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Abstract: A unification of left-right SU(3)L × SU(3)R, color SU(3)C and family SU(3)F

symmetries in a maximal rank-8 subgroup of E8 is proposed as a landmark for future
explorations beyond the Standard Model (SM). While the product of the first three SU(3)’s
is known as the gauge trinification originating from E6, an addition of the SU(3)F family
symmetry represents yet another possible but unexplored layer of high-scale unification due
to an E6×SU(3)F ⊂ E8 embedding. We discuss the implications of such an embedding in a
supersymmetric (SUSY) model based on the trinification gauge [SU(3)]3 and global SU(3)F

family symmetries with a constrained set of SUSY conserving and soft SUSY breaking
operators. Among the key properties of this model are the unification of SM Higgs and
lepton sectors predicting a common Yukawa coupling for chiral fermions, the absence of
the µ-problem, gauge couplings unification and baryon number conservation at the Grand
Unification scale, as well as light SM fermions. The minimal field content that may lead
to a consistent SM-like effective theory at low energies is composed of one E6 27-plet per
generation as well as three gauge and one family SU(3) octets belonging to the fundamental
sector of E8. The details of the corresponding (SUSY and gauge) symmetry breaking scheme
and the resulting effective low-energy scenarios are discussed.
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1 Introduction

The search for a complete Grand-Unified Theory (GUT) containing the Standard Model
(SM) as its low-energy effective field theory (EFT) limit has been ongoing for a few decades
by now. While several candidate GUTs unifying the strong and electroweak interactions
have been proposed and explored in some of the basic aspects so far, a detailed understand-
ing of the SM origin, with all its parameters, hierarchies, symmetries and particle content
known from phenomenology, remains a big challenge for the theoretical physics community.

Some of the most popular SM extensions are based on supersymmetric (SUSY) GUTs
where the SM gauge interactions are unified under simple symmetry groups such as SU(5)

and SO(10) [1–7] as well as E6
1 and E7 [11]. A particularly appealing scenario pro-

posed by Glashow in 1984 [12] is based upon the rank-6 trinification symmetry [SU(3)]3 ≡
SU(3)L × SU(3)R × SU(3)C n Z3 ⊂ E6 (T-GUT, in what follows) where all matter fields
are embedded in bi-triplet representations and due to the cyclic permutation symmetry Z3,
the corresponding gauge couplings unify at the T-GUT Spontaneous Symmetry Breaking
(SSB) scale, or GUT scale in what follows.

Many phenomenological and theoretical studies of T-GUTs in both SUSY and non-SUSY
formulations have been inspired by their unique features (see e.g. Refs. [13–36]). For ex-
ample, due to the fact that quarks and leptons belong to different gauge representations in
T-GUT scenarios, the baryon number is naturally conserved by gauge interactions [15], only
allowing for proton decay via Yukawa interactions. As was shown for a particular T-GUT
realisation in Ref. [26], the proton decay rates were consistent with experimental limits in
the case of low-scale SUSY, or completely unobservable in the case of split SUSY. Many
T-GUTs can also accommodate any quark and lepton masses and mixing angles [15, 30]
whereas neutrino masses are generated by a see-saw mechanism [23] of radiative [26] or
inverse [28] type.

Despite a notable progress in exploring the gauge couplings unification, neutrino masses,
Dark Matter candidates, TeV-scale Higgs partners, collider and other phenomenological
implications of GUTs, there are several yet unresolved problems. A general challenge in
GUT model building (and particularly so in T-GUT), has to do with the existence of an
appropriate stable vacuum with spontaneously broken GUT symmetry down to the SM
gauge group. Namely, the lower the number of free parameters at the GUT scale, the more

1The E6-based models are typically motivated by heterotic string theories where massless sectors con-
sistent with the chiral structure of the SM are naturally described by an E8 × E′

8 gauge theory. For more
details we refer the reader to Refs. [8–10]
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difficult it is to find a realizable GUT scenario with a SM-like EFT limit at low energies.
In turn, less unification at the GUT scale typically leads to a more technically cumbersome
search for a SM-like EFT (with less predictive power). In typical T-GUT realizations, a
large amount of fields and free parameters makes it challenging to derive even basic features
of their low-energy EFT limit using the renormalization group (RG) analysis.

Another problem in the case of SUSY T-GUT model building is the longstanding issue
of avoiding GUT scale masses for the would-be SM leptons. For this purpose, one usually
introduces either several unmotivated E6 27 Higgs representations [15, 18, 20, 21, 25, 26, 28–
31, 33, 37] acquiring vacuum expectation values (VEVs), which spontaneously break gauge
trinification to the SM gauge symmetry, or higher-dimensional operators [20, 21, 25, 28,
38]. These approaches typically require a significant fine-tuning in high-scale parameter
space (especially, in the Yukawa sector) to reach a SM-like limit [26]. Otherwise, they
exhibit phenomenological issues with proton stability [15, 21, 26] and with a large amount
of unobserved light states [12, 20, 30, 31, 34, 38]. Despite a continuous progress, the SM-like
EFTs originating from T-GUTs still remain underdeveloped in comparison to other GUT
models such as SU(5), SO(10) or even E6 (see e.g. Ref. [32] and references therein).

In this paper, we explore in detail a recently proposed SUSY T-GUT model [39] with a
global SU(3)F family symmetry inspired by the embedding of E6× SU(3) into E8 and with
the trinification subgroup fully contained in E6. We will refer to this model as the SUSY
Higgs-Unified Trinification (SHUT) model. As we will see, the SHUT model offers solutions
to some of the problems faced by previous T-GUTs. As the light Higgs and lepton sectors
are unified, the model can be embedded into a single E8 representation. Furthermore,
as the embedding suggests the introduction of adjoint scalars and a family SU(3)F which
protects the SM fermions from acquiring masses before electroweak symmetry breaking
(EWSB) due to an interplay between the gauge and family symmetries. The proton is
stable at the GUT scale to all orders in perturbation theory while in the low-energy EFT
limit, depending on the fermion mixing angles and on the effective Higgs sector, it can in
principle be marginally destabilized via tree-level qubic scalar couplings and loop-induced
Yukawa interactions (c.f. Ref. [15]). Besides, it provides a unification of the high-scale
Yukawa sector into a single coupling, a unique feature of this model strongly constraining
the particle spectra and interactions at low energies. This is in variance to well-known
SO(10) and Pati-Salam models where the Yukawa unification is constrained to the third
family only (see e.g. Refs. [40–52]).

The full Yukawa and gauge unification in the SHUT model largely reduces its parame-
ter space, making a complete analysis of its low-energy EFT scenarios technically feasible.
The model also has a particular feature of triggering the gauge symmetry breaking be-
low the GUT scale through parameters of the soft SUSY breaking Lagrangian. As soft
SUSY breaking parameters are protected from GUT-scale radiative corrections, it allows a
strong hierarchy between the GUT scale and further gauge symmetry breaking scales that
is preserved at quantum level.

In Sect. 2 we brielfy discuss the key features of the SHUT model and its SSB scheme.
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In Sect. 3 we introduce the high-scale SHUT model in its minimal setup in detail. In
particular, we discuss its features and the details on how it solves the longstanding problems
of previous T-GUT realizations and how the GUT-scale SSB in this model leads to a Left-
Right (LR) symmetric SUSY theory. In Sect. 4 we discuss the inclusion of soft SUSY
breaking interactions and how they lead to a breaking of the remaining gauge symmetries
down to the SM gauge group. In Sect. 5 we provide a discussion of the possible low-energy
EFTs, before concluding in Sect. 6.

A short note on notation

In this article we adopt the following notations:

• Supermultiplets are always written in bold (e.g. ∆). As usual, the scalar components
of chiral supermultiplets and fermionic components of vector supermultiplets carry a
tilde (e.g. ∆̃), except for the Higgs-Higgsino sector where the tilde serves to identify
the fermion SU(2)L × SU(2)R bi-doublets (e.g. H̃).

• Fundamental representations carry superscript indices while anti-fundamental repre-
sentations carry subscript indices.

• SU(3)K and SU(2)K (anti-)fundamental indices are denoted by k, k′, k1, k2 . . . forK =

L,R,C, respectively.

• Indices belonging to (anti-)fundamental representations of SU(3)F are denoted by
i, j, k . . . .

• If a field transforms both under gauge and global symmetry groups, the index cor-
responding to the global one is placed within the parenthesis around the field, while
the indices corresponding to the gauge symmetries are placed outside.

• Global symmetry groups will be indicated by {. . . }.

2 Left-Right-Color-Family unification

In the Glashow’s formulation of trinified [SU(3)L × SU(3)R × SU(3)C] n Z3 ⊂ E6 (LRC-
symmetric) gauge theory [12], three families of the fermion fields from the SM are arranged
over three 27-plet copies of the E6 group, namely,

27i → Li ⊕Qi
L ⊕Qi

R ≡ (3l, 3̄r,1
x)i ⊕ (3̄l,1

r,3x)i ⊕ (1l,3r, 3̄x)i , i = 1, 2, 3 ,

while the Higgs fields responsible for a high-scale SSB are typically introduced via e.g. an
additional 27-plet. Here and below, the left, right, and color SU(3) indices are denoted by
l, r, and x, respectively, while the fermion families are labeled by an index i.

The SHUT model first presented in Ref. [39], in variance to the Glashow’s trinification,
introduces the global family symmetry SU(3)F which acts in the space of fermion gener-
ations. In this case, the light Higgs and lepton superfields, as well as quarks and colored
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[SU(3)C × SU(3)L × SU(3)R] ×
{SU(3)F × U(1)W ×U(1)B}

[SU(3)C × SU(2)L ×U(1)L × SU(2)R ×U(1)R] ×
{SU(2)F × U(1)F × ����U(1)W ×U(1)B}

[SU(3)C × SU(2)L × SU(2)R ×U(1)L+R] ×
{SU(2)F × U(1)S × ����U(1)S′ ×U(1)B}

[SU(3)C × SU(2)L ×U(1)Y] ×
{U(1)T × ����U(1)T′ ×U(1)B}

〈
∆̃8

L,R,F

〉
∼ v

〈
φ̃3
〉
∼ msoft � v

〈
φ̃2
〉
,
〈
ν̃1

R

〉
. msoft

Figure 1. The symmetry breaking scheme in the SHUT model studied in this work. The symmetry
groups in red correspond to the accidental symmetries of the high-scale theory. The global accidental
U(1)W and, consequently, its low-energy counterparts U(1)S′,T′ discussed below are considered to be
softly broken at low-energy scales and thus are shown as crossed-out symmetry groups.

scalars, all are unified into a single (27,3)-plet under E6 × SU(3)F symmetry, i.e.

(27,3)→
(
Li
)l
r ⊕

(
Qi

L

)x
l ⊕
(
Qi

R

)r
x ≡ (3l, 3̄r,1

x,3i)⊕ (3̄l,1
r,3x,3i)⊕ (1l,3r, 3̄x,3

i) .

The leptonic tri-triplet superfield
(
Li
)l
r that unifies the SM left- and right-handed leptons

and SM Higgs doublets can be conveniently represented as

(
Li
)l
r =

H11 H12 eL

H21 H22 νL

ecR νcR φ


i

, (2.1)

Besides, the left-quark
(
Qi

L

)x
l and right-quark

(
Qi

R

)r
x tri-triplets are

(
Qi

L

)x
l =

(
uxL d

x
L D

x
L

)i
,(

Qi
R

)r
x =

(
ucRx d

c
Rx D

c
Rx

)> i
.

(2.2)

In addition, the SHUT model also incorporates the adjoint (namely, SU(3)L,R,C,F octet)
superfields ∆L,R,C,F. The first SSB step in the SHUT model SU(3)L,R,F → SU(2)L,R,F ×
U(1)L,R,F is triggered at the GUT scale by the SUSY-preserving vacuum expectation values
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(VEVs) in the scalar components of the corresponding octet superfields while all the subse-
quent low-scale SSB steps are triggered by VEVs in the leptonic tri-triplet

(
Li
)l
r through

parameters of the soft-SUSY breaking operators.

Along this work, we will be focused on the symmetry breaking scheme shown in Fig. 1.
There it can be seen that an accidental global U(1)B ×U(1)W symmetry (which is marked
in red and will be discussed in detail in the next section) appears in the high-scale theory.
As we will see, although alternative breaking schemes are possible, this is the one leading
to the low energy SM-like scenarios we find most interesting. As we shall see in Sec. 5.1,
dimension-3 operators that softy break U(1)W, and consequently its low-energy decendants
(that will be denoted below as U(1)S′,T′), are needed for a phenomenologically viable low-
scale fermion spectrum. Such interactions do not have a perturbative origin from the
high-scale theory and are added to the effective theory that emerges once the heavy degrees
of freedom of the SHUT model are integrated out. Provided that a small soft breaking of
U(1)B is possible and can be made consistent with the proton decay constraints, without
any loss of generality we leave U(1)B unbroken in this work, for simplicity.

3 Supersymmetric trinification with global SU(3)F

We will start by reviewing the SHUT model, its symmetries, particle content and interac-
tions in detail. Then, we discuss how the model addresses the shortcomings of previous
T-GUTs and different possibilities for the minimal field content that could contain the
would-be SM fields. Finally, we show what happens after the symmetries of the theory
are broken spontaneously by adjoint field VEVs and discuss the features of the resulting
LR-symmetric SUSY theory, including the remaining symmetries and how its parameters
are related to those in the high-scale SHUT model.

3.1 Tri-triplet sector

In the following, we consider the SHUT model – a SUSY GUT theory based on the trinifi-
cation gauge group with an accompanying global SU(3)F family symmetry, i.e.

G333{3} ≡ [SU(3)L × SU(3)R × SU(3)C] n Z(LRC)
3 × {SU(3)F} . (3.1)

Here and below, curly brackets indicate global (non-gauge) symmetries. The minimal chiral
superfield content (shown in Tab. 1) that can accommodate the SM (Higgs and fermion)
fields, is comprised of three tri-triplet representations of G333{3} which we label as L, QL

and QR respectively (for their explicit relation to the SM field content, see Eqs. (2.1)
and (2.2)). The Z(LRC)

3 in Eq. (3.1) is realized on the chiral and vector superfields as the
simultaneous cyclic permutation within {L,QL,QR} and {VL,VC,VR} sets, respectively,
where VL,R,C are the gauge (super)fields for the respective gauge SU(3)L,R,C groups. The
Z(LRC)

3 symmetry enforces the gauge couplings of the SU(3)L,R,C groups to unify, i.e. gL =

gR = gC ≡ gU.
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Chiral supermultiplet fields

Superfield SU(3)C SU(3)L SU(3)R SU(3)F

Lepton
(
Li
)l
r 1 3l 3̄r 3i

Left-Quark
(
Qi

L

)x
l 3x 3̄l 1 3i

Right-Quark
(
Qi

R

)r
x 3̄x 1 3r 3i

Table 1. Tri-triplet chiral superfields in the SHUT model and their quantum numbers.

Considering the embedding of the trinification gauge group into E6, the three bi-triplets in
each generation can be thought of as originating from an E6 27-plet that branches as

27 =
(
3,3,1

)
⊕
(
1,3,3

)
⊕
(
3,1,3

)
(3.2)

under E6 ⊃ [SU(3)]3. All fields in Tab. 1 can therefore be contained in a (27,3) rep-
resentation of E6 × SU(3)F. In turn, the group E6 × SU(3)F is a maximal subgroup of
E8,

E8 ⊃ E6 × SU(3)F , (3.3)

where the (27,3) fits neatly into the 248 irrep of E8 whose branching rule is given by

248 = (1,8)⊕ (78,1)⊕ (27,3)⊕
(
27,3

)
. (3.4)

In this work, we treat SU(3)F as a global symmetry. While considerably simpler, the
trinification model with global SU(3)F can be viewed as the principal part of the fully
gauged version in the limit of a vanishingly small family-gauge coupling gF � gU. Such
a restricted model can thus be a first step towards the fully gauged E8-based version. As
a consequence of this, in the current work we restrain ourselves from soft breaking of the
family symmetry that is fully contained in E8.

