relatively straightforward and results in evolution functions.
Here we only present the rapidity evolution since it is the only one we need for our
comparison. The RRGE for the soft and beam functions are in position space

ν
d

dν
Sg(b, µ, ν) =γgν(µ)Sg(b, µ, ν), (7.6)

ν
d

dν
Bρσ
g (b, µ, ν) =− 1

2
γgν(µ)Bρσ

g (b, µ, ν), (7.7)

with the solutions

Sg(b, µ, ν) = exp

(
γgν(b, µ) log

ν

νS

)
Sg(b, µ, νS), (7.8)

Bρσ
g (b, µ, ν) = exp

(
−1

2
γgν(b, µ) log

ν

νB

)
Bρσ
g (b, µ, νB), (7.9)

where νB is the large momentum in each collinear direction, ν2
B = ω+ω− = Q2. If we

combine the evolution factors of the soft and two beam functions, we will get the full
rapidity resummation which gives a factor of

exp

[
γgν(b, µ)

(
log

ν

νS
+ log

√
νB
ν

+ log

√
νB
ν

)]
=

(
ν2
B

ν2
S

) 1
2
γgν (b,µ)

, (7.10)
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7.1. CROSS SECTION

to the cross section. Setting ν2
S = 4e−2γE/b2 and ν2

B = m2
h recovers the resummation in

the BNW framework3.
After the resummation of rapidity logarithms, we end up with the renormalized cross

section that looks like

dσ

dp2
⊥dy

= σ0(µ)C2
t (m2

t , µ)|Cs(−m2
h, µ)|2(2π)6

∫
d2b

(2π)2
e−ib·p⊥

(
ν2
B

ν2
S

) 1
2
γgν (b,µ)

S(b, µ)

×
∑

i,j=g,q,q̄

{[Igi(b, µ)⊗z fi(z+, µ)] [Igj(b, µ)⊗z fj(z−, µ)]

+ [Jgi(b, µ)⊗z fi(z+, µ)] [Jgj(b, µ)⊗z fj(z−, µ)]} . (7.11)

This equation should be compared to Eq. 12 in Ref. [10]. Since the hard function is the
same in both formalisms we can ignore it and only look at the beam functions combined
with the soft function. By comparing them we obtain the relation

(2π)6

(
ν2
B

ν2
S

) 1
2
γgν

S
∑

i,j=g,q,q̄

[IgiIgj + JgiJgj] =

(
x2
Tm

2
He

2γE

4

)−Fgg ∑

i,j=g,q,q̄

[
Ig/iIg/j + I ′g/iI

′
g/j

]
.

(7.12)

We have expressed the right hand side in the notation of Ref. [10]; however, note that
xT = b. The factor of (2π)6 comes from different normalization conventions and the
details about the matching coefficients Ig/i, which have been computed to NNLO, can be
found in Ref. [12]. The I ′g/i have been computed to NLO and are presented in Ref. [10].
Since the µ dependence is the same for both formalisms we can obtain our µ-anomalous
dimension for the beam functions by taking the µ derivative of Eq. (7.12).

Quark beam function

Although the quark beam function is not required for gluon fusion we include it for
completeness. The derivation of the relation corresponding to Eq. (7.12) look the same;
however, the unpolarized quark beam function is a Lorentz scalar and thus does not have
a tensor structure as the gluon one. Moreover, the flavor structure is more complicated
because of flavor mixing. Here, we write the matching onto PDFs as

Bq(z,b, µ, ν/ω) =
∑

i=g,q,q̄

Iqi(µ, ν/ω,b)⊗z fi(z, µ). (7.13)

Then the relation to the matching kernels in Ref. [12] is

(2π)6

(
ν2
B

ν2
S

) 1
2
γqν

S
∑

i,j=g,q,q̄

IqiIq̄j =

(
x2
Tm

2
H

b2
0

)−Fqq̄ ∑

i,j=g,q,q̄

I
(n)
q/i I

(n)
q̄/j . (7.14)

Note that the sum over i, j is over gluons as well as all quark flavors, i.e. there are
matching coefficients for quark flavor mixing.

