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An extensive phenomenological study of the Drell-Yan (DY) process in pp collisions at various
energies is performed in the color dipole framework. Besides previously studied γ∗ production we
have also included the Z0 contribution relevant at large dilepton invariant masses. We investigate
the DY cross section differential in invariant mass, rapidity and transverse momentum of the dilepton
pair in pp collisions at RHIC and LHC. We consider three different phenomenological models for
the dipole cross section and found a reasonable agreement with the available data. As a further test
of the color dipole formalism, we also study the correlation function in azimuthal angle between the
dilepton pair and a forward pion ∆φ for different energies, dilepton rapidites and invariant masses.
The characteristic double-peak structure of the correlation function around ∆φ ≃ π found for very
forward pions and low-mass dilepton pairs is sensitive to the saturation effects and can be tested by
future DY measurements in pp collisions.

I. INTRODUCTION

The study of Drell-Yan (DY) processes at the LHC energies provide an important test of the Standard Model
(SM) as well as can provide an additional information about New Physics beyond the SM. In particular, the DY
process in pp/pA/AA collisions at the LHC is an excellent tool for the investigations of strong interaction dynamics
in an extended kinematical range of energies and rapidities (for a recent review see, e.g. Ref. [1]). For example, the
recent measurements of the gauge boson production cross section by LHCb experiment [2] at forward rapidities have
a sensitivity to x values down to 1.7× 10−4 at the scale Q2 ∼ M2 (M is the invariant mass of the dilepton) probing
the parton distribution functions (PDFs) and soft QCD dynamics in a kinematical range different from that studied
by HERA.
During the last two decades several approaches have been proposed to improve the fixed-order QCD perturbation

theory description of the DY process which is not reliable when two or more different hard scales are present (see e.g.
Refs. [3–13]). A well-known example is the description of the transverse momentum pT distribution of the dilepton.
In the low-pT region, pT ≪ M , there are two powers of ln(M2/p2T ) ≫ 1 for each additional power of the strong
coupling αs, and the DY pT distribution calculated in fixed-order QCD perturbation theory is not reliable. Only
after resummation of the large terms ∝ αn

s ln
2n+1(M2/p2T ) the predictions become consistent with the data. Another

example is in the case of the high energies s ≫ M2 when potentially large terms ∝ αn
s ln

n(s/M2) should also be
resummed. In this case, the standard collinear factorisation approach should be generalized by taking into account
the transverse momentum evolution of the incoming partons and QCD nonlinear effects.
One of the phenomenological approaches which effectively takes into account the higher-order QCD corrections is

the color dipole formalism [14]. At high energies, color dipoles with a definite transverse separation are eigenstates of
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FIG. 1: Diagrams (a) and (b) represent the process of a gauge boson radiation by a quark (antiquark) of flavour f either
after or before the interaction with the target color field (denoted by a shaded circle), respectively. For the considered γ, Z0

radiation qk = qf . Diagram (c) represents the gauge boson-pion production in the color dipole picture.

interaction. The main ingredient of this formalism is the dipole-target scattering cross section which is universal and
process-independent and thus can be determined phenomenologically, for example, from the Deep Inelastic Scattering
(DIS) data [15]. In particular, it provides a unified description of inclusive and diffractive observables in ep scattering
processes as well as other processes in hadron-hadron collisions such as DY, prompt photon and heavy quark production
etc [14, 16–21]. Although cross sections are Lorentz invariant, the partonic interpretation of the corresponding
processes depends on the reference frame [17]. In particular, in the framework of conventional parton model the DY
process is typically considered as due to parton annihilation in the center-of-mass frame description. In the target
rest frame the same process can be viewed as a bremsstrahlung of γ/Z in the dipole picture as illustrated in Figs. 1
(a) and (b). In the latter case, the radiation occurs both after and before the quark scatters off the target and the
corresponding amplitudes interfere. In the high-energy limit, the projectile quark probes dense gluonic field in the
target such that nonlinear effects due to multiple scatterings become important and should be taken into account.
The DY process mediated by virtual photon has been studied within the dipole framework in the literature by

several authors (see e.g. Refs. [22–24]). In particular, in Ref. [23] it has been demonstrated that the dipole model
provides as precise prediction for the DY cross section as the NLO collinear factorisation framework providing a solid
foundation for the current more extensive study. The inclusive gauge bosons production has been previously analysed
by some of the authors in Ref. [25] where predictions for the total cross sections and rapidity distributions were found
to be in a good agreement with the recent LHC data. In the diffractive channel, the DY and electroweak gauge bosons
production has been studied in the dipole framework in Ref. [26].
The goal of the current work is the following. First, we update and improve previous studies presenting predictions

for the transverse momentum, invariant mass and rapidity distributions for the DY production at RHIC and LHC
energies and compare them with available data. Second, we present a detailed analysis of the azimuthal correlation
between the DY pair and a forward pion (see Fig. 1(c)) taking into account Z0 boson contribution in addition to virtual
photon. Similar correlations in dihadron, real photon-hadron and dilepton-hadron channels have been previously in
Refs. [27–30]. In variance from dihadron channel, the dilepton-hadron correlations can serve as an efficient probe of
the initial state effects since the intermediate virtual boson does not interact with the gluons inside the target hadron
and therefore the final state interaction effects are not expected. In this paper, for the first time we present results for
such an observable for pp collisions at RHIC (

√
s = 200 and 500 GeV) and LHC (

√
s = 7 and 14 TeV) at different M .