Considering only renormalizable interactions, the symmetry group G333{3} allows for just a
single term in the superpotential with the tri-triplet superfields,

W = λ27 εijk
(
Li
)l
r

(
Qj

L

)x
l

(
Qk

R

)r
x . (3.5)

where λ27 can be taken to be real without any loss of generality. As the light Higgs and
lepton sectors are fully contained in the single tri-triplet L, this construction provides an
exact unification of Yukawa interactions of the fundamental superchiral sector and the
corresponding scalar quartic couplings to a common origin, λ27.

The superpotential in Eq. (3.5) comes with an accidental continuous U(1)W ×U(1)B sym-
metry as we can perform independent phase rotations on two of the tri-triplets as long
as we do a compensating phase rotation on the third. We can arrange the charges of the
tri-triplets under U(1)W × U(1)B as shown in Tab. 2, such that U(1)B is identified as the
symmetry responsible for baryon number conservation.
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U(1)W U(1)B

L +1 0

QL −1/2 +1/3

QR −1/2 −1/3

Table 2. Charge assignment of the tri-triplets under the accidental symmetries.

The model with the superpotential in Eq. (3.5) also exhibits an accidental symmetry under
LR-parity. This is realized at the superspace level as(

Li
)s
t ↔ −

(
L∗i
)
t
s ,

(
Qi

L

)x
s ↔

(
Q∗Ri

)
s
x , V a

L ↔ −V a
R , V a

C ↔ −V a
C (3.6)

accompanied by
xµ ↔ xµ , θα → −iθ†α . (3.7)

Here, α is the spinor index on the Grassman valued superspace coordinate θ. Note that s
and t in Eq. (3.6) label both SU(3)L,R indices as such representations are swapped under
LR-parity. At the Lagrangian level, the LR-parity transformation rules become(

L̃i
)s
t ↔ −

(
L̃∗i
)
t
s ,

[(
Li
)s
t

]
α
↔ −i

[(
L†i
)
t
s
]α

,(
Q̃iL
)x
s ↔

(
Q̃∗Ri

)
s
x ,

[(
QiL
)x
s

]
α
↔ i

[(
Q†Ri

)
s
x
]α

,

GaLµ ↔ GaR
µ , GaCµ ↔ GaC

µ , [λ̃aL]α ↔ i[λ̃aR
†]α , [λ̃aC]α ↔ i[λ̃aC

†]α

(3.8)

which can be verified by expanding out the components of the superfields in Eq. (3.6). In
this model, LR-parity exists already at the SU(3) level, unlike common SU(2)L × SU(2)R

LR-symmetric realisations. Note also that there exist the corresponding accidental Right-
Colour and Colour-Left parity symmetries due to the Z(LRC)

3 permutation symmetry im-
posed in the SHUT model.

As mentioned in the Introduction, one of the main drawbacks of a SUSY T-GUT (as well
as any SUSY GUT with very few free parameters) is the difficulty for spontaneous breaking
of large symmetries. For example, while the non-SUSY T-GUT in Ref. [36] has no problem
with SSB down to a LR-symmetric theory, when including SUSY the additional relations
between potential and gauge couplings make it so that there is no minimum of the potential
allowing for that breaking. Moreover, even when relaxing the family symmetry, any VEV
in e.g. L̃i induces mass terms that mix the Li fermions with the gauginos λ̃aL,R through
D-term interactions of the type

LD = −
√

2gU

(
L̃∗i
)
l1
r (Ta)

l1
l2

(
Li
)l2

rλ̃
a
L . (3.9)

This is a common problem in the previous T-GUT realizations as the number of light fields
would not be enough to accommodate the particle content of the SM at low energies. While
it is possible to get around this issue by adding extra Higgs multiplets to the theory and
making them responsible for the SSB, this significantly increases the amount of light exotic

– 7 –



fields that might be present at low energies but are unobserved. Such theories typically
contain a very large number of free parameters and a fair amount of fine tuning which
significantly reduces their predictive power.

The solution we propose in the SHUT model with the light Higgs-lepton unification is to
add the adjoint SU(3)L,R,C,F chiral supermultiplets, ∆L,R,C,F, in addition to promoting the
flavor index i of the tri-triplets to a fundamental index of the additional SU(3)F family
symmetry such that

27i → (27,3) of E6 × SU(3)F ⊂ E8 . (3.10)

By triggering the first SSB, while preserving SUSY, VEVs in scalar components of ∆L,R,F

do not lead to heavy “would-be” SM lepton fields. In addition, the scalar and fermion
components of ∆L,R,C all are automatically heavy after the breaking and thus do not
remain in the low-energy theory whereas one SU(2)F doublet in ∆F remains light. In the
next section, we will also discuss how the adjoint supermultiplets can be motivated as well
by the embedding of the T-GUT symmetry into E6 × SU(3)F ⊂ E8 and the details of the
SSB triggered by their VEVs.

3.2 SU(3) adjoint superfields

The addition of gauge adjoint superfields together with the family symmetry is the main
feature preventing the SM leptons from getting a GUT-scale mass. As was briefly mentioned
above, the gauge and family SU(3) adjoints are motivated by the (78,1) and (1,8) repre-
sentations of E6 × SU(3)F (present in the branching rule of the 248-rep in its embedding
into E8 as shown in Eq. (3.4)). Indeed, the 78-rep, in turn, branches as

78 = (8,1,1)⊕ (1,8,1)⊕ (1,1,8)⊕
(
3,3,3

)
⊕
(
3,3,3

)
, (3.11)

under E6 ⊃ [SU(3)]3. We include three gauge-adjoint chiral superfields ∆L,R,C correspond-
ing to (8,1,1), (1,8,1) and (1,1,8) in Eq. (3.11), respectively, as well as the family SU(3)F

adjoint, ∆F (all listed in Table 3). The transformation rule for the Z(LRC)
3 symmetry in

G333{3} is now accompanied by the cyclic permutation of {∆L,∆C,∆R} fields.

In order to keep the minimal setup, in this work we will not consider the fields that cor-
respond to

(
3,3,3

)
and

(
3,3,3

)
from Eq. (3.11) for simplicity. Note, they can be very

heavy and are not directly coupled to the fundamental reps containing the SM sector nei-
ther through superpotential terms nor through soft SUSY breaking interactions but only
via gauge interactions.

By introducing the adjoint chiral superfields, we have to add the following terms

W ⊃
∑

A=L,R,C

[
1

2
µ78 ∆a

A∆a
A +

1

3!
λ78 dabc∆

a
A∆b

A∆c
A

]
+

1

2
µ1∆a

F∆a
F

+
1

3!
λ1dabc∆

a
F∆b

F∆c
F ,

(3.12)
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Chiral supermultiplet fields

Superfield SU(3)C SU(3)L SU(3)R SU(3)F

Colour-adjoint ∆a
C 8a 1 1 1

Left-adjoint ∆a
L 1 8a 1 1

Right-adjoint ∆a
R 1 1 8a 1

Family-adjoint ∆a
F 1 1 1 8a

Table 3. SU(3) adjoint chiral superfields in the SHUT model and their representations.

to the superpotential in Eq. (3.5). Here, dabc = 2Tr[{Ta, Tb}Tc] are the totally symmet-
ric SU(3) coefficients. We can pick the phase of ∆L,R,C,F to make µ78 and µ1 real, which
makes λ78 and λ1 complex, in general. Notice that the superpotential provides no renormal-
isable interaction terms between the adjoint superfields and the tri-triplets. The accidental
U(1)W×U(1)B symmetry of the tri-triplet sector is not affected by ∆L,R,C,F as we can take
these fields simply to not transform under this symmetry. We can make the gauge inter-
actions parity-invariant by defining the following transformation rule for the gauge adjoint
fields,

∆̃a
L ↔ ∆̃∗aR , ∆̃a

C,F ↔ ∆̃∗aC,F , [∆a
L]α ↔ i[∆†aR ]α , [∆a

C,F]α ↔ i[∆†aC,F]α (3.13)

or, equivalently, ∆a
L,R,C,F ↔ ∆∗aR,L,C,F at the superfield level. However, parity is not gen-

erally respected by the F-term interactions unless λ78 is real. In what follows, we assume
a real λ78, for simplicity, whereas the accidental LR-parity can be explicitly broken by the
soft SUSY breaking sector of the theory, at or below the GUT scale.

Now, for illustration, let us discuss briefly the first symmetry breaking step which determines
the GUT scale in the SHUT model (see Fig. 1). Eq. (3.12) leads to a scalar potential
containing several SUSY-preserving minima with VEVs that are most conveniently put in
the eighth component of ∆̃8

L,R,F. In particular, there is a SU(3)C and LR-parity preserving
minimum with

〈∆̃a
L,R〉 =

vL,R√
2
δa8 with vL,R = v ≡ 2

√
6
µ78
λ78

, vC = 0 , (3.14)

for the gauge-adjoints, and

〈∆̃a
F〉 =

vF√
2
δa8 with vF = 2

√
6
µ1
λ1

, (3.15)

for the family-adjoint, setting the GUT scale v ∼ vF. The vacuum structure 〈∆̃8
L,R,F〉 6= 0

leads to the spontaneous breaking SU(3)L,R,F → SU(2)L,R,F ×U(1)L,R,F (see Appendix A
for the corresponding generators and U(1) charges), resulting in the unbroken group

G32211{21} ≡ SU(3)C × [SU(2)L × SU(2)R ×U(1)L ×U(1)R]× {SU(2)F ×U(1)F} . (3.16)

Indeed, LR-parity also remains unbroken since vL = v∗R, which is true as long as λ78 is
taken to be real.
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By making the shift

∆a
L,R →∆a

L,R +
v√
2
δa8 , ∆a

F →∆a
F +

vF√
2
δa8 (3.17)

and substituting µ78 = λ78 v
2
√

6
, µ1 = λ1 vF

2
√

6
in the superpotential, we obtain

W ⊃
∑

B=L,R

[
λ78 v

2
√

2

(
daa8 +

1

2
√

3

)
∆a
B∆a

B +
1

3!
λ78 dabc∆

a
B∆b

B∆c
B

]

+
λ1 vF

2
√

2

(
daa8 +

1

2
√

3

)
∆a

F∆a
F +

1

3!
λ78 dabc∆

a
F∆b

F∆c
F

+
λ78 v

4
√

6
∆a

C∆a
C +

1

3!
λ78 dabc∆

a
C∆b

C∆c
C + const.

(3.18)

Note, due to daa8 = −1/(2
√

3) for a = 4, 5, 6, 7 the quadratic terms in the superpotential
vanish for ∆4,5,6,7

L,R,F , meaning that these fields receive no F-term contribution to their masses
(contrary to the other components of ∆L,R and ∆F which receive GUT-scale masses m2

∆ ∼
λ2
78v

2 and λ2
1v

2
F, respectively). While the global Goldstone bosons Re[∆̃4,5,6,7

F ] are present
in the physical spectrum, the gauge ones become the longitudinal polarisation states of the
heavy gauge bosons related to the breaking G333 → G32211.

The presence of massless scalar degrees of freedom can only be avoided in the extended
model with the gauged family symmetry. It is clear, however, that even in the case of
an approximately global SU(3)F with gF � gU there are no massless Goldstones in the
spectrum (provided that the accidental symmetries are softly broken at low energies) but
a set of relatively light family gauge bosons very weakly interacting with the rest of the
spectrum which is a viable solution.

By performing the shifts in Eq. (3.17) in the D-terms, we obtain

DaB ⊃ −ifabc∆̃b
B
†∆̃c

B → −i
v√
2
fa8b

(
∆̃b
B − ∆̃b

B
†
)
− ifabc∆̃b

B
†∆̃c

B, (3.19)

for B = L,R leading to the universal GUT-scale mass term m2 = 3g2
Uv

2/4 for the gauge-
adjoints Im[∆̃4,5,6,7

L,R ], while ∆̃4,5,6,7
F have no D-term contribution (or a small one in the case

of approximately global SU(3)F with gF � gU). Hence, all components of the gauge adjoints
and ∆̃1,2,3,8

F receive masses of order GUT scale and are integrated out in the low-energy
EFT. The remaining ∆̃4,5,6,7

F , on the other hand, receive a much smaller mass from the soft
SUSY breaking sector (and strongly suppressed D-terms) and stay in the physical spectrum
of the EFT. In what follows, we shall denote by Hi

F the superfields containing Im[∆̃4,5,6,7
L,R ],

while Re[∆̃4,5,6,7
L,R ] are embedded in the superfield GiF alongside with its fermionic partners.

3.3 LR-symmetric SUSY theory

As shown in the previous section, all components of the gauge adjoint chiral superfields
receive masses on the order of the GUT scale (O(v)) in the vacuum given by Eq. (3.17).
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This means that to study the low-energy predictions of the theory, we need to integrate out
∆L,R,C, as well as components 1, 2, 3 and 8 of ∆F.

For the gauge sector of the SHUT model, 〈∆̃L,R〉 naturally triggers a SU(3)L,R → SU(2)L,R×
U(1)L,R breaking also for the tri-triplets (whose interactions with ∆̃L,R are mediated via
V a

L,R gauge bosons). For the global SU(3)F sector, there is no coupling of ∆̃F to the tri-
triplets and, thus, the SU(3)F symmetry remains intact (or approximate in the case of
gF � gU) in the tri-triplet sector, resulting in G32211{3} rather than G32211{21}. Integrating
out ∆L,R,C, and components 1, 2, 3 and 8 of ∆F, therefore leaves us with a supersymmetric
theory based on the symmetry group G32211{3}, with a chiral superfield content given by
∆4−7

F and by the branching of L, QL and QR.

Writing the trinification tri-triplets in terms of G32211{3} representations one gets,

(
Li
)l
r =


H11 H12 eL

H21 H22 νL

ecR νcR φ


i

,

(
Qi

L

)x
l =

(
uxL d

x
L D

x
L

)i
,(

Qi
R

)r
x =

(
ucRx d

c
Rx D

c
Rx

)> i
,

(3.20)

where the vertical and horizontal lines denote the separation of the original tri-triplets into
SU(2)-doublets and singlets after the first SSB step. We will refer to the lepton and quark
SU(2)L,R doublets asEL,R and qL,R. With this, we find that the most general superpotential
consistent with G32211{3} is

W = εijk

{
y1φ

iDL
jDR

k + y2(H i)LR(qL
j)L(qR

k)R

+y3(EL
i)L(qL

j)LDR
k + y4(ER

i)RDL
j(qR

k)R
}
.

(3.21)

Note, in this effective SUSY LR theory one could naively add a mass term like εijµ̃Hi
FGiF

(that is symmetric under SU(2)F×U(1)F but not under full SU(3)F) between the massless
components of the family-adjoint superfield, Hi

F , and the massless superfield GiF containing
the Goldstone bosons. Such an effective µ-term is matched to zero at tree level at the
GUT scale. Due to SUSY non-renormalisation theorems [53], in the exact SUSY limit this
term cannot be regenerated radiatively at low energies so µ̃ is identically zero and was
not included in the superpotential given by Eq. (3.21). So, the resulting superpotential
contains only fundamental superfields coming from L, QL and QR and is indeed invariant
under SU(3)F.

In the high-scale theory, a complex λ78 would be the only source of LR-parity violation. In
the low energy theory this would lead to y3 6= y∗4. Otherwise, y3 = y∗4 and after matching is
performed we can always make any y1,2,3,4 real by field redefinitions. The same argument
applies for the equality of the corresponding LR gauge couplings for SU(2)L,R × U(1)L,R

symmetries.

Since we now have an effective LR-symmetric SUSY model containing gauge U(1)L,R, there
is a possibility of having a gauge kinetic mixing. The U(1)L,R D-term contribution to the
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Lagrangian,

L ⊃ 1

2
(χDLDR +D2

L +D2
R)− κ(DL −DR) +XLDL +XRDR , (3.22)

where the terms proportional to κ are the Fayet-Iliopoulos terms, while the D-terms and
the expressions for XL,R are shown in Appendix C.3.2.

