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Abstract

We present a new framework for the modelling of hard diffraction in pp and pp
collisions. It starts from the the approach pioneered by Ingelman and Schlein,
wherein the single diffractive cross section is factorized into a Pomeron flux and
a Pomeron PDF. To this it adds a dynamically calculated rapidity gap survival
factor, derived from the modelling of multiparton interactions. This factor is not
relevant for diffraction in ep collisions, giving non-universality between HERA and
Tevatron diffractive event rates. The model has been implemented in Pythia 8
and provides a complete description of the hadronic state associated with any hard
single diffractive process. Comparisons with pp and pp data reveal improvement
in the description of single diffractive events.
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1 Introduction

The nature of diffractive excitation in hadron-hadron collisions remains a bit of a mystery. We
may motivate why it happens, e.g. based on the optical analogy that lies behind its name, or
in the related Good-Walker formalism [1]. But to explain how diffractive events are produced,
and with what properties, is a longer story. In a first step the single diffractive cross section
should be describable as a function of the diffractive mass M and the squared momentum transfer
t. In a second step the generic properties of a diffractive system of a given mass should be
explained: multiplicity distributions, rapidity and transverse momentum spectra and other event
characteristics. In a third step the existence and character of exclusive diffractive processes and
the underlying events associated therewith should be understood.

Over the years much data has accumulated, and many models have been presented, but so far
without any model that explains all aspects of the data, and without any consensus which models
are the most relevant ones. It is beyond the scope of the current article to review all the data and
models; for a selection of relevant textbooks and reviews see [2, 3, 4, 5, 6, 7, 8].

For the path we will follow in this article, Regge theory provides the basic mathematical frame-
work. In it, poles in the plane of complex spin α may be viewed as the manifestations of hadronic
resonances in the crossed channels. A linear trajectory of poles α(t) = α(0) + α′t corresponds
to a σtot ∼ sα(0)−1. Several trajectories appear to exist, but for high-energy applications the
most important is the Pomeron (P) one, which with its α(0) > 1 is deemed responsible for the
observed rise of the total cross section, and in modern terminology would correspond to a set of
glueball states. With single-Pomeron exchange as the starting point, higher orders involve multi-
ple Pomeron exchanges, and also interactions between the Pomerons being exchanged, driven by
a triple-Pomeron vertex. Out of this framework the cross section for various diffractive topologies
can be derived, differentially in mass and t, given a set of numbers that must be extracted from
data.

Such models do not address the structure of the diffractive system. The fireball models of older
times implied isotropic decay in the rest frame of the diffractive system, or possibly elongated along
the collision axis, but without internal structure. The Ingelman-Schlein (IS) model [9] made the
bold assumption that the exchanged Pomeron could be viewed as a hadronic state, and that
therefore a diffractive system could be described as a hadron-hadron collision at a reduced energy.
This implied the existence of Parton Distribution Functions (PDFs) for the Pomeron. Thereby
also hard processes became available, confirmed by the observation of jet production in diffractive
systems [10]. The PomPyt program [11] combined Pomeron fluxes and PDFs, largely determined
from HERA data, with the Pythia event generator of the time [12] to produce complete hadronic
final states, and PomWig [13] did similarly for Herwig [14].

One limitation of these models is that they are restricted to the exchange of one Pomeron per
hadron-hadron collision, not the multiple ones expected in Regge theory. Translated into a QCD-
based, more modern view of such collisions, Multiple Partonic Interactions (MPIs) occur between
the incoming hadrons [15]. That is, since hadrons are composite objects, there is the possibility
for several partons from a hadron to collide, predominantly by semisoft 2→ 2 QCD interactions.
These together create colour flows (strings [16]) criss-crossing the event, typically filling up the
whole rapidity range between the two beam particles with hadron production. Thereby a “basic”
process containing a rapidity gap can lose that by MPIs. (MPIs and soft colour exchanges could
also be sources of gaps [17, 18], a possibility we will not study further in this article, so as to keep
the discussion focussed.)

A spectacular example is Higgs production by gauge-boson fusion, W+W− → H0 and Z0Z0 →
H0, where the naive process should result in a large central gap only populated by the Higgs
decay products, since no colour exchange is involved. Including MPIs, this gap largely fills up
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[19], although a fraction of the events should contain no further MPIs [20], a fraction denoted as
the Rapidity Gap Survival Probability (RGSP). Such a picture has been given credence by the
observation of “factorization breaking” between HERA and the Tevatron: the Pomeron flux and
PDFs determined at HERA predicts about an order of magnitude more QCD jet production than
observed at the Tevatron, e.g. [21].

In this article the intention is to provide a dynamical description of such factorization breaking,
as a function of the hard process studied and its kinematics, and to predict the resulting event
structure for hard diffraction in hadronic collisions. This is done in three steps. Firstly, given a
hard process selected based on the inclusive PDFs, the fraction of a PDF that should be associated
with diffraction is calculated, as a convolution of the Pomeron flux and its PDFs. Secondly, the
full MPI framework of Pythia, including also the effects of initial- and final-state radiation, is
applied to find the fraction of events without any further MPIs. Those events that survive these
two steps define the diffractive event fraction, while the rest remain as regular nondiffractive
events. Thirdly, diffractive events may still have MPIs within the Pp subsystem, and therefore the
full hadron-hadron underlying-event generation machinery is repeated for this subsystem. The
nondiffractive events are kept as they are in this step.

One should not expect perfect agreement with data in this approach; there are too many un-
certainties that enter in the description. Neveretheless a qualitative description can be helpful, not
only to understand the trend of existing data, but also to pave the way for future studies. The new
framework we present here has been implemented as an integrated part of the Pythia 8.2 event
generator [22], and can be switched on for any standard hard process. It thereby complements
the already existing modelling of soft diffraction, i.e. of diffractive events with no discernible hard
process. The dividing line between these two descriptions is not sharp, and in the future we will
explore tensions between the two.

As should be clear from this introduction, our model is “just” a combination of the existing
IS and RGSP ideas, and thus not anything fundamentally new. The devil lies in the details,
however, and to the best of our knowledge nobody has previously worked out a complete model
of this character.

The article is structured as follows. In Section 2 we introduce the new model framework, which
then is validated in Section 3. Some tentative comparisons with data are presented in Section 4.
The article concludes with a summary and outlook in Section 5.

2 The model

In this article we study hard diffraction, so this means we assume the presence of some hard
process in the events of interest. Standard examples would be jet, Z0 and W± production. By
factorization a cross section involving partons i, j from incoming beams A,B can be written as

σ =
∑

i,j

∫∫
dx1 dx2 fi/A(x1, Q

2) fj/B(x2, Q
2) σ̂ij(ŝ = x1x2s,Q

2) , (1)

where σ̂ is the parton-level cross section, integrated over relevant further degrees of freedom, like
a p⊥ range for jets.

Assuming Pomerons to have some kind of existence inside the proton, in the Ingelman-Schlein
spirit, we introduce a Pomeron flux fP/p(xP, t), where xP is the P momentum fraction and t its
(spacelike) virtuality. The P has a partonic substructure, just like a hadron, and thus we can
define PDFs fi/P(x,Q2). The PDF could also depend on the t scale, just like the photon has a
PDF strongly dependent on its virtuality. For lack of a model for such a dependence we assume
the P PDF is a suitable average over the t range probed. As a consequence we will not need t for
most of the studies, and so it can be integrated out of the flux, fP/p(xP) =

∫
fP/p(xP, t) dt.
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Given the ansatz with Pomeron flux and PDF, the PDF of a proton can be split into one
regular nondiffractive (ND) and one P-induced diffractive (D) part,

fi/p(x,Q2) = fND
i/p (x,Q2) + fDi/p(x,Q2) , (2)

where

fDi/p(x,Q2) =

∫ 1

0
dxP fP/p(xP)

∫ 1

0
dx′ fi/P(x′, Q2) δ(x− xPx′)

=

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x

xP
, Q2

)
. (3)