We test three different models for the dipole cross section accounting for saturation effects [31] in order to estimate
the underlined theoretical uncertainties.
This paper is organized as follows. In the next Section, we present a brief overview of gauge boson production in

the color dipole framework. Moreover, we derive the differential cross section for the dilepton-hadron production in
the momentum representation taking into account both virtual photon and Z0 boson contributions. In Section III, we
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present our results for the total cross sections, invariant mass, rapidity and transverse momentum distributions and
compare our predictions with the available data at different energies. Predictions for future RHIC and LHC runs are
also given. Furthermore, the azimuthal correlation function is evaluated for the DY-pion production in pp collisions at
RHIC and LHC for different dilepton invariant masses. Finally, in Section IV, our main conclusions are summarized.

II. INCLUSIVE GAUGE BOSON PRODUCTION IN THE DIPOLE PICTURE

As was mentioned above, in the color dipole picture the DY process is considered as a bremsstrahlung of a virtual
gauge boson G∗ where G = γ, Z0,W± [17–19] as illustrated in Fig. 1. In the high energy limit, each of the two graphs
factorizes into a production vertex for a given gauge boson times a scattering amplitude of a quark off the target.
The quark scatters at different impact parameters depending on whether the gauge boson is radiated after or before
the scattering. The interference between these scattering amplitudes implies that the squared matrix element for the
gauge boson production is expressed in terms of the universal dipole-target cross section σqq̄(ρ, x) with transverse
separation between ρ initial and final quark.

A. Inclusive DY cross section

In order to estimate the hadronic cross section for the inclusive DY process pp → G∗X one has to note that the
gauge boson carries away the light-cone momentum fraction x1 and α from the projectile proton and quark emitting
the gauge boson, respectively. Consequently, the momentum fraction of the quark is given by xq = x1/α. Then
the cross section for the inclusive gauge boson production with invariant mass M and transverse momentum pT is
expressed in terms of the quark (antiquark) densities qf (q̄f ) at momentum fraction xq as follows

dσ(pp → G∗X)

d2pTdη
= J(η, pT )

x1

x1 + x2

∑

f

∑

λG=L,T

∫ 1

x1

dα

α2

[

qf (x1/α, µ
2
F ) + q̄f (x1/α, µ

2
F )

] dσf
λG

(qN → qG∗X)

d lnαd2pT
(1)

where

J(η, pT ) ≡
dxF

dη
=

2√
s

√

M2 + p2T cosh(η) , (2)

is the Jacobian of transformation between Feynman variable xF = x1 − x2 and pseudorapidity η of the virtual gauge
boson G∗, and µ2

F = p2T + (1 − x1)M
2 is the factorization scale in quark PDFs. In practical calculations below

we take µF ≃ M , for simplicity. We have checked numerically that such a choice of the factorisation scale is a
good approximation in the whole kinematical range we are concerned about in this work. The dilepton cross section
analysed below is related to the inclusive G = γ, Z0 production cross section (1) as follows

dσ(pp → (G∗ → ll̄)X)

d2pTdM2dη
= FG(M)

dσ(pp → G∗X)

d2pT dη
, (3)

where

Fγ(M) =
αem

3πM2
, FZ(M) = Br(Z0 → ll̄)ρZ(M) . (4)

Here, the branching ratio Br(Z0 → ll̄) ≃ 0.101, and ρZ(M) is the invariant mass distribution of the Z0 boson in the
narrow width approximation

ρZ(M) =
1

π

MΓZ(M)

(M2 −m2
Z)

2 + [MΓZ(M)]2
, ΓZ(M)/M ≪ 1 , (5)

in terms of the on-shell Z0 boson mass, mZ , and its generalized total decay width

ΓZ(M) =
αemM

6 sin2 2θW

(160

3
sin4 θW − 40 sin2 θW + 21

)

, (6)

where θW is the Weinberg gauge boson mixing angle in the SM, sin2 θW ≃ 0.23, and αem = e2/(4π) = 1/137 is the
fine structure constant.
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The transverse momentum distribution of the gauge boson G∗ can be obtained by a generalization of the well-
known formulas for the photon bremsstrahlung in Refs. [22, 23]. The corresponding differential cross section for a
given incoming quark flavour f reads

dσf
T,L(qN → qG∗X)

d lnαd2pT
=

1

(2π)2

∑

quark pol.

