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Abstract

A representation of the two-loop contribution to the pion decay constant in SU(3)
chiral perturbation theory is presented. The result is analytic upto the contribution of
the three (different) mass sunset integrals, for which an expansion in their external
momentum has been taken. We also give an analytic expression for the two-loop
contribution to the pion mass based on a renormalized representation and in terms
of the physical eta mass. We find an expansion of Fπ and M2

π in the strange quark
mass in the isospin limit, and perform the matching of the chiral SU(2) and SU(3)
low energy constants. A numerical analysis demonstrates the high accuracy of our
representation, and the strong dependence of the pion decay constant upon the values
of the low energy constants, especially in the chiral limit.
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1 Introduction

The mass and decay constants of the pions, kaons and the eta have been worked out to
two-loop accuracy in three-flavoured chiral perturbation theory (ChPT) in [1] some time
ago. The expressions for these at this order bring in a class of diagrams known as the
sunsets. For the decay constants, in addition to the sunset integral, derivatives of the
sunsets with respect to the square of the external momentum (also known as ‘butterfly’
diagrams), evaluated at a value equal to the square of the mass of the particle in question,
are needed. The sunset diagrams themselves have been studied in field theory literature
for many years now, and for particular mass configurations analytic expressions exist in
Laurent series expansions in ǫ = (4 − d)/2. In general, however, the sunsets and their
derivatives have to be evaluated numerically and a publicly available software [2] does this
with user driven inputs.

There is, however, a need for an analytic study of the observables in ChPT since one
would like to have an intuitive sense for the results appearing therein. More importantly,
with recent advances allowing lattice simulations to tune the quark masses to near physical
values, a combining of lattice and ChPT results has become possible. However, at next
to next to leading order (NNLO), three flavoured ChPT amplitudes are available only
numerically or take a complicated form, and thus have not been used much by the lattice
community. With this in mind, [3, 4] has advocated a large Nc motivated approach to
replace the two-loop integrals by effective one-loop integrals, and find it fruitful for the
study of the ratio FK/Fπ as well as Fπ. The analytic studies of SU(3) amplitudes in the
strange quark mass expansion of [5, 6, 7] are also steps in that direction, but as the results
presented there are in the chiral limit mu = md = 0, there is a need for more general
expressions.

Some years ago, Kaiser [8] studied the problem of the pion mass in the analytic frame-
work, and was able to employ well known properties of sunset integrals to reduce a large
number of expressions to analytic ones. One exception was the sunset integral with kaons
and an eta propagating in the loops with the external momentum at s = m2

π, for which an
expansion around m2

π was used. Kaiser [8] also replaced the mη in his work by the leading
order Gell-Mann-Okubo (GMO) formula. In principle, therefore, one can get an expansion
in m2

π to arbitrary accuracy, proving thereby the accessibility of an analytical approach
to the full two-loop result. For practical purposes, we have used the expansion up to and
including m4

π terms. These are more than sufficient for the numerical accuracy required.
The reason why it is possible to attain the objectives above is that for many pur-

poses, the sunset integrals are accessible analytically for kinematic configurations known
as threshold and pseudo-threshold configurations [9], as well as for the case when the square
of the external momentum vanishes [10]. Indeed, this is the case for most of the sunset
integrals appearing in the expressions for the mass and decay constants. These properties
also allow one to isolate the divergent parts in closed form, while the finite part remains
calculable in analytic form only for special cases. On the other hand, there is always an
integral representation for the finite part which can be evaluated numerically. Further-
more, for the most general case, all sunsets can be reduced to a set of master integrals.
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All other vector and tensor integrals, as well their derivatives with respect to the square
of the external momentum, can also be reduced to master integrals. The work of [11] in
developing this work is noteworthy, as is the automation of these relations with the pub-
licly available Mathematica package Tarcer [12]. Application of these methods and tools
to sunset diagrams in ChPT is elucidated in [13].

Inspired by the developments above, we now seek to extend the work of [8] for the case
of the pion decay constant in an expansion around s = 0, which also brings in the butterfly
diagrams. In contrast to the approach of [8], we will retain the mass of the eta without
recourse to the GMO. This is the main objective of the present work. As a side result, we
also give the expression for the two-loop pion mass with the full eta mass dependence.

In principle, this may be also extended to the mass and decay constant of the kaon and
the eta, but the expansion about s = 0 for these particles when particles of unequal mass
are running around in the loops is bound to converge poorly, and one would have to go
to very high orders in the expansion, thereby losing the appeal of such a result. Thus we
confine ourselves to the pion in this work. We present expressions for the kaon and eta
masses and decay constants in a future publication [14].

As an application of the expressions given here, we give their expansion in the strange
quark mass in the isospin limit and perform the ‘matching’ of the three flavoured low energy
constants F0 and B0 with their two flavoured counterparts F and B, respectively. We
compare our results with those given in [15] and the chiral limit results of [5]. The results
given in this work, however, go beyond the chiral limit matching done in the aforementioned
papers. Indeed, the full expressions presented here allow for an expansion up to an arbitrary
order in the quark masses.

The scheme of this paper is as follows. In Section 2 we briefly review sunset diagrams
and their evaluation. In Section 3 we give the expressions for the analytical results up to
O(m4

π for the pion decay constant at two loops. We repeat the analysis for the two-loop
pion mass contribution in Section 4. In Section 5, we give the s-quark expansion for both
the pion decay constant as well as the pion mass, and perform the matching of the two-
and three- flavour low-energy constants (SU(2) and SU(3) LECs). We present a numerical
analysis of our results in Section 6, and conclude in Section 7 with a discussion of possible
future work in this area.

2 Sunset Diagrams and their Derivatives

The sunset diagram, shown in Figure 1, represents the two-loop Feynman integral:

Hd
{α,β,γ}(m1, m2, m3; s) =

1

i2

∫

ddq

(2π)d
ddr

(2π)d
1

[q2 −m2
1]

α[r2 −m2
2]
β [(q + r − p)2 −m2

3]
γ

(1)

Aside from the basic scalar integral, there exist tensor varieties of the sunset integral
with loop-momenta in the numerator. The two tensor integrals that are of relevance to
this work are Hµ and Hµν , in which the momenta qµ and qµqν , respectively, appear in the
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p pq + r − p,m3

q,m1

r,m2

Figure 1: The two-loop self energy “sunset” diagram

numerator. These may be decomposed into linear combinations of scalar integrals via the
Passarino-Veltman decomposition as:

Hd
µ = pµH1

Hd
µν = pµpνH21 + gµνH22 (2)

The representation of the pion decay constants in [1] involves the scalar integrals H1

and H21. Taking the scalar product of Hd
µ with pµ allows us to express the integral H1 in

terms of the sunset integral with the scalar numerator q.p. Similarly, we may express H21

in terms of sunset integrals with numerators (q.p)2 and q2:

H1 =
〈〈q.p〉〉
p2

H21 =
〈〈(q.p)2〉〉d− 〈〈q2〉〉p2

p4(d− 1)
(3)

where 〈〈X〉〉 represents a sunset integral with numerator X .
Another class of integrals that appear in the representation of [1] is the derivative of

the sunset integrals and the H1 and H21 with respect to the external momentum. In
some places in the literature, these are sometimes known as ‘butterfly’ diagrams. These
butterfly integrals may be expressed as sunset integrals of higher dimension by means of
the following expression, which can be derived from the Feynman parameter representation
of the sunset integrals, and a more general version of which is given in [8].

