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1 Introduction
An overview of recent developments in PYTHIA 8 is given. First the new hard diffraction model,
which is implemented as a part of the multiparton interactions (MPI) framework, is discussed.
Then the new colour reconnection model, which includes beyond leading colour effects that can
become important when MPI are present, is briefly reviewed. As a last topic an introduction is
given to our implementation of photon-photon collisions. In particular photon PDFs, required
modifications for the initial state radiation algorithm and beam remnant handling with photon
beams is discussed.

2 Hard Diffraction
A model for soft diffraction has long been available in PYTHIA 8 and earlier versions [1, 2]. This
model allows for 2→ 2 QCD processes at all p⊥ scales, but is primarily intended for lower values
of p⊥. For truly hard diffractive processes, the new model for hard diffraction [3] was developed,
not only for high-p⊥ jets, but also allowing for W±, Z0, H etc.

The model is based on the assumption that the proton PDF can be split into a diffractive and a
nondiffractive part,

fi/p(x,Q2) = fND
i/p (x,Q2) + fDi/p(x,Q2) with (1)

fDi/p(x,Q2) =

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x

xP
, Q2

)
, (2)

with x and Q2 the momentum fraction and virtuality of parton i, xP and t the momentum fraction
and virtuality of the Pomeron, and where the Pomeron flux fP/p(xP) =

∫ tmax

tmin
dt fP/p(xP, t), as t for
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the most part is not needed. The tentative probability for side A to be diffractive is then given by
the ratio of diffractive to inclusive PDFs,

PD
A =

fDi/B(xB, Q
2)

fi/B(xB, Q2)
for AB → XB (3)

with a similar equation for side B. The model further implements a dynamical rapidity gap sur-
vival, cf. Fig. 1. On an event-by-event basis the possibility for additional MPIs in the pp system is
evaluated, and if no such MPIs are found, then the event is diffractive. Only then is the Pp system
set up and a full evolution is performed in this subsystem, along with the hadronization of the
colour strings in the event.

The dynamical gap survival introduces an additional suppression of the diffractive events,
such that the total probability for hard diffraction drops from ∼ 10% to ∼ 1%, exact numbers
depending on parametrization of P flux and PDF as well as the free parameters of the MPI frame-
work in PYTHIA 8. The new model is compatible with suppression factors measured at the LHC.

3 Colour Reconnection
The colour reconnection (CR) refers to a phenomenon where the colour strings formed during
the hard process and parton shower generation can reconnect and form a different configuration
prior to hadronization. A new model for CR in PYTHIA 8 was introduced in Ref. [4]. The model
is based on three main principles: use of SU(3) colour rules to determine if the strings are colour
compatible, a simplistic space-time picture to check whether the two colour strings can be causally
connected, and minimization of string length measure λ to find which colour configurations are
preferred. In addition to simple colour strings between a quark and an antiquark, the new model
includes also junction structures which can connect three (anti)quarks together. As the junction
structures are related to baryons, an enhanced baryon production can be expected.

Natural observables to study the CR effects are baryon-to-meson ratios. The parameters re-
lated to the new CR model was fixed using the CMS data for the rapidity dependence of the
Λ/K0

S ratio, while keeping the rate in e+e− collisions unaffected. Without further tuning also the
p⊥ dependence of this ratio can be described more accurately than with the old PYTHIA model,
although there still exists some discrepancy for p⊥ > 5 GeV/c.

A novel way to constrain different CR models is to study the multiplicity dependence of the
baryon-to-meson ratios [5]. The old PYTHIA model is more or less flat with multiplicity but – due
to the junction structures – the new model predicts an enhancement for baryon production with
higher multiplicities. A very interesting observable is the p⊥ dependence of Λ/K ratio in different
multiplicities, shown in Fig. 2. In the lowest multiplicity bin the ratio is flat above p⊥ = 2 GeV/c,
but with higher multiplicities there is a growing enhancement at intermediate p⊥, flattening again
at p⊥ & 8 GeV/c. Also, the peak of the ratio shifts towards higher values of p⊥ with higher
multiplicities – a behaviour that is typically connected to collective flow in heavy-ion collisions.
To sort out the physical origin of these kind of observations, further studies are of great interest.
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Figure 1: The dynamical gap survival im-
plemented in PYTHIA 8. The model does
not allow for MPIs in the pp system, but al-
lows for additional MPIs in the Pp system.
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Figure 2: Transverse momentum dependence of the
Λ/K ratio for different multiplicities in p+p colli-
sions.

4 Photon-photon Collisions
The γγ collisions give access to several interesting hard processes and provide an additional test of
QCD factorization. A further motivation to study these collisions is provided by the future e+e−

experiments, where the γγ interactions will generate background processes that influence to the
physics potential of future measurements.

An option to simulate γγ collisions with PYTHIA 8 have been added with the 8.215 release.
The new implementation is not just a repetition of the framework included in PYTHIA 6 [1] but a
new – more robust – machinery has been under development [6]. Currently hard processes with
parton showers and hadronization of resolved γγ interactions can be generated for real photons,
but MPIs and soft processes are not included. Here the key differences to the hadronic collisions
are briefly described.

4.1 Evolution equations and parton showers

The partonic structure of resolved photons is described by the PDFs in a similar manner as for
hadrons. The scale evolution of the photon PDFs is given by

∂fγi (x,Q2)

∂log(Q2)
=
αEM

2π
e2iPiγ(x) +

αs(Q
2)

2π

∑
j

∫ 1

x

dz

z
Pij(z) fj(x/z,Q

2), (4)

where the first term on the right hand side corresponds to the γ → qq̄ splitting of the beam photon
and the second to the usual partonic splittings. Due to the first term, the scale evolution increases
the quark PDFs over the whole x region and thus increases the large-x quark PDFs in photons
compared to quark PDFs in hadrons.

As the parton shower is generated using the DGLAP equations, the PYTHIA algorithm [7]
must be extended accordingly by including a possibility to find the original beam photon during
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the generation of the initial state radiation (ISR). If the beam photon is found, no further ISR
evolution is allowed for the beam.

4.2 Beam remnants

The beam remnants describe the leftovers of the beam particle after the interaction, for details of
PYTHIA 8 implementation see Ref. [8]. Unlike in the case of protons, the valence content of photons
is not known beforehand. To fix for the valence content the PDFs are decomposed into sea and
valence contributions. These are then used to decide whether the parton taken from the beam
was a valence parton or not. If it was a valence quark, the remnant is simply the corresponding
(anti)quark and if not, the valence content is sampled according to the PDFs. After the valence
content is fixed, a minimal number of partons are added to make sure that the flavour and colour
are preserved in an event. If the ISR algorithm ends up at the beam photon, there is no need to
add any remnant partons for the given beam.

As the quark PDFs for photons have a large contribution also from large values of x, it may
happen that there is no room to add the beam remnants with non-zero masses. Also the parton
shower can lead to a situation where the remnants can not be constructed due to the lack of in-
variant mass available for the remnants. These cases are rejected during the event generation to
make sure that only events with appropriate remnants are generated.
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4

hep-ph/0603175
arXiv:1410.3012
1512.05525
arXiv:1505.01681
arXiv:1507.02091
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