3See Eq. 6 in Ref. [10]. The rapidity logarithms are contained in
(
x2Tm

2
He

2γE/4
)−Fgg(x

2
T ,µ) and indeed

we find the relation −Fgg = 1
2γ

g
ν .
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7.2. STRUCTURE OF THE BEAM FUNCTIONS

7.2 Structure of the Beam Functions
Before determining the constant pieces of the beam functions we can derive their structure
from the anomalous dimension similar to the soft function case in Sec. 6.3.2. In the gluon
beam function, the Igi corresponds to the unpolarized part while the traceless Jgi is the
polarized part. The derivation of the structure of the matching coefficients is independent
of the polarization, and whether it is a quark or beam function, so we will only show the
formulas for a general Iij, but the same formulas are valid for Jgj.

We first derive a recursive relation for the matching coefficients which can be written
as a series in αs,

Iij =
1

(2π)2

∞∑

n=0

Iij(n)
(αs

4π

)n
. (7.15)

The calculation is similar to the soft function so we will not write it down in great detail.
The starting point is the RGE and RRGE,

µ
d

dµ
Bi =γiBµBi, (7.16)

ν
d

dν
Bi =− 1

2
γiνBi. (7.17)

However, an additional complication is that the PDFs, fi(z, µ), in Eq. (7.2) and (7.13)
depends on µ through the equation [30, 29]

d

d log µ
fi(z, µ) = 2

∑

j

Pij[αs(µ)]⊗z fj(z, µ), (7.18)

where the DGLAP splitting functions, Pij can be expanded like

Pij[z, αs(z)] =
∞∑

n=0

2n+1P n
ij(z)

(αs
4π

)n+1

, (7.19)

and all the necessary P n
ij functions can be found in Ref. [30]. This results in the following

RGE and RRGE

dIij
d log µ

=
∑

k

Iik ⊗z
[
δ(1− z)δkjγ

i
Bµ − 2Pkj[αs(µ)]

]
, (7.20)

dIij
d log ν

=− 1

2
γiνIij. (7.21)

With the anomalous dimensions [8],

γiBµ(µ, ν) =
∞∑

n=0

[
2Γin log

ν

ω
+ γiBn

] (αs
4π

)n+1

, (7.22)

γiBν(b, µ) =− 1

2
γiν(b, µ) = −1

2

∞∑

n=0

γiν
(n)

(b, µ)
(αs

4π

)n+1

. (7.23)

The last relation comes from the fact that the total cross section and the hard function
does not depend on ν. As before, the procedure works as follows: insert all expansion
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7.3. RESULTS IN POSITION SPACE

series and match up the coefficients of αs in the RGE and RRGE; integrate them; and
finally substitute the boundary term in the RGE solution with the RRGE solution. In
the end, one ends up at a recursive relation for n ≥ 1:

I(n)
ij (b, µ, ν) =

n−1∑

m=0

[(
2Γin−m−1 log

ν

ω
+ γiBn−m−1 + 2mβn−m−1

)∫ µ

µB

dµ′

µ′
I(m)
ij (b, µ′, ν)

− 2
∑

`

2n−mP n−m−1
`j ⊗z

∫ µ

µB

dµ′

µ′
I(m)
i` (µ′, ν)

−1

2
γiνn−m−1

∫ ν

νB

dν ′

ν ′
I(m)
ij (b, µB, ν

′)

]
+ I

(n)
ij (z). (7.24)

We have, again, chosen the canonical scales µB = 4b−2e−2γE and νB = ω which makes
the I(n)

ij (z) functions dimensionless.

7.3 Results in Position Space
Using the recursive relation in Eq. (7.24) we can compute the structure of the beam
functions up to arbitrary constants at each order. The zeroth order is easy to obtain

I(0)
ij (z) =δijδ(1− z), (7.25)

J (0)
gi (z) =0, (7.26)

with which we get

I(1)
ij (Lb, z) =

[
(Γi0 log

ν

ω
+

1

2
γiB0)δijδ(1− z)− 2P 0

ij

]
Lb + I

(1)
ij (z), (7.27)

J (1)
gi (z) =J

(1)
gi (z). (7.28)

and

I(2)
ij (Lb, ν/ω, z) =

{[
(2Γi0 log

ν

ω
+ γiB0)2 + 4Γi0β0 log

ν

ω
+ 2β0γ

i
B0

] δijδ(1− z)