The assumption that the diffractive part fDi/p(x,Q2;xP, t) of the full PDF can be decomposed in

this way is in approximate agreement with the HERA data [23].
For two incoming protons (or antiprotons, or other hadrons) A and B, an initial probability

for diffraction PD ≈ PD
A + PD

B is obtained from the ratio of diffractive to inclusive PDFs,

PD
A =

fDi/B(xB, Q
2)

fi/B(xB, Q2)
for AB → XB ,

PD
B =

fDi/A(xA, Q
2)

fi/A(xA, Q2)
for AB → AX , (4)

where PD
A/B is the probability for side A/B to be the diffractive system, thus being dependent on

the variables of the opposite side.
This probability is used to determine, on an event-by-event basis, the nature of the selected

hard scattering, whether diffractive or not. Currently we concentrate on single diffraction. A
natural extension would be to associate the product PD

APD
B with central diffraction (CD), where

two Pomerons collide and one parton is extracted from each P. It would also be possible to extend
the formalism such that part of the SD rate is reassigned as double diffraction (DD), where the
hard collision happens inside one of the two diffractive systems. Neither CD nor DD are considered
in this first study, however. Instead, for the fraction PD

APD
B of events, which normally is small

anyway, a random choice is made between AB → AX and AB → XB.
The key aspect of the model is now that it contains a dynamical gap survival. This means that

we do not allow any further MPIs to occur between the two incoming hadrons, so as to ensure
that the gap survives. In practise the tentative classification as diffractive, based on eq. (4),
initially has no consequences: all events are handled as if they were nondiffractive hadron-hadron
collisions.

Only if no additional MPIs occur does a diffractive classification survive and only then is the
Pp subsystem set up. Specifically the xP value is selected according to the distribution implied
by eq. (4), and also a t value is selected for the outgoing proton. Technically, it is only at this
stage that “pure” samples of diffractive events can be selected, should one wish to single out such
events.

Once the Pp system has been set up, it is allowed to develop a partonic structure just like
any hadron-hadron collision. Both initial-state radiation (ISR) and final-state radiation (FSR)
thereby dress the original hard process by the emission of further softer partons. Also further
MPIs inside this system are allowed, based on the fi/P(x,Q2) PDFs, successively modified to take
into account the momentum and flavours already carried away by the MPI, ISR and FSR activity
at p⊥ scales above the currently considerd one, just like for nondiffractive systems.

The ISR/FSR/MPI description is based on the perturbative parton picture. Nonperturbative
aspects have to be added to this. Beam remnants carry the momentum not kicked out of the
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incoming P and p. For the former a fictitious “valence quark” content of either dd or uu is chosen
at random for each new event. It is essentially equivalent to having a gluon as remnant, but is
slightly more convenient. All outgoing partons are colour-connected by colour flux lines - strings -
that fragment to produce the primary hadrons of the final state. The colour flow in an event is not
unambiguously determined, however, and data suggest that colours tend to be more correlated
than naively comes out of the perturbative picture, a phenomenon known as Colour Reconnection
(CR).

We can by combining these two simple ideas give an explanation of the discrepancies between
Tevatron and HERA. The dynamical gap survival introduces an additional suppression factor,
reducing the number of diffractive events without any additional parameters.

2.1 Pomeron fluxes and PDFs

For numerical studies it is necessary to specify Pomeron flux and PDF parametrizations. There
are currently seven parametrizations/models for the former and five for the latter available in
Pythia.

The parametrizations for the Pomeron flux fP/p(xP, t) are

• Schuler-Sjöstrand model (SaS) [24],

• the Bruni-Ingelman model [25],

• the Streng-Berger model [26],

• the Donnachie-Landshoff model [27],

• the Minimum Bias Rockefeller model (MBR) [28] with an option to renormalize the flux,
and

• the H1 models Fit A and B [29, 30].

All have to obey an approximate form fP/p(xP) ∼ 1/xP in order to obtain an approximate diffrac-
tive mass spectrum ∼ dM2

X/M
2
X , as required by Regge theory and by data. Just like the rise of

the total cross section requires a supercritical Pomeron α(0) = 1 + ε > 1, with ε ≈ 0.08, several
of the fluxes have adapted this steeper slope fP/p(xP) ∼ 1/x1+2ε

P (where the factor of 2 in front of
ε comes from the optical theorem). There are also some attempts to account for an excess in the
low-mass resonance region. The t dependence is typically parametrized as a single exponential
fP/p(xP, t) ∼ exp(BSDt), but also as a sum of two exponentials, or as a (power-like) dipole form
factor. The MBR model differs from the others, since the model renormalizes the flux to unity.
This renormalization suppresses the flux, thus making the dynamical gap survival obsolete. In
order to make direct comparisons to the other available flux-models, we have implemented the
renormalization as an option with the default being the non-renormalized flux.

The parametrizations for the Pomeron PDFs fi/P(x,Q2) are

• PomFix, a simple (toy) Q2-independent parametrization,

• the H1 Fit A and B NLO PDFs [29],

• the H1 Jets NLO PDF [31], and

• the H1 Fit B LO PDF [29].

The first of these has a momentum sum of unity, whereas the latter four are not normalized to
any specific value, the argument used being that the Pomeron is not a real particle and so does
not obey that kind of constraints [32, 33]. (Technically H1 chose to normalize the P flux to unity
at xP = 0.003, and then let the PDF normalization float.) Pragmatically it could be argued that
what is measured is the convolution of the P flux and the P PDF, so that is is feasible to shuffle
any constant number between the two. Unfortunately this makes it less trivial to mix freely, and
makes it almost a necessity to combine H1 PDFs with H1 fluxes.

This is not the end of the story from an event-generator point of view, however. In the H1
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parametrizations the momentum sums to approximately 0.5, but this does not mean that half of
the P momentum in the Pp collision can just be thought away. At the very least this other half has
to be considered as an inert component that sails through without interacting, but is present in
the beam remnant. A further complication arises when MPIs are introduced. Normally these are
generated in a sequence of decreasing p⊥, with the PDFs for an MPI adjusted to take into account
the momentum and flavours carried away by the preceding MPIs. So if 0.4 of the P momentum
has already been taken, does it mean that 0.1 or 0.6 of it remains? This is an issue that did
not exist at HERA, where MPIs are negligible outside of the photoproduction region. The choice
made in Pythia is to assume that the full P momentum is available for MPIs. Furthermore we
allow the option to rescale the H1 PDFs by a constant factor so as to change the momentum,
notably by a factor of two to restore (approximately) the momentum sum rule. This should then
be compensated by a corresponding rescaling of the P flux in the opposite direction. That way
the P can be brought closer to an ordinary hadron, and more P fluxes can be used.

Another problem is that most PDF fits are NLO ones. Given the sparsity of data, it should
be clear that “NLO accuracy” does not mean the same thing as it does for the inclusive proton
PDF. Since Pythia only contains LO matrix elements (MEs) for QCD processes there is no extra
bonus for using NLO PDFs. Worse, it is well known that the gluon PDF (of the proton) is much
smaller in NLO than in LO for small x and Q2; in principle it can even become negative. This
behaviour compensates for the NLO MEs being larger than the LO ones in this region, but the
compensation is nontrivial. Therefore an all-LO description, for all its weaknesses, is more robust
in the small-p⊥ region, which is where the MPI machinery largely operates. The default choice
thus is H1 Fit B LO.

Finally also the inclusive proton PDF fi/p(x,Q2) should be chosen. Here several options come
with Pythia, and many more can be obtained via the interfaces to LHAPDF5 and LHAPDF6
[34, 35]. The current default set is the NNPDF 2.3 QCD+QED LO one with αs(MZ) = 0.130
[36]. The argument for using LO has already been outlined above. Since the proton PDF is much
better constrained than that of the P, there is less of a point in varying it between different options
consistent with current p data. Note that, for diffractive events, the dependence on the original
choice of proton PDF is largely removed on the P side by applying eq. (4). It does remain on the
proton side, and in the dynamical calculation of rapidity gap survival, however.

