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Abstract

We present a novel Monte-Carlo implementation of dynamic colour screening via multiple exchanges of
semi-soft gluons as a basic QCDmechanism to understand diffractive electron-proton scattering at the HERA
collider. Based on the kinematics of individual events in the standard QCD description of deep inelastic
scattering at the parton level, which at low x is dominantly gluon-initiated, the probability is evaluated for
additional exchanges of softer gluons resulting in an overall colour singlet exchange leading to a forward
proton and a rapidity gap as the characteristic observables for diffractive scattering. The probability depends
on the impact parameter of the soft exchanges and varies with the transverse size of the hard scattering
subsystem and is therefore influenced by different QCD effects. We account for matrix elements and parton
shower evolution either via conventional DGLAP logQ2-evolution with collinear factorisation or CCFM
small-x evolution with k⊥-factorisation and discuss the sensitivity to the gluon density distribution in the
proton and the importance of large logx-contributions. The overall result is that, with only two model
parameters which have theoretically motivated values, a satisfactory description of the observed diffractive
cross-section at HERA is obtained in a wide kinematical range.
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I. INTRODUCTION

Diffractive scattering through strong interactions without any large momentum transfer has his-
torically been described in terms of the exchange of a Pomeron, a virtual hadron-like object with
vacuum quantum numbers. The Regge approach [1, 2] of the pre-QCD era provides a working phe-
nomenology to describe such processes in a hadron basis since no parton structure is resolved. The
idea [3] to introduce a hard scale in a diffractive process opened the possibility to examine these
processes at the level of quarks and gluons in the modern framework of QCD. The discovery of such
diffractive hard scattering was made by the UA8 experiment [4] by observing high-p⊥ jets in single
diffractive events in pp̄ collisions at CERN. Many other hard processes in diffractive events have
been observed later on, for a review see e.g. [5]. Of special importance are the measurements of
diffractive deep inelastic scattering (DDIS) at the electron-proton collider HERA [6, 7], where the
well understood point-like electromagnetic interaction probes the parton structure in the diffractive
reaction mechanism.

This has resulted in theoretical descriptions of data based on essentially two different approaches,
one being pomeron exchange in Regge phenomenology and the other colour screening via soft gluon
exchange in QCD.

The pomeron approach starts with the initial proton state fluctuating in a soft non-perturbative
process into a proton and a pomeron. The latter is assumed to have a partonic structure which
is probed by the momentum transfer Q2 of the deep inelastic photon exchange to produce the
hadronic final state, well separated in rapidity from the final state proton carrying most of the
longitudinal momentum of the beam proton. HERA data on DDIS can then be described [3, 8]
as a product of an effective pomeron flux factor from Regge phenomenology and deep inelastic
scattering on the pomeron having parametrised parton density functions (PDF) [8]. Alternatively,
one may parametrise diffractive structure functions without an explicit pomeron flux but instead
being conditionally dependent on the momentum of the final proton.

However, this approach is not universal in the sense that such parametrisations do not repro-
duce diffractive hard scattering data in hadron-hadron collisions. For example, such pomeron PDFs
overestimate substantially the cross-sections for diffractive hard scattering processes, such as pro-
duction of jets or W , at the Tevatron [9]. This has called for introducing a gap survival suppression
factor Ŝ, which can be given a qualitative theoretical motivation but which is difficult to calculate
quantitatively.

The colour exchange approach starts instead with the hard scattering process and then adds softer
gluon exchanges to achieve the effective colour singlet exchange in diffractive processes. Thus, the
underlying hard process is assumed to be the same as in the corresponding non-diffractive process
and its momenta naturally not affected by other exchanges at much lower momentum transfer scales.
However, the formation of confining colour fields may well be affected by the softer gluon exchanges
and thereby the hadronisation process such that a different distribution of the final state hadrons
emerges. For example, when different colour singlet string-fields emerge separated in rapidity they
will hadronise into two hadron systems separated by a rapidity gap with no hadrons.

