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1. Introduction: Chiral Perturbation Theory and unphysica l artefacts

Chiral Perturbation Theory (ChPT) [1, 2, 3] is the effectivefield theory for QCD when looking
at physics in the low-energy limit. Unphysical effects and artefacts as needed in lattice gauge theory
can be systematically included in this framework. Calculations in Lattice Gauge Theory can highly
benefit when ChPT-guided extrapolations are employed to keep these effects - such as unphysical
valence and/or sea quark masses, the finite lattice spacing,the finite lattice size and lattice artefacts,
due to the choice of action, under control.

The talk discusses progress for two of these effects inside the ChPT framework: the finite size
and the unphysical masses [4, 5]. To simplify the use for the lattice community, we provide fully
flexible and unrestricted access to our numerical programs via the CHIRON [6] program collection.
This can be downloaded from [7]. The analytical expressionscan be downloaded from [8].

It is inevitably the nature of any numerical lattice calculation that it is performed in a finite
volume. In order to perform a proper matching between a lattice QCD calculation and ChPT, good
control over the additional quantum corrections to physical quantities which emerge due to the
finiteness of the volume is required. Then, infinite volume ChPT can serve as a reliable validity
check for the lattice calculation, or low-energy constants(LECs) can be properly extracted from the
lattice result. Conceptually, in our work, a finite volume (FV) is introduced that restricts the size
of the Euclidean 3-dimensional space. The “time” dimensionis assumed to be infinitely extended.
This treatment clearly breaks Lorentz invariance. Dealingwith the effects of all of this in ChPT
at two-loop order is quite involved. We discuss first shortlyfinite volume loop integrals, Sect. 2,
then our results for standard ChPT in finite volume [4] in Sect. 3. The largest part is devoted to
the partially quenched case, Sect. 4. We present a few numerical results as well as the checks
performed. Finally, we point out the recent extension to QCD-like theories.

Introductions to ChPT can be found in the talks by Ecker [9] and Bernard [10] at this confer-
ence. A more extensive introduction aimed at lattice theorists is [11].

2. Finite volume integrals

Two different methods for the numerical evaluation of FV integrals have been suggested at
one-loop order [12, 13, 14, 15]. The integrals over momentumcomponents in finite size direction
are really discrete sums. Using the Poisson summation theorem the sum can be turned into a sum
over integrals again. The advantage of doing this is that theinfinite volume expression can easily
be removed from this. The separation of the infinite volume (IV) and FV part of an integral leaves a
sum of integrals as the structure to be calculated numerically. Depending on the preferred method,
either the summation or the integration can be eliminated. The actual evaluation routines then have
to solve only a summation over modified Bessel functions [12,13, 14] or a numerical integration
over Jacobi theta functions [15]. This is strictly true for the one-propagator cases, for two or more
propagators additional numerical integrations over Feynman parameters might be necessary. Note
that since the finite volume breaks Lorentz invariance extrastructures can appear in the integrals.

The extension of both methods to the general two-loop sunsetintegral can be found in [16].
Expressions for all the integrals needed in this work can be found there. They are also available in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: The Feynman diagrams needed for the mass calculation. A dot indicates a vertex of orderp2, a
filled box a vertex of orderp4 and an open box a vertex of orderp6.

the program package CHIRON [6, 7]. The precise definitions for the Minkowski versions we use
in our work discussed here can be found in [4, 5].

3. Finite volume for standard ChPT

The calculation at finite volume is very much like the calculations in infinite volume but one
has to keep in mind the extra terms and extra structures in theloop-integrals. The diagrams that
need to be evaluated are depicted in Fig. 1.

For numerical inputs we use

Fπ = 92.2 MeV, mπ = 134.9764 MeV,µ = 770 MeV, mK = 494.53 MeV,

mη = 547.30 MeV, l1 =−0.4, l2 = 4.3, l3 = 3.0 l = 4.3. (3.1)

For the three flavour LECs (Lr
i ) we use the values of the recent fit to continuum data [17].

The analytical result for the finite volume correction to thepion mass for the two flavour case
agrees with the one-loop result of [14] and as far as we were able to check with the two-loop result
of [18]. The infinite volume result agrees with [19, 20]. For the three flavour case we agree for all
masses with the infinite volume result [21] and the one-loop finite volume results [15].

Numerical results for the pion mass are shown in Fig. 2. We have variedL but kept all other in-
puts constant as given in (3.1). The two and three flavour results are numerically in good agreement
showing that as expected the kaon and eta effects are small.

The decay constants can be calculated in a similar fashion. We reproduced the known infinite
volume two-loop results as well as the one-loop results. We have a small disagreement with the
partial two-loop results in [22]. Numerical results for thepion decay constants are shown in Fig. 3.