2.2 MPI phenomenology

The QCD 2→ 2 processes are dominated by t-channel gluon exchange, which gives a perturbative
cross section dσ̂/dp2⊥ ∼ α2

s (p
2
⊥)/p4⊥ that diverges in the p⊥ → 0 limit. Two modifications are

needed to make sense out of this divergence.
Firstly a divergent integrated QCD cross section should not necessarily be construed as a

divergent total pp cross section. Rather a µ = σtot2→2/σ
tot
pp > 1 for p⊥ > p⊥min should be interpreted

as implying an average of µ such partonic interactions per pp collision. Overall energy-momentum
conservation will reduce the naively calculated rate, but would still kick out essentially all beam
momentum if we allow p⊥min → 0, in contradiction with the presence of well-defined beam jets
wherein a single particle can carry an appreciable fraction of the incoming beam momentum.

Secondly, therefore, it is important to note the presence of a screening mechanism: whereas
standard perturbation theory is based on asymptotically free incoming states, reality is that
partons are confined inside colour singlet states. This introduces a nonperturbative scale of the
size of a hadron, or rather of the average distance d between two opposite-colour charges. In this
spirit we introduce a free parameter p⊥0 ∼ 1/d that is used to dampen the cross section

dσ

dp2⊥
∝ α2

s (p
2
⊥)

p4⊥
−→ α2

s (p
2
⊥0 + p2⊥)

(p2⊥0 + p2⊥)2
. (5)
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Technically the dampening is implemented as an extra factor multiplying the standard QCD 2→ 2
cross sections, but could equally well have been associated with a dampening of the PDFs; it is
only the product of these that enters in measurable quantities.

Empirically, a p⊥0 scale of 2 – 3 GeV is required to describe data. This scale is larger than
expected from the proton size alone, and is also in a regime where normally one would expect
perturbation theory to be valid. The p⊥0 scale appears to increase slowly with energy, which is
consistent with the growth of the number of gluons at smaller x values, leading to a closer-packing
of partons and thereby a reduced screening distance d. A similar parametrization is chosen as for
the rise of total cross section

p⊥0(ECM) = pref⊥0 ×
(
ECM

Eref
CM

)Epow
CM

, (6)

with Epow
CM and pref⊥0 being tunable parameters and Eref

CM a reference energy scale.
With the protons being extended objects, the amount of overlap between two incoming ones

strongly depends on the impact parameter b. A small b will allow for many parton-parton collisions,
i.e. a high level of MPI activity, and a close-to-unity probability for the incoming protons to
interact. A large b, on the other hand, gives less average activity and a higher likelihood that
the protons pass by each other unaffected. Diffractive events predominantly occur in peripheral
collisions, a concept well-known already from the optical point of view. In our approach it comes
out naturally since we only allow one interaction to occur, namely the hard process of interest; if
there is a second one this will fill the rapidity gap and kill the diffractive nature.

The shape of the proton and the resulting overlap – the convolution of the two incoming proton
distributions – is not known in any detail. The proton electric charge distribution may give some
hints, but measures quarks only and not gluons, and is in the static limit. Instead a few different
simple parametrizations can be chosen:

• a simple Gaussian, offering no free parameters,

• a double Gaussian, i.e. a sum of two Gaussians with different radii and proton momentum
fractions, and

• an overlap of the form exp(−bp) (which does not correspond to a simple shape for the
individual proton), with p a free parameter.

(A further option is a Gaussian with an x-dependent width, but this has not been implemented in
a diffractive context.) All are normalized to unit momentum sum for the incoming partons, and
an overall radius normalization factor is fixed by the total cross section.

The more uneven the matter distribution, the broader will the charged multiplicity distribu-
tion be. Notably the higher the overlap for central collisions, the higher the tail to very large
multiplicities. Also other measures, like forward-backward correlations, probe the distribution.
Unfortunately it is always indirectly, and closely correlated with other model details. As an ex-
ample we can mention that the earliest tunes worked with a much lower p⊥0 than today and
with double Gaussians rather far away from the single-Gaussian behaviour. This changed when
more modern PDFs started to assume a steeper rise of the gluon PDF at small x, and when the
Pythia parton showers were extended to apply to all MPIs rather than only the hardest one,
and for some other improvements over the years. Currently best fits are not very far away from a
simple Gaussian, e.g. with an overlap like exp(−b1.85), but still on the side of more peaked than
a Gaussian.

An event that contains a high-p⊥ interaction is likely to be more central than one that does
not, since the former has more MPIs and therefore more chances that the hardest of these reaches
a high p⊥. This bias effect is included in the choice of a b for an event where the hardest interaction
has been given, and is used in the subsequent generation of MPIs. For the current study of hard
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diffraction this means that the hard process is initially picked biased towards smaller b values, but
afterwards the central b region is strongly suppressed because the likelihood of several MPIs is so
big there.

Starting from a hard interaction scale, and a selected b, the probability for an MPI at a lower
scale has the characteristic form

dP
dp2⊥

= O(b)
1

σref

dσQCD

dp2⊥
. (7)

Here O(b) is the overlap enhancement/depletion factor, dσQCD the differential cross section for all
2 → 2 QCD processes, and σref the total cross section for the event classes affected by the QCD
processes. Historically σref has been equated with the nondiffractive cross section in Pythia, on
the assumption that diffraction only corresponds to a negligible fraction of dσQCD. Within the
current framework a reformulation to use the full inelastic cross section would make sense, but
would require further work and retuning, and is therefore left aside for now.

Given eq. (7) as a starting point, MPIs can be generated in a falling p⊥ sequence, using
a Sudakov-style formalism akin to what is used in parton showers. Actually, in the complete
generation the MPI, ISR and FSR activity is interleaved into one common p⊥-ordered chain of
interactions and branchings, with one common “Sudakov form factor”, down to the respective
cutoff scales.

In the current case, the MPI formalism is used twice. Firstly, to determine whether an event
is diffractive, and if not to generate the complete nondiffractive event. Secondly, for diffractive
events, to determine the amount of MPI activity within the Pp system. Here eq. (7) can be reused,
but with new meaning for the components of the equation.

• The dσQCD/dp⊥ is now evaluated using the P PDF on one side, but with the same damping
as in eq. (5), where ECM in eq. (6) is now the Pp invariant mass. If the P is supposed to
have a smaller size than the proton then this could be an argument for a higher p⊥0 in this
situation, but we have not here pursued this.

• The σref now represents the Pp total cross section, an unknown quantity that relates to the
normalizations of the P flux and P PDF. By default is is chosen to have a fixed value of
10 mb, higher than is normally quoted in literature. This way, with other quantities at their
default settings, the charged multiplicity of a Pp collision agrees reasonably well with that of
a nondiffractive pp one at the same invariant mass. This may not be the best of arguments,
but is a reasonable first choice that is experimentally testable, at least in principle.

• The O(b) factor may be changed, see next.

The impact parameter bPp of the Pp subcollision does not have to agree with the bpp of the
whole pp collision. It introduces the transverse matter profile of the Pomeron, even less known
than that of the proton. Generally a Pomeron is supposed to be a smaller object in a localized
part of the proton, but one should keep an open mind. For lack of better, three possibilities have
been implemented, which can be compared to gauge the impact of this uncertainty.

• bPp = bpp. This implicitly assumes that a Pomeron is as big as a proton and centered in the
same place. Since small bpp values already have been suppressed, by the MPI selection step,
it implies that few events will have high enhancement factors.

• bPp =
√
bpp (where normalization is such that 〈b〉 = 1 for minimum-bias events). This can

crudely be motivated as follows. In the limit that the P is very tiny, such that the proton
matter profile varies slowly over the width of the P, then what matters is where the Pomeron
strikes the other proton. Thus the variation of O(b) with b is that of one proton, not two,
and so the square root of the normal variation, loosely speaking. Technically this is messy to
implement, but the current simple recipe provides the main effect of reducing the variation,
bringing all b values closer to the average.
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• Pick a completely new bPp, as was done with bpp in the first place. This allows a broad
spread from central to peripheral values, and thereby also a larger and more varying MPI
activity inside the diffractive system than the other two options, and thereby offers a useful
contrast.

3 Validation

In this section we summarise some of the tests and sanity checks we have performed on the model
implementation. This provide insight into how the model operates and with what general results,
but also highlights the uncertain nature of many of the components of the model.