A simple, but phenomenologically rather successful model of this kind is the Soft Colour Interac-
tion (SCI) model [10] added to the Lepto [11] and Pythia [12] Monte-Carlo event generators. A
large variety of diffractive data could then be reproduced with essentially the same value of a single
new parameter, introduced to give the probability for exchange a soft colour octet gluon between
any pair of partons. This colour exchange alter the formation of the colour string-fields and hence
the application of the conventional Lund string hadronisation model results in a different topology
of the hadronic final state. The model gives an essentially correct description of diffractive DIS
ep scattering at HERA [10] as well as diffractive events at the Tevatron having jets or quarkonia
[13, 14] or gauge bosons [15]. It has therefore been applied for predictions, e.g. of diffractive Higgs
production in double gap processes at LHC [16]. The gap survival factor Ŝ often used in other kinds
of models, is not necessary here since the full event simulation accounts for such effects resulting in
correct rates for the investigated diffractive processes in ep and pp and pp̄ collisions.
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Other models of a similar nature, with different forms of colour exchange, have been developed.
The GAL model [17] for example considers soft colour exchanges between strings with a probability
that favours minimization of the strings’ area in energy-momentum coordinates. A recent develop-
ment of such colour string reconnection models makes a more elaborate account for SU(3) colour
statistics [18].

A theoretical QCD basis for basic colour exchanges has been proposed in [19] and, in a more elab-
orated form, in [20]. The basic hard scattering process is treated by conventional perturbative QCD
(pQCD). Its large momentum scale implies that it occurs on a small space-time scale compared to
the bound state proton and is thus embedded in the proton. Therefore, the emerging hard-scattered
partons propagate through the proton’s colour field and may interact with it. The amplitude for
such multiple gluon exchanges is calculated in the eikonal approximation to all orders in perturba-
tion theory resulting in an analytic expression for such a colour screening effect. It is this amplitude
that we here develop into a probabilistic model. We implement it for two different Monte Carlo
event generators: Lepto for general deep inelastic lepton-nucleon scattering including first order
QCD matrix elements and parton showers based on conventional logQ2 evolution from the DGLAP
equations [21], and as well for Cascade [22] specialised on small-x electron-proton scattering based
on the off-shell γ?g? → qq̄ first order matrix element and k⊥ factorisation with CCFM evolution [23]
and unintegrated gluon density of the proton.

The paper is organized as follows. In section II we describe the basic process with the colour
screening. Section III discusses the resulting cross-section for diffractive deep inelastic scattering and
its Monte Carlo implementation. Section IV shows our results in comparison to HERA data. Finally,
section V presents our conclusions.

II. SOFT COLOUR SCREENING IN DIFFRACTIVE DIS

In the virtue of the SCI model, the skeleton of both inclusive and diffractive (with rapidity gaps
and/or leading proton) DIS process is provided by the same perturbative QCD diagram illustrated
in Fig. 1. A parton with longitudinal momentum fraction xP in the initial proton at the starting
scale Q2

0 for pQCD is evolved to smaller momentum fractions, but higher transverse momenta and
virtualities up to a hard scale µ2

hard ' Q2. Here, a virtual photon γ∗ with momentum q and virtuality
Q2 = −q2 resolves a quark at Bjorken x

x = Q2

2P · q = Q2

Q2 +W 2 . (2.1)

At small x the process will dominantly be initiated by a gluon, which can radiate and splits into a
qq̄ pair. The total momentum fraction taken from the proton is xP = x/β, and the total mass MX

of the parton system denoted as X in Fig. 1 is

M2
X = Q2

(
1
β
− 1

)
= Q2

(
xP
x
− 1

)
. (2.2)

For a γg → qq̄ pair (without additional gluons) having with quark transverse momentum k⊥ and
longitudinal momentum fraction z, the corresponding invariant mass is

M2
X =

k2
⊥ +m2

q

z(1− z) . (2.3)

At large xP , the parton distribution functions (PDFs) of the incident proton are dominated by
valence quarks leaving practically no chance for the proton to survive such an interaction, and hence
resulting in a non-diffractive event. At small xP , however, the PDFs are dominated by gluons, and
the partonic system X is created in photon-gluon fusion γ∗ + g → qq̄ as depicted in Fig. 1. In this
case, the momentum exchange via multiple soft gluons with a small net fraction x′ � xP between
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Figure 1. Illustration of the diffractive DIS process with the hard subprocess matrix element γ∗g → qq̄ with
a subsequent rescattering of the qq̄ dipole off the target colour field (left panel). Schematic diagram of the
diffractive DIS process γ∗p→ X+gap+p accounting for final state rescattering by multiple gluon exchange
at x′ � xP and perturbative parton shower off initial state parton which builds up the diffractive system X

(right panel). The latter can be separated from the leading proton (or small-mass system Y ) by a rapidity
gap. The final state radiation is not shown as it does not affect the overall kinematics of the X system.

the proton and the perturbative X systems does not significantly change the momenta of partons
emerging from the hard scattering. However, they do change the colour structure of the resulting X
and Y systems.