∫

d2ρ1d
2ρ2 exp[ipT · (ρ1 − ρ2)] Ψ

V−A
T,L (α,ρ1,mf )Ψ

V−A,∗
T,L (α,ρ2,mf)

× 1

2
[σqq̄(αρ1, x2) + σqq̄(αρ2, x2)− σqq̄(α|ρ1 − ρ2|, x2)] , (7)

where x2 = x1−xF and ρ1,2 are the quark-G transverse separations in the total radiation amplitude and its conjugated,
respectively. Assuming that the projectile quark is unpolarized, the vector and axial-vector wave functions in Eq. (7)
are not correlated such that we have write

∑

quark pol.

ΨV−A
T,L (α,ρ1,mf )Ψ

V−A,∗
T,L (α,ρ2,mf ) =

= ΨV
T,L(α,ρ1,mf)Ψ

V,∗
T,L(α,ρ2,mf ) + ΨA

T,L(α,ρ1,mf)Ψ
A,∗
T,L(α,ρ2,mf ) , (8)

where the averaging over the initial and summation over final quark helicities is performed and the quark flavour
dependence comes only via projectile quark mass mf . Different components in Eq. (8) read [26]

ΨT
V Ψ

T∗
V =

(CG
f )2(gGv,f )

2

2π2

{

m2
fα

4K0 (τρ1)K0 (τρ2) +
[

1 + (1− α)
2
]

τ2
ρ1 · ρ2

ρ1ρ2
K1 (τρ1)K1 (τρ2)

}

,

ΨL
V Ψ

L∗
V =

(CG
f )2(gGv,f )

2

π2
M2 (1− α)

2
K0 (τρ1) K0 (τρ2) ,

ΨT
AΨ

T∗
A =

(CG
f )2(gGa,f)

2

2π2

{

m2
fα

2(2− α)2K0 (τρ1)K0 (τρ2) +
[

1 + (1− α)
2
]

τ2
ρ1 · ρ2

ρ1ρ2
K1 (τρ1)K1 (τρ2)

}

,

ΨL
AΨ

L∗
A =

(CG
f )2(gGa,f )

2

π2

τ2

M2

{

τ2K0 (τρ1) K0 (τρ2) + α2m2
f

ρ1 · ρ2

ρ1ρ2
K1 (τρ1) K1 (τρ2)

}

, (9)

where τ2 = (1−α)M2+α2m2
f , K0,1 denote the modified Bessel functions of the second kind, and the coupling factors

CG
f are defined as

Cγ
f =

√
αemef , CZ

f =

√
αem

sin 2θW
, CW+

f =

√
αem

2
√
2 sin θW

Vfufd , CW−

f =

√
αem

2
√
2 sin θW

Vfdfu , (10)

with the vectorial coupling at the leading order given by

gZv,fu =
1

2
− 4

3
sin2 θW , gZv,fd = −1

2
+

2

3
sin2 θW , gWv,f = 1 , (11)

and

gZa,fu =
1

2
, gZa,fd = −1

2
, gWa,f = 1 (12)

in the axial-vector case. In the above formulas, fu = u, c, t and fd = d, s, b are the flavours of up- and down-type
quarks, respectively, Vfufd is the CKM matrix element corresponding to fu → fd transition, and ef is the charge of the
projectile quark1. In the case of projectile photon we have gv,q = 1 and ga,q = 0. In the present analysis, we restrict
ourselves to study of dilepton ll̄ productions channels in pp collisions and therefore we consider production of virtual
γ and Z0 bosons only. For this reason, we leave W± production in the lν̄ channel for future studies. Integrating over
the phase space of the final quark, Eqs. (1) and (3) enable us to study the pseudorapidity, transverse momentum and
invariant mass distributions for the DY process.

1 Also, we are focused only on light quark flavours f = u, d, s
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B. Dilepton-hadron azimuthal correlations

In order to study the azimuthal angle correlation between the DY pair and a hadron in the final state, we should
keep an information about the quark which radiates the virtual gauge boson G∗. This analysis can, in principle, be
carried out in the impact parameter representation (for more details, see Appendix B in Ref. [22] for the γ∗ case), but
numerically it is rather cumbersome due to a large number of oscillating Fourier integrals. Alternatively, one derives
the corresponding differential cross section directly in momentum representation as was performed for the γ∗ case
in Refs. [30, 32–34] and then extend it by incorporating Z0 boson contribution relevant at large dilepton invariant
masses. Our basic goal here is to investigate the dilepton-pion correlations accounting for both virtual γ and Z0

contributions in pp collisions at high energies and their interference in various kinematical domains in rapidity and
dilepton invariant mass. The latter can be straightforwardly generalized to the proton-nucleus case.
A generalisation of the results in Refs. [33, 34] is achieved by accounting for both vector and axial contributions in

the gauge boson distribution amplitude q → q + G∗ with unpolarised q and G∗. This leads to the differential cross
section for the production of a virtual gauge boson G∗ and a hadron h (for simplicity, we take mf = 0 for f = u, d, s
in what follows)

dσ(pp → hG∗X)

dY dyhd2pTd2phT
=

∫ 1

xh
1−x1

dzh
z2h

∑

f

Dh/f (zh, µ
2
F )xpqf (xp, µF ) (1− z)S⊥ F (xg, k

g
T )