(

∂

∂s

)n

Hd
{α,β,γ} = (−1)n(4π)2n

Γ(α + n)Γ(β + n)Γ(γ + n)

Γ(α)Γ(β)Γ(γ)
Hd+2n

{α+n,β+n,γ+n} (4)

Tarasov [11] has shown that by means of integration by parts relations, all sunset
integrals may be expressed as linear combinations of four master integrals, namely Hd

{1,1,1},

Hd
{2,1,1}, H

d
{1,2,1} and Hd

{1,1,2}, and the one-loop tadpole integral:

Ad(m) =
1

i

∫

ddq

(2π)d
1

q2 −m2
= −Γ (1− d/2)

(4π)d/2
md−2 (5)
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This includes sunset integrals of dimensions greater than d, permitting us to express
the butterfly integrals in terms of the four master integrals and tadpoles. Scalar sunset
integrals with non-unit numerators, such as those appearing in Eq.(2) may also be expressed
in terms of the four master integrals and tadpoles. The Tarcer package [12], written in
Mathematica, automates the application of Tarasov’s relations, and we have made extensive
use of it in this work. We have also made use of the package Ambre [16], which allows
for a direct evaluation of many scalar and tensor Feynman integrals using a Mellin-Barnes
approach, to numerically check our breakdown of the sunset and butterfly diagrams into
master integrals. Recent analytic approaches to the evaluation of multi-fold Mellin-Barnes
integrals in quantum field theory have been discussed in [17, 18] and applications in ChPT
will appear in our future work [14].

As is the usual practice in ChPT, we use a modified version of the MS scheme to
handle the divergences arising from the evaluation of the sunset diagrams. The subtraction
procedure to two-loop order in ChPT is equivalent to multiplying Eq.(1) by (µ2

χ)
4−d, where:

µ2
χ ≡ µ2 e

γE−1

4π
(6)

and taking into consideration only the O(ǫ0) part of the result in a Laurent expansion
about ǫ = 0. We denote such renormalized sunset integrals by use of the subscript χ
instead of d, i.e.

Hχ
{a,b,c} ≡ (µ2

χ)
4−dHd

{a,b,c} (7)

The inclusion of factor µ raised to a power of the dimension d introduces terms involving
chiral logarithms, i.e.

lrP ≡ 1

2(4π)2
log

[

m2
P

µ2

]

P = π,K, η (8)

In the results presented in this paper, we group together all terms containing chiral loga-
rithms, whether or not they arise from the renormalized sunset integrals. We therefore use
the notation:

Hχ
{a,b,c} ≡ H

χ

{a,b,c} +Hχ,log
{a,b,c} (9)

where Hχ,log are the terms of the sunset integral containing chiral logarithms, and H
χ
is

the aggregation of the remainder. All results given hereafter have been renormalized using
this subtraction scheme, and are presented using the notation above.

Analytic expressions for the master integrals themselves have been studied thoroughly,
and several results exist in the literature [9, 10, 19, 20, 21, 22]. For sunset integrals with
only one mass scale, there is a further reduction in the number of master integrals, and
all sunsets can be expressed in terms of the tadpole integral, Aχ = µ4−d

χ Ad, and Hχ
{1,1,1},

which is given in [9, 19], amongst others, as:

Hχ
{1,1,1} = −

(

µ2eγE−1
)2ǫ (m2)1−2ǫ

(4π)4
Γ2(1 + ǫ)

(1− ǫ)(1 − 2ǫ)

(

− 3

2ǫ2
+

1

4ǫ
+

19

8

)

+O(ǫ) (10)
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Analytic expressions for the two mass scale integrals can be found by means of the pseu-
dothreshold results of [9].

Expressions for the three mass sunset integrals are given in [22] in terms of elliptic
dilogarithmic functions. However, as one of the principal reasons for the lack of use of
ChPT results by the lattice community is the complicated form of many of the results, we
wish to keep the expression derived here as simple and accessible as possible. To this end,
and to stay true to the spirit of the method of [8], instead of using the results of [22] we
take an expansion in the external momentum s upto order O(s2):

Hχ
{α,β,γ} = K{α,β,γ} + sK ′

{α,β,γ} +
s2

2!
K ′′

{α,β,γ} +O(s3) (11)

where K{α,β,γ} ≡ Hχ
{α,β,γ}|s=0. In this special case of s = 0, as in the case of the single mass

scale sunsets, all sunset integrals may be expressed solely in terms of K{1,1,1} and tadpole
integrals [11].

The pion mass and decay constant at two loops both involve a sunset integral with the
following three mass scale configuration:

Hχ
{α,β,γ}

(

mK , mK , mη; s = m2
π

)

This may be expanded in s by making use of the result [1, 8, 10]:

2 (4π)4

M2
Hχ

{1,1,1}{M,M,m; 0}

=

(

2 +
m2

M2

)

1

ǫ2
+

(

m2

M2

(

1− 2 log

[

m2

µ2

])

+ 2

(

1− 2 log

[

M2

µ2

]))

1

ǫ

− 2

(µ2)2ǫ

(

m2

M2
log

[

m2

µ2

](

1− log

[

m2

µ2

])

+ 2 log

[

M2

µ2

](

1− log

[

M2

µ2

]))

− m2

M2
log2

[

m2

M2

]

+

(

m2

M2
− 4

)

F

[

m2

M2

]

+

(

2 +
m2

M2

)(

π2

6
+ 3

)

+O(ǫ) (12)

where

F [x] =
1

σ

[

4Li2

(

σ − 1

σ + 1

)

+ log2
(

1− σ

1 + σ

)

+
π2

3

]

, σ =

√

1− 4

x
(13)

3 The Pion Decay Constant to Two Loops

The pion decay constant is given in [1] as:

Fπ = F0(1 + F
(4)

π + F
(6)

π ) +O(p8) (14)

where the O(p6) contribution can be broken up into a piece that results from the model-

dependent counterterms (F
(6)

π )CT , and one that results from the chiral loop (F
(6)

π )loop. For
the pion, the explicit form of these terms are given by:

F 2
πF

(4)

π = 4(m2
π + 2m2

K)L
r
4 + 4m2

πL
r
5 − 2m2

πl
r
π −m2

K l
r
K (15)
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F 4
π (F π)

(6)
CT = 8m4

πC
r
14 + 8m2

π

(

m2
π + 2m2

K

)

Cr
15 + 8

(

3m4
π − 4m2

πm
2
K + 4m4

K

)

Cr
16 + 8m4

πC
r
17

(16)

where mP with P = π,K, η are the physical meson masses, and lrP are the chiral logarithms
defined in Eq.(8). Note that the Ci used in this paper are dimensionless.