In the model we have two options for when an event is classified as diffractive: either right
after the event has passed the PDF selection criterion, eq. (4), or after passing the further MPI
criterion. Results using only the former will from now on be denoted “PDF selected”, and with
the latter in addition “MPI selected”. Our full model for hard diffraction corresponds to the
latter, but the intermediate level is helpful in separating the effects of these two rather different
physics components.

Notably, many distributions tend to be mainly determined by one of the two criteria. Those
mainly sensitive to the PDF selection include the xP and thereby the mass of the diffractive
system, and the squared momentum transfer t of the process and thereby the scattering angle θ of
the outgoing proton. In particular we will explore the dependence on Pomeron fluxes and PDFs.
Aspects that depend on the details of the MPI model include several particle distributions, such
as multiplicities, and that will also be highlighted.

The key number where both components are comparably important is the overall diffractive
rate, where each of them gives an order-of-magnitude suppression, resulting in a ∼1% fraction
of hard events being of a diffractive nature. This number thereby receives a considerable overall
uncertainty.

3.1 The Pomeron flux and PDF

We begin by studying the effects of variations of the P parametrizations. In Figs. 1a and 1b
the seven different Pomeron fluxes are compared. As can be seen there is a considerable spread.
Even in the region of medium xP values, xP ∼ 0.1, this corresponds to more than a factor of two
between the extremes. The dramatic differences at large xP are not readily visible, since a large-xP
event usually corresponds to a small rapidity gap and therefore is difficult to discern from non-
diffractive events. The limit of small xP generally is more interesting, tying in with the intercept
of the Pomeron trajectory, but plays a lesser role for the current study of hard diffraction.

Turning to the Pomeron PDFs, a detailed comparison would entail the separate quark and
gluon distributions at varying Q2 scales. To simplify we show the QCD-charge-weighted sum

FP(x,Q2) =
4

9

∑

i=q,q

xfi/P(x,Q2) + xgP(x,Q2) (8)

at a single value Q2 = 100 GeV2, Figs. 1c and 1d. We notice that they all tend to be significantly
harder than the corresponding proton PDF, here represented by the NNPDF 2.3 QCD+QED LO
one. (The PomFix option is just a toy one, shown for completeness, but not used in the following.)
For the gluon on its own, the P is significantly harder than the p, consistent with the idealized
picture of a P as a glueball state with two “valence gluons”, Figs. 2a and 2b. Surprisingly, also the
quark PDFs of the P (Figs. 2c and 2d) are harder than proton ones, suggesting the presence of
“valence quarks” in the P, although an order of magnitude below the gluons. Another observation
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Figure 1: The seven different Pomeron fluxes included in Pythia on linear (a) and logarithmic
scale (b). Note that the MBR flux has not been renormalized (see [28]). The QCD charge-weighted
sum, eq. (8), of the five different Pomeron PDFs compared to the NNPDF 2.3 proton PDF on
linear (c) and logarithmic scale (d).

is that the P PDF sets we compare are all based on H1 analyses, with largely the same data and
with correlated assumptions for the definition of diffractive events. This is especially notable in
the quark distributions, which are close to identical. Also the close affinity of gluons at lower x
values should not be overstressed. Finally, note that the H1 parametrizations only apply down
to x = 10−3, and are frozen below that. This is likely to underestimate the low-x rise of PDFs,
which as well could have been of the same shape as in the proton.

In the end, what matters is the convolution of the P flux with its PDFs, and that is shown in
Fig. 3. There would be too many combinations possible to show individually, so we only indicate
the range of possibilities and a few specific combinations. This may be on the extreme side, since
some fluxes and PDFs come as fixed pairs, not really intended to be mixed freely. The key feature
to note is that in this convolution the Pomeron part is now falling steeper at large x than the
proton as a whole. This has the immediate consequence that diffractive hard subcollisions are not
necessarily going to be produced more in the forwards direction than the bulk of corresponding
nondiffractive ones, but on the contrary may be more central. The difference is not all that
dramatic, however. It is also partly compensated by a somewhat slower increase of the P towards
lower x values, a feature that derives from the artificial freezing of the P PDF below x = 10−3.
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Figure 2: The P gluon distribution on linear (a) and logarithmic (b) scale. The P quark and
antiquark distributions on linear (c) and logarithmic (d) scale. Both compared to the NNPDF 2.3
proton PDF distributions. Note that for the P we have d = u = s = d = u = s(= c = c), where
the c, c are only included in H1Jets.
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Figure 3: The convolution of Pomeron fluxes and PDFs for a few cases, with the range between
the extremes marked in yellow; (a) linear and (b) logarithmic x scale.
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Diffractive fractions
pp collisions at

√
s = 8 TeV

P PDF
P flux

PDF selection MPI selection

H1 Fit B LO
SaS (14.33 ± 0.11) % (0.98 ± 0.03) %

H1 Fit B LO
MBR (14.79 ± 0.11) % (0.96 ± 0.03) %

H1 Jets
SaS (13.70 ± 0.11) % (0.92 ± 0.03) %

H1 Fit A NLO
H1 Fit A (20.55 ± 0.13) % (1.35 ± 0.04) %

H1 Fit B LO
H1 Fit A (18.49 ± 0.12) % (1.32 ± 0.04) %

Table 1: Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV obtained with
Pythia 8. The samples have been produced without any phase-space cuts.

The lack of major shape differences between the P part and the rest will be visible in the more
detailed studies later on.

Because of the close similarity of the different (but related) P PDFs at low-to-medium x, the
bulk of the differences come from the P fluxes. We have chosen to exemplify this for 2→ 2 QCD
processes with p⊥ > 20 GeV in

√
s = 8 TeV pp collisions, with the diffractive fractions for a few

combinations shown in Table 1.
Note that changing the Pomeron parametrizations changes the fraction of events passing the

PDF selection, but that the suppression factor introduced by the dynamical gap survival is about
∼ 0.07 for all combinations in Table 1. This reflects the fact that neither the MPI model nor the
proton PDF are influenced by the Pomeron parametrization, hence the probability for obtaining
no additional MPIs in the pp system should not change. (This does not have to hold in general,
but here we compare very similar distributions of x and p⊥ values of the hard interaction, and then
also the MPI effects are closely the same.) Differential distributions of the diffractive events are
affected, since the kinematics of the Pp system is set up using the Pomeron flux parametrizations.
A subset of these distributions is shown in Fig. 4, for the some of the same combinations as in
Table 1. As expected, P PDF variations do not have a large impact on the shapes (cf. Fig. 4),
while the P flux gives rise to large effects in xP, hence on the broadening of the mass spectrum
and on the tails of the t and θ distributions. In view of these observations, we do not expect to be
able to discrimate between the available Pomeron PDFs when comparing to data. Thus we will
leave out this variation from now on, and focus on variations in the Pomeron flux.

The diffractive event fraction is not process-independent. One reason is that processes may
be dominated by different initial states, another that different x and Q2 scales are probed. In
Table 2 we show the fraction of events passing either selection for various hard processes available
in Pythia 8 using the SaS flux and the H1 Fit B LO PDF. Firstly we note that a smaller fraction
of events pass the PDF selection than in Table 1, owing to the larger x needed to produce these
particles, cf. Fig. 1. This is why top, being the heaviest, has the smallest diffractive fraction.
In addition there is a notable difference between the gluon-dominated Higgs production and the
quark-induced production of W±/γ∗/Z0, owing to the hard gluon PDF in the P. If top production
is considered separately for qq → tt and gg → tt, the PDF survival rate is (9.74 ± 0.09)% and
(10.55 ± 0.10)%, respectively, displaying the difference between the two production channels.
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Figure 4: Some kinematics distributions obtained with variations of the Pomeron parametriza-
tions: (a) xP, (b) MX , (c) t and (d) θ.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection

qq→W± (11.16 ± 0.10) % (0.70 ± 0.03) %
qq→ γ∗/Z0 (10.69 ± 0.10) % (0.76 ± 0.03) %

Single top and top pair production ( 8.51 ± 0.09) % (0.62 ± 0.02) %
SM Higgs production (12.37 ± 0.10) % (0.86 ± 0.03) %

Table 2: Diffractive fractions obtained with Pythia without any phasespace cuts at
√
s = 8 TeV

for various hard processes. Pythia is run with the SaS flux and the H1 Fit B LO PDF.
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Figure 5: The rapidity of the W-boson produced in qq→W± at
√
s = 8 TeV.