×
{

(CG
f )2g2v,f
2π

[

(

1 + (1 − z)2
) z2kgT

2

[P 2
T + ǫ2M ] [(PT + zkg

T )
2 + ǫ2M ]

− z2ǫ2M

(

1

P 2
T + ǫ2M

− 1

(PT + zkg
T )

2 + ǫ2M

)2
]

+
(CG

f )2g2a,f
2π

[

(

1 + (1− z)2
) z2kgT

2

[P 2
T + ǫ2M ] [(PT + zkg

T )
2 + ǫ2M ]

−z2ǫ4M
M2

(

1

P 2
T + ǫ2M

− 1

(PT + zkg
T )

2 + ǫ2M

)2
]}

, (13)

where the couplings CG
f and gv/a,f are found in Eqs. (10) – (12), Dh/f is the fragmentation function of a quark q

which has emitted the gauge boson G∗ in the produced hadron h, Y and yh are the rapidities of the gauge boson G∗

and the hadron h in the final state, respectively, pT and ph
T its transverse momenta, zh is the momentum fraction of

the hadron h relative to the quark q it fragments from, S⊥ is the transverse area of the target whose explicit form is
not needed for our purposes here. Other kinematics variables are defined as follows

x1 =

√

p2T +M2

s
eY , xh ≃ phT√

s
eyh , xp = x1 +

xh

zh
, z =

x1

xp
, ǫ2M = (1− z)M2 , (14)

xg = x1 e
−2Y +

xh

zh
e−2yh , k

q
T =

ph
T

zh
, k

g
T = pT + k

q
T , PT = (1− z)pT − zkq

T , (15)

where x1 and xh are the gauge boson G and the hadron h momentum fractions taken from the incoming proton, PT

is the relative transverse momentum between the gauge boson G∗ and the quark q, kq
T is the transverse momentum

of the quark q in the final state, kg
T is the transverse momentum of the exchanged gluon2. The quantity F (xg, k

g
T )

denotes the unintegrated gluon distribution function (UGDF) describing the multiple interactions of the incoming
quark with the target color field, which can be obtained by a Fourier transform of the dipole cross section σqq̄(ρ) (see
Ref. [29] for more details).
Integrating equation (13) over the final hadron h momentum, rapidity and relative angle between G∗ and h one

2 Variables z and xp have the same physical meaning as α and xq ≡ x1/α in Eq. (1), respectively, but now they are related to the
kinematics variables corresponding the final hadron zh, yh and ph

T
, so different notations are reserved for them to avoid confusion.
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arrives at the inclusive gauge boson production cross section

dσ(pp → G∗X)

dY d2pT
=

∫ 1

x1

dz

z

∫

d2kgT
∑

f

xpqf (xp, µF )S⊥ F (xg , k
g
T )

×
{

(CG
f )2g2v,f
2π

[

(

1 + (1 − z)2
) z2kgT

2

[p2T + ǫ2M ] [(pT − zkg
T )

2 + ǫ2M ]

−z2ǫ2M

(

1

p2T + ǫ2M
− 1

(pT − zkg
T )

2 + ǫ2M

)2
]

+
(CG

f )2g2a,f
2π

[

(

1 + (1− z)2
) z2kgT

2

[p2T + ǫ2M ] [(pT − zkg
T )

2 + ǫ2M ]

−z2ǫ4M
M2

(

1

p2T + ǫ2M
− 1

(pT − zkg
T )

2 + ǫ2M

)2
]}

. (16)

Eqs. (13) and (16) allow us to construct the correlation function C(∆φ), which depends on the azimuthal angle
difference ∆φ between the trigger and associate particles. Experimentally, this coincidence probability is defined in
terms of the yield of the correlated trigger and associated particle pairs Npair(∆φ) and the trigger particle yield
Ntrig as the following ratio: C(∆φ) = Npair(∆φ)/Ntrig . Therefore, azimuthal correlations are investigated through a
coincidence probability defined in terms of a trigger particle, which could be either the gauge boson or the hadron.
Here we assume the former as trigger particle, so that the correlation function is written as

C(∆φ) =
2π

∫

pT ,ph
T>pcut

T

dpT pT dphT p
h
T

dσ(pp→hG∗X)

dY dyhd2pT d2ph
T

∫

pT>pcut
T

dpT pT
dσ(pp→G∗X)

dY d2pT

, (17)

where pcutT is the experimental low cut-off on transverse momenta of the resolved G∗ (or dilepton) and h, ∆φ is the
angle between them.