8

−(2Γi0 log
ν

ω
+ γiB0 + β0)P 0

ij(z) + 2
∑

k=g,q,q̄

P 0
kj ⊗z P 0

ik(z)

}
L2
b

{[
(Γi1 log

ν

ω
+

1

2
γiB1)δijδ(1− z)− 4P 1

ij(z)

]

+

[
Γi0 log

ν

ω
+

1

2
γiB0 + β0

]
I

(1)
ij (z)− 2

∑

k=g,q,q̄

P 0
kj ⊗z I(1)

ik (z)

}
Lb

− 1

2
γiν1δijδ(1− z) log

ν

ω
+ I

(2)
ij (z), (7.29)

J (2)
gi (Lb, ν/ω, z) =

[(
Γg0 log

ν

ω
+

1

2
γgB0 + β0

)
J

(1)
gi (z)− 2

∑

j=g,q,q̄

P 0
ji ⊗z J (1)

gj (z)

]
Lb + J

(2)
gj (z).

(7.30)

All the P n
ij(z) functions can be found in Ref. [30].
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The µ dependence of the beam functions is known up to two loops in the BNW scheme
and hence we can obtain γB by taking the derivative of Eq. (7.12) and (7.14) and we find
the relation

γiB = −2γi − 1

2
γiS, (7.31)

where γi can be found in Ref. [12]. This results in

γgB0 =2β0,

γqB0 =6CF ,

γgB1 =− 32

3
CATFnf − 8CFTFnf +

8

27
C2
A (81ζ(3)− 274) ,

γqB1 =− 1

9
CF
[
CA
(
216ζ(3)− 51− 44π2

)

+9CF
(
−48ζ(3)− 3 + 4π2

)
+ 4

(
3 + 4π2

)
nfTF

]
. (7.32)

When fixing the beam function constants, we can choose µ2 = 1/b2 which eliminates all
the logarithms and the matching becomes straightforward to do. We obtain the constant
pieces

I
(1)
q′q (z) =I

(1)
q̄q (z) = 0,

I
(1)
gi (z) =2CF z(δqi + δq̄i),

I
(1)
qi (z) =2CF (1− z)δqi + 2TF z(2− z)δgi,

I
(2)
q′q (z) =I

(2)
q′/q(z, 0),

I
(2)
q̄q (z) =I

(2)
q̄/q(z, 0),

I
(2)
gi (z) =

1

2
δgiδ(1− z)

[(
CAπ

2

6

)2

− Sg2

]
+ δqi

CFCAπ
2

3
z + I

(2)
g/i(z, 0),

I
(2)
qi (z) =

1

2
δqiδ(1− z)

[(
CFπ

2

6

)2

− Sq2

]
− C2

Fπ
2

3
δqi(1− z)

+
CFTF

3
δgiz(2− z) + I

(2)
q/i(z, 0),

J
(1)
gi (z) =4

1− z
z

[CAδgi + CF (δqi + δq̄i)] . (7.33)

The I(2)
g/i functions can be found in Sec. 4 of Ref. [12].

The J (2)
gi matching kernels have not been calculated so we cannot extract J (2)

gi . This
does not matter though since Jgi starts at O(αs), in contrast to Igi, and they appear
essentially as a square in the cross section. Thus, J (2)

gi is not needed for the NNLL′+NNLO
cross section, i.e. the order we are interested in.
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Chapter 8

Conclusion

This thesis concerns the transverse momentum distribution for the process pp → XL,
in the region p2

⊥ � Q2. Using an effective field theory, SCET, to separate the relevant
degrees of freedom in different momentum regions, we reviewed the factorization theorem
for the cross section. This resulted in a cross section where the hard interaction process is
described by a hard function while all the low energy QCD effects are contained in beam
and soft functions. The factorization enables one to perform the necessary resummation
in the low p2

⊥ region separately for each sector. An important observable of interest that
can be computed within this framework is the p2

⊥ spectrum of Higgs production at the
LHC.