The original SCI model captures the main effects in many processes as DDIS at HERA and
diffractive hard scattering at the Tevatron. Despite this success, it is not derived from a perturbative
QCD amplitude. For the case of DDIS, a derivation of the amplitude for the colour screened process
has been done based on perturbative QCD in the large NC limit [19, 20] and provides a theoretical
basis for the DDIS process in terms of colour exchanges. It improves on the previous description by
introducing a dependence on the kinematical details of the event which also leads to colour trans-
parency. We start with the outline of the resummed colour screening amplitude and the derivation
of probability for an event-by-event treatment in an event generator.

Consider the DDIS amplitude in impact parameter representation in the target rest frame which
corresponds to the colour dipole picture of the process. The lowest Fock component of the virtual
photon γ∗ → qq̄ corresponds to its fluctuation to a qq̄ dipole with transverse separation r in the
colour background field of the traget proton at impact distance b from its centre. The prepared Fock
component then propagates through the field in the proton and softly interacts with it such that it
can, in principle, change its colour but not kinematics (the dipole size is frozen at the time scale of its
propagation through the colour medium). We consider the forward limit where the total transverse
momentum δ⊥ of gluon exchanges in the t-channel is small, |δ⊥| ≡

√
−t ' µsoft ∼ ΛQCD. In this

limit, as a straightforward consequence of the optical theorem in the limit of large γ∗p c.m. energy,
the DDIS amplitude Mdiff can be written with the ordinary gluon-initiated inclusive DIS amplitude
Mg ≡Mg+γ→X and the dynamical colour screening (DCS) amplitude ADCS as

Mdiff(k⊥, δ⊥) ∝
∫
d2rd2bMg(xP ; r,b)ADCS(r,b) eirk⊥eibδ⊥ ,

where k⊥ is the relative quark transverse momentum in the qq̄ dipole in the lowest order subprocess
g∗ + γ∗ → qq̄.

The screening amplitude ADCS accounts for the soft gluon exchanges between the proton remnant
Y and the rest of the final state commonly denoted as X, with X = qq̄ at the lowest order. These
exchanges carry a small longitudinal fraction x′ and the transverse momentum transfer k′⊥ is at a soft
scale µsoft. ADCS is resummed to all orders in the large-Nc limit where it acquires a simple eikonal
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form [19, 20].

ADCS(r,b) = 1− exp
(
iCFα

eff
s (µ2

soft) ln |b− r|
|b|

)
(2.4)

Here, CF ' TFNc is the colour factor for the single gluon exchange amplitude and αeff
s is the effective

coupling constant at the soft hadronic scale µsoft. The effective QCD coupling is not small in this
case. Several approaches dealing with the Landau singularities at low momentum transfers were
proposed in the literature, e.g. [25]. In practice, we use the infrared-stable Analytic Perturbation
Theory (APT) approach [26].

For our study we use similarly the inclusive amplitude

Mincl(k⊥, δ⊥) ∝
∫
d2rd2bMg(xP; r,b) eirk⊥eibδ⊥ . (2.5)

In impact parameter space the fraction of the cross section with colour screening between the systems
X and Y is obtained from the ratio

|Mdiff(r,b)|2
|Mincl(r,b)|2 = |ADCS(r,b)|2 ≡ P (r,b) (2.6)

which defines the probability function for the overall colour singlet exchange. With rb ≡ rb cosϕ,
this leads to

P (r/b, ϕ) =

∣∣∣∣∣∣1− exp
iCFαs ln

√
1 + r2

b2 − 2r
b

cosϕ
∣∣∣∣∣∣

2

. (2.7)

To apply this as the probability in a Monte Carlo generated event at the parton level, we will associate
r ' k−1

⊥ and b ' δ−1
⊥ , and approximate by taking the average over the relative angle ϕ

P (r/b) =
∫ dϕ

2πP (r/b, ϕ) (2.8)

which is motivated by the fact that ϕ will be uniformly distributed in a sample of many collisions.
The result is shown in Fig. 2 for different choices of αeff

s .