C. Dipole cross section

For the numerical analysis of the DY observables we need to specify a reliable parametrization for the dipole cross
section, σqq̄(ρ, x), which represents elastic scattering of a qq̄ dipole of transverse separation ρ at Bjorken x off a
nucleon [35], thus it contains an information about possible non linear QCD effects in the hadronic wave function
(see e.g. Ref. [31]). It is known to vanish quadratically σqq̄(ρ, x) ∝ ρ2 as ρ → 0 due to color screening which
is the color transparency property [35–37]. It cannot be predicted reliably because of poorly known higher-order
perturbative QCD corrections and non-perturbative effects. However, in recent years several groups have constructed
a number of viable phenomenological models based on saturation physics and fits to the HERA and RHIC data (see
e.g. Refs. [15, 38–49]).
Since our goal is to extend previous DY studies to the kinematical range probed by the massive gauge boson

production, where the main contribution comes from the small dipoles, in what follows we will consider two distinct
phenomenological models which take into account the DGLAP evolution as well as the saturation effects. The first
one is the model proposed in Ref. [45], denoted BGBK hereafter, where the dipole cross section is given by

σqq̄(ρ, x) = σ0

[

1− exp

(

− π2

σ0Nc
ρ2αs(µ

2)xg(x, µ2)

)]

, (18)

where Nc = 3 is the number of colors, αs(µ
2) is the strong coupling constant at the scale µ2 which is related to the

dipole size ρ as µ2 = C/ρ2 + µ2
0, with C, µ0 and σ0 parameters fitted to HERA data. Moreover, in this model, the

gluon density evolves according to DGLAP equation [51] accounting for gluons only

∂xg(x, µ2)

∂ lnµ2
=

αs(µ
2)

2π

∫ 1

x

dzPgg(z)
x

z
g(

x

z
, µ2) , (19)

where the gluon density at initial scale µ2
0 is parametrized as

xg(x, µ2
0) = Agx

−λg (1− x)5.6 . (20)
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The best fit values of the model parameters are the following: Ag = 1.2, λg = 0.28, µ2
0 = 0.52 GeV2, C = 0.26 and

σ0 = 23 mb. This model was generalized in Ref. [47] in order to take into account the impact parameter dependence
of the dipole cross section and to describe exclusive observables at HERA. In this model, denoted as IP-SAT hereafter,
the corresponding dipole cross section is given by

σqq̄(ρ, x) = 2

∫

d2b

[

1− exp

(

− π2

2Nc
ρ2αs(µ

2)xg(x, µ2)TG(b)

)]

(21)

with the evolution of the gluon distribution given by Eq. (19). The Gaussian impact parameter dependence is given
by TG(b) = (1/2πBG) exp(−b2/2BG), where BG is a free parameter extracted from the t-dependence of the exclusive
ep data. The parameters of this model were updated in Ref. [48] by fitting to the recent high precision HERA data
[50] providing the following values: Ag = 2.373, λg = 0.052, µ2

0 = 1.428 GeV2, BG = 4.0 GeV2 and C = 4.0.

√
s (TeV) GBW BGBK IP-SAT DATA (nb)

7 0.950 1.208 0.986 0.937± 0.037 (ATLAS)
0.974 ± 0.044 (CMS)

8 1.083 1.427 1.183 1.15± 0.37 (CMS)

14 1.852 2.797 2.514 –

TABLE I: Comparison between the GBW, BGBK and IP-SAT predictions for the total cross sections for Z0 boson production at
different values of the c.m. energy. The experimental results are from Refs. [52–54]. The cross sections are given in nanobarns.

Finally, for comparison with previous results existing in the literature, we also consider the Golec-Biernat–Wusthoff
(GBW) model [15] based upon a simplified saturated form

σqq̄(ρ, x) = σ0

(

1− e−
ρ2Q2

s(x)

4

)

(22)

with the saturation scale

Q2
s(x) = Q2

0

(x0

x

)λ

, (23)

where the model parameters Q2
0 = 1 GeV2, x0 = 3.04× 10−4 (4.01× 10−5), λ = 0.288 (0.277) and σ0 = 23.03 (29) mb

were obtained from the fit to the DIS data without (with) the contribution of the charm quark, respectively.
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FIG. 2: The DY pair invariant mass distribution of the process pp → γ∗/Z0 → ll̄ at
√
s = 7 TeV in low (left panel) and

high (right panel) invariant mass ranges compared to the data from the ATLAS Collaboration [55, 56] for three different
parametrisations of the dipole cross section.
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FIG. 3: The DY pair invariant mass distribution of the process pp → γ∗/Z0 → ll̄ at
√
s = 7 TeV compared to the data from

the CMS collaboration [57] for three different parametrisations of the dipole cross section in the left panel. The corresponding
predictions are shown for

√
s = 14 TeV in the right panel.
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FIG. 4: The DY pair invariant mass distribution of the process pp → γ∗/Z0 → ll̄ at RHIC Run I (
√
s = 200 GeV) and II

(
√
s = 500 GeV) energies for three different parametrisations of the dipole cross section.