The values of the parameters {y1,2,3,4, gC, gL,R, g
′
L,R, χ, κ} in the LR-symmetric SUSY theory

are determined by the values of the parameters {λ27, λ78, gU, v} in the high-scale trinifica-
tion theory at the GUT-scale boundary through a matching procedure2. The corresponding
values at lower energies can then be obtained by an RG analysis. In particular, we note
that the only dimensionful parameter in the effective theory is the Fayet-Iliopoulos param-
eter κ. This means that βκ ∝ κ so that if κ = 0 at the matching scale (which is true, at
least, at tree level), then κ will remain at a zero value throughout the RG flow yielding no
spontaneous SUSY breaking. Thus, we stick to the concept of soft SUSY breaking in what
follows.

4 Softly broken SUSY at the GUT scale

Assuming that SUSY is softly broken, an interesting point we would like to explore here
is the fact that the soft SUSY breaking terms can lead to a VEV in

(
L̃3
)3

3 ≡ φ̃3 ≡ ϕ̃

that is of the same order as the soft SUSY breaking scale, msoft. Such a VEV will, due to
its smallness compared to the GUT scale v, barely contribute to the symmetry breaking
caused by 〈∆̃L,R〉. However, it will break the gauge symmetry U(1)L ×U(1)R to its center
group U(1)L+R (a close analog of the U(1)B−L symmetry in the Pati-Salam models) and
will also contribute to the breaking of the global SU(3)F ×U(1)W symmetry.

4.1 The soft SUSY breaking Lagrangian

Supersymmetry is softly broken in the scalar sector via bilinear and trilinear interactions
given by

V G
soft =

{
m2

27

(
L̃i
)l
r

(
L̃∗i
)
l
r +m2

78∆̃∗aL ∆̃a
L +

[
1

2
b78∆̃a

L∆̃a
L + c.c

]
+ dabc

[
1

3!
A78∆̃a

L∆̃b
L∆̃c

L +
1

2
C78∆̃∗aL ∆̃b

L∆̃c
L + c.c.

]
+
[
AG ∆̃a

L (Ta)
l1
l2

(
L̃∗i
)
l1
r
(
L̃i
)l2

r +AḠ ∆̃a
R (Ta)

r2
r1

(
L̃∗i
)
l
r1
(
L̃i
)l
r2 + c.c.

]
+ (Z(LRC)

3 permutations)

}
+
[
A27 εijk

(
Q̃iL
)x
l

(
Q̃jR
)r
x

(
L̃k
)l
r + c.c.

]
,

(4.1)

2Since λ1 and vF parameters originate from interactions within the family-adjoint sector, they affect nei-
ther any couplings in the fundamental superfield sector nor the gauge couplings to any order in perturbation
theory.
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for the gauge-adjoints and pure tri-triplet terms, and

V F
soft = m2

1∆̃∗aF ∆̃a
F +

[
1

2
b1∆̃a

F∆̃a
F + c.c

]
+ dabc

[
1

3!
A1∆̃a

F∆̃b
F∆̃c

F +
1

2
C1∆̃∗aF ∆̃b

F∆̃c
F + c.c.

]
+
[
AF∆̃a

F (Ta)
i
j

(
L̃∗i
)
l
r
(
L̃j
)l
r + c.c.+ (Z(LRC)

3 permutations)
]
.

(4.2)
for the family adjoint. All parameters here are assumed to be real for simplicity. We note
that although trilinear terms with the gauge singlets (such as ∆̃∗F∆̃F∆̃F above) are not in
general soft, due to the family symmetry and the fact that

∑
a daab = 0, the dangerous

tadpole diagrams do indeed cancel and do not lead to quadratic divergences.

The terms in Eq. (4.1) and (4.2), which account for the most general soft SUSY breaking
scalar potential consistent with G333{3}, also respect the accidental U(1)W×U(1)B symme-
try of the original SUSY theory. However, accidental LR-parity is, in general, softly-broken
as long as AG 6= AḠ, and this breaking can then be transmitted to the other sectors of the
effective theory radiatively (e.g. via RG evolution and radiative corrections at the matching
scale).

Note that the AF-term in the soft sector introduces small SU(3)F violating (but SU(2)F ×
U(1)F preserving) effects on the interactions in the effective theory once 〈∆̃F〉 6= 0. Consider,
for example, effective quartic interactions between components of L̃ that come from two
AF tri-linear vertices connected by an internal ∆̃1,2,3

F or ∆̃8
F propagator. The value of this

diagram is ∼ iA2
F/λ

2
1v

2
F neglecting the external momentum in the propagator. Then, since

positivity of scalar masses squared in the high-scale theory requires

|AF| .
m2

27

vF
∼
m2

soft

v
, (4.3)

this diagram behaves as [msoft/v]4.

The scalar tree-level mass spectrum in the effective theory at the GUT scale (after integrat-
ing out the ∆L,R,C and heavy components of ∆F) is fully controlled by soft parameters.
Indeed, the scalar fields from the tri-triplets receive masses of the order of the soft SUSY
breaking scale. The full expressions are given in Appendix B, from which we notice that
local stability of the scalar potential requires∣∣AG,Ḡ

∣∣ v ∼ |AF| vF ∼ |A1| vF ∼ m2
soft ⇒

{∣∣AG,Ḡ,F

∣∣ . m2
27
v ,

|A1| . m2
1

vF
.

(4.4)

For the full vacuum (meta)stability conditions, see Sect. B.1.1.

The possible fermion soft SUSY breaking terms are the Majorana mass terms for the gaugi-
nos and the Dirac mass terms between the gauginos and the fermion components of ∆L,R,C,
namely,

Lfermion
soft =

[
−1

2
M0λ̃

a
Lλ̃

a
L −M ′0λ̃aL∆a

L + c.c.+ (Z(LRC)
3 permutations)

]
, (4.5)

From the transformation rules in Eqs. (3.6) and (3.13) it follows that LR-parity is not
respected by Lfermion

soft unless M ′0 = 0.
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4.2 Vacuum in the presence of soft SUSY breaking terms

As discussed above, the soft SUSY breaking terms could trigger a VEV in
(
L̃3
)3

3 ≡ ϕ̃ of
the same order as the soft SUSY breaking scale. With 〈∆8

L,R,F〉 ≡
1√
2
vL,R,F and 〈ϕ̃〉 ≡ 1√

2
vϕ

being the VEVs present, our potential evaluated in the vacuum is given by

Vvac =

[
1

2
m2

27 −
1√
6

(AGvL +AḠvR +AFvF)

]
v2
ϕ +

1

12
g2

Uv
4
ϕ +

{1

2

(
m2

78 + b78
)
v2

L

− 1√
6

(
1

3!
A78 +

1

2
C78

)
v3

L +
1

2
v2

L

(
1

2
√

6
λ78vL − µ78

)2

+ (vL → vR)
}

+
1

2

(
m2

1 + b1
)
v2

F −
1√
6

(
1

3!
A1 +

1

2
C1

)
v3

F .

(4.6)

As all other fields (that do not acquire VEVs) only enter in bi-linear combinations, it
suffices to consider the above terms to solve the conditions for vanishing first derivatives
of the scalar potential. We retain the notation v ≡ vL = vR = 2

√
6µ78/λ78 for the VEVs

of ∆̃8
L,R in the absence of soft terms. Adopting that the soft terms are much smaller than

the GUT scale, i.e. msoft � v, we can resolve the extremum conditions for vL,R,ϕ by Taylor
expanding them to the leading order in soft terms. Doing so we find

v2
ϕ ≈

3

g2
U

[
−m2

27 +

√
2

3
(AG +AḠ) v +

√
2

3
AFvF

]
,

vL,R ≈ v +
24

λ78

[
−m

2
78 + b78
v

+

√
3

2

(
1

3!
A78 +

1

2
C78

)
+

1√
6
AG,Ḡ

(vϕ
v

)2
]
.

(4.7)

As is described above, the soft tri-linear couplings AG,Ḡ, A78 and C78 need to be . m2
27/v

for the vacuum stability to hold. Adding the soft terms shifts the values of the VEVs vL,R

by a relative amount behaving as

∼
[msoft

v

]2
. (4.8)

Furthermore, we note that the presence of vϕ slightly affects the equality of vL,R,

vL − vR ≈
4
√

6

λ78

(vϕ
v

)2
(AG −AḠ) . (4.9)

The relative difference between vL,R, therefore, behaves as

∼
[msoft

v

]4
. (4.10)

That is, although the VEVs of ∆̃L,R are shifted by the soft terms, the effect is negligible and
the presence of the Z(LRC)

3 symmetry in the soft SUSY breaking sector preserves the equality
of 〈∆̃L,R〉 at tree-level (as neither AG nor AḠ enter in the tree-level extremal conditions for
these VEVs in the absence of vϕ).
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With a non-zero vϕ ∼ msoft � v, the symmetry is further broken as

U(1)L ×U(1)R × {U(1)F ×U(1)W}
〈ϕ〉→ U(1)L+R × {U(1)S ×U(1)S′} (4.11)

where U(1)L+R consists of simultaneous U(1)L,R phase rotations by the same phase. U(1)S

and U(1)S′ are also simultaneous U(1)L,R phase rotations, but with opposite phase, which
is compensated by an appropriate U(1)F and U(1)W transformation, respectively. This is
further explained in Appendix A.

In the limit of vanishingly small AF → 0 in Eq. (4.2), the model exhibits an exact global
SU(3)F′×SU(3)F′′ symmetry as we could then perform independent SU(3) family rotations
on (L,QL,R) and ∆F. With non-zero vϕ and vF, we would in this case end up with
Goldstone fields built up out of φ̃1,2 and Re[∆̃4,5,6,7

F ] from the spontaneous breaking of
SU(3)F′ and SU(3)F′′ , respectively. With AF 6= 0 the SU(3)F′×SU(3)F′′ symmetry becomes
softly broken to the familiar SU(3)F. This causes φ̃1,2 and Re[∆̃4,5,6,7

F ] to arrange themselves
into one pure Goldstone and one pseudo-Goldstone SU(2)F doublet (the mass of the latter is
proportional to AF). Since vϕ � vF, the pure Goldstone is mostly Re[∆̃4,5,6,7

F ] (it has a small
O(vϕ/v) admixture of φ̃1,2, while the pseudo-Goldstone mode is mostly φ̃1,2 containing an
O(vϕ/v) amount of Re[∆̃4,5,6,7

F ]).

4.3 Masses in presence of soft SUSY breaking terms

The inclusion of soft-SUSY breaking interactions results in the emergence of non-zero masses
for the fundamental scalars contained in the L, QL and QR superfields as well as for the
gauginos. By construction, the soft SUSY breaking parameters are small in comparison
to the GUT scale, i.e. msoft � v, which means that the heavy states in the SUSY the-
ory discussed in Sect. 3 will remain heavy and only those that were massless will receive
contributions whose size is relevant for the low-energy EFT.

The masses of the fundamental scalars are purely generated in the soft SUSY breaking
sector. Furthermore, for a vacuum where only adjoint scalars acquire VEVs as in Eq. (3.17),
there is no mixing among the components of the fundamental scalars corresponding to the
physical eigenstates at the first breaking stage shown in Fig. 1.

The Higgs-slepton mass terms (no summation over the indices is implied) read

m2(
L̃i
)l

r

= m2
27 + 2

[
AGv

(
T 8
)l
l
+AḠ

(
T 8
)r
r

+AFvF

(
T 8
)i
i

]
, (4.12)

while the corresponding squark mass terms are given by

m2(
Q̃i

L

)
l

= m2
27 + 2

[
AGv

(
T 8
)l
l
+AFvF

(
T 8
)i
i

]
,

m2(
Q̃i

R

)r = m2
27 + 2

[
AḠv

(
T 8
)r
r

+AFvF

(
T 8
)i
i

]
.

(4.13)

In Tab. 9 of appendix B we show the masses for each fundamental scalar component in the
LR-parity symmetric limit corresponding to AG = AḠ, for simplicity.
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With the introduction of a soft SUSY breaking sector, H̃F no longer stays massless receiving
a contribution of the order msoft, namely,

m2
H̃F
' 2m2

1 +O
(
m4

soft/v
2
F

)
, (4.14)

The exact expressions for scalar fields’ masses squared can be found in Tab. 10 of ap-
pendix B.

The massless superpartners of the gauge bosons associated with the unbroken symmetries
also acquire soft-scale masses. In particular, they mix with the chiral adjoint fermions
via Dirac-terms whose strength, M ′0 in Eq. (4.5), is also of the order msoft. Typically, for
minimal Dirac-gaugino models, the ad-hoc introduction of adjoint chiral superfields has
the undesirable side effect of spoiling the gauge couplings’ unification. However, in the
model studied in Refs. [54, 55], this problem is resolved by evoking trinification as the
natural embedding for the required adjoint chiral scalars needed to form Dirac mass terms
with gauginos. With this point in mind, we want to note that the SHUT model, with
softly broken SUSY at the GUT scale, is on its own a Dirac-gaugino model and a possible
high-scale framework for such a class of models.

The mass matrices for the adjoint fermions in the basis {λ̃1,2,3
L,R , ∆̃1,2,3

L,R , λ̃8
L,R, ∆̃

8
L,R} are then

Mλ̃, ∆̃ =


M0 M ′0 0 0

M ′0
vλ78√

6
+ µ78 0 0

0 0 M0 M ′0

0 0 M ′0
vλ78√

6
− µ78

 , (4.15)

which corresponds to {TL,R, T ⊥L,R,SL,R,S⊥L,R} in the diagonal basis. Here, SL,R and TL,R are
the light (soft-scale) gauginos while S⊥L,R and T ⊥L,R denote the heavy (GUT-scale) gauginos.
Note, due to a small mixing, both the low- and high-scale gauginos are essentially Majorana-
like. Indeed, as is seen from the exact expressions for the fermion masses in Tab. 11, the
mass of the former ones are approximately given by M0, while the high-scale gauginos
T ⊥L,R and S⊥L,R get their masses from F-terms being approximately equal to

(
Mλ̃, ∆̃

)2
2
and(

Mλ̃, ∆̃

)4
4
, respectively.

The same effect is observed for the gluinos g̃a whose masses areM0, for the light states, and
µ78, for the heavy states (denoted by ⊥-label in Tab. 11). There is also an SU(2)F-doublet
fermion HF that acquires a mass of the order of soft SUSY breaking scale msoft. Note
that HF as well as its superpartner H̃F receive D-term contributions if SU(3)F is gauged.
Finally, the chiral fundamental fermions are massless at this stage.

5 Low-energy scenarios and possible paths towards the SM

After VEVs in ∆̃L,R break the trinification symmetry (including Z3), subsequent gauge
symmetry breaking needs to occur in such way that a subset of the corresponding light fields
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can be identified with their SM counterparts, i.e. the light fields need to share quantum
numbers with the SM particle content. In the following we will discuss how such a consistent
SSB can happen without massless fermions below the EW SSB scale. Finally, one would
like to find a particular EFT limit of the SHUT theory that is capable to explain patterns
in the observed SM fermion mass spectrum in a way that does not contradict the existing
constraints. Here we make the first step and discuss the basic features of the EFT scenarios
as good candidates for further explorations.

Common to any possible scenario is the need for a VEV in
(
L̃i
)3

3 ≡ φ̃i and in the su-
perpartner to a right-handed neutrino

(
L̃i
)3

2 ≡ ν̃iR. While 〈φi〉 initiates the breaking
U(1)L × U(1)R → U(1)L+R, 〈ν̃iR〉 breaks the remaining gauge symmetry to that of the SM
as SU(2)R ×U(1)L+R → U(1)Y.

5.1 A consistent low-energy spectrum

As a first step, we offer in this section a short overview of the low-energy limits of the
SHUT model. In particular, we investigate whether the SM-extended symmetry, GSM ×
U(1)T × U(1)T′ as represented at the bottom of Fig. 1, leaves enough freedom to realize
the well-known SM particle spectrum and if it does not immediately contradict current
observations.

5.1.1 Colour-neutral charged fermions

Once the SU(2)R×SU(2)F symmetries are broken, the tri-doublets H̃f l
r and the bi-doublets

h̃lr are split into three distinct generations of SU(2)L doublets. We will then rename them
as H̃f l

r=1 ≡ H̃f l
u , h̃lr=1 ≡ h̃lu, H̃

f l
r=2 ≡ H̃f l

d and h̃lr=2 ≡ h̃ld, while their scalar counterparts
follow the same notation but without tildes.