0.2 0.4 0.6 0.8 1.0
r/b

0.1

0.2

0.3

0.4

Probability

Figure 2. The screening probability P (r/b) for different values of αeff
s ∈ {0.7, 0.6, 0.5} (upper to lower

curve)

Its key characteristic property is infrared safety and the levelling off at large r/b resembling the
saturation feature of the dipole scattering amplitude. Furthermore, the probability for the colour
screening vanishes for small dipoles r/b � 1 which is compatible with the colour transparency
property. We note that αeff

s enters the normalisation factor.
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III. DDIS CROSS SECTION VIA DYNAMIC COLOUR SCREENING

The DDIS cross section is then obtained using the inclusive cross section and standard inclusive
parton densities together with the probability P (r/b) in Eq. (2.8) for dynamic colour screening
resulting in

dσD

dQ2 dβ dxP
=
∑
i

∫∫
dx dr ρ(r,Q2, β, xP ) dσ̂

dQ2 dx

· fi(x,Q2)P (r/b) δ(x− xPβ)

where fi(x,Q2) are the standard inclusive parton distributions. ρ(r,Q2, β, xP ) represents the differ-
ential distribution of the standard DIS cross section in r which is obtained from the parton evolution
event-by-event in the Monte Carlo. Since r represents the transverse size of the qq̄ together with
the pQCD radiation and the amplitude for colour screening is dominated by a rescattering off large
dipoles, we use the smallest k⊥ difference within the partonic X-system and let r ' 1/k⊥min. Al-
though this k⊥min is typically related to the pQCD cutoff, the Monte Carlo simulation can give very
small such relative k⊥ due to random angular orientations of the momentum vectors. We therefore in-
troduce a cut-off k⊥0 to avoid a spurious divergence and transverse sizes r that are not perturbatively
small. Thus we let r = 1/

√
k2
⊥min + k2

⊥0.
The impact parameter b ' 1/q⊥ is related to the soft transverse momentum of the screening

multiple gluon exchange, which is expected to be well below the factorisation scale for the pQCD
processes. On the other hand q⊥ is expected to be somewhat larger than the confining energy-
momentum scale ΛQCD ∼ 200 MeV in order for the screening process to occur fast enough that the
proton state can stay quantum mechanically coherent into the final state.

The colour screening probability therefore depends on the ratio r/b given by
r

b
= q⊥√

k2
⊥min + k2

⊥0

, (3.1)

where k⊥0, as mentioned, regulates the divergence.
The values of q⊥ and k⊥0 constitute the two free parameters of the model and are to be determined

from a comparison with experimental data. From the construction, we expect their values to be
approximately between ΛQCD and the perturbative cutoff Q0 in the gluon PDF. Using Eq. (3.1) in
Eq. (2.8) results in a probability P (k⊥min) for the effective colour screening that depends on the
internal kinematics of the system X.

We calculate the diffractive reduced cross section σDr (Q2, β, xP ) within the same kinematic limits
as applied by the experiment [27]. In addition, we adopt two different notions of the diffractive cross
section. The first definition σDr,FWD(Q2, β, xP ) is based on a forward remnant system with a mass
MY < 1.6 GeV and proton quantum numbers. The other definition σDr,LRG(Q2, β, xP ) requires a large
rapidity gap (LRG) of two units in pseudorapidity. This choice is potentially sensitive to the inner
radiation structure of the system X because the LRG is defined in terms of pseudorapidity.

A. Small-x resummation

The emissions in the CCFM evolution [23] are not strongly ordered in virtuality as they are by
assumption in the DGLAP evolution [21]. Therefore, the parton in the hard interaction can no
longer be approximated as on-shell and instead an off-shell matrix element is used for the hard
interaction. Likewise, the branching gluons in the CCFM evolution are described by an unintegrated
gluon density function (UGDF).

In the CCFM evolution, one effectively resums the leading logarithms in the energy splitting
1/z and 1/(1 − z), as well as the leading logarithms in Q2. Experimental data on the DDIS cross
section σD(Q2, β, xP ) covers a wide kinematic range where one can have M2

X � Q2. Because of
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such potentially very different hard scales, we expect corrections from large logarithms to become
important in certain parts of the phase space. Because of Eq. (2.2) we expect the CCFM evolution
to be better suited for the DDIS observables, at least, in the case of β � 1 when the large leading
logs

ln M
2
X

Q2 ' − ln β � 1

are properly treated.