The loop contributions can be subdivided as follows:

F 4
π (F π)

(6)
loop = d

π

sunset + dπlog×log + dπlog + dπlog×Li
+ dπLi

+ dπLi×Lj
(17)

The terms containing the LECs Li but no chiral logarithms are given by:

(16π2)dπLi
= −2m4

πL
r
1 −

1

9

(

37m4
π − 8m2

πm
2
K + 52m4

K

)

Lr
2 −

1

27

(

28m4
π − 8m2

πm
2
K + 43m4

K

)

Lr
3

(18)

and the terms bilinear in the LECs are contained in:

dπLi×Lj
=56

(

m2
π + 2m2

K

)2
(Lr

4)
2 + 16

(

7m4
π + 10m2

πm
2
K + 4m4

K

)

Lr
4L

r
5

− 64
(

m2
π + 2m2

K

)2
Lr
4L

r
6 − 64

(

m4
π + 2m4

K

)

Lr
4L

r
8 + 56m4

π(L
r
5)

2

− 64m2
π

(

m2
π + 2m2

K

)

Lr
5L

r
6 − 64m4

πL
r
5L

r
8 (19)

The remaining three terms of Eq.(17) give the terms containing the chiral logs. Explic-
itly, the following gives the terms linear in chiral logarithms:

(16π2)dπlog =

(

9

32
m4

η −
3

8
m2

ηm
2
K − 7

48
m2

ηm
2
π +

9

8
m4

K +
9

4
m2

Km
2
π +

679

144
m4

π

)

lrπ

+

(

23

8
m4

K − 1

2
m2

Km
2
π

)

lrK +

(

− 9

32
m4

η +
7

8
m2

ηm
2
K +

1

48
m2

ηm
2
π

)

lrη (20)

while the terms bilinear in the lrP are contained in:

dπlog×log =

(

15

8

m4
Km

2
η

m2
π

− 9

8

m2
Km

4
η

m2
π

+
1

4
m2

πm
2
η −

17

24
m2

Km
2
η +

3

8
m4

η

)

(

lrη
)2

+

(

25

3
m2

πm
2
K − 3

4
m4

K

)

lrπl
r
K +

(

41

8
m4

π −
7

6
m2

πm
2
K +

3

8
m4

K

)

(lrπ)
2

+

(

−15

4

m4
Km

2
η

m2
π

+
9

4

m2
Km

4
η

m2
π

− 7

12
m2

Km
2
η

)

lrK l
r
η

+

(

15

8

m4
Km

2
η

m2
π

− 9

8

m2
Km

4
η

m2
π

+
1

3
m2

πm
2
K − 5

8
m4

K +
7

24
m2

Km
2
η

)

(lrK)
2 (21)

The contributions from terms involving products of chiral logarithms and the LECs are
collected in:

dπlog×Li
= 4m2

π

(

14m2
πL

r
1 + 8m2

πL
r
2 + 7m2

πL
r
3 − 13m2

πL
r
4 − 12m2

KL
r
4 − 10m2

πL
r
5

)

lrπ

+ 4m2
K

(

16m2
KL

r
1 + 4m2

KL
r
2 + 5m2

KL
r
3 − 3m2

πL
r
4 − 14m2

KL
r
4 − 5m2

πL
r
5

)

lrK

− 4

3
m2

η

(

m2
π − 4m2

K

)

(4Lr
1 + Lr

2 + Lr
3 − 3Lr

4) l
r
η (22)
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And finally, the contributions from the sunset diagrams are given in:

dπsunset =
1

(16π2)2

(

35

288
m4

ππ
2 +

41

128
m4

π +
1

144
m2

πm
2
Kπ

2 − 5

32
m2

πm
2
K +

11

72
m4

Kπ
2 +

15

32
m4

K

)

+
5

12
m4

πH
′χ

πππ −
1

2
m2

πH
χ

πππ −
5

16
m4

πH
′χ

πKK +
1

16
m2

πH
χ

πKK +
1

36
m4

πH
′χ

πηη

+
1

2
m2

πm
2
KH

′χ

KπK − 1

2
m2

KH
χ

KπK − 5

12
m4

πH
′χ
KKη −

1

16
m4

πH
′χ

ηKK +
1

4
m2

πm
2
KH

′χ

ηKK

+
1

16
m2

πH
χ

ηKK − 1

4
m2

KH
χ

ηKK +
1

2
m4

πH
′χ

1 πKK +m4
πH

′χ

1 KKη +
3

2
m4

πH
′χ

21πππ

− 3

16
m4

πH
′

21

χ

πKK +
3

2
m4

πH
′

21

χ

KπK +
9

16
m4

πH
′

21

χ

ηKK (23)

where we use the notation:

H
χ

aPbQcR = H
χ

{a,b,c}{mP , mQ, mR; s = m2
π} (24)

with H
χ

{a,b,c} as defined in Eq. (9). a, b, c will be suppressed if equal to 1. The terms
resulting from the sunset integrals which involving chiral logarithms have been included in
dπlog or dπlog×log as appropriate.

Evaluating the sunset integrals as described in Section (2), dπsunset can be re-expressed
as:

dπsunset =
1

(16π2)2

[

− 9

32

m6
η

m2
π

+

(

3

8
+

3π2

32

)

m4
ηm

2
K

m2
π

+
193

768
m4

η −
(

27

16
+

π2

4

)

m2
ηm

4
K

m2
π

−
(

13

64
+

7π2

288

)

m2
ηm

2
K +

(

49

384
+

π2

216

)

m2
ηm

2
π +

(

3

4
+

π2

4

)

m6
K

m2
π

+

(

209

192
+

5π2

32

)

m4
K

+

(

41

192
+

π2

36

)

m2
Km

2
π −

(

1

1152
+

π2

288

)

m4
π

]

+ dππKK + dππηη + dπKKη (25)

where

dππKK = −
(

9

16

m4
K

m2
π

+
3

4
m2

K +
1

48
m2

π

)

H
χ

πKK +

(

3

4
m4

K +
1

6
m2

Km
2
π +

m4
π

12

)

H
χ

2πKK (26)

dππηη =

(

− 1

36
m2

π

)

H
χ

πηη +

(

1

36
m4

π

)

H
χ

2πηη (27)

dπKKη =

(

1

96
m2

π −
1

24
m2

K +
15

16

m4
K

m2
π

− 7

48
m2

η −
3

8

m2
Km

2
η

m2
π

+
9

32

m4
η

m2
π

)

H
χ

KKη

+

(

5

48
m2

πm
2
K − 7

48
m4

K − 15

4

m6
K

m2
π

+
7

16
m2

Km
2
η +

45

16

m4
Km

2
η

m2
π

− 9

8

m2
Km

4
η

m2
π

)

H
χ

2KKη

+

(

5

96
m2

πm
2
η −

1

16
m2

Km
2
η +

7

48
m4

η −
3

16

m2
Km

4
η

m2
π

− 9

32

m6
η

m2
π

)

H
χ

KK2η (28)
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Closed form expressions, at O(ǫ0), for the master integrals H
χ
appearing in dπKK and

dπηη are given in Appendix A. The master integrals appearing in dKKη are of three mass
scales, for which there exist no simple closed form expressions. For these, therefore, we
take an expansion around s = m2

π = 0. Up to order O (m4
π), we have:

(16π2)2 dKKη = d
(−1)
KKη(m

2
π)

−1 + d
(0)
KKη + d

(1)
KKη(m

2
π) + d

(2)
KKη(m

2
π)