Defining the components of the leptonic SU(2)L doublets according to their electric charge
(see Eq. (5.6)) as

H̃ i
u =

(
H̃ i 0

u

H̃ i+
u

)
H̃ i

d =

(
H̃ i−

d

H̃ i 0
d

)
EiL =

(
eiL
νiL

)

h̃u =

(
H̃3 0

u

H̃3 +
u

)
h̃d =

(
H̃3−

d

H̃3 0
d

)
EL =

(
e3

L

ν3
L

) (5.1)

where i = 1, 2, we can build mass terms for the charged lepton and charged Higgsinos as

LC =
(
e1

L e2
L e3

L H̃1−
d H̃2−

d H̃3−
d

)
MC

(
e1

R e2
R e3

R H̃1 +
u H̃2 +

u H̃3 +
u

)>
+ c.c. . (5.2)

Let us start by classifying all possible EW Higgs-doublet and complex-singlet bosons, whose
VEVs may have a role in the SM-like fermion mass spectra. There are three types of Higgs-
doublets distinguished in terms of their U(1)Y × U(1)T charges and one possibility for
complex singlets (and their complex conjugates). In particular, we can have
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1. (1, 1): H2,3
u , H∗1d , Ẽ∗2,3L , with VEVs denoted as •-type.

2. (1, 5): H1
u , H

∗2,3
d , with VEVs denoted as ?-type.

3. (1, −3): Ẽ∗1L , with VEVs denoted as ∗-type.

4. (0, 4): S̃1,2, with VEVs denoted as �-type.

Note that the two complex singlets emerge from the mixing
(
φ̃∗1, ν̃2

R, ν̃
3
R

)
7→
(
S̃1, S̃2, Gs

)
induced by the third breaking step in Fig. 1, with Gs being a complex Goldstone boson3.

According to the quantum numbers shown in Tab. 8 of Appendix A, the matrix MC has
the structure

MC ∼



0 ? ? 0 0 0

? • • 0 0 0

? • • 0 0 0

? • • 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0


, (5.3)

In this case, the rank of the matrix MC is three, which means that, while we may be
able to identify the correct patterns for the masses of the charged leptons in the SM, the
remaining charged massless Higgsinos are unacceptable at low energy. This effect is a direct
consequence of the unbroken accidental U(1)T′-symmetry that results from the accidental
U(1)W present in the high-scale SHUT theory. In order to get a particle content consistent
with the SM at lower energies one needs to break U(1)W at low energies.

As U(1)W is an accidental symmetry that results from the interplay between the original
imposed symmetries and the choice of the (minimal) field content, there is no strict reason
for keeping it intact below the GUT scale. Note, it is possible to incorporate the soft U(1)W-
violating interactions in the soft SUST breaking sector. Such effects can be parametrised
by introducing the allowed soft U(1)W-breaking terms

V
/W

soft =
(
AHhφH

l f
r hl

′
r′ φ̃

f ′ +AhEEh
l
rẼ

f l′

L Ẽf
′

R r′

+AhEEH
f l
r Ẽf

′l′

L ẼR r′ + ĀhEEH
f l
r Ẽf

′

R r′ Ẽ
l′
L

)
εff ′εll′ε

rr′ + c.c. .
(5.4)

Note that the trilinear couplings above are such that Aijk � v. This can be justified as
the case of softly-broken SUSY after the T-GUT symmetry breaking, V /W

soft would naturally
appear in the soft-SUSY breaking Lagrangian of the effective LR-symmetric SUSY theory
and thus should be present in the low-energy EFT4. This means that the SM symmetry
is now solely extended by U(1)T × U(1)B. As we shall see below, this largely opens up

3Note that the breaking SU(2)R×SU(2)F×U(1)L+R×U(1)S → U(1)Y×U(1)T gives rise to six Goldstone
bosons, three gauge and three global ones, where the former are Im

[
ν̃1R
]
, Re

[
ẽ1R
]
and Im

[
ẽ1R
]
while the

latter ones are Im
[
φ̃2
]
and Gs.

4The accidental U(1)B symmetry can also be broken below the GUT scale. Indeed, in the same way that
U(1)W is no longer a symmetry of the low-energy EFT if the soft-SUSY breaking interactions are to be
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the possibilities for consistent low-energy spectra, whose details are driven by the specifics
of the light Higgs sector with U(1)T being the family symmetry in the Higgs and fermion
sectors.

The most general form of the new mass matrixMC reads

MC ∼



0 ? ? 0 � �
? • • � � �
? • • � � �
? • • � � �
• ∗ ∗ � � �
• ∗ ∗ � � �


, (5.5)

where �-symbol labels allowed (different) Dirac mass terms generated before the EWSB
such that their values are not related to the Higgs VEVs and can be well above the EW
scale. We also see that the complex singlet VEVs can only have a sizable impact if their
size is of the same order of as the �-type entries. We have now a mass matrix of rank-6
which means that no charged leptons and Higgsinos are left massless after EWSB. Note that
before the EW symmetry is broken there are three massless lepton doublets. Furthermore,
due to large �-type entries the structure ofMC allows for three exotic lepton eigenstates
heavier than the EW scale. The charged leptons should then be identified as the light states
resulting from the mixing between the charged components of the original

(
EfL, H̃

f
d

)
and(

efR, H̃
f
u

)
eigenstates. In particular, when any of the Higgs-doublets (one or more) develop

VEVs one obtains the electromagnetic charge generator TQ = 1
2TY − T 3

L and the electric
charges

Q̂em


H0

u H
−
d eL

H+
u H0

d νL

ecR νcR φ


i =

0 −1 −1

1 0 0

1 0 0


i

, (5.6)

in agreement with the SM.

We see from the structure of Eq. (5.5) that, while the maximal amount of SU(2)L Higgs
doublets is nine, the minimal low-scale model needs at least two Higgs-doublets, where all
entries but the ?, • and �-type ones in Eq. (5.5) are set to zero. It is also possible to
extend each of the (2-9)HDMs by one or two complex singlets. Note also that the low-scale
remnant of the family symmetry U(1)T is non-universal in the space of fermion generations.
This means that distinct generations of Higgs bosons couple differently to different families
of SM fermions and, since not all those interactions are present at tree-level, the size of
the effective Yukawa couplings is generated at different orders in perturbation theory. As
a consequence, depending on the choice of light Higgs-doublets in the SM-like EFT, even
if sticking to the minimal 2HDM versions, the possibilities for a light Higgs sector yield
different scenarios for the mass matrix (5.5).

generated after the T-GUT SSB, U(1)B will also be softly broken in that particular case by operators like
AB

[
Q̃c f

L l q̃
c′
L l′D̃

c′′ f ′

L

]
εff ′εll

′
εcc′c′′ with AB � v. As such the requirement of exact U(1)B adopted in this

paper simplifies our consideration and does not affect our conclusions on overall consistency of the SHUT
model.
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Similarly, in the neutral sector, no massless states remain after EWSB. The main difference
has to do with the generation of neutrino masses, for which several possibilities arise and
will be studied in future work.

5.1.2 Quark sector

In the absence of the accidental U(1)T′ symmetry, the low-energy limit of the SHUT model
also offers good candidates for SM quarks without an emergence of massless states after
EWSB. To see this we first note that once φ3 develops a VEV at the second SSB stage
shown in Fig. 1, two generations of D-quarks mix and acquire mass terms of the form
mDD

f
LD

f ′

R εff ′ , with mD = O
(
msoft

)
� MEW. Then, at the third breaking stage, the

ν̃1
R and φ̃2 VEVs trigger a mixing between the R-type quarks Di

R and diR, which makes it
convenient to move to the basis

d1
R 7→ d 1

R(
D2

R, D
3
R

)
7→
(

d 2
R, D1

R

)(
D1

R, d
2
R, d

3
R

)
7→
(

d 3
R, D2

R, D3
R

)
(

2
3 , 6
)
,(

2
3 ,−2

)
,(

2
3 , 2
)
,

(5.7)

where the fields on the l.h.s. represent the gauge eigenstates while the fields on the r.h.s.
correspond to the mass/charge eigenstates whose U(1)Y × U(1)T charges are explicitly
indicated in the end of each line. The massless states are denoted as d iR.

Defining the components of the SU(2)L quark doublets as Q1,2
L ≡

(
u1,2

L , d1,2
L

)> and qL ≡(
u3

L, d
3
L

)>, we can construct the Lagrangian for the SM quarks as

Lquarks =
(
u1

L u2
L u3

L

)
Mu


u1

R

u2
R

u3
R

+
(
d1

L d2
L d3

L

)
Md


d 1

R

d 2
R

d 3
R

+ h.c. (5.8)

With the different possibilities found for the Higgs sector, the most generic structure for
Mu andMd matrices obey the following patterns:

Mu ∼

 ∗ • •• ? ?

• ? ?

 (5.9)

Md ∼

 0 • ?

? ∗ •
? ∗ •

 . (5.10)

As it was observed earlier for the lepton sector, the low-scale limit of the SHUT model
requires, at least, two Higgs-doublets, where both •-type and ?-type ones are present. The
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electric charges of the QL and QR components read

Q̂em

[(
uxL dxL Dx

L

)i]
=
(

2
3 −

1
3 −

1
3

)i
Q̂em

[(
ucRx d cRx Dc

Rx

)> i
]

=
(
−2

3
1
3

1
3

)> i

in agreement with what is needed to identify the light states with those of the SM.

We note that the Cabbibo mixing in the quark sector emerges at tree level with minimum
two light Higgs doublets of up-type in the SM-like EFT. Indeed, consider the particular
case of 2HDM with H1

u and H2
u such that at tree level none of the down-type quarks acquire

mass (i.e.Md = 0) while one of the up-type quarks u remains massless due to

Mu =

 0 0 v2y
(2)
u

0 0 v1y
(1)
u

v2y
′(2)
u v1y

′(1)
u 0

 , (5.11)

where v1,2 and y(1,2)
u , y′(1,2)

u are the corresponding Higgs VEVs and the Yukawa couplings
matched to the high-scale y4 coupling in Eq. (C.20), respectively. Then, by performing
the singular value decomposition it is straightforward to show that the Cabibbo angle θC

satisfies

sin θC =
y

(2)
u√(

y
(2)
u

)2
+ tan2 β

(
y

(1)
u

)2 , tanβ =
v1

v2
. (5.12)

Adding an additional d-type Higgs doublet H2
d enables us to provide different tree-level

masses to two out of three down-type quarks leaving d-quark massless while preserving
the Cabibbo mixing as was found earlier in the non-SUSY formulation [36]. Interestingly
enough, in the limit of unbroken LR-parity at low energies we recover y(1,2)

u = y′(1,2)
u imply-

ing the degeneracy of charm and top quark masses, as well as strange and bottom quark
masses. These degeneracies, however, are stongly violated in the SM indicating a notable
breaking of LR-parity in the Yukawa sector. Note, an addition of extra Higgs doublets (and
VEVs in them) to such 3HDM EFT does not distort this picture significantly any longer
such that the first generation of quarks (u, d) can only acquire a small mass via radiative
corrections. The latter are also responsible for an appearance of small mixing parameters
in the Cabibbo–Kobayashi–Maskawa matrix.

The only tree-level Yukawa interactions between the would-be SM quarks and Higgs dou-
blets responsible for the EWSB comes from the superpotential term LQLQR in Eq. (3.5).
This is a consequence of the gauge trinification and family symmetries of the GUT-scale
SHUT theory, and also means that the lepton and light quark Yukawa interactions in the
low-energy EFT need to be radiatively generated at lower scales through a matching pro-
cedure. Indeed, the T-GUT tree-level Yukawa interactions are responsible for masses of
the heavier quarks in the SM, with the details depending on which SU(2)L doublets in L̃

– 21 –



plays the role of Higgs doublets at the EW scale. This goes hand-in-hand with the mass
hierarchies observed in the SM, as e.g. the top quark can receive mass through the T-
GUT Yukawa interactions while the lighter quarks can receive masses through the effective
Yukawa interactions generated at lower energies.

5.2 The role of the family adjoint in the SHUT model

With physics of L, QL,R and ∆L,R,C largely unaffected by ∆F in the SHUT model at the
GUT scale, one might in principle consider a model without ∆F. Such a reduced model
retains many positive features of the complete SHUT model presented in this paper (stable
minima, SSB down to the SM gauge group, massless SM-like fermions until the EWSB,
avoiding the hierarchy problem etc.), but differs in one critically important aspect.

Namely, since the family SU(3)F symmetry has to be broken by 〈ϕ̃〉 6= 0 (rather than via
〈∆̃8

F〉 6= 0), such a model would not allow for VEVs in φ1,2 as they become the Goldstone
bosons. With one less VEV in the symmetry breaking chain, the model ends up with one
extra U(1) at the EW scale also inhibiting some of the Higgsino masses below the EWSB.
However, at variance with the complete case studied in the previous section, it would not
be sufficient to break only the accidental symmetries in this reduced scenario. In fact, we
would have to also explicitly break that additional family U(1) group in order to prevent the
emergence of massless charged fermions at low energies. In this context, if we aim at making
a solid bridge between this model and its direct completion with the exact E8 embedding
(where SU(3)F is a gauge symmetry) we should not explicitly break such would-be-local
symmetries. As was already mentioned above, the considered SHUT model closely conforms
the limit of nearly global SU(3)F with gF � gU where neither the global Goldstone d.o.f.’s
nor the issue of explict breaking of the global (non-accidental) family U(1)’s emerge in the
low-energy EFT.

It may happen that in the SSB chain of Fig. 1 the ν̃1
R and φ̃2 VEVs are generated at well-

separated scales, e.g. when 〈ν̃1
R〉 � 〈φ̃2〉. In this case one would need to consider an extra

SSB step. The corresponding intermediate EFT symmetry would then have rank 6 + 2.
In Sect. A.2.1 of Appendix we present the quantum numbers for such a model, where the
breaking chain and the corresponding generators are shown in Sect. A.1.1. This is one of
the viable possibilities for further considerations.

5.3 Origin and stability of the electroweak scale

In Ref. [56] it was discussed that in a softly broken SUSY theory the soft parameters can
be interpreted as a modification of the couplings of the rigid SUSY theory preserving its
structure and renormalization properties, i.e. a softly broken theory does not have indepen-
dent renormalizations. Therefore, if a given vacuum does not break SUSY spontaneously,
which is the case of any of the VEVs 〈L̃j〉lr, large (GUT-scale) radiative corrections to the
parameters of the softly broken SUSY theory are absent (as they are renormalised at most
logarithmically at the soft scale). Therefore, the soft SUSY breaking parameters and hence
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the corresponding SSB scales (such as EW and LR symmetry breaking scales) are protected
by SUSY and do not acquire GUT-scale radiative corrections.

Note also that the SHUT model does not exhibit the so-called µ-problem. This is due
to the fact that the T-GUT symmetry forbids bilinear terms of fundamental superfields
in the superpotential. Such bilinear terms are present only for the adjoint superfields
whose VEVs set the first scale where the T-GUT symmetry is spontaneously broken. All
subsequent breaking steps occur at scales given by the soft parameters and so these scales
are much smaller than the GUT scale. As such, we do not need to tune any dimensionfull
superpotential parameter that naturally sits at (and defines!) the GUT scale to the EW
SSB scale or to any other soft scale in the SHUT theory.

6 Summary

Here, we would like to summarise the basic features of the LRCF-symmetric SHUT theory
considered in this paper:

• In variance to the previous GUT-scale formulations based upon gauge trinification,
in the considered model all three fermion generations are unified into a single (27,3)-
plet of SU(3)F × E6, and no copies of any fundamental E6 reps are required for its
consistent breaking down to the gauge symmetry of the SM. The considered SU(3)F×
E6 symmetry can be naturally embedded into E8 motivating the addition of (1,8)

and (78,1) multiplets corresponding to four SU(3)-octet reps. The gauge couplings
are enforced to unify by means of a cyclic permutation symmetry Z3 acting on the
trinification subgroup of the LRCF-symmetry in the same way as in the Glashow’s
formulation.