Some examples using the same LECs as above but varying input kaon and pion masses with a
calculated consistent value forFπ andmη are shown in Fig. 4. The method of calculating consistent
values is explained in [4].
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Figure 2: The relative finite volume corrections to the pion mass squared with varyingL. The other inputs
are given in the main text. (a) Comparison of the two- and three-flavour results. (b) The three-flavour case
also showing theLr

i dependent part.
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Figure 3: The finite volume corrections to the pion decay constant as a function ofL. The other inputs can
be found in the text. Plotted is−(FV

π −Fπ)/Fπ . (a) Comparison of the two- and three-flavour results. (b)
The corrections for the three-flavour case showing theLr

i dependent part separately.

4. Finite volume results for partially quenched three flavour ChPT

4.1 Partial quenching

In the partially quenched case, we give different masses to the valence and sea quarks. Valence
quarks have flavour lines which connect to the external fields. Sea quarks, on the other hand,
appear only in closed loops. The distinction is crucial for comparison to partially quenched lattice
calculations. For the sea quarks, a (functional) fermion determinant appears in the generating
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Figure 4: The finite volume corrections to the pion decay constant for anumber of mass cases. Plotted is
the quantity−(FV

π −Fπ)/Fπ . (a) Physical case and(mπ ,mK) = (100,495) and(100,400) MeV. (b) mK =

495 MeV andmπ = 100,300,495 MeV. The sizeL is given in units of the physicalπ0 mass.

functional

Z =

∫

D[ψψ̄A]exp

(

−SG−
∫

[ψ̄ (D/ +m)ψ ]

)

=

∫

D[A]exp(−SG)det(D/ +m) (4.1)

when integrating over the anti-commuting fermionic Grassmann fields. Hence, the exponential
containing the gauge field actionSG is modified by a factor containing the fermion massm.1 The
(Monte-Carlo) evaluation of the determinant is computationally very expensive, it is much cheaper
to vary the valence quark mass only. Then, the produced gaugefield configurations do not need to
be changed in the lattice computation, but only the mass scale that is used to calculate the operator
expectation value.

An important issue for a partially quenched ChPT (PQChPT) calculation is the question how
to prevent quark fields in the valence sector from contributing according to equation (4.1) to the
determinant. One way is given by a construction, due to Morel[23], that involves bosonic spin-1/2
fields. By fixing the mass matrix ˜mof these “ghost” fields to the one used in the valence sector, the
unwanted contribution cancels exactly from the determinant as can be seen from

Z =
∫

D[ψψ̄ψ̃ ¯̃ψA]exp

(

−SG−
∫

[

ψ̄ (D/ +m)ψ + ¯̃ψ (D/ + m̃) ψ̃
]

)

=

∫

D[A]exp(−SG)
det(D/ +m)

det(D/ + m̃)
(4.2)

with ψ̃ denoting the bosonic Dirac field. This method, also called the supersymmetric formulation
of PQChPT, has the advantage that the partial quenching is completely performed by the construc-
tion of the Goldstone manifold and the Lagrangian. Given that, the Feynman-diagrammatic calcu-
lation then simply follows the ordinary rules of Field Theory. It should be noted though on the side

1The equations also hold for several fermions, arranged in a column vectorψ, and a mass matrixm.
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that this does not change the fact that the partially quenched theory is no longer a proper Quan-
tum Field Theory in the strict sense: The supersymmetric formulation allows rewriting partially
quenched theory in terms of a local Lagrangian for a statistical mechanical model - in violation of
the spin-statistics theorem.

The chiral group in the supersymmetric framework is formally extended to the graded

G= SU(nval+nsea|nval)L ×SU(nval+nsea|nval)R (4.3)

for the case ofnval valence andnseaquarks.G is then spontaneously broken to the diagonal sub-
groupSU(nval+nsea|nval)V . We have done our calculations in the flavour basis rather than in the
meson basis. We thus use fieldsφab corresponding to the flavour content ofqaq̄b. The mixing of
the neutral eigenstates and the integrating out of the singlet degree of freedom is taken care of by
using a more complicated propagator. It is possible to use the same method also in standard ChPT.

The corresponding Goldstone manifold is then parametrizedby fields with generic structure

Φ =



















[

qV q̄V

] [

qV q̄S

] [

qV q̄B

]

[

qSq̄V

] [

qSq̄S

] [

qSq̄B

]

[

qBq̄V

] [

qBq̄S

] [

qBq̄B

]



















(4.4)

whereV denotes valence,S denotes sea andB denotes the bosonic ghost quarks. Note that the
meson fields containing one single ghost quark only will themselves obey fermionic, i. e. anticom-
muting, statistics.