B. Soft divergences

Because of the soft divergence in the first order QCD matrix element, the hard process γg → qq̄
will favour an uneven splitting of the energy between the quarks. Specifically, if we define the fraction
of energy taken by the quark as z, then the matrix elements have soft divergences as 1/z and 1/(1−z)
for z → 0 or z → 1, respectively. One aspect of the soft divergence is that it favors a rather large
ratio between x and the energy fraction xn of the parton entering the matrix element. Specifically, in
the matrix element γg → qq̄ one can have a large ratio x/xn without any additional radiation from
the quark propagator. Such a large ln 1/z is not accounted for in the initial state parton evolution.
In the case of the matrix elements γq → q and γq → qg plus DGLAP evolution this phase space is
in part taken into account, but the DGLAP evolution does not resum potentially large ln x/xn.

Another aspect of the uneven splitting is that one of the quarks will be very forward in pseudo-
rapidity in the lab frame when z is close to the divergence. In this case, the quark can have a large
enough forward momentum pz to populate the gap region and the event therefore does not contribute
to the diffractive cross section as defined in terms of a LRG in spite of having a leading proton.

The divergent behaviour is unphysical and is usually avoided with a cutoff. Still, an inclusion of
higher order effects may be important for the cross section and also for the inner structure within
the X system. In particular, the energy of the qq̄ system may be shared by additional gluons and
therefore significantly reduce the rapidity range of the final X-system and therefore can have an
influence on the LRG observable.

C. Details of the Monte Carlo implementation

In order to study the dynamic colour screening in more detail, we interface the model with different
Monte Carlo event generators. In particular, we employ the program Lepto [11] which offers first
order QED and first order QCD matrix elements combined with DGLAP [21] parton showering
and collinear PDFs. As a second program we use Cascade [22] which offers γ∗ + g∗ → qq̄ with
k⊥-factorised off-shell matrix elements and CCFM evolution [23] which is intended to account for
potentially large logarithms of incident momentum fractions of radiated partons. The photon-gluon
fusion matrix element γ + g → qq̄ illustrated also in Fig. 1 is the dominant contribution to the
diffractive DIS cross section at small x. Lepto includes this process as a first order QCD matrix
element, as well as via a combination of the QED hard process γ∗q → q augmented by a g → qq̄
DGLAP splitting. Cascade provides this process as an off-shell first order QCD matrix element,
but not as a first order QED matrix element with parton splitting.

After generating events on parton level using matrix elements augmented with initial and final
state parton showers, we apply the colour screening model before any special treatment of the rem-
nant. In particular, we do not allow any cluster fragmentation of systems with a small invariant mass
because the dynamic screening will potentially change the colour topology of the event before the
scale of hadronization is reached and therefore change the possible outcomes of the fragmentation.
This is understood as colour rescattering to happen on the scale between the perturbative cutoff at
∼ 1 GeV and ΛQCD of hadronisation.
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Figure 3. The reduced diffractive cross section σD(Q2, β, xP ) in comparison with the H1 data [27]. The
model prediction uses dynamic colour screening with the parameters k⊥0 = 0.72 GeV and q⊥ = 0.58 GeV
and the Cascade event generator with CCFM evolution. P (k⊥min) for the fitted parameters is shown in
the upper-left corner. Diffractive events in the model are defined as having a remnant system Y with proton
quantum numbers and invariant mass MY < 1.6 GeV. Rows for different values of β are offset by a factor
3k as indicated on the figure.

The remnant system is in a Monte Carlo program treated by a non-perturbative model. For the
case that the perturbative interaction resolves a gluon, which is the class of events which potentially
leads to diffraction, the remnant is usually split into a (qq, q) pair with a certain sharing of momenta.
This splitting typically introduces a relative transverse momentum representing the Fermi motion in
the bound state proton which is given by a Gaussian distribution with a width ∼ ΛQCD. This relative
k⊥ affects the later hadronisation which introduces an uncertainty for the prediction of a forward
proton spectrum. In this work, we are interested in diffraction defined by a forward small-mass
system with proton quantum numbers or a large rapidity gap, which is insensitive to whether the
hadronisation model maps the small-mass forward remnant state to a proton state or a resonance.
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Figure 4. The distribution of the number of initial state radiation branchings in the CCFM evolution
at xP = 3 × 10−2, β = 0.017 and for different values of Q2. As the hard scale increases, there is more
phase space for initial state radiation available and we see more gluon branchings. As the number of gluon
branchings increases, a larger part of the full perturbative event and specifically its β-value is described
using CCFM evolution which leads to a more accurate differential cross section.