III. NUMERICAL RESULTS

In what follows, we present our predictions for the DY pair production in the process pp → γ∗/Z0 → ll̄ obtained
by using the color dipole formalism and the three phenomenological models for the dipole cross section discussed in
the previous Section. Following Ref. [15], we take the quark mass values to be mu = md = ms = 0.14 GeV, mc = 1.4
GeV and mb = 4.5 GeV. Moreover, we take the factorization scale µF defined above to be equal to the dilepton
invariant mass, M , and employ the CT10 NLO parametrization for the projectile quark PDFs [61] (both sea and
valences quarks are included).
To start with, in Table I we present our results for the total cross sections for the considered models and different

energies. The GBW model gives the total cross section value at 7 TeV smaller than that obtained by using the IP-SAT
model correctly treating the region of large transverse momenta (small dipoles). The DY cross section obtained by
using the BGBK model turns out to be somewhat higher than the 7 TeV data while the GBW and IP-SAT are well
within the error bars while all three models describe 8 TeV data rather well. It is worth to mention that in comparison
to Ref. [25] we obtain larger total cross sections for the GBW case since in this study we do not impose any strong
relation between x1,2 and use the NLO quark PDFs.
Such a fairly good description of the LHC data on the total cross section naturally motivates a more detailed analysis

of the DY cross section differential in the dipleton invariant mass, rapidity and transverse momentum. In Fig. 2 we
compare our predictions for the invariant mass distributions with the recent ATLAS data in low and high invariant
mass ranges. We conclude that the parametrisations of the dipole cross section including the DGLAP evolution via
the gluon PDF describe better the DY data, mainly at higher invariant masses. The latter case includes a fairly large
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FIG. 5: The Z0 boson rapidity distribution for different center of mass energies:
√
s = 1.96 TeV (top left panel), 7 TeV (top

right panel) and 14 TeV (bottom panel) versus data from the D0 [58] and CMS [59] Collaborations.

Z0 contribution as well as its interference with γ∗ in the considered dilepton channel. It is clearly seen e.g. from
a comparison of predictions of the three dipole parametrisations with the CMS data shown in Fig. 3 (left panel).
Indeed, the DGLAP evolution, included on both IP-SAT and BGBK models, notably corrects the high mass tail of
the distribution, in comparison with the GBW model accounting for no evolution. Our predictions for pp collisions
at

√
s =14 TeV are presented in Fig. 3 (right panel). Considering that a similar measurement can be performed at

RHIC, in Fig. 4 we show our results for the dilepton invariant mass distributions corresponding to the c.m. energies of
Run I (

√
s = 200 GeV) and II (

√
s = 500 GeV). While the invariant mass distributions corresponding to the IP-SAT

and BGBK models are rather close to each other, the GBW prediction noticeably differs from them away from the
Z0 peak, in both low and, especially, high invariant mass ranges.
In Fig. 5 we present our predictions for the Z boson rapidity distribution for different c.m. energies corresponding

to Tevatron
√
s = 1.96 TeV (left panel) and LHC Run I

√
s = 7 TeV (center panel). These results show that the

IP-SAT and GBW models deviate from data in the central rapidity region while the BGBK predictions come closer
to the data in the whole rapidity range. It is worth to emphasize that specifically for the Tevatron energy and for
central rapidities, the results are rather sensitive to the behaviour of the dipole cross section at large values of x,
which is not under control in the considered formalism. At larger rapidities we obtain a reasonable description of the
data though. The future LHC data at

√
s = 14 TeV at large M > mZ can be used to put even stronger constraints

on the dipole model parametrisations (see the right panel in Fig. 5).
We turn now to a discussion of the transverse momentum distributions of the DY pair production cross section. In

what follows, we take into account that heavy gauge boson and highly virtual photon production implies that typical
dipole separations are small, i.e. αρ ∼ 1/M2 ≪ ΛQCD. In this limit, the Fourier integral in Eq. (7) can be performed
analytically. Taking into account only the leading term in the exponential in the parametrisations for the dipole cross
section one has

σ(ρ, x) ≈ ω(x)ρ2 , ω(x) =
π2

2Nc
αs(µ

2)xg(x, µ2)TG(b) , (24)

for the IP-SAT model (a similar analysis can be done for the GBW and BGBK models). The effective dipole cross
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FIG. 6: The transverse momentum distributions of Z0 bosons in pp collisions at
√
s = 1.96 TeV (top left panel), 7 TeV (top

right panel) and 14 TeV (bottom panel) versus data from the D0 [60] and CMS [59] Collaborations.

section in Eq. (7) can thus be written as

σqq̄(αρ1, x) + σqq̄(αρ2, x)− σqq̄(α|ρ1 − ρ2|, x) ≈ α2
ρ1ρ2ω , (25)

so that, taking the ρ dependent part of the gauge boson wave functions in Eq. (9), one ends up with the following
two Fourier integrals in the DY cross section (for more details, see Appendix B in Ref. [22])