2 (29)

where

d
(−1)
KKη =

9

32
m6

η −
(

3

8
+

3π2

32

)

m4
ηm

2
K +

(

27

16
+

π2

4

)

m2
ηm

4
K +

(

15

16
− 5π2

32

)

m6
K

+

(

9

32
m4

ηm
2
K − 15

32
m2

ηm
4
K

)

log2[τ ] (30)

d
(0)
KKη = −193

768
m4

η −
(

11

64
− π2

288

)

m2
ηm

2
K −

(

211

384
+

11π2

576

)

m4
K +

(

1

2
m4

K − 1

8
m2

ηm
2
K

)

F [τ ]

+

(

5

96
m2

ηm
2
K

)

log2[τ ] +

(

9

64
m4

η −
3

16
m2

ηm
2
K

)

log[τ ]

+

(

− 9

64
m4

η +
3

16
m2

ηm
2
K − 15

32
m4

K

)

log[ρ] (31)

d
(1)
KKη =

(

19

384
+

π2

192

)

m2
η −

(

11

192
− π2

96

)

m2
K + F [τ ]

(

m2
η

32
− m2

K

8

)

+

(

7

96
m2

η +
1

48
m2

K

)

log[ρ]− 1

32
m2

η log
2[τ ]− 7

96

(

m2
η

)

log[τ ] (32)

d
(2)
KKη =

1

λ2

(

23

576
m4

η −
1

4

m6
K

m2
η

− 235

576
m2

ηm
2
K +

139

288
m4

K

)

+
1

λ3

(

−1

2

m10
K

m4
η

+
17

48

m8
K

m2
η

− 7

48
m2

ηm
4
K − 1

3
m6

K

)

F [τ ]

+
1

λ3

(

1

192
m6

η −
1

32
m4

ηm
2
K − 1

2

m8
K

m2
η

+
83

96
m2

ηm
4
K +

13

48
m6

K

)

log[τ ]− 1

192
log[ρ] (33)

In the above expressions, τ ≡ m2
η/m

2
K , ρ ≡ m2

π/m
2
K , λ ≡ m2

η − 4m2
K , and F [x] is

defined in Eq.(13). Note that in this expansion, divergences appear in the mπ → 0 limit.

The divergences from the d
(−1)
KKη term cancel against the divergences in Eq.(25) and in

Eq.(20), while those arising from the log[ρ] and log2[ρ] in d
(0)
KKη cancel against divergences

in Eqs.(20),(21) and (26). Therefore the overall F
(6)

π remains non-divergent in the m2
π → 0

limit.

8



4 The Pion Mass to Two Loops

We repeat the steps of the previous section for the pion mass. A representation for this is
given in [1] as:

M2
π = m2

π0 + (m2
π)

(4) + (m2
π)

(6)
CT + (m2

π)
(6)
loop +O(p8) (34)

where m2
π0 = 2B0m̂ is the bare pion mass squared, and mP are the physical meson masses.

F 2
π

m2
π

(m2
π)

(4) = 8(m2
π + 2m2

K)(2L
r
6 − Lr

4) + 8m2
π(2L

r
8 − Lr

5) +m2
πl

r
π −

1

3
m2

ηl
r
η (35)

− F 4
π

16m2
π

(m2
π)

(6)
CT = 2m4

πC
r
12 +

(

2m4
π + 4m2

πm
2
K

)

Cr
13 +m4

πC
r
14 +

(

m4
π + 2m2

πm
2
K

)

Cr
15

+
(

3m4
π − 4m2

πm
2
K + 4m4

K

)

Cr
16 +m4

πC
r
17 − 3m4

πC
r
19 −

(

5m4
π + 4m4

K

)

Cr
20

−
(

3m4
π + 12m2

πm
2
K + 12m4

K

)

Cr
21 − 2m4

πC
r
31 −

(

2m4
π + 4m2

πm
2
K

)

Cr
32 (36)

The (m2
π)

(6)
loop term can be subdivided into the following components:

F 4
π (m

2
π)

(6)
loop = cπsunset + cπlog×log + cπlog + cπlog×Li

+ cπLi
+ cπLi×Lj

(37)

where

16π2

m2
π

cπLi
= 4m4

πL
r
1 +

1

9

(

74m4
π − 16m2

πm
2
K + 104m4

K

)

Lr
2 +

1

27

(

56m4
π − 16m2

πm
2
K + 86m4

K

)

Lr
3

(38)

−
cπLi×Lj

128m2
π

=
(

4m4
K + 4m2

Km
2
π +m4

π

)

(Lr
4)

2 +
(

m4
K + 3m2

Km
2
π + 2m4

π

)

Lr
4L

r
5

− 4
(

4m4
K + 4m2

Km
2
π +m4

π

)

Lr
4L

r
6 − 2

(

m4
K + 3m2

Km
2
π + 2m4

π

)

Lr
4L

r
8 +m4

π(L
r
5)

2

− 2
(

m4
K + 3m2

Km
2
π + 2m4

π

)

Lr
5L

r
6 − 4m4

πL
r
5L

r
8 + 4

(

4m4
K + 4m2

Km
2
π +m4

π

)

(Lr
6)

2

+ 4
(

m4
K + 3m2

Km
2
π + 2m4

π

)

Lr
6L

r
8 + 4m4

π(L
r
8)

2 (39)

(16π2)cπlog =

(

− 3

16
m4

ηm
2
π +

1

4
m2

ηm
2
Km

2
π +

1

3
m2

ηm
4
π −

3

4
m4

Km
2
π −

11

6
m2

Km
4
π −

299

36
m6

π

)

lrπ

+

(

−29

4
m4

Km
2
π −

1

3
m2

Km
4
π

)

lrK +

(

3

16
m4

ηm
2
π −

5

4
m2

ηm
2
Km

2
π −

1

72
m2

ηm
4
π

)

lrη

(40)
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cπlog×log =

(

121

36
m6

π +
3

2
m4

πm
2
K − 1

4
m2

πm
4
K

)

(lrπ)
2 +

(

1

2
m2

πm
4
K − 3m4

πm
2
K

)

lrπl
r
K

+

(

5

3
m4

πm
2
η

)

lrπl
r
η +

(

5

2
m4

Km
2
η −

3

2
m2

Km
4
η −

3

2
m2

πm
2
Km

2
η

)

lrK l
r
η

+

(

1

6
m4

πm
2
K +

19

4
m2

πm
4
K +

1

12
m2

πm
2
Km

2
η −

5

4
m4

Km
2
η +

3

4
m2

Km
4
η

)

(lrK)
2

+

(

1

18
m4

πm
2
η +

25

12
m2

πm
2
Km

2
η −

5

4
m4

Km
2
η −

29

36
m2

πm
4
η +

3

4
m2

Km
4
η

)

(lrη)
2 (41)

cπlog×Li

m2
π

=−
(

112m2
πL

r
1 + 64m2

πL
r
2 + 56m2

πL
r
3 − (144m2

π + 80m2
K)L

r
4 − 96m2

πL
r
5

+
(

256m2
π + 160m2

K

)

Lr
6 + 176m2

πL
r
8

)

m2
πl

r
π

−
(

128m2
KL

r
1 + 32m2

KL
r
2 + 40m2

KL
r
3 −

(

16m2
π + 160m2

K

)