• The chiral-adjoint sector ∆a
F = (1,8) and ∆a

L,R,C ⊂ (78,1) is necessary for a con-
sistent breaking of the LRCF-symmetry down to the SM gauge symmetry in the
softly-broken SUSY formulation of the theory while none of the adjoint fields re-
main at the EW scale. In our model, the fields developing VEVs at lower energies
(the tri-triplets) happens to have the mass terms solely in the soft sector, while the
fields whose VEVs spontaneously break the high-scale SHUT LRCF-symmetry (the
adjoints) have their GUT-scale mass term in the superpotential. Hence, our model
offers a natural solution to the µ-problem.

• The family symmetry, in combination with the first symmetry breaking being trig-
gered at the GUT scale by VEVs in the adjoint (octet) scalars, forbids mass terms
in the fundamential (L, QL, QR tri-triplet) sector implying that the SM-like quark
and leptons remain massless until EWSB. This enables the SM Higgs sector to consis-
tently unify with the SM lepton sector within a single L-supermultiplet in the SHUT
theory.

– 23 –



• The Higgs-lepton unification implies a universal Yukawa and quartic coupling in the
chiral fundamental sector of the SHUT theory since the only term in the superpotential
LiQj

LQ
k
Rεijk is allowed giving rise to the SM quark Yukawa couplings and scalar

quartic interactions at tree-level at low energies. The presence of the family SU(3)F

has potential of giving rise to the Cabbibo quark mixing at tree-level while radiatively-
generated Yukawa interactions in the SM-like EFT have good prospects for explaining
the observed mass and mixing hierarchies in the SM fermion sector as was already
noticed in the non-SUSY formulation [36].

• The symmetry breaking scales below the GUT scale (including the EW scale) are
fully determined by the dynamics of the soft SUSY breaking interactions and thus
are naturally protected from the GUT-scale radiative corrections. A particularly
relevant multi-stage symmetry breaking scheme in the SHUT theory down to the
SM-like gauge effective theory has been shown in Fig. 1. A strong hierarchy between
〈φ̃2〉 and 〈ν̃1

R〉, as well as possible (e.g. U(1)T-breaking) VEVs in the SM-singlet
sector, could induce additional breaking steps relevant for further considerations of
low-energy EFT limits of the SHUT theory.

• The LRCF-symmetric theory contains an accidential U(1)B baryon symmetry which
forbids the baryon-number violating processes at the T-GUT scale (at least, at the
pertubative level). In the current work, for technical simplicity we keep U(1)B un-
broken leaving potential implications of its soft-breaking below the GUT scale for
a future study. Other accidental U(1)W and LR-parity symmetries can be (softly)
broken in the low-energy EFT ensuring the generation of the Higgsino masses above
the EW scale and the breaking of SU(2)R and SU(2)L symmetries at different energy
scales. A possible way to interpret these soft-breaking interactions is by invoking the
soft-SUSY breaking sector below the GUT scale (in the sponteneously broken SHUT)
leaving no GUT-scale accidental symmetries unbroken in the EFT limit.

Given the above properties, the SHUT model offers interesting new possibilities for deriving
the structure and parameters of the SM from the GUT-scale dynamics. This is a very good
motivation for investigations of this model, its multi-scale symmetry breaking patterns,
loop-level matching and RG flow evolution. Among the first natural steps would be to
uncover some of the features of the simplest SM-like low-energy EFTs in a symmetry-based
study without invoking the full-fledged radiative analysis of the SHUT theory. The EFT
scenarios studied in this work pave the ground for further phenomenological studies of
trinification based GUTs and move beyond the most common issues of such theories in the
past.
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A Symmetry breaking schemes and charges

In this appendix we provide a comprehensive summary of two possible SSB schemes from
the high-scale T-GUT symmetry down to that of the SM.

A.1 The common path

The breaking path from the T-GUT symmetry down to a LR-symmetric effective theory
reads

[SU(3)C × SU(3)L × SU(3)R] n Z(LRC)
3 × {SU(3)F ×U(1)W ×U(1)B}

v,vF→ SU(3)C × [SU(2)L × SU(2)R ×U(1)L ×U(1)R]

× {SU(2)F ×U(1)F ×U(1)W ×U(1)B}
〈φ̃3〉→ SU(3)C × [SU(2)L × SU(2)R]×U(1)L+R × {SU(2)F ×U(1)S

× U(1)S′ ×U(1)B} ≡ G3221{21} ,

(A.1)

where global symmetries (including the accidental ones) are indicated by {· · · }. The gen-
erators of the U(1) groups after the T-GUT SSB are

2√
3
T 8

L ,
2√
3
T 8

R ,
2√
3
T 8

F , TW , TB , (A.2)

whereas after the 〈φ̃3〉 VEV we have

TL+R = 2√
3

(
T 8

L + T 8
R

)
, TS = 2√

3

(
T 8

L − T 8
R − 2T 8

F

)
, TS′ = 2√

3

(
T 8

L − T 8
R + 2√

3
TW

)
. (A.3)

with normalization factors conveniently chosen to provide integer charges for the leptons
and scalar bosons. Note that, according to the discussion in Sect. 4.1 the LR-parity can be
explicitly broken in the soft sector and is, therefore, absent in the effective theory.

A.1.1 Breaking one U(1) generator

It is possible to further break the symmetry and to obtain the gauge group of the SM if a
sneutrino scalar, e.g. ν̃1

R, develops a VEV. For such a scenario the breaking scheme reads
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G3221{21}
〈ν̃1R〉→ SU(3)C × SU(2)L ×U(1)Y × {U(1)V ×U(1)V′′ × U(1)V′ ×U(1)B} ,

(A.4)

where the relevant unbroken U(1) generators are given by

TY = −2
(
T 3

R + 1
2TL+R

)
, TV = TL+R + 2T 3

F , TV′′ = TS + 2T 3
F , TV′ = TS′ − 2T 3

F . (A.5)

The low-energy theory is then described by a rank 6 + 2 group that contains the SM group
and where +2 denotes the contribution to the rank from the accidental U(1)T′ and U(1)B

symmetries.

A.1.2 Breaking two U(1) generators

It is possible to further reduce the rank of the global symmetry if, in addition to ν̃1
R, we

also place a VEV in, e.g. φ̃2. In such a case the breaking scheme takes the form

G3221{21}
〈ν̃1R〉 ,〈φ̃

2〉
−→ SU(3)C × SU(2)L ×U(1)Y × {U(1)T × U(1)T′ ×U(1)B} , (A.6)

where the hypercharge generator is identical to that in Eq. (A.5) while the U(1)T and
U(1)T′ ones read

TT = 4
(
T 3

F −
3
2T

3
R −

1
4TS

)
, TT′ = 2

(
T 3

F −
3
4TS′ − 1

4TS

)
. (A.7)

In this case, the low-energy theory is described by a group of rank 5+2.

A.2 Quantum numbers

In this section we show tables for the representations and charges of the light states after
each breaking step. We separate the rank 6+2 and 5+2 EFTs in order to account for
a scenario with a sizable hierarchy between the 〈φ̃2〉 and 〈ν̃1

R〉 VEVs. We consider as
light states all fields that are decoupled from the T-GUT scale after the first SSB step.
Subsequent breaking scales and mass hierarchies are not studied here. We will also consider
the fields as defined in the trinification basis throughout.

In what follows, the Higgs bi-doublets are referred to as H1,2,3, the singlet Higgs-lepton
fields denoted as φ1,2,3, the lepton doublets are cast as E1,2,3

L,R , while the quark multiplets
split up into Q1,2,3

L,R and D1,2,3
L,R , where Q are the 3 × 2 blocks and D the 3 × 1 blocks.

The superscript 1, 2, 3 is the generation number. Whenever convenient we will adopt a
simplifying notation according to

H3 → h ,

E3
L,R → EL,R ,

Q3
L,R → qL,R ,

φ3 → ϕ ,

D3
L,R → BL,R ,

X1,2 → Xf ,

(A.8)

where f is a family index running over the first two generations with X representing any
of such SU(2)F doublets.
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Fermion Boson SU(3)C SU(2)L SU(2)R {SU(2)F} U(1)L U(1)R {U(1)F} {U(1)B}acc {U(1)W}acc

ϕ ϕ̃ 1 1 1 1 −2 2 −2 0 1

φf φ̃f 1 1 1 2f −2 2 1 0 1

E lL Ẽ lL 1 2l 1 1 1 2 −2 0 1

Ef lL Ẽf lL 1 2l 1 2f 1 2 1 0 1

ER r ẼR r 1 1 2r 1 −2 −1 −2 0 1

EfR r ẼfR r 1 1 2r 2f −2 −1 1 0 1

h̃lr hlr 1 2l 2r 1 1 −1 −2 0 1

H̃f l
r Hf l

r 1 2l 2r 2f 1 −1 1 0 1

qxL l q̃xL l 3x 2l 1 1 −1 0 −2 1/3 −1/2

Qx fL l Q̃x fL l 3x 2l 1 2f −1 0 1 1/3 −1/2

qrRx q̃rRx 3x 1 2r 1 0 1 −2 −1/3 −1/2

Qf rRx Q̃f rRx 3x 1 2r 2f 0 1 1 −1/3 −1/2

BxL B̃xL 3x 1 1 1 2 0 −2 1/3 −1/2

BRx B̃Rx 3x 1 1 1 0 −2 −2 −1/3 −1/2

Dx f
L D̃x f

L 3x 1 1 2f 2 0 1 1/3 −1/2

Df
Rx D̃f

Rx 3x 1 1 2f 0 −2 1 −1/3 −1/2

g̃a GµaC 8a 1 1 1 0 0 0 0 0

T iL Gµ iL 1 3i 1 1 0 0 0 0 0

T iR Gµ iR 1 1 3i 1 0 0 0 0 0

SL,R Gµ 8
L,R 1 1 1 1 0 0 0 0 0

HfF H̃fF 1 1 1 2f 0 0 −1 0 0

Table 4. Field content and quantum numbers of the LR-symmetric EFT after ∆̃L,R,F VEVs in
Eq. (A.1). Here and below, {. . . }acc denote the accidental symmetries.

The quantum numbers of the light eigenstates after the v and vF VEVs are given in Tab. 4
while those of the model after φ̃3 VEV are shown in Tab. 5.
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Fermion Boson SU(3)C SU(2)L SU(2)R {SU(2)F} U(1)L+R {U(1)S} {U(1)S′}acc {U(1)B}acc

ϕ ϕ̃ 1 1 1 1 0 0 0 0

φf φ̃f 1 1 1 2f 0 −2 0 0

E lL Ẽ lL 1 2l 1 1 1 1 1 0

Ef lL Ẽf lL 1 2l 1 2f 1 −1 1 0

ER r ẼR r 1 1 2r 1 −1 1 1 0

EfR r ẼfR r 1 1 2r 2f −1 −1 1 0

h̃lr hlr 1 2l 2r 1 0 2 2 0

H̃f l
r Hf l

r 1 2l 2r 2f 0 0 2 0

qxL l q̃xL l 3x 2l 1 1 −1/3 1 −1 1/3

Qx fL l Q̃x fL l 3x 2l 1 2f −1/3 −1 −1 1/3

qrRx q̃rRx 3x 1 2r 1 1/3 1 −1 −1/3

Qf rRx Q̃f rRx 3x 1 2r 2f 1/3 −1 −1 −1/3

BxL B̃xL 3x 1 1 1 2/3 2 0 1/3

BRx B̃Rx 3x 1 1 1 −2/3 2 0 −1/3

Dx f
L D̃x f

L 3x 1 1 2f 2/3 0 0 1/3

Df
Rx D̃f

Rx 3x 1 1 2f −2/3 0 0 −1/3

g̃a GµaC 8a 1 1 1 0 0 0 0

T iL Gµ iL 1 3i 1 1 0 0 0 0

T iR Gµ iR 1 1 3i 1 0 0 0 0

SL,R Gµ 8
L,R 1 1 1 1 0 0 0 0

HfF H̃fF 1 1 1 2f 0 −2 0 0

Table 5. Field content and quantum numbers of the LR-symmetric EFT after ϕ̃ VEV as in the
breaking path Eq. (A.1).

Note that the 〈ϕ〉 VEV enables the mixing between the first and second generations of
singlet (s)quarks. For example, it allows fermion mass terms of the form mDD

f
LD

f ′

R εff ′ .

A.2.1 The rank 6+2 low scale symmetry

In Tabs. 6 and 7 we show the charges of the SM-like EFT after the ν̃1
R VEV.
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Fermion Boson SU(3)C SU(2)L U(1)Y {U(1)V} {U(1)V′′} {U(1)V′}acc {U(1)B}acc

ϕ ϕ̃ 1 1 0 0 0 0 0

φ1 φ̃1 1 1 0 1 −1 −1 0

φ2 φ̃2 1 1 0 −1 −3 1 0

E lL Ẽ lL 1 2l −1 1 1 1 0

E1 l
L Ẽ1 l

L 1 2l −1 2 0 0 0

E2 l
L Ẽ2 l

L 1 2l −1 0 −2 2 0

e3
R ẽ3

R 1 1 2 −1 1 1 0

ν3
R ν̃3

R 1 1 0 −1 1 1 0

e1
R ẽ1

R 1 1 2 0 0 0 0

ν1
R ν̃1

R 1 1 0 0 0 0 0

e2
R ẽ2

R 1 1 2 −2 −2 2 0

ν2
R ν̃2

R 1 1 0 −2 −2 2 0

h̃lu hlu 1 2l 1 0 2 2 0

h̃ld hld 1 2l −1 0 2 2 0

H̃1 l
u H1 l

u 1 2l 1 1 1 1 0

H̃1 l
d H1 l

d 1 2l −1 1 1 1 0

H̃2 l
u H2 l

u 1 2l 1 −1 −1 3 0

H̃2 l
d H2 l

d 1 2l −1 −1 −1 3 0

Table 6. Field content and quantum numbers for the Higgs scalars and leptons in a SM-like EFT
after ν̃1R VEV as in the breaking path Eq. (A.4).
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Fermion Boson SU(3)C SU(2)L U(1)Y {U(1)V} {U(1)V′′} {U(1)V′}acc {U(1)B}acc

qxL l q̃xL l 3x 2l 1/3 −1/3 1 −1 1/3

Qx 1
L l Q̃x 1

L l 3x 2l 1/3 2/3 0 −2 1/3

Qx 2
L l Q̃x 2

L l 3x 2l 1/3 −4/3 −2 0 1/3

u3
Rx ũ3

Rx 3x 1 −4/3 1/3 1 −1 −1/3

d3
Rx d̃3

Rx 3x 1 2/3 1/3 1 −1 −1/3

u1
Rx ũ1

Rx 3x 1 −4/3 4/3 0 −2 −1/3

d1
Rx d̃1

Rx 3x 1 2/3 4/3 0 −2 −1/3

u2
Rx ũ2

Rx 3x 1 −4/3 −2/3 −2 0 −1/3

d2
Rx d̃2

Rx 3x 1 2/3 −2/3 −2 0 −1/3

BxL B̃xL 3x 1 −2/3 2/3 2 0 1/3

BRx B̃Rx 3x 1 2/3 −2/3 2 0 −1/3

Dx 1
L D̃x 1

L 3x 1 −2/3 5/3 1 −1 1/3

Dx 2
L D̃x 2

L 3x 1 −2/3 −1/3 −1 1 1/3

D1
Rx D̃1

Rx 3x 1 2/3 1/3 1 −1 −1/3

D2
Rx D̃2

Rx 3x 1 2/3 −5/3 −1 1 −1/3

g̃a GµaC 8a 1 0 0 0 0 0

T iL Gµ iL 1 3i 0 0 0 0 0

T ±R Gµ±R 1 1 ±2 0 0 0 0

T 0
R Gµ 0

R 1 1 0 0 0 0 0

SL,R Gµ 8
L,R 1 1 0 0 0 0 0

H1
F H̃1

F 1 1 0 1 −1 −1 0

H2
F H̃2

F 1 1 0 −1 −3 1 0

Table 7. Field content and quantum numbers of the quarks, squarks and adjoint fields of a SM-like
EFT after ν̃1R VEV as in the breaking path Eq. (A.4).
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A.2.2 The rank 5+2 low scale symmetry

In Tabs. 8 we show the charges of the SM-like EFT after the ν̃1
R and φ̃2 VEVs which may

either occur simultaneously or at separate scales.