All plots of the diffractive cross section in this paper show the reduced cross section σr which is
related to the cross section via

dσ

dQ2 dβ dxP
= 4πα2

EM

βQ4

(
1− y + y2

2

)
σr(Q2, β, xP )

with y given as
y = Q2

x(s−m2
N) '

Q2

xs

with the negligible nucleon mass mN .

IV. RESULTS

A. Dynamic colour screening

Fig. 3 shows the diffractive cross section σDr,FWD obtained with dynamic colour screening and the
process γ∗g∗ → qq̄ from the Cascade event generator with CCFM evolution. Events are selected
according to the forward small-mass system prescription which requires a remnant system Y with
proton quantum numbers and invariant massMY < 1.6 GeV. The two parameters of the rescattering
model are fitted and we obtain k⊥0 = 0.72 GeV and q⊥ = 0.58 GeV. These values are physically
reasonable in the sense that both are between ΛQCD and Q0, and that the typical transverse size of
the proton background q⊥ is smaller than the minimal transverse scale k⊥0 of the partonic X system.

We note that there is an overall good agreement with experimental data over a very wide region of
the kinematical space. This agreement is remarkable because the model does not introduce specialised
diffractive parton distributions, but uses standard proton UGDFs as input and introduces only two
new physically motivated parameters.

Nevertheless, we note that some kinematic regions are not very well described. The deviations
from the data can be correlated with the kinematic region where β and Q2 are small, as well as xP
is large. This can be partly understood from the parton evolution. At small β, meaning large M2

X

compared to Q2, large logarithms of 1/β become important. On the other hand, at small Q2 scales,
the event is mainly described by the matrix element, whereas the shower activity is low, which leads
to a relative damping of the cross section with respect to the data. The effect of low radiative activity
is illustrated in Fig. 4 where we show the number of branchings in the evolution at a representative
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Figure 5. The reduced diffractive cross section σD(Q2, β, xP ) as in Fig. 3 but using the Lepto event
generator with DGLAP evolution. The parameters for the dynamic colour screening model obtained from
the fit against data [27] are k⊥0 = 0.89 GeV and q⊥ = 0.66 GeV.

value of β = 0.017 for different Q2. In the region of large xP , one could be sensitive as well to the
contribution from intermediate quarks which is not treated in the CCFM evolution.

We compare the result of the Cascade simulation with that of Lepto shown in Fig. 5. The
corresponding parameters obtained for the dynamic colour screening model are k⊥0 = 0.89 GeV and
q⊥ = 0.66 GeV. We note that the description is good in the inner region of the kinematic space. At
very small β though, the description is significantly worse than the corresponding result in Fig. 3,
which is the region where one expects large corrections from logarithms in 1/β. Still, we note that
the results from Lepto agree with data slightly better in the region of large xP , small Q2 and
intermediate β. This can be understood in terms of the different parton evolution methods because
a part of the cross section in this region is described in Lepto by the first order QED process with
parton evolution and incorporates the leading resummation of the quark line before it couples to the
virtual photon.
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Figure 6. As in Fig. 3 but with a constant probability of P = 0.103 fitted from this data. We observe that
especially at small β the resulting diffractive cross section has a significantly different slope with respect to
Q2 and the description of data is not as good as in the case of the dynamic rescattering model.

B. Colour screening probability

It is interesting to compare the dynamic colour screening model with the results from having a fixed
colour screening probability while keeping all other parameters equal. Fig. 6 shows the diffractive
cross section with P = 0.103, obtained by a fit to data. We note that the constant probability results
in a significantly worse description of the data. The overall normalisation as well as the shape of
σD(Q2, β, xP ) with respect to Q2 is better described by the dynamic screening model.