Lr
4 −

(

16m2
π + 32m2

K

)

Lr
5

+
(

32m2
π + 192m2

K

)

Lr
6 +

(

32m2
π + 64m2

K

)

Lr
8

)

m2
K l

r
K

+

(

8

3

(

m2
π − 4m2

K

)

(4Lr
1 + Lr

2 + Lr
3)− 16

(

m2
π − 3m2

K

)

Lr
4 +

32

3

(

2m2
π − 5m2

K

)

Lr
6

− 64

9

(

m2
π −m2

K

)

(Lr
5 + 6Lr

7)−
16

3
m2

πL
r
8

)

m2
ηl

r
η (42)

The contribution from the sunset integrals is given by:

cπsunset =
1

(16π2)2

[

3

16
m6

η −
(

1

4
+

π2

16

)

m4
ηm

2
K − 155

384
m4

ηm
2
π +

(

9

8
+

π2

6

)

m2
ηm

4
K

−
(

25

32
+

π2

144

)

m2
ηm

2
Km

2
π +

25

192
m2

ηm
4
π −

(

1

2
+

π2

6

)

m6
K −

(

55

96
+

31π2

144

)

m4
Km

2
π

+

(

677

864
− 5π2

162

)

m2
Km

4
π +

(

2543

1728
− 41π2

1296

)

m6
π

]

+ cππKK + cππηη + cπKKη (43)

where

cππηη =

(

m4
π

18

)

H
χ

πηη (44)

cππKK =

(

3

8
m4

K +
3

4
m2

πm
2
K − 1

8
m4

π

)

H
χ

πKK +

(

1

2
m6

π −
1

2
m2

πm
4
K

)

H
χ

2πKK (45)
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cπKKη =

(

− 5

48
m4

π +
2

3
m2

πm
2
K +

1

3
m2

πm
2
η −

5

8
m4

K +
1

4
m2

Km
2
η −

3

16
m4

η

)

H
χ

KKη

+

(

1

24
m4

πm
2
K − 19

24
m2

πm
4
K − 5

8
m2

πm
2
Km

2
η +

5

2
m6

K − 15

8
m4

Km
2
η +

3

4
m2

Km
4
η

)

H
χ

2KKη

+

(

7

48
m4

πm
2
η −

1

8
m2

πm
2
Km

2
η −

1

3
m2

πm
4
η +

1

8
m2

Km
4
η +

3

16
m6

η

)

H
χ

KK2η (46)

With ρ ≡ m2
π/m

2
K and τ ≡ m2

η/m
2
K , expanding cπKKη about s = m2

π = 0 gives:

(16π2)2cπKKη = c
(0)
KKη + c

(1)
KKη(m

2
π) + c

(2)
KKη(m

2
π)

2 +O((m2
π)

3) (47)

where

c
(0)
KKη = − 3

16
m6

η +

(

1

4
+

π2

16

)

m4
ηm

2
K −

(

9

8
+

π2

6

)

m2
ηm

4
K −

(

5

8
− 5π2

48

)

m6
K

+

(

5

16
m2

ηm
4
K − 3

16
m4

ηm
2
K

)

log2[τ ] (48)

c
(1)
KKη =

155

384
m4

η +

(

353

192
+

13π2

288

)

m4
K +

(

49

32
+

7π2

144

)

m2
ηm

2
K +

(

1

4
m2

ηm
2
K −m4

K

)

F [τ ]

+

(

1

8
m2

ηm
2
K − 3

32
m4

η

)

log[τ ]− 13

48
m2

ηm
2
K log2[τ ] +

(

3

32
m4

η −
1

8
m2

ηm
2
K +

5

16
m4

K

)

log[ρ]

(49)

c
(2)
KKη = −

(

17

96
− π2

288

)

m2
η −

(

13

48
+

π2

72

)

m2
K +

1

λ

(

m4
η

48
− m6

K

2m2
η

−
m2

ηm
2
K

24
− 13m4

K

24

)

F [τ ]

+
1

λ

(

m4
η

6
−

m2
ηm

2
K

24
− m4

K

2

)

log[τ ]− 1

48
m2

η log
2[τ ]−

(

m2
η

6
+

m2
K

3

)

log[ρ] (50)

The expressions of this section agree fully with those given in [8] when the eta masses
here are expressed in terms of the pion and kaon masses by means of the Gell-Mann-
Okubo formula. As with the expansion of the pion decay constant in m2

π, here too di-
vergences appear in the m2

π → 0 limit. These are offset by the divergences appearing in
Eqs.(40),(41),(43) and (45) in the same limit. In a similar way, the terms that do not
vanish as m2

π → 0 cancel.

5 Expansion in the Strange Quark Mass in the Isospin

Limit

As an application of the expressions presented in the preceding sections, we present their
expansion in the strange quark mass, ms. More specifically, for the pion decay constant,
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we keep the physical kaon mass constant and expand in the small quark ratio Q ≡ m̂/ms

where m̂ ≡ (mu +md)/2. Our choice of such an expansion, rather than one in which we
keep ms fixed and vary m̂, is to facilitate comparison with the results given in [5]. For the
pion mass we expand in ms to compare with [15].

The isospin limit expansion of Fπ is:

Fπ

F0
= 1 + d1

[

M2
K

(4πF0)2

]

+ d2

[

M2
K

(4πF0)2

]2

+O(m3
s) (51)

where

d1 =8(4π)2Lr
4 −

1

2
log

[

m2
K

µ2

]

+

{

8(4π)2(Lr
4 + Lr

5)− 2 log

[

m2
K

µ2

]

− 2 log[2Q]

}

Q

+

{

2− 8(4π)2(Lr
4 + Lr

5) + 2 log

[

m2
K

µ2

]

+ 2 log[2Q]

}

Q2 +O(Q3) (52)

d2 = dtree2 + dloop2 (53)

and

dtree2

32(4π)4
= Cr

16 + Lr
4(3L

r
4 + 2Lr

5 − 8Lr
6 − 4Lr

8)

+
{

Cr
15 − 2Cr

16 + 6(Lr
4)

2 + 4Lr
4L

r
5 − 16Lr

4L
r
6 − 4Lr

4L
r
8 + 2(Lr

5)
2 − 8Lr

5L
r
6 − 4Lr

5L
r
8

}

Q

+
{

Cr
14 + 5Cr

16 + Cr
17 − 3(Lr

4)
2 − 2Lr

4L
r
5 + 8Lr

4L
r
6 + 4Lr

4L
r
8 − 3(Lr

5)
2 + 4Lr

5L
r
8

}

Q2

+O(Q3) (54)

dloop2 = −11

12
log2

[

M2
K

µ2

]

+

(

32

9
D(0)

1 +
7

3
− 1

3
log

[

4

3

])

log

[

M2
K

µ2

]

− 73

32
+

1

3
log

[

4

3

]

− 16

9

(

D(0)
2 − 2 log

[

4

3

]

D(0)
3

)

+
1

3
F

[

4

3

]

+

{

5

4
log2

[

M2
K

µ2

]

+

(

−16

9
D(1)

1 +
35

12
+

5

3
log

[

4

3

]