The soft function can be calculated perturbatively; however it suffers from rapidity
divergences. These arise from the factorization and are connected to large rapidity loga-
rithms that need to be resummed. We have calculated the soft function up to NNLO in
a previously invented framework [8] that introduces a rapidity regulator in addition to
dimensional regularization. This rapidity regulator comes with an additional renormal-
ization scale that yields a RRGE and solving this RRGE amounts to resumming all the
rapidity logarithms. We went through the renormalization procedure of the soft func-
tion and the computation of all anomalous dimensions in detail. The results have been
presented in both momentum and position space.

In our computation of the soft function we assumed the rapidity regulator to preserve
exponentiation and used the non-abelian exponentiation theorem to retrieve the C2

F piece.
This has however not been checked explicitly and it would be interesting to go through
the calculation of the C2

F diagrams as well, which is left to future work.
We have also seen how the renormalization group structure of the theory can be a

powerful tool when it comes to predicting the form of the perturbation series. From the
known structure of the µ anomalous dimension, we derived a recursive relation for the
structure of the beam and soft functions to all orders. Agreement between this structure
and our results provides a strong cross check of our calculations.

Knowing the structure of our beam and soft functions, we were able to derive the full
results for the beam functions in our framework as well, without explicitly calculating
them. This was done by comparing our results to results within another framework. We
have shown that the two frameworks yield the same result after performing the resum-
mation of rapidity logarithms. However, the formalism used in this thesis enables one to
directly probe uncertainties associated with variations of rapidity scales.
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In conclusion, we have calculated the transverse momentum dependent soft function
in SCET to NNLO for pp→ XL, in the region p2

⊥ � Q2. By knowing the renormalization
group structure of the theory, we extracted the beam functions to NNLO from known
results. With these ingredients, one can now compute the mentioned cross section to
NNLL′ for the first time in this formalism. In addition, this enables one to perform
the complete set of relevant scale variations in order to estimate the uncertainty in the
resummed cross section.
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Appendix A

Renormalization Conventions

Throughout this thesis we use the MS scheme which amounts to renormalizing the cou-
pling constant in the following way,

αbs → µ2εαs(µ)
eεγE

(4π)ε

(
1− β0

αs
4π

1

ε
+O(α2

s)

)
. (A.1)

This has a consequence when computing the derivative of αs(µ) since there is a ε term
as well as the beta function,

µ
d

dµ
αs(µ) = −2εαs(µ) + β[αs(µ)]. (A.2)

The beta function is

β[αs] = −2αs

∞∑

n=0

βn

(αs
4π

)n+1

, (A.3)

β0 =
11CA − 4TFnf

3
, (A.4)

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TFnf . (A.5)

In the case of QCD, the group factors are TF = 1
2
, CA = Nc = 3 and CF = 4

3
.

We also renormalize the book keeping parameter w, so it obeys

ν
d

dν
w = −η

2
w. (A.6)

Parts of the anomalous dimensions can be written in terms of the cusp anomalous
dimension which is known up to three loops. Here we denote it as

Γicusp =
∞∑

n=0

Γin

(αs
4π

)n+1

, (A.7)

where the quark coefficients are

Γq0 =4CF ,

Γq1 =4CF

[(
67

9
− π2

3

)
CA −

20

9
TFnf

]
, (A.8)

and are equal to CF
CA

Γg0,1.
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Appendix B

Feynman rules for Wilson lines

µ

k

a

= −gnµta

n·k

µ νa b

= nµnν

 tatb

n·k1n·(k1+k2) +
tbta

n·k2n·(k1+k2)

k1 k2

Figure B.1: Feynman rules for a Sn Wilson line.

The Wilson lines are path ordered exponential of gauge fields. In the soft function
we will come across the Wilson lines for an incoming quark/antiquark(quark along the n
direction)

Sn(x) =P exp

[
ig

∫ 0

−∞
dsn · A(x+ sn)

]
,

S†n̄(x) =P̄ exp

[
−ig

∫ 0

−∞
dsn̄ · A(x+ sn̄)

]
.

If we first look at a single emission in the Sn, we can expand and Fourier transform to
get the Feynman rules in momentum space1. This evaluates to

Sn(x) = P exp

[
ig

∫ 0

−∞
dsn · A(x+ sn)

]
= 1 + ig

∫ 0

−∞
dsn · A(x+ xn) +O(g2)

= 1 + ig

∫ 0

−∞
ds

∫
d4k

(2π)4
e−ik·(x+sn)nµAaµ(k)ta +O(g2)

= 1 +

∫
ddk

(2π)d

( −gnµta
n · k + iε

)
Ãaµe

−ik·x +O(g2). (B.1)

This is the well known eikonal vertex approximation and this results can also be obtained
from the soft gluon limit of the single gluon emission diagram in QCD.