In the results from the dynamic model of Fig. 3, we have fitted the two parameters k⊥0 and q⊥
of the dynamic screening model to data. The parameters determine the overall normalisation and
essentially the position of the slope where the screening probability P (k⊥min) falls off to zero. On
the other hand, the general shape of this probability is given by the underlying model itself. It is
interesting though to investigate what form of P (k⊥min) would result in a good fit without assuming
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Figure 7. Dashed line: The fit of a free-form probability function P (k⊥min) constrained only by the
requirement to be in the physically sensible range [0, 1] and to be fairly smooth. Solid line: The probability
from the fit of the colour screening model as used in Fig. 3 (upper left corner). We note that both methods
result in very similar functions for P (k⊥min).
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Figure 8. The gluon density A0 from Cascade [22] integrated over k⊥ at the scales 1, 4 and 8 GeV for
the solid, dashed and dotted lines, respectively, is shown in the left panel. The gluon density A1 for the
same scales is shown in the right panel. The distribution starts out with a steeper slope at small scales and
influences the observable as shown in Fig. 9.

an underlying model. To this end, we fit a mapping k⊥min → P which is only constrained by the fact
that it should lie in the physically sensible range [0, 1] and that it should be reasonably smooth. The
result of such a fit is shown in Fig. 7. We observe that even though we did not place any particular
constraints on the functional form, both methods yield function with a very similar shape which
supports prediction by the dynamic screening model.

C. Dependence on the gluon density

The result in Fig. 3 is obtained using the unintegrated gluon density xA(x, k2
⊥, µ) illustrated in

Fig. 8 (left). This density starts out flat at a low scale µ which can be compared with the 1/xP
behavior of the pomeron flux in Regge-based models. The diffractive cross section in our model is
sensitive to the slope especially in the kinematic region where β is large. We can compare the main
result in Fig. 3 with the result obtained by using a parton density which has a stronger increase
towards small x already at low scales, shown in Fig. 8 (right). The corresponding σDr,FWD is shown
in Fig. 9. We note that especially the dependence of the cross section on Q2 is sensitive to the gluon
density xA(x, k2

⊥, µ) at small scales µ. By including diffractive data into the fit of a gluon density,
this dependence could be used to further constrain the shape of the gluon distribution at low scales.
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Figure 9. As in Fig. 3 but using a gluon density xA(x, k⊥, µ) that increases stronger towards low-x already
at the starting scale (A0 in [22]). Only the interesting subset of the kinematic plane is shown. By comparison
with Fig. 3 it is seen that σD(Q2, β, xP ) is at large β and large xP sensitive to the shape of the gluon density
at the starting scale.

D. Diffractive cross section with a large rapidity gap

The diffractive cross section σDLRG(Q2, β, xP ) as defined by the presence of a LRG in the event
depends additionally on the internal details of the system X. While the remnant is well forward
and separated from the LRG region in pseudorapidity, the final states of the X system can have a
momentum that points into the LRG even though the event was mediated by an effective colour-
singlet exchange. This observable is therefore not only sensitive to the overall β of the event, but
also to the kinematic distribution of the hard interaction and the parton showers. Fig. 10 shows
σDLRG(Q2, β, xP ) for a LRG in the range [4 . . . 6] in pseudorapidity. We note a quite good agreement
and similarity to Fig. 3.

We expect σDLRG(Q2, β, xP ) to be sensitive to higher order corrections. Especially the part of the
cross section close to the soft divergence 1/z contributes to the set of events which produce activity
in the LRG region and therefore cause a difference from the σDFWD(Q2, β, xP ) defined by the forward-
system definition. This is illustrated in Fig. 11 where the fraction of q and g with a momentum in
the LRG is shown. We note that the fraction of quarks in the LRG increases towards low Q2 which
can be understood from the correlation between Q2 and the transverse momentum. On the other
hand, the fraction of gluons in the LRG depends more strongly on xP and weaker on Q2. This can be
understood from the fact that gluons arise from the parton shower in contrast to the quarks which
are defined by the matrix element.