+
1

3
log [2Q]

)

log

[

M2
K

µ2

]

+
157

48

+
7

6
log

[

4

3

]

− 8

9

(

D(1)
2 + 2D(1)

3 log

[

4

3

])

− 5

24
F

[

4

3

]

+

(

4

3
log

[

4

3

]

+ 16(4π)2(Lr
4 − Lr

5 + 2Lr
8)

)

log [2Q]

}

Q

+

{

− 41

6
log2

[

M2
K

µ2

]

+

(

2

9
D(2)

1 +
101

36
− 29

12
log

[

4

3

]

− 43

4
log [2Q]

)

log

[

M2
K

µ2

]

− 8455

1536
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− 61445

18432
log

[

4

3

]

+
8

9

(

D(2)
2 +D(2)

3 log

[

4

3

])

+
7873

24576
F

[

4

3

]

− 5 log2 [2Q]

+

(

8D(2)
4 +

29

4
− 2 log

[

4

3

])

log [2Q]

}

Q2 +O(Q3) (55)

and

D(0)
1 = (4π)2

(

13Lr
1 +

13

4
Lr
2 +

61

16
Lr
3 −

51

8
Lr
4

)

D(0)
2 = (4π)2

(

13

4
Lr
2 +

43

48
Lr
3

)

D(0)
3 = (4π)2 (4Lr

1 + Lr
2 + Lr

3 − 3Lr
4) (56)

D(1)
1 = (4π)2

(

8Lr
1 + 2Lr

2 + 2Lr
3 −

57

4
Lr
4 +

57

4
Lr
5 − 18Lr

8

)

D(1)
2 = (4π)2

(

8Lr
1 +

4

3
Lr
3 − 6Lr

4 + 18Lr
5 − 36Lr

8

)

D(1)
3 = (4π)2 (8Lr

1 + 2Lr
2 + 2Lr

3 − 3Lr
4 + 3Lr

5) (57)

D(2)
1 = (4π)2 (584Lr

1 + 308Lr
2 + 272Lr

3 − 258Lr
4 + 234Lr

5 − 432Lr
8)

D(2)
2 = (4π)2

(

5Lr
1 − 17Lr

2 −
11

6
Lr
3 −

51

2
Lr
4 + 75Lr

5 − 144Lr
8

)

D(2)
3 = (4π)2 (20Lr

1 + 5Lr
2 + 5Lr

3 − 6Lr
4 + 9Lr

5)

D(2)
4 = (4π)2 (14Lr

1 + 8Lr
2 + 7Lr

3 − 6Lr
4 + 5Lr

5 − 12Lr
8) (58)

We can then connect the chiral SU(2) constant F in terms of the chiral SU(3) LECs as
follows:

F

F0

= lim
mu,md→0

Fπ

F0

= 1 + d1

[

M2
K

(4πF0)2

]

+ d2

[

M2
K

(4πF0)2

]2

+O(m3
s) (59)

where d1 and d2 are understood to be in the limit mu = md = 0. In this limit Eq.(51)
agrees perfectly with the one-loop matching done in [5].

A similar expansion for the pion mass representation given in this paper is given below.
In this case, we express the expansion in terms of the parameter B0ms rather than M2

K so
as to facilitate comparison with the results of [15].

M2
π

(mu +md)B0

= 1 + c1

[

msB0

(4πF0)2

]

+ c2

[

msB0

(4πF0)2

]2

+O(m3
s) (60)
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where

c1 =− 16(4π)2(Lr
4 − 2Lr

6)−
2

9
log

[

4B0ms

3µ2

]

−
{

16(4π)2(2Lr
4 + Lr

5 − 4Lr
6 − 2Lr

8) +
1

9
+ log

[

4

3

]

− 8

9
log

[

4B0ms

3µ2

]

− log [2Q]

}

Q

−
{

1

36

}

Q2 +O(Q3) (61)

c2 = ctree2 + cloop2 (62)

and

ctree2

64(4π)4
=− Cr

16 + Cr
20 + 3Cr

21 + 4Lr
4(L

r
4 − 2Lr

6)

− {2Cr
13 + Cr

15 − 2Cr
20 − 12Cr

21 − 2Cr
32 − 8 (Lr

4(2L
r
4 + Lr

5 − 4Lr
6 − Lr

8)− Lr
5L

r
6)}Q

−
{

2Cr
12 + 4Cr

13 + Cr
14 + 2Cr

15 + 2Cr
16 + Cr

17 − 3Cr
19 − 6Cr

20 − 12Cr
21 − 2Cr

31

− 4Cr
32 − 4 (2Lr

4 + Lr
5) (2L

r
4 + Lr

5 − 4Lr
6 − 2Lr

8)

}

Q2 +O(Q3) (63)

cloop2 =
11

12
log2

[

B0ms

µ2

]

−
(

32

9
C(0)
1 +

380

81
− 2

9
log

[

4

3

])

log

[

B0ms

µ2

]

− 38

81
log

[

4

3

]

+
2

9
log2

[

4

3

]

+
16

9

(

C(0)
2 − 2 log

[

4

3

]

C(0)
3

)

+
73

16
− 2

3
F

[

4

3

]

+

{

97

54
log2

[

B0ms

µ2

]

−
(

16

9
C(1)
1 +

1549

162
+

5

27
log

[

4

3

])

log

[

B0ms

µ2

]

− 407

324
log

[

4

3

]

+
8

27
log2

[

4

3

]

− 8

9

(

C(1)
2 + 2 log

[

4

3

]

C(1)
3

)

+
1075

648
− 79

144
F

[

4

3

]

−
(

16C(1)
4 +

4

9
log

[

4

3

]

− 5

9
log

[

B0ms

µ2

])

log[2Q]

}

Q

+

{

1165

108
log2

[

B0ms

µ2

]

−
(

8

9
C(2)
1 +

6347

324
− 7

54
log

[

4

3

])

log

[

B0ms

µ2

]

− 11663

6912

− 71117

82944
log

[

4

3

]

− 1

54
log2

[

4

3

]

+
4

9

(

C(2)
2 − 4 log

[

4

3

]

C(2)
3

)

− 1373

36864
F

[

4

3

]

−
(

8

9
C(2)
4 +

27

2
− 1

3
log

[

4

3

]

− 119

6
log

[

B0ms

µ2

])

log[2Q] +
17

2
log2[2Q]

}

Q2 +O(Q3)

(64)
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and

C(0)
1 = (4π)2

(

26Lr
1 +

13

2
Lr
2 +

61

8
Lr
3 − 29Lr

4 −
13

2
Lr
5 + 30Lr

6 − 6Lr
7 + 11Lr

8

)

C(0)
2 = (4π)2

(

13

2
Lr
2 +

43

24
Lr
3 + 2Lr

4 +
4

3
Lr
5 − 4(Lr

6 + Lr
7 + Lr

8)

)

C(0)
3 = (4π)2

(

8Lr
1 + 2(Lr

2 + Lr
3)− 11Lr

4 − 2Lr
5 + 12Lr

6 − 6Lr
7 + 2Lr

8

)

(65)

C(1)
1 = (4π)2

(

88Lr
1 + 22Lr

2 +
53

2
Lr
3 − 76Lr

4 − 26Lr
5 + 72Lr

6 + 52Lr
8

)