Fermion Boson SU(3)C SU(2)L U(1)Y {U(1)T} {U(1)T′}acc {U(1)B}acc

φ1 φ̃1 1 1 0 4 2 0

φ2, ϕ φ̃2, ϕ̃ 1 1 0 0 0 0

E1 l
L Ẽ1 l

L 1 2l −1 3 0 0

E2 l
L , E lL Ẽ2 l

L , Ẽ lL 1 2l −1 −1 −2 0

e1
R ẽ1

R 1 1 2 6 0 0

ν1
R ν̃1

R 1 1 0 0 0 0

e2,3
R ẽ2,3

R 1 1 2 2 −2 0

ν2,3
R ν̃2,3

R 1 1 0 −4 −2 0

H̃1 l
u H1 l

u 1 2l 1 5 −2 0

H̃1 l
d H1 l

d 1 2l −1 −1 −2 0

H̃2 l
u , h̃lu H2 l

u , hlu 1 2l 1 1 −4 0

H̃2 l
d , h̃ld H2 l

d , hld 1 2l −1 −5 −4 0

Qx 1
L l Q̃x 1

L l 3x 2l 1/3 3 3 1/3

Qx 2
L l , q

x
L l Q̃x 2

L l , q̃
x
L l 3x 2l 1/3 −1 1 1/3

u1
Rx ũ1

Rx 3x 1 −4/3 0 3 −1/3

d1
Rx d̃1

Rx 3x 1 2/3 6 3 −1/3

u2,3
Rx ũ2,3

Rx 3x 1 −4/3 −4 1 −1/3

d2,3
Rx d̃2,3

Rx 3x 1 2/3 2 1 −1/3

Dx 1
L D̃x 1

L 3x 1 −2/3 2 1 1/3

Dx 2
L , BxL D̃x 2

L , B̃xL 3x 1 −2/3 −2 −1 1/3

D1
Rx D̃1

Rx 3x 1 2/3 2 1 −1/3

D2
Rx, BRx D̃2

Rx, B̃Rx 3x 1 2/3 −2 −1 −1/3

g̃a GµaC 8a 1 0 0 0 0

T iL Gµ iL 1 3i 0 0 0 0

T ±R Gµ±R 1 1 ±2 0 0 0

T 0
R Gµ 0

R 1 1 0 0 0 0

SL,R Gµ 8
L,R 1 1 0 0 0 0

H1
F H̃1

F 1 1 0 4 2 0

H2
F H̃2

F 1 1 0 0 0 0

Table 8. Field content and quantum numbers for a SM-like rank 5+2 EFT as in the breaking
path (A.6).
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B Particle masses in the high-scale theory

B.1 Scalar spectra and minimisation conditions

The extrema conditions obtained after taking the first derivatives of the scalar potential of
the SHUT model can be solved, e.g. w.r.t. the soft parameters m2

78 and m2
1 from where we

obtain

m2
78 =− b78 + v

12

(√
6A78 + 3

√
6C78 − vλ2

78

)
+
√

6
4 vλ78µ78 − µ

2
78 , (B.1)

m2
1 =− b1 + vF

12

(√
6A1 − vFλ

2
1

)
+
√

6
4 vFλ1µ1 − µ2

1 .

The minimization equations are then plugged into the Hessian matrix whose eigenvalues
corresponding to the fundamental and adjoint scalar sectors are shown in Tabs. 9 and 10,
respectively. Note that, for simplicity, we use the LR-symmetric case with AḠ = AG.

# of real d.o.f.’s (mass)2 Scalar components

8 m2
27 − 1√

6
(AGv + 2AFvF) ν̃

(3)
R , ẽ

(3)
R , ν̃

(3)
L , ẽ

(3)
L

2 m2
27 − 1√

6
(4AGv + 2AFvF) φ̃(3)

8 m2
27 + 1√

6
(2AGv − 2AFvF) H

(3)
11 , H

(3)
21 , H

(3)
12 , H

(3)
22

4 m2
27 − 1√

6
(4AGv −AFvF) φ̃(1,2)

16 m2
27 − 1√

6
(AGv −AFvF) ν̃

(1,2)
R , ẽ

(1,2)
R , ν̃

(1,2)
L , ẽ

(1,2)
L

16 m2
27 + 1√

6
(2AGv +AFvF) H

(1,2)
11 , H

(1,2)
21 , H

(1,2)
12 , H

(1,2)
22

24 m2
27 + 1√

6
(AGv − 2AFvF) ũ

(3)
L , d̃

(3)
L , ũ

(3)
R , d̃

(3)
R

12 m2
27 − 1√

6
(2AGv + 2AFvF) D̃

(3)
L , D̃

(3)
R

48 m2
27 + 1√

6
(AGv +AFvF) ũ

(1,2)
L , d̃

(1,2)
L , ũ

(1,2)
R , d̃

(1,2)
R

24 m2
27 − 1√

6
(2AGv −AFvF) D̃

(1,2)
L , D̃

(1,2)
R

Table 9. Scalar masses squared in the SHUT model for fields in the fundamental (tri-triplet)
representation of the [SU(3)]3 × SU(3)F symmetry.

The branching rule for a fundamental representation of SU(3)A, A = L,R,F when it is
broken down to SU(2)A ×U(1)A reads

3→ 21 ⊕ 1−2 , (B.2)

where, up to an overall normalization factor, the subscripts represent the U(1)A charge.
Therefore, after the SSB, the eigenstates shown in Tab. 9 form representations of G32211{21}
symmetry given in Eq. (3.16) and transform as singlets, doublets, bi-doublets and tri-
doublets under the SU(2)L,R,F symmetries, as schematically represented by the blocks in
Eq. (3.20)5. The LR-parity discussed in Sect. 3.1 yields identical masses for the SU(2)L

and SU(2)R eigenstates at the trinification SSB scale.
5The family SU(3)F triplets are also split up into SU(2)F doublets, containing the first and second

generations, and singlets corresponding to the third generation.
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# of real d.o.f.’s (mass)2 Label

12 0 G̃L,R,F

3
√

3
2
vF
2 (3λ1µ1 +A1) T̃F

1 vF
12

(
2vFλ

2
1 − 3

√
6λ1µ1 −

√
6A1

)
S̃F

1 −2b1 + vF
12

(√
6λ1µ1 + 3

√
6A1

)
S̃ ′F

4 −2b1 + vF
12

(
2
√

6λ1µ1 − vFλ
2
1 + 2

√
6A1

)
HF

3 −2b1 + vF
12

(
5
√

6λ1µ1 + 2vFλ
2
1 −
√

6A1

)
T̃ ′F

6
√

3
2
v
2 (3λ78µ78 +A78 + 3C78) T̃L,R

8 v
12

(
−vλ2

78 + 3
√

6λ78µ78 +
√

6A78 + 3
√

6C78

)
Re[∆̃1,··· ,8

C ]

2 v
12

(
2vλ2

78 − 3
√

6λ78µ78 −
√

6A78 − 3
√

6C78

)
S̃L,R

2 −2b78 +
√

6
12 v (λ78µ78 + 3A78 + C78) S̃ ′L,R

8 −2b78 + 3
4g

2
Uv

2 + v2

12λ
2
78 +

√
6

6 v (λ78µ78 +A78 + C78) HL,R

8 −2b78 − v2

12λ
2
78 +

√
6

12 v (3λ78µ78 +A78 + 3C78) Im[∆̃1,··· ,8
C ]

6 −2b78 + v2

6 λ
2
78 +

√
6

12 v (5λ78µ78 −A78 + 5C78) T̃ ′L,R

Table 10. Scalar masses squared in the SHUT model for fields in the adjoint representations of
the SU(3)L,R,C,F symmetries.

The adjoint scalars ∆̃a
L,R,F are complex octets whose branching rule is given by

8→ 30 ⊕ 21 ⊕ 2−1 ⊕ 10 . (B.3)

After the SSB this provides two real triplets, two real singlets and two complex doublets.
Each broken symmetry provides four Goldstone degrees of freedom out of which eight
correspond to breaking of the local symmetries whereas four of them – to the global ones.
While the triplet mass eigenstates, 30, can be written as

T̃A ≡
1√
2


Re[∆̃2

A] + iRe[∆̃1
A]

√
2Re[∆̃3

A]

Re[∆̃2
A]− iRe[∆̃1

A]

 , T̃ ′A ≡
1√
2


Im[∆̃2

A] + iIm[∆̃1
A]

√
2Im[∆̃3

A]

Im[∆̃2
A]− iIm[∆̃1

A]

 , (B.4)

the two real singlets 10 read

S̃A ≡ Re[∆̃8
A] , S̃ ′A ≡ Im[∆̃8

A] . (B.5)

Finally, there are two independent doublets transforming as 21 and 2−1, which are given
by

G̃A ≡
1√
2

Re[∆̃5
A] + iRe[∆̃4

A]

Re[∆̃7
A] + iRe[∆̃6

A]

 , HA ≡
1√
2

 Im[∆̃6
A] + iIm[∆̃7

A]

Im[∆̃4
A] + iIm[∆̃5

A]

 , (B.6)

respectively. Equivalently, we could have defined the Goldstones G̃A to transform as 2−1

and the HA states as 21 but with SU(2)A isospin components flipped (up to a global phase).
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B.1.1 Scalar mass spectrum

It is possible to derive the exact analytical minimisation conditions recasting the scalar
masses in a convenient way. In particular, the fundamental scalar masses can be collectively
written as

m2
ϕ̃i

= m2
27 + ci1AGv + ci2AFvF , (B.7)

where ci1,2 are constants with index i running over all fundamental scalar eigenstates. For
simplicity, the soft SUSY breaking parameters and the family breaking VEV can be rede-
fined in terms of v as follows

vF = βv , m2
27 = α27v

2 , AG = σGv , AF = σFv , (B.8)

where, in the limit of low-scale SUSY breaking, α27, σG, σF � 1 and β ∼ O (1) such that
both gauge and family SSBs occur simultaneously at the T-GUT scale. Eq. (B.8) allows
one to rewrite the scalar masses as

m2
ϕ̃i

= v2
(
α27 + ci1σG + ci2βσF

)
≡ v2ωϕ̃i

, ωϕ̃i
� 1 , (B.9)

such that the fundamental scalar spectrum can be characterized by three independent
dimensionless parameters

ω
H̃(3) ≡ ξ , ωẼ(1,2)

L,R

≡ δ , ω
H̃(1,2) ≡ κ , (B.10)

from where we can recast the scalar mass terms in the resulting EFT as

m2
H̃(3) = v2ξ ,

m2

Ẽ
(3)
L,R

= v2 (δ + ξ − κ) ,

m2
φ̃(3)

= v2 (2δ + ξ − 2κ) ,

m2

Q̃(3)
L,R

= 1
3v

2 (δ + 3ξ − κ) ,

m2

D̃
(3)
L,R

= 1
3v

2 (4δ + 3ξ − 4κ) ,

m2
H̃(1,2) = v2κ ,

m2

Ẽ
(1,2)
L,R

= v2δ ,

m2
φ̃(1,2)

= v2 (2δ − κ) ,

m2

Q̃(1,2)
L,R

= 1
3v

2 (δ + 2κ) ,

m2

D̃
(1,2)
L,R

= 1
3v

2 (4δ − κ) .

(B.11)

Using Eq. (B.11) the general set of conditions necessary to set the positivity of the funda-
mental scalar mass spectrum reads

κ > 0 ∧
[(κ

2
≤ δ ≤ κ ∧ ξ > −2δ + 2κ

)
∨ (δ > κ ∧ ξ > 0)

]
. (B.12)

Following the same procedure, we may redefine the parameters of the adjoint sector in terms
of the T-GUT SSB scale v as follows

b1 = τ1v
2 ,

b78 = τ78v
2 ,

µ1 = α1v ,

µ78 = α78v ,

A1 = σ1v ,

A78 = σ78v ,

C78 = θ78v .

(B.13)
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Substituting Eqs. (B.13) in Tab. 10 and, similarly to Eq. (B.9), choosing

ωT̃F ≡ ηF , ωHF
≡ ρF , ωT̃ ′

F
≡ η′F , ωT̃L,R

≡ η , ωH̃L,R
≡ ρ , ω∆̃′

C
≡ ϑ , (B.14)

where now ωϕ̃i 6=HF
∼ O(1) since only HF does not contain large F- and D-term contribu-

tions. Solving the system of equations w.r.t σ1, τ1, α1, σ78, τ78, α78 we obtain

m2
T̃F

= ηFv
2 ,

m2
T̃ ′
F

= η′Fv
2 ,

m2
S̃F

= 1
6v

2
(
β2λ2

1 − 2ηF

)
,

m2
S̃′F

= 1
6v

2
(
β2λ2

1 − 2η′F + 8ρF

)
,

m2
HF

= ρFv
2 ,

m2
∆̃C

= 1
12v

2
(
4η − λ2

78

)
,

m2
T̃L,R

= ηv2 ,

m2
T̃ ′
L,R

= 1
4v

2
(
λ2
78 + 6g2

U + 12ϑ− 8ρ
)
,

m2
S̃L,R

= 1
6v

2
(
λ2
78 − 2η

)
,

m2
S̃′L,R

= 1
12v

2
(
λ2
78 − 18g2

U − 12ϑ+ 24ρ
)
,

m2
HL,R

= ρv2 ,

m2
∆̃′

C
= ϑv2 .

(B.15)

The scalar field components of the gauge and family adjoint sectors are teated separately.
Noting that ρF � 1, the general stability condition for the masses of the family sector read

ρF ≥ 0 ∧
(
η′F > 4ρF ∧ x > 2η′F − 8ρF ∧ ηF <

x

2

)
, (B.16)

where we have defined β2λ2
1 ≡ x > 0. Finally, the positivity conditions for the gauge sector

are

η > 0 ∧ 2η < y < 4η ∧ ϑ > 0 ∧ 1

24
(z − y + 12ϑ) < ρ <

1

8
(y + 6z + 12ϑ) , (B.17)

where we have defined λ2
78 ≡ y > 0 and g2

U ≡ z > 0. When conditions (B.12), (B.16) and
(B.17) are simultaneously satisfied, the tree-level vacuum of the SHUT model is stable.