In Fig. 5 we show the rapidity of the W-boson produced in the process qq → W± at an 8
TeV pp collision, comparing three samples; nondiffractive, PDF selected and MPI selected. It
is observed that the diffractive W’s are slighly more central than the nondiffractive in the CM
frame, as expected from Fig. 3. The differences are small, however, being on the order of (5-10)%,
and might reduce when phase-space cuts are introduced. We will study this process further in
Sec. 4.1.

3.2 The dynamical gap survival and MPI models

In the above section we studied how the parametrization of the Pomeron flux and PDF affected
the diffractive fractions and distributions, and notably by the choice of P flux. By contrast, we saw
that the survival fraction in the MPI selection step was not significantly affected by these choices.
A dependence does enter both via the x and the p⊥ distributions of a process: larger x scales
leaves less energy for MPIs and thereby gives a higher MPI survival probability, whereas larger p⊥
values gives a longer MPI evolution range and thereby a lower MPI survival. Such effects are not
too prominent, however, and tend to be overshadowed by the sensitivity to the parameters of the
MPI model. These enter twice. Firstly, for the MPI selection, since the dynamical gap survival
is tied to the number of MPIs in the pp system. Secondly, for the properties of the diffractive
system, where the number of MPIs affects e.g. charged multiplicities.

The probability for obtaining MPIs is given by eq. (7), and hence depends on both the overlap
function and the regulator pref⊥0. The related parameters are primarily tuned to minimum bias
and underlying event data, e.g. charged particle pseudorapidity dn/dη, multiplicity P (n) and
transverse momenta dn/dp⊥ and 〈p⊥〉(nch) spectra of charged particles. This means that a change
of MPI parameters for the diffractive studies would spoil agreement with nondiffractive data.
Nevertheless, it is interesting to study how the survival rate changes with these parameters for
the pp collision itself.

The MPI modelling of the Pp collision can be decoupled from that of the pp one. Then the
MPI survival rate would not be affected by changes, but only the particle distributions in the
diffractive system. One inevitable free parameter is the effective Pp total cross section. It is
currently set always to be 10 mb, but could be made to depend on the mass of the diffractive
system. Also the relative normalization of P flux and PDFs can influence the event activity. We
will study the normalization dependence in the last part of this section.

To begin with, consider the impact-parameter picture associated with hard collisions in our
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Figure 6: Impact-parameter distribution of 2 → 2 QCD processes with p⊥ > 20 GeV in
√
s = 8

TeV pp collisions. (a) The change during the selection steps. (b) The dependence on pref⊥0. (c)
The distribution in the Pp subcollision. (d) The dependence on impact-parameter profile.

model, Fig. 6a. The b scale is normalized such that 〈b〉 = 1 for inclusive minimum-bias events.
Events with a hard interaction tend to be more central than that, since central events have more
MPIs in general and thereby a bigger likelihood that at least one of them is at large p⊥. The
PDF selection step does not have a significant impact, but the MPI one kills most low-b events
and pushes 〈b〉 above unity. The reason is obvious: for central events the average number of MPIs
is high, and thus the likelihood of only having the trigger hard process and no further MPIs is
small, while more peripheral collisions give fewer MPIs and thereby a higher surviving fraction.
Ultimately, when 〈nMPI(b)〉 � 1, most protons pass by each other without colliding at all. Thus
the interesting region for diffraction is where 〈nMPI(b)〉 ∼ 1.

The pref⊥0 regulator is by default 2.28 GeV. Since an increase in this parameter gives less MPI
in the pp system, we expect an increase in the diffractive fractions, and vice versa. Table 3
confirms that this is indeed the case: variations of ±0.5 GeV around the default pref⊥0 value gives
about a factor of two in the MPI selection rate. This major pref⊥0 dependence holds also for many
other nondiffractive event properties, however; keeping everything else fixed even a variation of
±0.1 GeV would be unacceptable. In Fig. 7 we show the charged multiplicity distribution, when we
change the regulator pref⊥0 for both diffractive and nondiffractive events, with minor/major effects
for the former/latter. The stability in the diffractive case is because a change in the regulator also
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Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection

p⊥0 = 1.78 (14.50 ± 0.11) % (0.39 ± 0.02) %
p⊥0 = 2.28 (14.33 ± 0.11) % (0.98 ± 0.03) %
p⊥0 = 2.78 (14.19 ± 0.11) % (2.00 ± 0.04) %

Table 3: Diffractive fractions for the 2→ 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp

collisions. Pythia is run with the SaS flux and the H1 Fit B LO PDF.
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Figure 7: Charged multiplicity distributions in the (a) Pp subsystem for diffractive events, (b) pp
system for nondiffractive events, in 2→ 2 QCD processes with p⊥ > 20 GeV as before.

affects the impact parameter picture. Specifically, in this case bPp = bpp has been assumed. A
lower value of the regulator, giving rise to a larger number of MPIs in the pp system, pushes 〈bpp〉
to larger values for those events that survive the diffractive MPI criterion, Fig. 6b. More precisely,
the change is to b values where the average pp MPI activity is restored to its original level. With
bPp = bpp the same then holds when MPI activity is generated in the diffractive system, such that
the effects of a smaller regulator and a larger impact parameter almost completely cancel.

As we have already discussed, the modelling of the P size could also affect the MPI machinery
for the Pp subcollision via the impact parameter bPp. The currently implemented three alternatives
are compared in Fig. 6c. The maybe less realistic last option of picking a new bPp value at random
implies a significant fraction of events with small bPp and thereby the possibility of many MPIs.
The average 〈nMPI〉 for the three options is 1.66, 2.04 and 4.09, respectively, thus giving rise to
0.66, 1.04 and 3.09 additional MPIs besides the hardest process. This is reflected notably in the
charged multiplicity distribution, Fig. 8a.

The MPI survival rate is highly dependent on the proton matter profile, Table 4 and Fig. 6d.
Diffraction thrives when 〈nMPI(b)〉 ∼ 1, so this b region should be as broad as possible for a large
diffractive rate. Conversely, a sharp proton edge implies less diffraction. The default overlap
function exp(−b1.85) is close to a Gaussian, and the two have about the same MPI selection rate.
The double Gaussian and the exponential overlap are examples of broader distributions, thus with
more diffraction, whereas the option without any b dependence represents the other extreme (not
shown in Fig. 6d), with less diffraction. Overall the variation is not so dramatic, however, if only
experimentally acceptable variations are considered.
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Figure 8: Charged multiplicity distribution distributions for the Pp diffractive subsystem, for
events with 2 → 2 QCD processes with p⊥ > 20 GeV as before. (a) For three different bPp
impact-parameter profiles. (b) With or without rescaled P flux and PDFs, see text.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection

No impact parameter dependence (14.36 ± 0.11) % (0.38 ± 0.02) %
Single gaussian matter profile (14.25 ± 0.11) % (0.93 ± 0.03) %
Double gaussian matter profile (14.24 ± 0.11) % (1.04 ± 0.03) %

Default overlap (14.33 ± 0.11) % (0.98 ± 0.03) %
Exponential overlap (14.50 ± 0.11) % (1.28 ± 0.04) %

Table 4: Diffractive fractions for the 2→ 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp

collisions. Pythia is run with the SaS flux and the H1 Fit B LO PDF.

Finally we turn to the relative normalization of the P PDF and flux. From eq. (3) we know
that the PDF selection step depends on the convolution of the P flux and PDFs. Thus it has no
net effect if the flux is scaled down by a factor of two and the PDFs are scaled up by the same
amount, so as to bring the H1 PDFs to be approximately normalized to unit momentum sum. It
does have consequences for the MPI selection step, however, since the average MPI rate comes up
in the Pp system.