C(1)
2 = (4π)2

(

88Lr
1 +

62

3
Lr
3 − 86Lr

4 −
74

3
Lr
5 + 80Lr

6 − 28Lr
7 + 40Lr

8

)

C(1)
3 = (4π)2 (16Lr

1 + 4(Lr
2 + Lr

3)− 31Lr
4 − 8Lr

5 + 36Lr
6 + 16Lr

8)

C(1)
4 = (4π)2 (3Lr

4 − 4Lr
6) (66)

C(2)
1 = (4π)2

(

332Lr
1 + 164Lr

2 +
301

2
Lr
3 − 200Lr

4 − 78Lr
5 + 312Lr

6 + 24Lr
7 + 164Lr

8

)

C(2)
2 = (4π)2

(

−204Lr
1 + 32Lr

2 −
151

3
Lr
3 + 203Lr

4 +
100

3
Lr
5 − 148Lr

6 − 22Lr
7 − 74Lr

8

)

C(2)
3 = (4π)2 (4Lr

1 + Lr
2 + Lr

3 − 10Lr
4 − 3Lr

5 + 12Lr
6 + 12Lr

7 + 10Lr
8)

C(2)
4 = (4π)2 (252Lr

1 + 144Lr
2 + 126Lr

3 − 108Lr
4 − 54Lr

5 + 216Lr
6 + 108Lr

8) (67)

From Eq.(60) we obtain the matching for B, which agrees completely with [15] in the
chiral limit:

B

B0
= 1 + c1

[

msB0

(4πF0)2

]

+ c2

[

msB0

(4πF0)2

]2

+O(m3
s) (68)

6 Numerical Analysis

We present in this section a numerical analysis of the expressions given in the preceding
sections, and discuss some of their implications.

6.1 Fπ

We begin by giving a breakdown of the relative numerical contributions of the different
terms constituting the O(p6) term of Fπ. As the expressions used in sections 3 and 4 of
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dππKK dππηη dπKKη dπsunset dπlog×log dπlog Sum

−93.227 −0.028 100.891 −0.381 1.825 −8.891 −7.447

Table 1: Numerical contributions (in units of 10−6 GeV4) of different terms to
(

F π

)(6)

loop
,

the parts not depending on LECs. The inputs to these were mπ = mπ0 = 0.1350 GeV,
mK = mavg

K = 0.4955 GeV, mη = 0.5479 GeV and Fπ = Fπ phys = 0.0922 GeV. The
renormalization scale µ = 0.77 GeV.

Fit dπlog×Li
dπLi

dπLi×Li
Sum Li Sum

BE14exact 7.475 0.064 0.817 8.356 0.909
BE14paper 7.456 0.072 0.841 8.372 0.925
free-fit 12.052 0.391 2.817 15.260 7.813
CQMfit 12.851 0.461 −0.702 12.611 5.164

Table 2: Numerical contributions (in units of 10−6 GeV4) of different terms to
(

F π

)(6)

loop
,

the part depening on the LECs. The inputs are the same as in Table 1.

[1] correspond to those expressed in physical meson masses, we use the physical values
of the masses. The caption of Table 2 gives the numerical input values we used. Our
expressions are exact except for the approximation used for dπKKη. The value calculated
using the approximate expression Eq. 29) agrees with using precise numerical expressions
for the sunset integrals in Eq. (28) to 8 significant digits. The parts that do not depend on
the LECs are given in Table 1. The large cancellations are due to the terms that diverge
for mπ → 0.

The most recent fit of LECs with a number of different assumptions are given in
Ref. [23]. Their main fit is called BE14 and can be found in Table 3 [23]. We show
results both for the exact fit results (BE14exact) and with the two digit precision given
in the reference (BE14paper). The free fit in Table 2 in [23] was done with Lr

4 free and
a slightly different choice of p6 LECs, this fit we call free-fit and finally we take the fit
with the p6 LECs estimated with a chiral quark model of Table 2 in [23], labelled CQMfit.
The results for the three Lr

i -dependent contribution, their sum and the sum including the
contributions from Table 1 are given in Table 2.

We examine the contributions calculated using the BE14exact LECs. The largest con-
tribution arises from the dlog term, followed by the dlog×Li

term. The sign of these two
terms being opposite, however, reduces the overall contribution of the explicitly µ-scale
dependent terms to the decay constant. In absolute value terms, the bilinear chiral log
terms dlog×log provide the next largest contribution. The bilinear Li terms are of an order
of magnitude smaller. The sunsets have a relatively small contribution in absolute value
terms, but due to cancellations of the other contributions, the value of dsunset is little over
a third of the total contribution to the sum.
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The sum of the contributions calculated using BE14exact (free-fit) LECs yields:

Fπ

F0
= 1 + F

(4)

π +
(

F
(6)

π

)

loop
+
(

F
(6)

π

)

CT

= 1 + 0.2085(0.3143) + 0.0126(0.1081) + 0.0755(0.0193)

= 1 + 0.2085(0.3143) + 0.0881(0.1274)

= 1.2966(1.4414) (69)

The value given in [23] is:

Fπ

F0
= 1 + 0.208(0.313) + 0.088(0.127) (70)

which agrees excellently with our representation. Note that the last term has been calcu-
lated with exact p6 LECs as used in [23].

The numerical values calculated using the free-fit LECs demonstrate the sensitivity of
the two-loop contribution to Fπ to the values of the LECs. In particular, it is to be noted
that Lr

4 and Lr
6 are difficult to determine precisely, and the free fit values for these two

low energy constants have relatively large uncertainties. The variation of (F
(6)

π )loop with
Lr
4 and Lr

6 over their possible range in the free fit is shown in Figures 2 and 3. The trend is

of a progressively smaller value of (F
(6)

π )loop for increasing Lr
6 and decreasing Lr

4. A more
thorough fit and detailed analysis of the LECs with the Fπ representation is planned for
the future aftre a similar representation for the kaon and eta have been obtained.

The dependence of Fπ/F0 on M2
K given in Eq.(59), with MK = 0.4955 GeV and F0 on

the r.h.s. replaced by the physical Fπ phys, has the following numerical form in the chiral
limit:

F

F0

= 1 + 0.1499(0.2562) + 0.0157(−0.0516) + ... (71)

The first set of numbers correspond to the use of the BE14exact LECs, while the
numbers in parentheses are calculated using the free fit. Figure 4 shows theMK dependence
of F/F0 using these inputs, keeping F0 = Fπ fixed on the. A significant divergence in the
two sets of values is observed as M2

K increases.
The largest contribution to F/F0 at O(m2

s) comes from the dtree2 term, followed by the
term proportional to log(B0ms/µ

2). In absolute terms, the pure number contribution to
d2 is greater than that of the (−11/12) log(B0ms/µ

2) term, but its sign being negative, the
pure number serves to decrease the numerical size of d2, as do all the remaining terms as
well. Ignoring the terms proportional to the Li in dloop2 , one gets a value of −1.4244 for
d2, in contrast to 0.4698 when the Li proportional terms are retained. The Li therefore
contribute significantly to the O(M2