1To make the fourier transform finite, we send k → k + iε.
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Similarly the next order term in the expansion of Sn is

g2

2

∫
d4k1

(2π)4

∫
d4k2

(2π)4
nµnν

[
tatb

(n · k1 + iε)[n · (k1 + k2) + iε]
+

tbta

(n · k2 + iε)[n · (k1 + k2) + iε]

]

× ÃaµÃbνe−i(k1+k2)·x. (B.2)

From these equations one can read off the Feynman rules in momentum space, see Fig. B.1.
The full momentum version of the Wilson line we write as2

Sn =
∞∑

n=0

∑

perms

(−g)n

n!

n · A(k1) · · ·n · A(kn)

[n · k1][n · (k1 + k2)] · · · [n · (∑n
i=1 ki)]

. (B.3)

Different Wilson lines gives different signs for the iε terms and the different combinations
can be seen in Fig. B.2.

−gn̄µta

−(n̄·k)−iε

n

n̄

n

n̄

−gnµta

(n·k)+iε
−gnµta

−(n·k)+iε

−gn̄µta

(n̄·k)−iε

Figure B.2: Feynman rules for a soft function in the fundamental representation.

2Here we suppress all +iε terms in the propagators.
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Appendix C

Plus Distributions

In our calculations we will often find integrals over two functions, f(x) and g(x) where
f(x) has a pole at a ∈ [b, c] while g(x) is finite at that point. If we add g(a)− g(a) = 0
we can write the integral as

∫ c

b

dxf(x)g(x) = g(a)

∫ c

b

dxf(x) +

∫ c

b

dxf(x)[g(x)− g(a)]. (C.1)

The second term is then fine and we can define it as an integration of a plus distribution
which we can write as

[f(x)][b,c]+ ≡ −δ(x− a)

∫ c

b

dx′f(x′) + f(x) (C.2)

For the case f(x) = x−1+α on [0, 1] we can derive a useful identity by writing

1

x1−α =
δ(x)

α
+

[
1

x1−α

]

+

=
δ(x)

α
+
∞∑

n=0

αn

n!

[
1

x
logn x

]

+

. (C.3)

2-dimensional plus distributions
Plus distributions will be encountered in the 2-dimensional p⊥ space in this thesis and
they can then conveniently be defined with dimensional regularization as
∫

d2p

(2π)2
f(p) [P (p, µ)]+ ≡ lim

ε→0+
µ−2ε

{∫
d2+2εp

(2π)2+2ε
f(p)P (p, µ)− f(0)

∫

Dµ

d2+2εp

(2π)2+2ε
P (p, µ)

}
,

(C.4)

where Dµ = {p : |p| < µ}. Throughout this thesis we encounter a certain class of plus
distributions which we define to be

Ln(p2, µ2) =
1

2πµ2

[
µ2

p2
logn

(
µ2

p2

)]

+

(C.5)

and the useful identity then becomes

1

µ2

(
µ2

p2

)1+α

= −πδ
(2)(p)

α
+ 2πLα = −πδ

(2)(p)

α
+ 2π

∞∑

n=0

αn

n!
Ln. (C.6)
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where we have defined the plus distribution

Lα =
1

2πµ2

[(
µ2

p2

)1+α
]

+

=
∞∑

n=0

αn

n!
Ln. (C.7)

The derivative of Ln can be shown to obey

µ
d

dµ
L0 = −δ(2)(p), (C.8)

µ
d

dµ
Ln = 2nLn−1. (C.9)

Convolutions

In the renormalization process one also need the convolutions of plus distributions. We
can get them from the equation [8]

Lα ⊗⊥ Lβ(p) =
U(α, β)

2π
Lα+β +

1

8π2α
Lβ +

1

8π2β
Lα

− δ(2)(p)

[
U(α, β)

4π(α + β)
+

1

16π2αβ

]
, (C.10)

where

U(α, β) =
Γ(1 + α + β)