J1(pT , τ) =

∫

d2ρ1d
2ρ2 (ρ1 · ρ2) K0 (τρ1) K0 (τρ2) exp[ipT · (ρ1 − ρ2)] = 16π2 p2T

(τ2 + p2T )
4

(26)

J2(pT , τ) =

∫

d2ρ1d
2ρ2

(ρ1 · ρ2)
2

ρ1ρ2
K1 (τρ1) K1 (τρ2) exp[ipT · (ρ1 − ρ2)] = 8π2 τ4 + p4T

τ2(τ2 + p2T )
4
. (27)

The considered small dipole limit is valid as long as the hard scale is large enough meaning that the dipole coherence
length is much larger than the interaction time with the target. The latter condition is certainly fulfilled for the DY-
pair transverse momentum distributions at the LHC in a wide range of transverse momenta. One should note,
however, that the low dilepton transverse momentum region dominated by larger dipoles is not considered here, as
well as realistic cuts on the final lepton momenta that affect the pT distributions at pT . 10 GeV are no included
in this work. Moreover, at low transverse momenta the contribution of an intrinsic primordial transverse momentum
of the projectile quark in the incoming proton wave function and the corresponding Sudakov resummation of double
logarithms can be important. We postpone the analysis of these contributions within the dipole formalism for a future
investigation.
We present our predictions for the dilepton pT distribution in Fig. 6 for pp collisions at various energies:

√
s =

1.96 TeV (left panel), 7 TeV (middle panel) and 14 TeV (right panel). As was anticipated, these do not describe
the experimental data in the range of low pT . 3 GeV. On the other hand, at larger pT the data are well described
by the DGLAP evolved dipole models IP-SAT and BGBK, but not GBW. In Fig. 7 we present the corresponding
distributions at RHIC energies considering two different ranges of invariant masses. At low invariant masses, where
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FIG. 7: The transverse momentum distributions for DY production in pp collisions at RHIC (
√
s = 200, 500 TeV) considering

two different invariant mass ranges.

the photon channel strongly dominates, the IP-SAT and GBW models give very similar predictions at low pT , with
some minor difference between them at larger transverse momenta. In contrast, at large invariant masses probing the
Z peak region, the predictions differ more significantly, and this tendency continues to higher M . In this kinematical
range, the DGLAP evolution corrects the tail of the distributions at both low (RHIC) and high (LHC) energies in
the same way.
Finally, consider the correlation function C(∆φ) defined in Eq. (17). This observable has been studied in Ref. [28]

for the DY+pion production in proton/deuteron-nucleus collisions at RHIC and LHC energies taking into account the
saturation effects and considering the virtual photon contribution γ∗ → ll̄ only. The authors have demonstrated that
at variance to the near-side peak (∆φ = 0) distribution, which is dominated by the leading jet fragmentation, the
away-side peak (∆φ = π) is dominated by back-to-back jets produced in the hard 2 → 2 scattering. Moreover, since
low-x gluons in the target dominate and carry a typically large transverse momentum of the order of the saturation
scale, the transverse momentum imbalance of the back-to-back jets increases at high energies. So the saturated gluons
from the target tend to smear the back-to-back picture and suppress the away-side peak in the ∆φ distribution.
Two important results emerge from the analysis performed in Ref. [28]. First, the prediction of a double peak in

the correlation function around ∆φ = π, with a dip in ∆φ = π. Second, such a behaviour is not strongly dependent
on the large transverse momentum tail of the UGDF used as as input in the calculations. The latter conclusion
implies that it is possible to get realistic predictions using the GBW model for the dipole cross section. In this case,
numerical issues associated with the Fourier transformation of oscillating functions are not present, and the UGDF
can be calculated analytically

F (xg, k
g
T ) =

1

πQ2
s(xg)

e−kg

T
2/Q2

s(xg) , (28)

with the saturation scale given in Eq. (23). In what follows, we study the correlation function C(∆φ) assuming the
GBW model for the UGDF, the CT10 NLO parametrization for the parton distributions and the Kniehl-Kramer-
Potter (KKP) fragmentation function Dh/f (zh, µ

2
F ) of a quark to a neutral pion [62]. Moreover, we assume that the
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minimum transverse momentum (pcutT ) for the gauge boson G and the pion h = π in Eq. (17) are the same and equal
to 1.5 (3.0) GeV for RHIC (LHC) energies.
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s (left panel) or by the dilepton invariant

mass µF = M (right panel).
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FIG. 9: The correlation function C(∆φ) for the associated DY pair and pion production in pp collisions at RHIC and LHC.

At first, let us compare our results with those presented in Ref. [28] for dAu collisions at RHIC (
√
s = 200 GeV).