Compared with the (1.35 ± 0.04) % MPI selection rate in Table 1 for the H1 Fit A flux+PDF
combination, such a rescaling changes the rate to (1.40 ± 0.04) %, ie. no effects are seen. The
rescaling however, does change the multiplicity distribution, Fig. 8b, as a consequence of the
increased dσMPI in eq. (7). This could be compensated by a corresponding increase of σref from
the default 10 mb to 20 mb, thereby restoring both the MPI selection rate and the multiplicity
distribution, cf. the blue line in Fig. 8b.

3.3 Energy and scale dependence

Here we study the model dependence on the scales in the hard process and the energy of the
collision.

In Fig. 9 the diffractive fractions are compared at different collision energies,
√
s, for 2 → 2
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Figure 9: (a) The diffractive fractions obtained in 2→ 2 QCD processes with p⊥ > 20 GeV (circles
and solid lines) and qq → W± (squares and dashed lines) in pp collisions at different energies.
(b) The diffractive fractions obtained in qq→W± with the default overlap function (squares and
dashed lines) and the exponential overlap function (crosses and dashed-dotted lines). Pythia is
run with the SaS flux and the H1 Fit B LO PDF.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection

MW = 50 GeV (11.52 ± 0.10) % (0.72 ± 0.03) %
MW = 80.385 GeV (10.69 ± 0.10) % (0.70 ± 0.03) %
MW = 150 GeV (10.46 ± 0.10) % (0.72 ± 0.03) %
MW = 500 GeV ( 9.47 ± 0.09) % (0.65 ± 0.03) %

Table 5: Diffractive fractions for the process qq → Z0 in
√
s = 8 TeV pp collisions. Pythia is

run with the SaS flux and the H1 Fit B LO PDF.

QCD processes with p⊥ > 20 GeV, and for W± production. In the PDF selection step the
diffractive rate increases with energy. The difference between the two processes indicates that this
rise can depend on the incoming flavours and the relevant ranges of x values. Depending on the
P flux and PDF, such as a freezing of the latter at small x, the fraction might even decrease with
energy.

A larger collision energies also implies a higher average number of MPIs, in addition to the
hardest collision, thus implying a reduced fraction of events passing the MPI criterion, see Fig. 9.
There is a compensatory effect of diffraction shifting to larger impact parameters, as already
discussed for the pref⊥0 variations. For the close-to-Gaussian default overlap the relative size of the
〈nMPI〉 ≈ 1 region decreases with energy, however, resulting in the trend shown. By comparison an
exponential overlap decreases slower than the close-to-Gaussian, hence resulting in less suppression
with increasing energy.

Finally, Table 5 shows the number of events passing the PDF and MPI selections when the
mass of the produced particle is changed. In the PDF selection step heavier particles are less likely
to be produced diffractively, as they require larger x-values, where the probability for diffraction
is lower (cf. Fig. 3). The same trend was observed in Table 2, but was there mixed up by the
use of different production channels. After the MPI selection step the mass dependence is not as
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Figure 10: The p⊥ of the hardest process obtained with (a) the soft (or inclusive) diffraction
framework, and (b) both the soft and hard diffraction frameworks for events with p⊥ > 10 GeV.

Cross sections
pp collisions at

√
s = 8 TeV

Soft diffraction Hard diffraction

ND sample, p⊥ > 10 GeV (mb) 3.730 4.239
ND sample, p⊥ > 20 GeV (mb) 0.348 0.353
SD sample, p⊥ > 10 GeV (mb) 0.084 0.048
SD sample, p⊥ > 20 GeV (mb) 0.0066 0.0035

Table 6: Cross sections obtained with the two diffractive frameworks. Extracted from Fig. 10 by
integration.

clearly visible. A partial compensation can indeed occur, since a higher subcollision mass implies
more momentum taken out of the incoming protons and thereby less left for subsequent collisions.

3.4 Comparison with soft diffraction

The new model for hard diffraction complements the existing one for soft (or rather inclusive)
diffraction. The latter already has a hard component arising from the MPI model, which is
used to pick the hardest process and all subsequent scatterings in the Pp system, except for low-
mass diffractive systems where no perturbative framework can be applied. The soft diffractive
model only allows for 2 → 2 QCD processes, unlike the new hard one, but for QCD processes
a comparison between the two is meaningful. To this end, the p⊥ of the hardest process in an
event will be used. This is not a physically measurable observable, unlike e.g. the closely related
p⊥ of the hardest jet in an event, but for the relative comparison of hard and soft diffraction it is
cleaner.

The MPI framework predominantly gives low-p⊥ interactions, be it for diffractive or nondiffrac-
tive events. Thus only a small fraction of the events will have p⊥ values at ∼ 10 GeV or more, see
Fig. 10a. Note that the p⊥ spectrum falls faster for diffractive than nondiffractive events, mainly
as a consequence of the former having a Pp invariant mass spectrum peaked towards lower values.

In Fig. 10b the p⊥ of the hardest process for the two samples is compared. One is obtained
by generating inclusive (soft) events and keeping only those with large enough p⊥, the other by
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generating only hard events above 10 GeV. Nondiffractive events are shown as a sanity check,
as for them the two approaches should give the same results. A closer look at integrated cross
sections, Table 6, shows a small discrepancy for the p⊥ > 10 GeV case, while the p⊥ > 20 GeV
agree much better. This discrepancy is caused by not having a “Sudakov factor” in the hard
model. That is, in the soft model the rate at lower p⊥ scales is reduced by the requirement of not
having an interaction at a higher p⊥ scale, whereas no such reduction is implemented in the hard
framework, which only uses pure matrix elements.

The single diffractive events show differences in the normalisation, while the shape of the p⊥
distributions agree between the two frameworks. The normalisation differences arise from the two
different ways of handling the survival rate. The soft diffractive framework assumes an effective
flux of P’s inside the proton, rescaled to get the desired total diffractive cross section, and thereby
implicitly includes an average rapidity gap survival factor. The hard diffractive framework has
a higher initial P flux but then explicitly implements a dynamical event-by-event survival factor.
As it works out, single diffractive high-p⊥ events are somewhat more suppressed in the latter
case. This is indeed what we would expect: there should be more MPIs in high-p⊥ (and high-
mass) events than in low-p⊥ ones, and thus more MPI survival suppression. Put another way, the
soft implementation overestimates the suppression at low p⊥ and underestimates it at high p⊥.
(Assuming our new model is the right way to view the matter.)

In the future it would be desirable to include such dynamical effects also in the soft framework,
so that the two descriptions can be made to agree in the high-p⊥ region. This is not a trivial task,
however.

4 Comparisons with data

In this section we compare the new model for hard diffraction with some available data. While
many results have been presented for soft diffractive processes, less is available on hard ones.

At the Tevatron, both the CDF and D0 collaborations studied hard diffractive events. We
have chosen here to compare with two analyses, one in which only the diffractive fractions are
measured, the other in which also the distributions of the hard collisions are reported.

At the LHC, diffraction has been studied both by ATLAS [37, 38, 39] and CMS [40, 41, 42].
One key observation there is that the Pythia default P flux shape does not describe the rapidity
gap distribution so well, suggesting that a new parametrization may be needed. In other respects
the model seems to do a reasonable job. For hard diffraction we will compare to the latest ATLAS
study, [39], and a similar CMS study, [41].

Unfortunately, neither of the studies at hand are implemented as Rivet [43] analyses, so we
have tried to apply the relevant experimental cuts as best as we can. This makes comparisons with
data less than reliable, and results should therefore be taken as a first indication only. At least
for LHC the intention is that the new Pythia options can be directly tested by the experimental
community, to allow more precise comparisons in the future.