B.2 Fermion Masses

The masses of the fermions that originate from the gauge-adjoint sector are somewhat
more complicated. For the sake of transparency, we use a shortened notation and show the
exact expressions for the fermion masses squared in Tab. 11. In particular, we parametrize
the octet masses by X8

C, Y
8

C and Z8
C, where the number in the superscript denotes the

representation under the symmetry labeled in the subscript. The explicit form of such
parameters reads

X8
C =4M2

0 + 2M ′20 + µ2
78 , (B.18)

Y 8
C =4M ′20 (2M0 + µ78)2 , (B.19)

Z8
C =

(
µ2
78 − 4M2

0

)2
. (B.20)
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# of Weyl spinors (mass)2 Fermionic components

81 0 φ(1,2,3) , H̃(1,2,3) , E
(1,2,3)
L,R ,Q(1,2,3)

L,R , D
(1,2,3)
L,R

1 1
6

(
v2

Fλ
2
1 − 2

√
6vFλ1µ1 + 6µ2

1

)
∆8

F ≡ SF

3 1
6

(
v2

Fλ
2
1 + 2

√
6vFλ1µ1 + 6µ2

1

)
∆1,2,3

F ≡ TF

4 1
24

(
v2

Fλ
2
1 − 4

√
6vFλ1µ1 + 24µ2

1

)
∆4,5,6,7

F ≡ H̃F

8 1
2

(
X8

C −
√
Y 8

C + Z8
C

)
cθ8 λ̃

a
C − sθ8∆a

C ≡ g̃a

8 1
2

(
X8

C +
√
Y 8

C + Z8
C

)
sθ8 λ̃

a
C + cθ8∆a

C ≡ g̃a⊥
2 1

24

(
X1

L,R −
√
Y 1

L,R + Z1
L,R

)
cθ1 λ̃

8
L,R − sθ1∆8

L,R ≡ SL,R

2 1
24

(
X1

L,R +
√
Y 1

L,R + Z1
L,R

)
sθ1 λ̃

8
L,R + cθ1∆8

L,R ≡ S⊥L,R

6 1
24

(
X3

L,R −
√
Y 3

L,R + Z3
L,R

)
cθ3 λ̃

1,2,3
L,R − sθ3∆1,2,3

L,R ≡ TL,R

6 1
24

(
X3

L,R +
√
Y 3

L,R + Z3
L,R

)
sθ3 λ̃

1,2,3
L,R + cθ3∆1,2,3

L,R ≡ T ⊥L,R

8 1
48

(
X2

L,R −
√
Y 2

L,R + Z2
L,R

)
%1∆4,6

L,R + %2∆5,7
L,R + %3λ̃

4,6
L,R + %4λ̃

5,7
L,R ≡ H̃

1,2
L,R

8 1
48

(
X2

L,R +
√
Y 2

L,R + Z2
L,R

)
%1∆4,6

L,R + %2∆5,7
L,R + %3λ̃

4,6
L,R + %4λ̃

5,7
L,R ≡ H̃

1,2⊥
L,R

Table 11. Fermion masses squared and left singular eigenvectors in the SHUT model. The cθR
and sθR coefficients denote the cosine and sine of the 2× 2 mixing angles for the representation R.
Here, %1,2,3,4 and %1,2,3,4 are coefficients that parametrize a unitary mixing. The fermion masses,
for a given irrep R and gauge group L,R,C, are determined in terms of the XR

A , Y R
A and ZR

A

coefficients, with explicit expressions given in Eqs. (B.18)-(B.26).

The singlet and triplet fermion masses depend on the X1,3
L,R, Y

1,3
L,R and Z1,3

L,R parameters
which are given by

X1,3
L,R =

[
2v2λ2

78 ∓ 4
√

6vλ78µ78 + 12
(
4M2

0 + 2M ′20 + µ2
78

)]
, (B.21)

Y 1,3
L,R =

[
±2
√

6vλ78µ78 − v2λ2
78 − 6

(
4M2

0 + 2M ′20 + µ2
78

)]2
, (B.22)

Z1,3
L,R =192

[
3M ′40 ± 2M0M

′2
0

(√
6vλ78 ∓ 6µ78

)
(B.23)

+2M2
0

(
v2λ2

78 ∓ 2
√

6vλ78µ78 + 6µ2
78

)]
.

For the new doublet fermions, the mass eigenstates are written in terms of X2
L,R, Y

2
L,R and

Z2
L,R that read

X2
L,R =96M2

0 + 48M ′20 + 36v2g2
U + v2λ2

78 − 4
√

6vλ78µ78 + 24µ2
78 , (B.24)

Y 2
L,R =v4λ4

78 − 8
√

6v3λ3
78µ78 + 24v2λ2

78

(
4M ′20 − 8M2

0 + 3v2g2
U + 6µ2

78

)
, (B.25)

Z2
L,R =96

{
6
[
4M ′20 + (µ78 − 2M0)2

] [
3v2g2

U + (µ78 + 2M0)2
]

(B.26)

+
√

6vλ78
(
6v2g2

UM0 − 8M0M
′2
0 + 8M2

0µ78 − 4M ′20 µ78 − 3v2g2
Uµ78 − 2µ3

78

)}
.

Note that the doublets H̃A, which are the left-handed Weyl fermions defined to transform
as 21, form mass terms of the form mH̃AH̃′A with H̃′A being also the left-handed Weyl
fermions transforming as 2−1.
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B.3 Gauge boson masses

The gauge bosons of the SU(3)C group remain massless and are identified with the SM
gluons whereas the massive gauge bosons are generated upon the SSB of the SU(3)L,R

symmetries. The covariant derivative of the T-GUT symmetry reads

Dµ = ∂µ1L⊗1R⊗1C − igU

8∑
a=1

[
GµaL T

a
L⊗1R⊗1C +GµaR T

a
R⊗1L⊗1C +GµaC T

a
C⊗1L⊗1R

]
, (B.27)

where GµaL are the gauge fields of the SU(3)L symmetry which cyclically transform into GµaR

andGµaC by means of Z3-permutations. Considering the gauge-breaking VEVs
〈

∆̃c
L,R

〉
= δc8 v,

the relevant kinetic terms that couple the vector and scalar fields evaluated in the vacuum
of the theory are given by

∣∣∣Dµ
〈

∆̃b
L,R

〉∣∣∣2 =
3

4
g2

Uv
2

7∑
a=4

ηµνG
µa
L,RG

νa
L,R . (B.28)

Therefore, there are eight massive gauge bosons in the model which transform as complex
21 representations of SU(2)L,R ×U(1)L,R whose charge eigenstates read

GµL,R ≡
1√
2

Gµ5
L,R + iGµ4

L,R

Gµ7
L,R + iGµ6

L,R

 , (B.29)

with mass m2
G = 3

4g
2
U v

2. In addition to the unbroken colour sector, the remaining gauge
bosons are also massless at the SHUT SSB scale.

C Full effective Lagrangians

The field content of the EFT is derived from the mass spectrum after the T-GUT symmetry
breaking. As a general rule, the light fields, i.e. those with a mass scale much smaller than
the GUT scale v, are kept in the EFT spectrum whereas those with masses of the same
order of magnitude as v are integrated out.

The light field components and their group transformations under the LR-symmetry ob-
tained after v and vF VEVs (see Eq. (A.1)) are shown in Tab. 4, where we use the notation
given in Eq. (A.8).

C.1 The scalar potential of the LR-symmetric effective model

The scalar potential of the effective LR-symmetric theory generated after the T-GUT break-
ing can be summarized by

VLR = V2 + V3 + V4 , (C.1)
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where V2, V3 and V4 denote the quadratic, cubic and quartic scalar self-interactions, respec-
tively. For simplicity, we will suppress colour indices in VLR and, for all those terms that
can be written from LR-parity transformations on the fields, we will show them within
square brackets as P̂LR[· · · ]. Note that here we use this notation for both the cases
of invariance or not under LR-parity. For instance, while for the LR-parity symmetric
case we should preserve the couplings, for the LR-parity broken case we should also read
m→ m̄, A→ Ā, λ→ λ̄ whenever LR-parity transformation is applied.

We start by writing the scalar mass terms,

V2 =m2
HH

∗ r
f lH

f l
r +m2

hh
∗ r
l h

l
r +m2

φφ̃
∗
f φ̃

f +m2
ϕϕ̃
∗ϕ̃+m2

∆H̃∗FfH̃
f
F

+ P̂LR

[
m2
EẼ
∗
L f lẼ

f l
L +m2

E Ẽ∗L lẼ lL +m2
QQ̃∗ lL f Q̃

f
L l

+m2
q q̃
∗ l
L q̃L l +m2

DD̃
∗
L f D̃

f
L +m2

BB̃∗LB̃L

] (C.2)

whereas the trilinear interactions are expressed as

V3 =εff ′
{
P̂LR

[
A1Q̃f rR hlrQ̃

f ′

L l +A2D̃
f
Rϕ̃D̃

f ′

L

]
+ P̂LR

[
A3q̃

r
RH

f l
r Q̃

f ′

L l +A4B̃Rφ̃
f ′D̃f

L

+A5B̃RQ̃fL lẼ
f ′ l
L +A6D̃

f
RQ̃

f ′

L lẼ
l

L +A7D̃
f
Rq̃L lẼ

f ′ l
L + c.c.

]} (C.3)

Due to a large number of possible contractions of four scalar fields in the effective LR-
symmetric model, we will employ a condensed notation to express the scalar quartic self-
interactions. We describe below the five possible types of terms.

For the first type, which we denote “sc1”, we consider terms with one reoccurring index,
where we define the reoccurring index as an index possessed by all the four fields. For such
a combination there are three possible contractions, out of which two of them are linearly
independent. In particular, we have

Vsc1 ⊃λk1D̃∗Lx f ′D̃
x f ′

L H∗ rf lH
f l
r + λk2D̃

∗
Lx f ′D̃

x f
L H∗ rf lH

f ′ l
r

≡λk1 − k2
D̃∗L f ′D̃

f ′

L H
∗ r
f lH

f l
r ,

(C.4)

where colour indices are suppressed in the condensed form.

For terms with two reoccurring indices, denoted as “sc2”, no matter if they are SU(2) indices
or SU(3) indices6, there are four linearly independent contractions that read

Vsc2 ⊃λn1Ẽ
∗
L l′ f ′Ẽ

l′ f ′

L Q̃∗ lLx f Q̃
x f
L l + λn2Ẽ

∗
L l′ f ′Ẽ

l′ f
L Q̃

∗ l
Lx f Q̃

x f ′

L l

+λn3Ẽ
∗
L l′ f ′Ẽ

l f ′

L Q̃
∗ l′
Lx f Q̃

x f
L l + λn4Ẽ

∗
L l′ f ′Ẽ

l f
L Q̃

∗ l′
Lx f Q̃

x f ′

L l

≡λn1 − n4
Ẽ∗L l′ f Ẽ

l′ f
L Q̃

∗ l
L f ′Q̃

f ′

L l .

(C.5)

6The two types coincide since for SU(2) the three combinations reduce down to two, using that εijεkl =
δki δ

l
j − δliδkj , while for SU(3) there are only two possible contractions to begin with, and no Levi-Civita

tensor to impose a reduction.
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The third type involves terms with two reoccurring indices (either SU(2) or SU(3) indices)
but identical fields. We denote this case as “sc3” and observe that there are only two linearly
independent terms of the form

Vsc3 ⊃λj1D̃∗L x′ f ′D̃
x′ f ′

L D̃∗L x f D̃
x f
L + λj2D̃

∗
L x′ f ′D̃

x f ′

L D̃∗L x f D̃
x′ f
L

≡λj1 − j2D̃
∗
L f ′D̃

f ′

L D̃
∗
L f D̃

f
L ,

(C.6)

where colour contractions are once again implicit.

For terms with three reoccurring indices and identical fields, labeled as “sc4”, there are four
linearly independent combinations that we write as

Vsc4 ⊃λm1H
∗ r′
f ′ l′H

f ′ l′

r′ H∗ rf lH
f l
r + λm2H

∗ r′
f ′ l′H

f ′ l′
r H∗ rf lH

f l
r′

+λm3H
∗ r′
f ′ l′H

f l′

r′ H
∗ r
f lH

f ′ l
r + λm4H

∗ r′
f ′ l′H

f ′ l
r′ H

∗ r
f lH

f l′
r

≡λm1 −m4
H∗ r

′
f ′ l′H

f ′ l′

r′ H∗ rf lH
f l
r

(C.7)

Note that the case with three reoccurring indices and different fields does not exist and
the only case with one reoccurring index and identical fields is the one involving the gauge
singlet φf .

Finally, the fifth type (“sc5”) involves terms without reoccurring indices or terms with one
reoccurring index but four identical fields such as

Vsc5 ⊃ λih
∗ r
l h

l
rφ̃
∗
f φ̃

f + λjφ̃
∗
f ′ φ̃

f ′ φ̃∗f φ̃
f . (C.8)

Note that, for ease of notation, we assume that combinatorial factors were absorbed by
various λi and λi− j.

We will then consider five different scenarios organized according to the type of index
contractions as described in detail in Eqs. (C.4), (C.5), (C.6), (C.7) and (C.8):

V4 = Vsc1 + Vsc2 + Vsc3 + Vsc4 + Vsc5 . (C.9)
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The first contribution reads

Vsc1 =λ1− 2q̃
∗ l
L q̃L lq̃

∗
R r q̃

r
R + λ3− 4B̃∗LB̃LB̃∗RB̃R + λ5− 6H

∗ r
f ′ lH

f ′ l
r φ̃∗f φ̃

f

+ λ7− 8Ẽ
∗
L f ′ lẼ

f ′ l
L Ẽ∗ rR f Ẽ

f
R r + P̂LR

[
λ9− 10q̃

∗ l
L q̃L lQ̃∗R f rQ̃

f r
R

+λ11− 12B̃∗LB̃LD̃
∗
R f D̃

f
R + λ13− 14q̃

∗ l
L q̃L lD̃

∗
L f D̃

f
L + λ15− 16Q̃∗ lL f Q̃

f
L lB̃

∗
LB̃L

+λ17− 18q̃
∗ l
L q̃L lB̃∗LB̃L + λ19− 20q̃

∗ l
L q̃L lD̃

∗
R f D̃

f
R + λ21− 22Q̃∗ lL f Q̃

f
L lB̃

∗
RB̃R

+λ23− 24Q̃∗ l
′

L f Q̃
f
L l′h

∗ r
l h

l
r + λ25− 26q̃

∗ l
L q̃L lB̃∗RB̃R + λ27− 28q̃

∗ l′
L q̃L l′H

∗ r
f lH

f l
r

+λ29− 30q̃
∗ l′
L q̃L l′h

∗ r
l h

l
r + λ31− 32D̃

∗
L f ′D̃

f ′

L H
∗ r
f lH

f l
r + λ33− 34q̃

∗ l
L q̃L lẼ

∗
L f l′Ẽ

f l′

L

+λ35− 36Q̃∗ lL f Q̃
f
L lẼ
∗
L l′ Ẽ l

′
L + λ37− 38q̃

∗ l
L q̃L lẼ∗L l′ Ẽ l

′
L + λ39− 40Q̃∗ rR f ′Q̃

f ′

R rẼ
∗
L f lẼ

f l
L

+λ41− 42D̃
∗
L f ′D̃

f ′

L Ẽ
∗
L f lẼ

f l
L + λ43− 44D̃

∗
R f ′D̃

f ′

R Ẽ
∗
L f lẼ

f l
L + λ45− 46Q̃∗ lL f ′Q̃

f ′

L lφ̃
∗
f φ̃

f

+λ47− 48D̃
∗
L f ′D̃

f ′

L φ̃
∗
f φ̃

f + λ49− 50h
∗ r
l′ h

l′
r Ẽ
∗
L f lẼ

f l
L + λ51− 52D̃

∗
L f D̃

f
LẼ
∗
L f lẼ

f l
L

+λ53− 54H
∗ r
f l′H

f l′
r Ẽ∗L lẼ lL + λ55− 56h

∗ r
l′ h

l′
r Ẽ∗L lẼ lL + λ57− 58B̃∗LB̃LD̃

∗
L f D̃

f
L

+λ59− 60Ẽ
∗
L f ′ lẼ

f ′ l
L φ̃∗f φ̃

f + λ61− 62φ̃
fHf ′ l

r Ẽ∗L f ′ lẼ
∗ r
R f +

(
λ63− 64h

∗ r
l′ H

f l′
r Ẽ∗L f lẼ lL

+λ65− 66h
∗ r
l′ H

f l′
r Q̃∗ lL f q̃L l + λ67− 68Ẽ

∗
L f l′ Ẽ l

′
L q̃
∗ l
L Q̃

f
L l + λ69− 70D̃

∗
L f ′Q̃

f ′

L lẼ
∗ r
R fH

f l
r

+λ71− 72D̃
∗
L f ′Q̃

f ′

L lẼ
f l
L φ̃∗f + λ73− 74B̃LQ̃fR rD̃

∗
L f q̃

∗
R r + c.c.

)]
+ V gen

sc1 ,

(C.10)

with V gen
sc1 corresponding to the interactions generated only after the matching procedure,

i.e. not directly obtained by expansion of the Lagrangian of the original theory, and given
by

V gen
sc1 =P̂LR

[
δ1− 2Q̃∗ lL f ′Q̃

f ′

L lH̃
∗
FfH̃

f
F + δ3− 4D̃

∗
L f ′D̃

f ′

L H̃
∗
FfH̃

f
F + δ5− 6Ẽ

∗
L f ′ lẼ

f ′ l
L H̃

∗
FfH̃

f
F

]
+ δ7− 8H

∗ r
f ′ lH

f ′ l
r H̃∗FfH̃

f
F .