K) contribution to Fπ.
The effect of the higher order terms in Q can be seen by comparing comparing Eq.(71)

with Eq.(75) below, which gives numerical values for Fπ/F0. We use a value of Q =
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cππKK cππηη cπKKη cπsunset cπlog×log cπlog Sum

11.721 0.009 −10.781 0.774 0.312 2.272 3.358

Table 3: Numerical contributions (in units of 10−7 GeV6) of different terms to (m2
π)

(6)
loop,

the parts not depending on LECs. The inputs are the same as in Table 1.

m̂/ms = 1/24.4 obtained from [24], the numerical value of d1, Eq.(52), with corrections
upto O(Q2) is:

d1 = 0.8198(1.4009) + 0.3454(0.3425)− 0.0108(−0.0107)

= 1.1544(1.7327) (72)

Similarly,

dtree2 = 2.5022(−0.0863)− 0.3229(−0.2641) + 0.0170(0.0129)

= 2.1963(−0.3375) (73)

dloop2 = −2.0324(−1.4574)− 0.0180(−0.1834)− 0.0729(−0.0718)

= −2.1233(−1.7126) (74)

Note that the O(Q) contribution of dloop2 evaluated using the BE14exact LECs is nu-
merically smaller than the O(Q2). Note too that the O(Q) value calculated using the
free fit value differs from the one calculated using BE14exact by an order of magnitude.
Putting it all together we obtain up to O(Q2, s2) the following expansion:

Fπ

F0

= 1 + 0.2111(0.3169) + 0.0024(−0.0686) + · · · (75)

gives a more accurate numerical representation of the effect on Fπ of integrating the strange-
quark mass out. The effect of the correction due to m̂ to the chiral limit is particular
pronounced at O(Q2), with the value of the chiral limit number at this order given in
Eq.(71) calculated using the BE14 fit differs from its analogous value in Eq.(75) by one
order of magnitude, due to cancelations between the different parts.

6.2 m2
π

An analysis of the expression for the pion mass produces the numerical results given in
Table 3 and 4. The large cancellations in the sunset contributions follow from the fact
that the separate parts do not vanish in the limit mπ → 0 but their sum does. Except
for CQMfit which was not a good fit in [23], the largest contribution comes from the pure
logarithmic terms, the contribution of which, however, is cancelled to a large degree by the
log×Li term of similar magnitude but opposite sign. The bulk of the net contribution to
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Fit cπlog×Li
cπLi

cπLi×Li
Sum Li Sum

BE14exact −1.681 −0.023 −0.002 −1.707 1.652
BE14paper −1.717 −0.026 −0.005 −1.748 1.610
free-fit −1.283 −0.142 −0.231 −1.657 1.701
CQMfit 1.570 −0.168 −3.844 −2.442 0.916

Table 4: Numerical contributions (in units of 10−6 GeV4) of different terms to (m2
π)

(6)
loop,

the part depening on the LECs. The inputs are the same as in Table 1.

(M
(6)
π )loop therefore comes from the sunsets diagrams and the bilinears in the chiral logs.

The cLi
and cLi×Lj

contribute very little. Using the BE14exact (free-fit) LECs, we get:

M2
π

m2
π

= 1.057(0.940) + (m2
π)

(4) + (m2
π)

(6)
loop + (m2

π)
(6)
CT

= 1.057(0.940)− 0.0051(0.1044) + 0.1254(0.1292)− 0.1769(−0.1732)

= 1.057(0.940)− 0.0051(0.1044)− 0.0515(−0.0440) . (76)

The lowest order term is determined by having the right hand side sum to 1. This agrees
well with the numerical values given in [23].

Numerically, with
√
msB0 = 0.484 GeV, F0 = 0.0922 GeV and BE14exact (free-fit)

LECs, we have for the expansion given in Eq.(68) in the chiral limit:

B

B0

= 1 + 0.0197(0.1219)− 0.0586(−0.1027) + ... (77)

Figure 5 shows the ms dependence of B/B0 for two sets of LECs, BE14exact and free-
fit. Both sets of LECs produce the same general behaviour, but are different numerically.

7 Conclusions

In this work, we have used the explicit representations of the two loop contribution to
the pion decay constant and mass in three flavour ChPT [1] to derive (semi-)analytic
expressions for them. That it is semi-analytic and not fully analytic stems from the fact
that we treated the three mass configuration sunset integrals appearing in them as an
expansion in the square of the external momentum and have retained only the first few
terms. This semi-analytic representation is nonetheless very accurate and numerically
reproduces the full result to a high degree [1, 2].

We have used these expressions to expand Fπ and Mπ in the strange quark mass to
O(m2

s) and to perform the matching of two flavour low energy constants B and F with
their three flavour counterparts in the chiral limit. The results obtained fully agree with
those previously derived in [5, 15, 25].
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Aside from an investigation of the numerical implications of the strange quark expansion
of both Fπ and B0, we have also done a preliminary study of the dependence of Fπ on the
low energy constants Lr

4 and Lr
6. These show trends that are possibly in contradiction with

the large Nc analysis of these LECs, and a more detailed study needs to be done. The
breakdown of the relative numerical contributions to the pion decay constant at two loops
shows that the contribution from the terms involving the Lr

i and Cr
i , although not large, is

not insignificant. Their contribution is amplified partially due to the cancellation of other
terms that have a larger absolute value. Furthermore, in the chiral limit ms expansion,
the terms proportional to the low energy constants contribute greatly to the O(m2

s) term.
All these point to the need for a thorough study into the dependence of such quantities on
the LECs for a better understanding of the chiral perturbation series.

In forthcoming work, we will present similar semi-analytic expressions for the three
flavour two-loop contributions to the kaon and eta mass and decay constants, and use
those results and the ones presented in this work to do a preliminary fit of lattice data
to obtain new values for some low energy constants. That exercise, along with the results
and analyses presented in this work, are indicative of the usefulness of such analytic rep-
resentations of ChPT amplitudes and other quantities, and will hopefully encourage and
facilitate the lattice community in making use of full NNLO results from ChPT.
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A Two Mass Sunset Master Integrals

The finite parts of the master integrals appearing in the expressions for dπKK and dπηη are
presented here. The chiral logarithms arising from these integrals do not appear in the
expressions below, having been removed and included in the clog, clog×log, dlog or dlog×log

term as appropriate.

H
χ

πKK =
m2

K

(16π2)2

(

2 +
π2

6
+

m2
π

m2
K

(

π2

12
− 1

8

)

− m2
π

2m2
K

log2
[

m2
π

m2
K

]

+ log

[

m2
π

m2
K

]

+

(

m2
K

m2
π

+
m2

π

m2
K

− 2

)(

Li2

[

m2
π

m2
K

]

+ log

[

1− m2
π

m2
K

]

log

[

m2
π

m2
K

]))

(78)

H
χ

2πKK =
1

(16π2)2

(

π2

12
− 1

2
− 1

2
log2

[

m2
π

m2
K

]

+

(

1− m2
K

m2
π

)(

Li2

[

m2
π

m2
K

]

+ log

[

m2
π

m2
K

]

log

[

1− m2
π

m2
K

]))

(79)

The expressions for H
χ

πηη and H
χ

2πηη can be obtained from the above by making the
replacement mK → mη.
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