4.1 Diffractive W/Z production at the Tevatron

CDF has measured the fraction of events with a diffractively produced W/Z boson at
√
s =

1.96 TeV [44]. The surviving antiproton was measured in a Roman Pot forward spectrometer,
and the boson decay products in the central detector. The observed fraction of events with forward
antiprotons was doubled, to compensate for there being no Roman Pots on the proton side. Only
the e and µ leptonic decays of the bosons were taken into account. The cuts used in the analysis
are listed in Table 7, along with the number of events that survive after each step. To this end,
the internal W- and Z-finder projections available in Rivet [43] have been used as a starting point;
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CDF cuts
W sample Z sample

ND SD SD×2
ND (%) ND SD SD×2

ND (%)

Lepton EeT (pµT ) > 25 GeV 670602 2827 0.84 667851 2466 0.74
Missing ET > 25 GeV 595236 2490 0.84 - - -
One electron in |η| < 2.8 - - - 642250 2366 0.74
One lepton in |η| < 1.1 331316 1374 0.83 366566 1397 0.76
MW
T = [40, 120] GeV 327671 1361 0.83 - - -

MZ = [66,116] GeV - - - 36814 1397 0.76
|t| < 1 GeV2 - 1348 0.82 - 1383 0.75
xP = [0.03,0.1] - 366 0.23 - 346 0.19

Table 7: Cuts used in [44]. Number of events listed in each of the samples are based on Monte
Carlo truth obtained when generating 106 inclusive events. A blank means that a specific cut was
not relevant.

P PDF
P flux (pp→ p′ + W) × 2 (pp→ p′ + Z) × 2

CDF (1.0±0.11) % (0.88±0.22) %

H1 Fit B LO
SaS (0.19 ± 0.03) % (0.24 ± 0.04) %

H1 Fit B LO
MBR (0.29 ± 0.04) % (0.20 ± 0.03) %

H1 Jets
SaS (0.29 ± 0.04) % (0.24 ± 0.04) %

H1 Fit A NLO
H1 Fit A (0.46 ± 0.05) % (0.35 ± 0.04) %

H1 Fit B LO
H1 Fit A (0.44 ± 0.05) % (0.29 ± 0.04) %

Table 8: Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp

collisions.

these have previously been validated for other CDF analyses. In addition the diffractive properties
are derived from the measured antiproton as

t = −p2⊥ (9)

xRPS
P = 1− 2|pz|√

s
(10)

which has been compared to Monte Carlo truth, giving good agreement.
The results in Table 7 are obtained with Pythia 8 using the SaS flux and the H1 Fit B

LO PDF, starting out from an inclusive MPI-selected sample. We note that a large fraction of
the diffractive events do not pass the experimental xP cut. Therefore, although we begin with a
“Monte Carlo truth” fraction of ∼ 1% diffractive W/Z, this is reduced to ∼ 0.2% by the xP cut.
Results look better for other choices of P flux, see Table 8, but even at best still with a factor two
discrepancy. Note that it is the fluxes that rise fastest in the low-xP region that gives fractions
closer to data.

The diffractive fraction can also be increased by changing the free parameters of the MPI
framework, with the caveat that nondiffractive events will then no longer describe data as well.
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Parameter (pp→ p′ + W) × 2 (pp→ p′ + Z) × 2

CDF (1.0±0.11) % (0.88±0.22) %

pref⊥0 = 2.78 GeV (0.59 ± 0.06) % (0.49 ± 0.05) %

Exponential overlap (0.25 ± 0.04) % (0.24 ± 0.04) %

Table 9: Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp

collisions.

CDF cuts

Jet E1,2
T > 7 GeV

Jet E3
T > 5 GeV

Jet |η1,2,3| < 4.2
∆R 0.7
|t| < 1 GeV2

xRPS
P [0.035,0.095]

Table 10: Cuts used in [21].

Table 9 shows the diffractive fractions obtained when varying some of the MPI parameters. This
variation is still not sufficient when combined with the default flux and PDF in Pythia 8. If
combined with some of the fluxes in Table 8 it would be possible to obtain fractions close to the
experimentally observed values, however.

4.2 Diffractive dijets at the Tevatron

Another interesting measurement performed at CDF was the process pp → p + Xp, Xp → X +
J + J , ie. SD dijet production with a leading antiproton. CDF measured this at three different
energies,

√
s = 630, 1800 and 1960 GeV [45, 21, 46]. Here not only the diffractive fractions were

measured, but a number of differential distributions. Large discrepancies were found between
the diffractive structure functions determined from CDF data and those extracted by the H1
Collaboration from diffractive deep inelastic scattering data at HERA. The discrepancies are both
in normalisation and shape and were interpreted as a breakdown of factorization.

Our comparison focuses on the 1800 GeV data ([21]), since this also includes a measurement
of the diffractive structure function. The cuts used in the analysis are listed in Table 10. The jets
are identified with the CDF cone algorithm as implemented in Rivet [43], with a cone radius of
0.7. Jet energy scale corrections for underying-event activity are done separately for diffractive
and nondiffractive events, as outlined in the CDF article, but only has a minor impact on relative
rates. The momentum transfer of the antiproton is evaluated using eq. (9) and the momentum
loss of the antiproton using eq. (10).

We begin by evaluating the suppression factor introduced by the MPI framework. This is
evaluated by running two samples of 106 events, one with and one without the MPI criterion, both
using the cuts of Table 10 and the SaS flux and the H1 Fit B LO PDF. We obtain a suppression
factor of 0.11, to be compared with the quoted discrepancies from CDF of 0.06±0.02 (0.05±0.02)
when using the H1 Fit 2 (Fit 3), respectively [21]. A similar suppression factor as for SaS is
obtained when using the H1 Fit B flux, based on the same parametrization as the H1 Fit 2 and
3 fluxes, although with different values for the free parameters of the model. Using this flux,
however, allows for approximately two times more events passing the experimental cuts. This is
due to the fact that the H1 Fit B flux is less restrictive in the low-xP region, where the experiment
is performed. Hence we expect better agreement with data when using the H1 Fit B flux, as
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compared to SaS.
Results on kinematical distributions using both the SaS and the H1 Fit B flux are shown in

Fig. 11. The SD E∗T distribution has a steeper falloff than the ND distribution, indicating a lower
center-of-mass energy in the collision. Likewise the η∗ distribution is shifted towards positive
η, the proton direction, indicating a boost of the center-of-mass system. The final kinematical
distribution here is the difference in azimuthal angle between the two leading jets. This observable
was not shown in the 1800 GeV analysis but in the 1960 GeV one. The SD events there show a
tendency to be more back-to-back than the ND ones. This can also be attributed to the lower
energy in the Pp collision than in the full pp system, leaving less space for initial-state radiation.

The momentum fraction of the antiproton carried by the subcollision parton can be evaluated
from the jets using

x =
1√
s

3∑

i=1

EiT e
−ηi , (11)

where the sum is over the two leading jets, plus a third if it has ET > 5 GeV. The result is shown
in Fig. 12, for the two P fluxes used in Fig. 11. As expected the SaS flux, Fig. 12a, suppress the
diffractive events too much, as the suppression factor is too large compared to experimental value
from CDF. With this flux, the PDF selected samples lie above the CDF data, but then drop by an
order of magnitude by the MPI selection, to lie well below the data, by a factor of five. There is
also some discrepancy in shape. Changing to the H1 Fit B flux, Fig. 12b, the PDF selected sample
lies above the data as expected, with the MPI selected sample a bit below, although only by a
factor of three. The suppression is still too large, and shapes still disagree, but not as markedly
as in Fig. 12a.

There are some aspects of the CDF article that we don’t understand, however. The key Fig. 4
of [21] is intended to show the H1 predictions for the diffractive structure function along with the
experimentally measured one. The information provided on how the former prediction is obtained
is inconsistent with the curve shown, however, in normalization and shape. In the end we therefore
put more faith in the suppression factor between CDF and HERA, already presented above, than
in absolute numbers. Assuming we could have reproduced the CDF curve intended to represent
the predictions of the H1 PDFs, that then is suppressed by an average multiplicative factor of
0.05− 0.06 in data but 0.11 in our model, we should have been a factor of ∼ 2 above data, which
is inconsistent with the outcome in Fig. 12.

4.3 CMS diffractive contribution to dijet production

CMS has studied the diffractive contribution to dijet events at
√
s = 7 TeV pp collisions [41],

The cross section is presented as a function of ξ̃, an approximation to the fractional momentum
loss of the scattered proton correspinding to the xP variable. Dijets were selected with p⊥ > 20
GeV in the |η| < 4.4 range using the anti-k⊥ algorithm with a cone size of R = 0.5 [47]. ξ̃ was
reconstructed using particles in the region |η| < 2.4 with p⊥ > 0.2 GeV for charged particles
as well as particles in the range 3.0 < |η| < 4.9 with E > 4 GeV. To enhance the diffractive
contribution additional requirements was introduced, such that the minimum rapidity gap was of
1.9 units (no particles was allowed in the region |η| > 3). Finally a cut on ξ̃ < 0.01 was introduced.