At the leading order of our computation, we note that the result is only mildly sensitive to the
cuts employed to regulate the 1/z divergence. Also, a comparison with massive matrix elements at
leading order suggests that typical quark masses lead effectively to the cuts on the energy sharing
variable z as used in our results. On the other hand, higher order corrections could significantly alter
the internal event structure, especially in the region of the phase space where it is likely to have a
large step z between x and xn. There, an additional final state gluon could modify the extension of
the X system in rapidity. An improved parton evolution based on CCFM with additional splittings
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Figure 10. As in Fig. 3 but showing σDr,LRG where the diffractive cross section is defined in terms of a large
rapidity gap between ηmin = 4.0 and ηmax = 6.0 in pseudorapidity.

g → qq and q → qg could therefore in principle improve the description further because the diffractive
process at a low scale could be described with a QED matrix element and low x resummed parton
evolution. Similarly, σDLRG(Q2, β, xP ) is also sensitive to the distribution of the transverse momenta
and energy splitting in the parton shower.

V. SUMMARY AND CONCLUSIONS

We have developed the probablity for dynamic colour screening in DIS in a way that can be used
in Monte Carlo event generators and applied it with Cascade and Lepto. The resulting model
predicts the diffractive DIS cross section based on perturbative QCD matrix elements and standard
inclusive parton densities in both collinear and k⊥-factorisation approaches. This facilitates practi-
cal applications of previously obtained theoretical derivations of the amplitude for colour screening

14



�����

����

����

����

����

����

����

����

����

�� ��� ���� �����

�������
��

��������

����

��������

��������

��������

��������

��������

�����

����

����

����

����

����

����

����

����

�� ��� ���� �����

�������
��

��������

����

��������

��������

��������

��������

��������

�����

����

����

����

����

����

����

����

����

�� ��� ���� �����

�������
��

��������

����

��������

��������

��������

��������

��������

�����

����

����

����

����

����

����

����

����

�� ��� ���� �����

�������
��

��������

����

��������

��������

��������

��������

��������

Figure 11. The fraction of events with a parton level quark with a pseudorapidity in the gap region is
shown in the two leftmost plots. The 0% level within the Q2 range available in the experimental data is
indicated by a horizontal thinner line for each row in β. The fraction of events with a gluon in the LRG
region is shown in the two rightmost plots.

through semi-soft multiple gluon exchanges calculated in the eikonal approximation to all orders in
perturbative QCD. The basic formalism gives a theoretical understanding why the phenomenologi-
cally soft colour interaction (SCI) model has been phenomenologically successful, but goes beyond
that model by leading to a colour screening probability that depends on the dynamics of the per-
turbative QCD parton dynamics. This dynamical screening probability exhibits a saturated shape
at small transverse momenta of the emerging parton system as well as colour transparency at large
transverse momentum.

The Monte Carlo model has only two, physically motivated parameters. Their values are obtained
by fitting the HERA diffractive cross section and found to be of the expected magnitude. The model
successfully describes the data over a large kinematic range, significantly better than with a constant
screening probability. Interestingly, a fit of a free-form probability function results in the same shape
as our model, and hence gives support for our account of the basic QCD dynamics of relevance.

In some kinematic regions there are two very different scales present, namely the invariant mass
of the diffractive system M2

X and the photon virtuality Q2. This calls for a resummation of large
logarithms logM2

X/Q
2, or equivalently log 1/β. To address this issue, we take the cross section in the

k⊥-factorisation approach from off-shell matrix elements and unintegrated gluon densities together
with the CCFM evolution which provides a resummation of leading logarithms in 1/x. We show
that this significantly improves the description of the diffractive HERA data at β � 1 corresponding
to M2

X � Q2. Nevertheless, there are residual deviations in the region where both β and Q2 are
at their lowest values. This may be attributed to the extreme region of very small z when the
quark propagator connected to the virtual photon have a significant phase space available for gluon
radiation, which is not accounted for; neither in the leading order matrix element for γ?g? → qq̄ nor
in the CCFM evolution that does not include the q → qg splitting. The DGLAP evolution does
include this and also shows a slightly better result in this case, but is still not sufficient since here
the effects of large log 1/x is not included.

To conclude and connect to the discussion in the Introduction, our study has shown that the phe-
nomenon of diffractive deep inelastic scattering can be described using a basic QCD-framework. The
hard subprocess is treated in the same way as for non-diffractive events but a colour screening process
occurs as a result of multiple gluon exchanges that are resummed to all orders. Significant deviations
from data occur in a special kinematic region, where potentially large logarithmic corrections are not
yet fully included in available evolution equations for gluon radiation. Still, the overall results show
that gluonic colour screening in QCD seems to be a viable approach to understand diffraction.
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