(C.11)

The effective quartic interactions with two reoccurring indices are given by

Vsc2 =λ75− 78Q̃∗ lL f ′Q̃
f ′

L lQ̃
∗
R f rQ̃

f r
R + λ79− 82D̃

∗
L f ′D̃

f ′

L D̃
∗
R f D̃

f
R

+ λ83− 86h
∗ r′
l′ hl

′
r′H

∗ r
f lH

f l
r + P̂LR

[
λ75− 78Q̃∗ lL f ′Q̃

f ′

L lD̃
∗
L f D̃

f
L

+λ87− 90Q̃∗ lL f ′Q̃
f ′

L lD̃
∗
R f D̃

f
R + λ91− 94q̃

∗ l′
L q̃L l′Q̃∗ lL f Q̃

f
L l

+λ95− 98Q̃∗ l
′

L f ′Q̃
f ′

L l′H
∗ r
f lH

f l
r + λ99− 102Q̃∗ lL f ′Q̃

f ′

L lẼ
∗
L f l′Ẽ

f l′

L

+λ103− 106H
∗ r
f ′ l′H

f ′ l′
r Ẽ∗L f lẼ

f l
L

]
.

(C.12)

The third contribution, which accounts for identical multiplets and two reoccurring indices,
has the form

Vsc3 =λ107− 108h
∗ r′
l′ hl

′
r′h
∗ r
l h

l
r + P̂LR

[
λ101− 102q̃

∗ l′
L q̃L l′ q̃

∗ l
L q̃L l

+λ109− 110D̃
∗
L f ′D̃

f ′

L D̃
∗
L f D̃

f
L + λ111− 112Ẽ

∗
L f ′ l′Ẽ

f ′ l′

L Ẽ∗L f lẼ
f l
L

]
,

(C.13)

while the forth scenario, where identical fields with three reoccurring indices are considered,
reads

Vsc4 =λ113− 116H
∗ r′
f ′ l′H

f ′ l′

r′ H∗ rf lH
f l
r + P̂LR

[
λ117− 120Q̃∗ l

′
L f ′Q̃

f ′

L l′Q̃
∗ l
L f Q̃

f
L l

]
. (C.14)

– 40 –



Finally, for those terms that contain only one independent type of contraction we have

Vsc5 =λ121h
∗ r
l h

l
rφ̃
∗
f φ̃

f + λ122H
∗ r
f lH

f l
r ϕ̃∗ϕ̃+ λ123h

∗ r
l h

l
rϕ̃
∗ϕ̃+ λ124Ẽ∗L lẼ lLẼ∗ rR ẼR r

+ λ125φ̃
∗
f ′ φ̃

f ′ φ̃∗f φ̃
f + λ126φ̃

∗
f φ̃

f ϕ̃∗ϕ̃+ λ127ϕ̃
∗ϕ̃ ϕ̃∗ϕ̃

+ P̂LR

[
λ128ϕ̃h

l
rẼ∗L lẼ∗ rR + λ129D̃

∗
L f B̃LB̃∗RD̃

f
R + λ130Q̃∗ lL f q̃L lq̃

∗
R rQ̃

f r
R

+λ131B̃∗LB̃LB̃∗LB̃L + λ132B̃∗LB̃LH
∗ r
f lH

f l
r + λ133D̃

∗
L f D̃

f
Lh
∗ r
l h

l
r

+λ134B̃∗LB̃Lh
∗ r
l h

l
r + λ135q̃

∗
R r q̃

r
RẼ
∗
L f lẼ

f l
L + λ136Q̃∗R f rQ̃

f r
R Ẽ

∗
L lẼ lL

+λ137q̃
∗
R r q̃

r
RẼ∗L lẼ lL + λ138D̃

∗
L f D̃

f
LẼ
∗
L f lẼ

f l
L + λ139D̃

∗
L f D̃

f
LẼ
∗
L lẼ lL

+λ140B̃∗LB̃LẼ∗L lẼ lL + λ141B̃∗RB̃RẼ
∗
L f lẼ

f l
L + λ142D̃

∗
R f D̃

f
RẼ
∗
L lẼ lL

+λ143B̃∗RB̃RẼ∗L lẼ lL + λ144q̃
∗ l
L q̃L lφ̃

∗
f φ̃

f + λ145Q̃∗ lL f Q̃
f
L lϕ̃

∗ϕ̃

+λ146q̃
∗ l
L q̃L lϕ̃

∗ϕ̃+ λ147B̃∗LB̃Lφ̃
∗
f φ̃

f + λ148D̃
∗
L f D̃

f
Lϕ̃
∗ϕ̃

+λ149B̃∗LB̃Lϕ̃
∗ϕ̃+ λ150Ẽ∗L l′ Ẽ l

′
L Ẽ
∗
L f lẼ

f l
L + λ151Ẽ∗L l′ Ẽ l

′
L Ẽ∗L lẼ lL

+λ152Ẽ∗L lẼ lLẼ∗ rR f Ẽ
f
R r + λ153Ẽ∗L lẼ lLφ̃∗f φ̃f + λ154Ẽ

∗
L f lẼ

f l
L ϕ̃∗ϕ̃

+λ155Ẽ∗L lẼ lLϕ̃∗ϕ̃+
(
λ156Ẽ

∗
L f lẼ lLϕ̃∗φ̃f + λ157Ẽ

∗
L f lφ̃

fhlrẼ∗ rR

+λ158H
f l
r Ẽ∗ rR f Ẽ∗L lϕ̃+ λ159Ẽ

∗
L f lẼ lLB̃∗LD̃

f
L + λ160ϕ̃

∗φ̃f D̃∗L f B̃L

+λ161D̃
∗
L f B̃Lq̃

∗ l
L Q̃

f
L l + λ162B̃∗Lq̃L lẼ

∗ r
R fH

f l
r + λ163B̃∗LQ̃

f
L lẼ

∗ r
R fh

l
r

+λ164B̃∗Lq̃L lẼ∗ rR hlr + λ165B̃∗Lq̃L lẼ
f l
L φ̃∗f + λ166B̃∗LQ̃

f
L lẼ

l
Lφ̃
∗
f

+λ167B̃∗Lq̃L lẼ lLϕ̃∗ + λ168B̃∗LD̃
f
LẼ
∗ r
R f ẼR r + λ169D̃

∗
L f q̃L lẼ∗ rR Hf l

r

+λ170D̃
∗
L f Q̃

f
L lẼ
∗ r
R hlr + λ171D̃

∗
L f q̃L lẼ

f l
L ϕ̃∗ + λ172D̃

∗
L f Q̃

f
L lẼ

l
Lϕ̃
∗ + c.c.

)]
+ V gen

sc5 .
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Here, the terms generated after the breaking are

V gen
sc5 =λ173h

∗ r
l H

f l
r φ̃∗f ϕ̃+ λ174Ẽ

∗
L f lẼ lLẼ∗ rR ẼfR r + δ9h

∗ r
l h

l
rH̃∗FfH̃

f
F

+ δ10H̃∗Ff ′H̃
f ′

F H̃
∗
FfH̃

f
F + δ11ϕ̃

∗ϕ̃H̃∗FfH̃
f
F + δ12φ̃

∗
f ′ φ̃

f ′H̃∗FfH̃
f
F

+ P̂LR

[
λ175h

∗ r
l H

f l
r D̃∗L f B̃L + λ176ϕ̃

∗φ̃f Q̃∗ lL f q̃L l + λ177B̃∗LD̃
f
LẼ
∗
L f lẼ lL

+λ178Ẽ
∗
L f lẼ lLq̃∗R rQ̃

f r
R + δ13q̃

∗ l
L q̃L lH̃∗FfH̃

f
F + δ14B̃∗LB̃LH̃∗FfH̃

f
F

+δ15Ẽ∗L lẼ lLH̃∗FfH̃
f
F

]
.
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C.2 The fermion sector of the LR-symmetric EFT

The part of the Lagrangian of the effective LR-symmetric theory that involves purely
quadratic fermion interactions as well as the Yukawa terms reads

Lfermi = LM + LYuk . (C.17)
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For the mass terms we have

LM =P̂LR

[
1
2mSL

SLSL + 1
2mTLT

i
LT iL + c.c.

]
+P̂LR

[
1
2mg̃ g̃

ag̃a +mLRSLSR + 1
2mHH

∗
FfH

f
F

]
,

(C.18)

while for the Yukawa ones we write for convenience,

LYuk = L3c + L2c + L1c + LS + LT + Lg̃ , (C.19)

where the first three terms, which involve only the fields from the fundamental representa-
tions of the trinification group, denote three, two and one SU(2) contractions, respectively,
whereas the last ones describe the Yukawa interactions of the singlet S, triplet T and octet
g̃a fermions.

The terms with three SU(2) contractions are given by

L3c =εff ′
(
P̂LR

[
y1Qf rR hlrQ

f ′

L l

]
+ P̂LR

[
y2q̃

r
RH̃

f l
r Q

f ′

L l + y3Q̃f rR h̃lrQ
f ′

L l

+y4q
r
RH

f l
r Q

f ′

L l + c.c.
])

,
(C.20)

those with two SU(2) contractions are written as

L2c =εff ′P̂LR

[
y5B̃RQfL lE

f ′ l
L + y6D̃

f
RQ

f ′

L lE
l
L + y7D̃

f
RqL lE

f ′ l
L + y8BRQ̃fL lE

f ′ l
L

+y9D
f
RQ̃

f ′

L lE
l
L + y10D

f
Rq̃L lE

f ′ l
L + y11BRQfL lẼ

f ′ l
L + y12D

f
RQ

f ′

L l(ẼL)l

+y13D
f
RqL lẼ

f ′ l
L + c.c.

]
,
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and for those with one SU(2) contraction we have

L1c =εff ′
(
P̂LR

[
y14D

f
Rϕ̃D

f ′

L

]
+ P̂LR

[
y15B̃Rφ

fDf ′

L + y16D̃
f
Rφ

f ′BL

+y17D̃
f
RϕD

f ′

L + y18BRφ̃
fDf ′

L + c.c.
])

.
(C.22)

The part of the Lagrangian involving the singlets SL,R reads

LS =P̂LR

[
y19Q̃∗ lL fSLQfL l + y20q̃

∗ l
L SLqL l + y21D̃

∗
L fSLD

f
L + y22B̃∗LSLBL

+y23H
∗ r
f l SLH̃

f l
r + y24h

∗ r
l SLh̃

l
r + y25Ẽ

∗
L f lSLE

f l
L + y26Ẽ∗L lSLE lL

+y27φ̃
∗
fSLφ

f + y28ϕ̃
∗SLϕ+ yH∗FfSLHfF + y29Ẽ

∗
L f lSRE

f l
L + y30B̃∗LSRBL

+y31D̃
∗
L fSRD

f
L + y32Q̃∗ lL fSRQfL l + y33q̃

∗ l
L SRqL l + y34Ẽ∗L lSRE lL + c.c.

]
,
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while those interactions that couple to T iL,R read

LT =P̂LR

[
(σi)

l
l′

(
y35Q̃∗ l

′
L fT iLQ

f
L l + y36q̃

∗ l′
L T iLqL l + y37H

∗ r
f l T iLH̃f l′

r + y38h
∗ r
l T iLh̃l

′
r

+y39Ẽ
∗
L f lT iLE

f l′

L + y40Ẽ∗L lT iLE l
′

L + c.c.
)]

.
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Finally, the Yukawa interactions involving gluinos are given by

Lg̃ =P̂LR

[
y41Q̃∗ lL fT

ag̃aQfL l + y41q̃
∗ l
L T

ag̃aqL l + y43D̃
∗
L fT

ag̃aDf
L + y44B̃∗LT ag̃aBL + c.c.

]
.

(C.25)
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C.3 The gauge sector of the LR-symmetric EFT

In this section, we consider interactions involving the gauge bosons of the effective SHUT-
LR model. For ease of reading, we separate those into the gauge-scalar (gs), gauge-fermion
(gf) and pure-gauge (pg) interaction types,

Lgauge = Lgs + Lgf + Lpg , (C.26)

where Eqs. (C.28) and (C.29) of appendix C.3.1 can be employed to write

Lgs = (Dµϕ̃)∗ (Dµϕ̃) +
(
Dµφ̃

)∗
f

(
Dµφ̃

)f
+ (Dµh)† rl (Dµh)lr + (DµH)† rf l (DµH)f lr

+ ηµνP̂LR

[(
Dν ẼL

)†
l

(
DµẼL

)l
+
(
DνẼL

)†
f l

(
DµẼL

)f l
+ (Dν q̃L)† l (Dµq̃L)l

+
(
DνQ̃L

)† l
f

(
DµQ̃L

)f
l

+
(
DνB̃L

)† (
DµB̃L

)
+
(
DνD̃L

)†
f

(
DµD̃L

)f]
Lgf =iϕ†σµD

µϕ+ iφ†fσµ (Dµφ)f + ih̃† rl σµ

(
Dµh̃

)l
r

+ iH̃† rf lσµ

(
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)f l
r
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[
iE†L lσµ (DµEL)l + iE†L f lσµ (DµEL)f l + iq† lL σµ (DµqL)l

+iQ† lL fσµ (DµQL)fl + iB†LσµD
µBL + iD†L fσµ (DµDL)f

]
+
∑

A=L,R

[
iS†Aσµ∂

µSA + iT i†A σµ (DµTA)i
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+ ig̃a †σµ (Dµg̃)a + c.c.

Lpg =− 1

4

 ∑
A=L,R

(
Bµν

A BAµν + Fµν iA F iAµν

)
+Gµν aGaµν +Bµν

L BRµν

 .
(C.27)

C.3.1 Covariant derivatives and field strengths

The covariant derivatives of the LR-symmetric effective model can be written in a compact
matrix form as follows

Dµ (H,h) =
(

1L⊗1R∂
µ − igLA

µ i
L τ

i⊗1R − igRA
µ i
R τ

i⊗1L + ig′LYLB
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+ ig′RYRB
µ
R1L⊗1R

)
(H,h)
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1L∂
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µ
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µ
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)
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(
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µ
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µ
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)
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C T a⊗1L − igLA

µ i
L τ

i⊗1C

+ig′LYLB
µ
L1C⊗1L

)
(QL, qL)

]
P̂LR [Dµ (DL,BL)] = P̂LR

[(
1C∂

µ − igCG
µa
C T a + ig′LYLB

µ
L1C

)
(DL,BL)

]
Dµ TA =

(
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i
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)
TA
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(
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where summation is assumed over each pair of repeated indices, YA is the U(1)A hypercharge
and 1A and 1adj

A are the identity matrices with the same dimensions of the fundamental and
adjoint representations, respectively. The field strength tensors of the U(1)A, SU(2)A and
SU(3)C gauge symmetries are given by

Bµν
A = ∂µBν

A − ∂νB
µ
A

Fµν iA = ∂µAν iA − ∂νA
µ i
A + gAε

ijkAµ jA Aν kA

Gµν a = ∂µGν aC − ∂νG
µa
C + gCf

abcGµ bC Gν cC .

(C.29)

C.3.2 Abelian D-terms

The U(1)L,R D-terms of the LR-symmetric SUSY theory read

DL =
1(

1− χ2

4

) [−1

2
χ (XR − κ) +XL + κ

]
,

DR =
1(

1− χ2

4

) [−1

2
χ (XL + κ) +XR − κ

]
,

XL = H∗ rf lH
l f
r − 2φ̃∗f φ̃

f + Ẽ∗L f lẼ
f l
L − 2Ẽ∗ rR f Ẽ

f
R r

− Q̃∗ lL f Q̃
f
L l + 2D̃∗L f D̃

f
L ,

XR = −H∗ rf lH l,f
r + 2φ̃∗f φ̃

f + 2Ẽ∗L f lẼ
f l
L − Ẽ

∗ r
R f Ẽ

f
R r

+ Q̃∗R f rQ̃
f r
R − 2D̃∗R f D̃

f
R ,

(C.30)

with f = 1, 2, 3.
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