4πΓ(1 + α)Γ(1 + β)

Γ(−α)Γ(−β)

Γ(−α− β)
. (C.11)

By expanding the plus distributions in Eq. (C.10) and matching up the coefficients one
then arrives at the convolutions for the Ln’s. The lowest order ones are

L0 ⊗⊥ L0 =− 1

4π2
L1, (C.12)

L0 ⊗⊥ L1 =− 3

16π2
L2 + δ(2)(p)

ψ(2)(1)

16π2
, (C.13)

L0 ⊗⊥ L2 =− 1

6π2
L3 −

ψ(2)(1)

4π2
L0, (C.14)

L1 ⊗⊥ L1 =− 1

8π2
L3 −

ψ(2)(1)

4π2
L0, (C.15)

L1 ⊗⊥ L2 =− 5

48π2
L4 +

3ζ(3)

2π2
L1 + δ(2)(p)

ψ(4)(1)

48π2
. (C.16)

Fourier Transform

Some of the calculations and results are simpler in position space where there are no
convolutions. The fourier transform of the plus distributions can be retrieved from the
equation

∫
d2p

(2π)2
eib·p

1

µ2

(
µ2

p2

)1+α

= −e
−2αγE

4πα

Γ(1− α)

Γ(1 + α)

(
b2µ2e2γE

4

)α
(C.17)

by using Eq. (C.6) and expanding in powers of α. Some of the lowest ones are shown in
Tab. C.1 and C.2.
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p-space b-space
δ(2)(p) 1

(2π)2

L0 − 1
8π2Lb

L1 − 1
16π2L

2
b

L2 − 1
24π2 [L3

b + 4ζ(3)]
L3 − 1

32π2 [L4
b + 16ζ(3)Lb]

L4 − 1
40π2 [L5

b + 40ζ(3)Lb + 48ζ(5)]

Table C.1: Fourier transforms of plus distributions in terms of Lb = log
(

b2µ2e2γE

4

)
.

p-space b-space
1 (2π)2δ(2)(p) = Ip
Lb −8π2L0

L2
b −16π2L1

L3
b −24π2L2 − 4ζ(3)Ip

L4
b −32π2 [L3 − 4ζ(3)L0]

Table C.2: Fourier transforms of Lb = log
(

b2µ2e2γE

4

)
to momentum space in terms of

plus distributions.
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Appendix D

Hypergeometric Functions

When solving some of the 2-loop integrals we come across Hypergeometric functions. We
present some relevant facts about them below but refer to Ref. [36, 37] for further details.

Their general form pFq(a1, . . . , ap; b1, . . . , bq; z) is defined as the solution f(z) to the
differential equation

z

p∏

n=1

(
z
d

dz
+ an

)
f(z) = z

d

dz

q∏

m=1

(
z
d

dz
+ bm − 1

)
f(z). (D.1)

It can be written down as a power series with the help of the Pochhammer symbol

(ai)n =
Γ(ai + n)

Γ(ai)
, (D.2)

as

pFq(a1, . . . , ap; b1, . . . , bq; z) = pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=
∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(D.3)

as long as all bi 6∈ −N0. It is from this notation clear that we can freely change the
ordering in the {ai} and {bi} sets. Moreover, if we have any ai = bj they cancel which
reduces pFq to p−1Fq−1.

The analytic properties of pFq is as follows: Any ai can be a non-positive integer and
in that case only the first −ai terms in Eq. (D.3) are non-zero. The Hypergeometric
function then has an infinite radius of convergence.

For p ≤ q, the series converges for all finite values of z and if p > q + 1 the series
generally diverges for non-zero z.

In this thesis we will only deal with functions where p = q + 1 where the radius of
convergence is 1. We define the number

γ = (b1 + . . .+ bq)− (a1 + . . .+ ap). (D.4)

The function is then absolutely convergent for |z| = 1 if the real part of γ is positive,
R(γ) > 0, convergent except at z = 1 for −1 < R(γ) ≤ 0 and divergent for R(γ) ≤ −1.