As in Ref. [28] we take the saturation momentum scale Qs,A for a target nuclei with mass number A as defined by

QA
s
2
(x) = A1/3c(b)Q2

s(x) in terms of the corresponding scale Qs(x) for the proton target in the GBW parametrisation,
where c(b) is the profile function as a function of impact parameter b. Our results for forward particles yγ = yπ = 2.5
and two different values of the invariant mass M are presented in Fig. 8 (left panel) assuming that the factorization
scale of the considering process is determined by the saturation scale, i.e. µF = QA

s in Eqs. (13) and (16). As in
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Ref. [28], we obtain the double-peak structure in C(∆φ) in the away side, with the magnitude of the peaks increasing
with the dilepton invariant mass. The normalisation of the curves turns out to be slightly different from that in
Ref. [28], due to the different sets of parton distributions and fragmentation functions used in our calculations, but
an overall agreement is rather good.
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As at the leading order the choice of the factorisation scale is arbitrary, it can be instructive to analyse the impact
of a different scale choice to these results. In Fig. 8 (right panel) we present the results for dAu collisions at RHIC.
This choice is motivated by the fact that we would like to extend the formalism used in Ref. [28] for pp collisions and
for the kinematical range of large invariant masses where Z0 must be included. Remarkably, we have observed that
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(
√
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the double peak structure does also present in the pp case at very forward rapidities and it is not affected by the new
choice for the factorization scale, only the invariant mass dependence is modified.
Let us now consider the correlation function in pp collisions. To start with, in Figs. 9 and 11, we show our predictions

for the low invariant mass range dominated by the virtual photon γ∗ → ll̄ channel. In particular, Fig. 9 demonstrates
that the double peak structure emerges in pp collisions at both RHIC and LHC energies considering that the photon
and the pion are produced at forward rapidities, close to the phase space limit. The double peak structure is also
present for different values of the photon (central) and pion (forward) rapidities – the corresponding results at RHIC
energies are shown in Fig. 10. It is important to emphasize that the forward-central correlation in such a kinematical
configuration can be experimentally studied by the STAR Collaboration in both pp and pA collisions. In Fig. 11 we
present the correlation function in pp collisions at

√
s = 14 TeV considering different values for the dilepton pair and

pion rapidities. We observe that the double peak structure only arises for the pion at very forward rapidities, where
the saturation scale takes a large value of the order of the dilepton invariant mass. Indeed, at large pion rapidities the
saturation scale increases and becomes non-negligible compared to the typical transverse momentum of the back-to-
back particles which induces a noticeable decorrelation between them. Consequently, these results demonstrate that
the study of the rapidity dependence of the correlation function in pp collisions at the LHC Run II can be useful to
probe the onset of the saturation effects.
Finally, in Fig. 12 we present our predictions for C(∆φ) for high values of the invariant mass determined by the

virtual Z0 → ll̄ channel and Z0/γ interference. In the left (middle) panel we present our results for
√
s = 7 (14)

TeV assuming that pcutT = 3 GeV. For comparison, in the right panel we also present the results obtained considering
pcutT = 20 GeV. In all cases, we obtain a sharp peak for ∆φ ≈ π, which is characteristic to the back-to-back kinematics
of the final states. This result is expected since at large invariant masses the effect of the intrinsic transverse momentum
of the gluon, which is of the order of the saturation scale, is negligible.
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IV. SUMMARY

In this paper, we carried out an extensive phenomenological analysis of the inclusive DY γ∗/Z0 → ll̄ process within
the color dipole approach. At large dilepton invariant mass the Z0 contribution becomes relevant. The corresponding
predictions for the integrated cross section as well as the dilepton invariant mass and transverse momenta differential
distributions have been compared with available data at different energies from Tevatron and LHC. The results were
obtained by employing recent IP-SAT and BGBK parametrisations for the dipole cross section accounting for the
DGLAP evolution for the gluon density in the target nucleon and a reasonable agreement with the data was found in
both low and high invariant mass ranges.
Besides, we have studied correlation function C(∆φ) in azimuthal angle between the produced dilepton and a

pion which results by a fragmentation from a projectile quark radiating the virtual gauge boson. The corresponding
observable has been studied at various energies in pp collisions in both low and high dilepton invariant mass ranges
as well as at different rapidities of final states. We found a characteristic double-peak structure of the correlation
function around ∆φ ≃ π in the case of low dilepton mass and a very forward pion. The considering observable is
more exclusive than the ordinary DY process and such a measurement at different energies at RHIC and LHC is
therefore capable of setting further even stronger constraints on the UGDF models and, hence, to the dipole model
parametrisations offering a possibility for a more direct measurement of the saturation scale.

Acknowledgements

E. B. is supported by CAPES and CNPq (Brazil), contract numbers 2362/13-9 and 150674/2015-5. V. P. G. has
been supported by CNPq, CAPES and FAPERGS, Brazil. R. P. is supported by the Swedish Research Council,
contract number 621-2013-428. J. N. is partially supported by the grant 13-20841S of the Czech Science Foundation
(GAČR), by the Grant MSMT LG13031, by the Slovak Research and Development Agency APVV-0050-11 and by
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