With these cuts, rapidity gap survival probabilities are in the range 0.08 ± 0.04 (NLO)
to 0.12 ± 0.05 (LO), where the NLO gap survival probability was found using PomPyt and
PowHeg[48]+Pythia 8 and the LO gap survival probability was found using PomPyt and
PomWig.

Implementing the same cuts in Pythia 8, using the SaS flux and the H1 Fit B LO PDF gives
a rapidity gap survival probability of 0.06, compatible with the CMS results. Changing from the
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Figure 11: The mean ET of the leading jets in both SD and ND events using (a) the SaS and (b)
the H1 Fit B flux. The mean η of the leading jets in both SD and ND events using (c) the SaS
and (d) the H1 Fit B flux. The mean difference in φ between the leading jets in both SD and ND
events using (e) the SaS and (f) the H1 Fit B flux.
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Figure 12: The antiproton momentum fraction carried by the parton entering the hard collision,
for Pythia 8 compared with CDF data. Pythia is run with the H1 Fit B LO PDF and (a) the
SaS or (b) H1 Fit B flux. (c) and (d) shows the ratio SD to ND using (a) and (b).

SaS flux to the H1 Fit B flux gives the same suppression factor, but allows for more events to pass
the experimental cuts. We thus see the same trend as in the CDF analysis, where the SaS flux is
too restrictive at low xP.

4.4 ATLAS dijets with large rapidity gaps

Recently, the ATLAS collaboration published a study of dijets with large rapidity gaps in
√
s = 7

TeV pp collisions [39]. Dijets were selected with p⊥ > 20 GeV in the |η| < 4.4 range, and the
cross section was measured in terms of ∆ηF , the size of the observed rapidity gap, as well as
in ξ̃ =

∑
pi⊥e

±ηi/
√
s, the estimate of the fractional momentum loss deduced from charged and

neutral particles in the ATLAS detector (the sign on η depends on where in the detector the
largest gap is located). Cuts used in the analysis are listed in Table 11.

Experimental results were compared with the Pythia 8 soft diffractive framework, which
predicts both the ND, SD and DD contributions to the dijet production. Three different flux
models were compared: SaS, Donnachie-Landshoff and MBR. All three predict cross sections in
the range of the data, without any need for additional gap survival probability factors. The
PomWig generator [13], on the other hand, needed an additional suppression of S2 = 0.16 ±
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Jet cuts

Jet E1,2
T > 20 GeV

Jet |η1,2| < 4.4
Anti-k⊥ ∆R 0.6

Neutral particles

|p| > 200 MeV
|η| < 4.8

Charged particles

|p| > 500 MeV or
p⊥ > 200 MeV
|η| < 4.8

Table 11: Cuts used in [39].

0.04(stat)± 0.08(sys) in order to describe data.
In this section we use the new model for hard diffraction to study the same cross sections. The

new model currently only includes the SD contribution, hence we will not be able to describe all
aspects of data, especially in the high-∆ηF and low-ξ̃-regions, where the SD and DD contributions
are comparable in size, at least according to the soft diffraction model available in Pythia 8. We
could also expect the normalisation of the SD events obtained with the hard diffraction framework
to be lower than in the soft one and thus in data, because of the difference in normalisation between
the two frameworks (cf. Sec. 3.4). The ND contribution should not differ from the ATLAS analysis,
however, since no changes have been implemented in this framework.

The ND distribution was normalized to data, where the normalization factor was found using
the first bin of the ∆ηF distribution. This approach has also been used in our analysis, although
when generating an inclusive sample (e.g. the purple distribution in Figs. 13b and 13d) this
normalization is applied to the full sample, unlike in the ATLAS paper. In this sample, no
classification of events occurs, hence the normalization cannot be performed only on the ND
sample. In the exclusive samples, the distinction between ND and SD is performed, and we can
apply the normalization to only the ND sample (cf. the black distribution in Figs. 13b and 13d).

In Fig. 13 we show the results obtained with the model for hard diffraction. Three samples
are compared: ND, PDF-selected SD and MPI-selected SD. Note that the MPI-selected sample
lies about a factor of 10 below the PDF-selected one, as usual, and that the suppression due to
the MPI-framework is constant over both intervals. The new model undershoots the data in the
regions where the DD contribution is non-negligible (∆ηF > 1 and log10ξ̃ < −0.5). When this
contribution is included in the framework, a better agreement with data should be possible, and
overall the picture should be consistent with the soft diffractive framework.

5 Summary and outlook

In this article we have studied hard diffraction by combining two concepts, the Ingelman–Schlein
picture of a Pomeron and the Pythia model for multiparton interactions. The Pomeron fluxes
and PDFs are mainly extracted from HERA data, while the MPI picture (and several other
relevant physics components) makes use of a broader spectrum of Tevatron and LHC data. This
combination allows us, in principle, to predict all physical quantities of hard diffractive events,
from rapidity gap sizes to charged multiplicity distributions, but most importantly the fraction of
diffractive events for any hard process.
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Figure 13: The dijet cross sections as a function of the size of the rapidity gap (a), (b) and the
fractional momentum loss of the proton (c), (d). Compared to the hard diffraction model of
Pythia 8 using the SaS flux and H1 Fit B LO PDF. In (b) and (d) the ND + MPI sample is a
sum of the black and red dotted lines from (a) and (c), whereas the inclusive sample are generated
directly with Pythia 8. Only statistical errors are included in the ATLAS errorbars.

Reality is not quite as simple, however. In this article we have studied the different assumptions
that go into a detailed framework, and explored the inherent uncertainties. One part concerns
the assumed Pomeron flux and PDFs, where particularly the latter is dominated by one source
only, namely the H1 analyses, making it difficult to assess to full range of uncertainty. Another
part concerns the MPI framework, which enters twice. When used the first time, to determine the
diffractive MPI survival, it involves parameters already tuned to nondiffractive data, so narrowly
constrained in principle. There could still be leeway, e.g. if we were to use other parton showers that
give less/more activity at small p⊥ scales, the average number of MPIs would have to rise/drop to
compensate. Thus our studies focus on the sensitivity of some key parameters of the framework.
When the MPIs are used the second time, inside the diffractive subsystem itself, the level of
uncertainty is considerably higher. A key example is the impact-parameter picture of the Pp
subcollision, notably how impact parameters are related between the pp and Pp steps of an event.

Our studies puts the finger on our still limited understanding of diffraction, also when restricted
to the Pomeron framework, which is only one model class for diffraction. Further, we provide
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computer code that can be used to compare with data for hard diffractive processes at the LHC.
It thus can be used as a “straw man” model, where differences between predictions and data can
help pave the way for a deeper understanding and more accurate models. Specifically, with a
generator it is possible both to emulate the experimental diffractive trigger and to compare the
resulting event properties, both of which are considerably more complicated for analytical models.

Comparisons with data have shown qualitative agreements in many respects, but maybe less
so than one could have hoped for. For the Tevatron we face the problem of trying to understand 15
years old analyses, with uncertain results. The main message probably is that the overall Tevatron
suppression factor of ∼ 10 − 20, relative to HERA-based extrapolations, agrees well with what
our model gives from the MPI selection step. For the future it will therefore be more interesting
to compare with LHC studies, in particular those available in Rivet.

It is well known that the existing Pythia model for soft diffraction is not fully describing
the existing LHC data; at places the difference can be up to a factor of two. Similarly we have
seen less-than-perfect agreement for the hard diffractive processes studied in this article. There is
therefore room for improvements in both areas, and also for work to bring the two approaches in
closer contact. As one simple example, the soft model currently does not involve a MPI survival
step, and therefore the Pomeron flux does not have to be normalized in the same way in the two
cases. The intention is to study such issues closer, and to provide an improved description of
diffractive cross sections, both integrated and differential ones.
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