In some cases one might have to extract the divergent part of a 2F1. This can be done
with an Euler transformation

2F1(a, b; c, z) = (1− x)c−a−b2F1(c− a, c− b; c, z), (D.5)

which makes R(γ) > 0 positive.
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D.1. EXPANSION

Integral Representation

Instead of defining the Hypergeometric series as a power series one can define them in a
recursive integral representation where

p+1Fq+1

(
a0, a1, . . . , ap
b0, b1, . . . , bq

; z

)
=

Γ(b0)

Γ(a0)Γ(b0 − a0)

×
∫ 1

0

dyya0−1(1− y)b0−a0−1
pFq

(
a1, . . . , ap
b1, . . . , bq

; zy

)
, (D.6)

assuming R(b0) > R(a0) > 0. For p = q + 1 this holds if |arg(1 − z)| < π. The
Hypergeometric functions with a low number of arguments are familiar functions such as

1F0(a; ; z) = (1− z)−a, (D.7)

0F0(; ; z) = ez. (D.8)

This integral representation will prove useful since it shows up directly in the 2-loop
calculation.

D.1 Expansion
When computing the soft function, we can always express the final result in a closed
form in terms of Hypergeometric functions as in Eq. (5.41)-(5.44). However that is not
so useful and we eventually want to expand the result in η and ε. If the Hypergeometric
contains a non-positive ai then it is a simple task because it can be written down as
a series of gamma functions with −ai terms. Thus one can see that the G, H and Q
contributions, although they appear rather lengthy, are really the simplest.

In the other cases we need to expand 3F2 functions. We made use of the mathematica
package HypExp [28] to arrive at the following expansions:

I(1, 1, 0, 0− ε− η

2
, ε) =

1

ε2
+
π2

3
+ 4ζ(3)ε+

11π4

90
ε2 (D.9)

+

[
π2

6ε
+

17π4

360
ε+

(
8ζ(5)− π2

2
ζ(3)

)
ε2
]
η

+O(ε3) +O(η2),

I(0, 1, 1, 0,−ε− η

2
, ε) =− π2

3
+ 2ζ(3)ε− π4

45
ε2 +

[
2π2

3
ζ(3) + 2ζ(5)

]
ε3

+

[
−4

ε
+ 8ζ(3)ε2 +

2π4

15
ε3
]

1

η

+

[
ζ(3)− 11π4

360
ε+

(
π2

6
ζ(3) + 2ζ(5)

)
ε2 +

(
−17π6

3780
− 5ζ(3)2

2

)
ε3
]
η

+O(ε4) +O(η2). (D.10)

From the T diagram we get a I(0, 1, 1,−ε− η
2
, 1+ε) term which contains a 3F2 that could

not be expanded with HypExp. However one can go back to the integral representation
with Eq. (D.6) and expand the 2F1 function and then integrate all the terms separately.
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D.1. EXPANSION

Doing this gives

I(0, 1, 1,−ε− η

2
, 1 + ε) =

2

ε2
− 2π2

3
− 4ζ(3)ε− π4

9
ε2 +

[
4π2

3
ζ(3)− 12ζ(5)

]
ε3

+

[
−4

ε
+ 8ζ(3)ε2 +

19π4

90
ε3
]

1

η

+

[
π2

6ε
+ 2ζ(3)− 17π4

360
ε− 2π2

3
ζ(3)ε2

]
η

+O(ε4) +O(ε3η) +O(η2). (D.11)
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Appendix E

Wilson Coefficients for Higgs
Production

The p2
⊥ differential cross section for Higgs production can be found in Eq. (7.11), where

the Born cross section is

σ0(µ) =
m2
hα

2
s(µ)

72π(N2
c − 1)sv2

, (E.1)

and the Wilson coefficients are [38]

C2
t (m2

t , µ)|CS(−m2
h, µ)|2 = 1 + c1

(αs
4π

)
+ c2

(αs
4π

)2

+ . . . , (E.2)

(E.3)

where

c1 =− 6 log2 m
2
h

µ2
+ 22 + 7π2,

c2 =18 log4 m
2
h

µ2
+

46

3
log3 m

2
h

µ2
+

(
−698

3
− 36π2

)
log2 m

2
h

µ2

− 274

3
log

m2
t

µ2
+

(
1240

9
− 184π2

3
− 36ζ(3)

)
log

m2
h

µ2

+
10718

27
+

1679π2

6
− 998ζ(3)

3
+

37π4

2
.
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