The structure of the Lagrangian is similar to standard ChPT for a generic number of flavours.
The lowest order Lagrangian is

L2 =
F2

0

4
〈uµuµ + χ+〉 . (4.5)

At one-loop, the terms relevant to our work are given by

L4 = L̂0〈uµuνuµuν〉+ L̂1〈uµuµ〉2+ L̂2〈uµuν〉〈uµuν〉+ L̂3〈(uµ uµ)
2〉

+L̂4〈uµ uµ〉〈χ+〉+ L̂5〈uµ uµ χ+〉+ L̂6〈χ+〉2+ L̂7〈χ−〉2+
L̂8

2
〈χ2

++ χ2
−〉+ . . . . (4.6)

The generalized Goldstone manifold is parametrized as

u≡ exp
(

iΦ/(
√

2F̂)
)

(4.7)

similar to the exponential representation in standard ChPT. For three physical flavours, it is a 9×9
matrix with fermionic parts. We have furthermore introduced

uµ = i
{

u†(∂µ − ir µ)u−u(∂µ − il µ)u†} ,

χ± = u†χ u†±uχ†u. (4.8)

The matrixχ is for this work restricted to

χ = 2B0diag(m1, . . . ,m9) (4.9)
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with mi the quark mass of quarki andB0 a LEC. We have herem1 = m7,m2 = m8,m3 = m9 as
the valence masses andm4,m5,m6 as the sea quark masses. Ordinary traces have been replaced by
supertraces, denoted by〈 〉, defined in terms of the ordinary ones by

Str

(

A B
C D

)

= TrA−TrD . (4.10)

B andC denote the fermionic blocks in the matrix. The supersingletΦ0, generalizing theη ′,
is integrated out to account for the axial anomaly as in standard ChPT, implying the additional
condition

〈Φ〉= Str(Φ) = 0. (4.11)

However, as mentioned above, we will work in the flavour basisenforcing the constraint (4.11) via
the propagator.

A calculation in PQChPT has to be performed using a larger setof operators since no further
reduction by means of Cayley-Hamilton relations can be performed. The three-flavour PQChPT
Lagrangian (equation (4.6)) thus has 11 LECs for PQChPT.

An additional comment is that the divergences for PQChPT aredirectly related to those for
nsea-flavour ChPT [24] when all traces are replaced by supertraces. This can be argued using the
formal equivalence of the equations of motion used or via thereplica trick [25].

This method was used in the pioneering work for actual calculations in partially quenched
ChPT [26]. More details can be found in [27, 28]. In those references you can also find a detailed
derivation of the double poles that appear in the propagators for neutral particles.

4.2 Quark flow

An alternative method to do (partially) quenched calculations in ChPT is to use the quark flow
method introduced in [29]. It basically consists of workingin the flavour basis and keeping all
flavour lines. The removal of the singlet degree of freedom isnow done via extra terms in the
neutral propagator. In the end one checks which flavour linesare connected to external fields or
operators and those are given the corresponding valence quark flavour. The remaining ones are
to be summed over the sea quark flavours. This was generalizedto the two-loop diagrams in our
calculation.

4.3 Results

The analytical calculations were performed using both methods, supersymmetric and quark
flow, with results in full agreement. We also reproduced the known infinite volume results [30, 31,
32] and the one-loop finite volume expressions [33, 34]. The expressions for the different mass
cases reduce to each other and to the unquenched case when taking the relevant mass limits.

For the LECs we use the results of theLr
i of the recent fit [17] and we set the additional LEC

Lr
0 = 0. The scale is set toµ = 0.77 GeV and the lattice sizeL we choose as thatML = 2 for

M = 0.13 GeV. For the lowest order pion decay constant we useF0 = 87.7 MeV. The lowest order
kaon mass we fix to 450 MeV.

As an example we plot the pion mass for a number of cases where we keep the lowest order
(valence) pion mass at 130 MeV but vary the sea quark masses toget a sea pion mass varying from

7
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Figure 5: The corrections for the pion mass relative to the lowest order mass as a function of the average
up and down sea quark mass viaχav. When isospin breaking is included the ration of up to down quark mass
is chosen to be 1/2. (a) The isospin limit in sea and valence, (b) Isospin breaking in the valence sector only.
(c) Isospin breaking in the sea sector only. (d) Isospin breaking in both sectors.

100 to 300 MeV. The sea strange quark is fixed at a mass slight above the valence sea mass. The
variation with the sea pion mass squaredχav is shown in Fig. 5. We show the cases for up-down
mass equal for both sea and valence, different for valence only, different for sea only and both
different. The cancellation between the up-down mass differences between sea and valence effects
is accidental. It does not happen for the decay constant. Thefour different cases are compared in
Fig. 6.

The same cases for the pion decay constant are shown in Fig. 7.The cancellation which
happened for the masses is not present here. Figures for a number of other cases can be found in
the paper.
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Figure 6: Comparing the finite volume correction for the meson masses for the cases with no isospin
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5. Update: QCD-like theories

The finite volume corrections for masses, decay constants and the quark-antiquark vacuum
expectation value in the effective field theory for QCD-liketheories have been recently calculated
as well. The extension to the partially quenched case was done in the same work [35]. This work
can be seen as an extension of our work in ChPT discussed aboveand of the unquenched infinite
volume results of [36].
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