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We present an analytic representation of FK/Fπ as calculated in three-flavoured two-loop chiral
perturbation theory, and use it to extract values of the low energy constants Lr

5, C
r

14 + Cr

15 and
Cr

15 + 2Cr

17 by means of fitting with data from lattice simulations. Although for the calculation
of the two-loop multi-scale integrals involved we have derived exact results using Mellin-Barnes
theory, the representation presented in this letter is, for practical purposes, an approximation whose
accuracy may be improved to any desired level without a significant increase in its complexity.

Introduction- The spectrum of QCD contains
as lightest particles the pseudo-scalar octet, and
their properties provide a delicate test of its non-
perturbative features, including that of chiral symme-
try breaking in the sector involving the three lightest
quarks. Of these, a special place is accorded to the de-
cay constants of the kaon and pion, namely FK and Fπ.
Their ratio has been investigated on the lattice now,
including at realistic quark masses [1]. On the other
hand, in chiral perturbation theory (ChPT) [2] at two-
loops, expressions have been available for nearly two
decades, but involving certain integrals (sunsets) that
are evaluated numerically [3]. In this work, we provide
an analytic expression for FK/Fπ, which among other
things incorporates double series derived using Mellin-
Barnes (MB) representations of the sunsets. This al-
lows us to produce a template for easy fitting to lattice
simulations. We also present a first such fit.

Methodology- Three-flavoured ChPT expressions
for the decay constants of the pseudoscalar mesons at
two-loops are given in [3]. These may be decomposed
as:

FP

F0
= 1 + F

(4)
P + (FP )

(6)
CT + (FP )

(6)
loop +O(p8), (1)

where P is the particle in question. The O(p6) contri-
bution can be subdivided as:

F 4
π (FP )

(6)
loop = dPsunset + dPlog×log + dPlog + dPlog×Li

+ dPLi
+ dPLi×Lj

. (2)

dPLi×log collects the terms linear in the O(p4) LECs

Li and containing chiral logs, dPlog, d
P
log×log collect the

terms linear respectively quadratic in chiral logarithms
without Li, dLi

and dPLi×Lj
the terms linear respec-

tively quadratic in the LECs Li. The term (FP )
(6)
CT is

composed of the O(p6) counterterms, i.e. the LECs
Cr

i , while d
P
sunset are the pure sunset terms.

One determines the ratio FK/Fπ using:
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(3)

The terms dPsunset are not available fully analytically.
Their determination is the goal of this work. The sun-
set integral, shown in Fig. 1, is defined as:

Hd
{α,β,γ}(m1,m2,m3; s) =

(1/i)2

(2π)2d

∫

ddq ddr

[q2 −m2
1]

α[r2 −m2
2]

β [(q + r − p)2 −m2
3]

γ
.

(4)

Aside from the basic scalar integral defined above, ten-
sor integrals in which the momenta qµ and qµqν appear
in the numerator, and derivatives with respect to the
external momentum of both the scalar and tensor in-
tegrals, appear in dPsunset [3]. The tensor integrals, as
well as all the derivatives, may be reduced into a lin-
ear combination of scalar integrals using the methods
given in [4]. Thus only a smaller set of master integrals
(MI) is needed.
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FIG. 1. The two-loop self energy “sunset” diagram

The full list of sunset integrals appearing in dPsunset
can thus all be expressed in terms of a set of four MIs
(Hd

{1,1,1}, H
d
{2,1,1}, H

d
{1,2,1} and Hd

{1,1,2}) and the one-

loop tadpole integral. The problem reduces to solving
these analytically in the required mass configurations.
For the evaluation of FK/Fπ, seven distinct three mass
scale MIs need evaluation.
MB theory leads to representations of these MI

where each integral consists of at least one double com-
plex plane integral. These double MB integrals are
evaluated using the method proposed in [5] and fully
systematized in [6] to obtain results in the form of sums
of single and double infinite series [7]-[9].

The analytic representation- Using Eq.(3), we
obtain the following representation of FK/Fπ:

FK

Fπ

= 1 + 4(4π)2Lr
5 (ξK − ξπ) +

5

8
ξπλπ − 1

4
ξKλK

+

(

1

8
ξπ − 1

2
ξK

)

λη + ξ2KFF

(

m2
π

m2
K

)

+ K̂r
1λ

2
π
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2λπλK + K̂r

3λπλη + K̂r
4λ

2
K + K̂r

5λKλη

+ K̂r
6λ

2
ηξ

2
K + Ĉ1λπ + Ĉ2λK + Ĉ3λη + Ĉ4, (5)

where ξπ = m2
π/(16π

2F 2
π ), ξK = m2

K/(16π
2F 2

π ), λi =
log(m2

i /µ
2), and:
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Ĉr
3 =

(

13

18
+ (4π)2

(

8

3
Lr
3 −

2

3
Lr
5 − 16Lr

7 − 8Lr
8

))

ξ2K

−
(

4

9
+ (4π)2

(

4

3
Lr
3 +

25

6
Lr
5 − 32Lr

7 − 16Lr
8

))

ξπξK

+

(

19

288
+ (4π)2

(

1

6
Lr
3 +

11

6
Lr
5 − 16Lr

7 − 8Lr
8

))

ξ2π ,

Ĉr
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. (7)

FF consists of the terms arising from the pure sunset
contributions. The split between the K̂i terms and
FF is not unique. To evaluate FF , we truncate the
series results of each sunset integral so that the error
between the exact and truncated value is < 1% for
most of the sets of masses used in the lattice study of
[1]. After substituting the truncated sunset results into
dPsunset, we take its series expansion in ρ = m2

π/m
2
K up

to O(ρ4), and express FF as:

FF (ρ) = a1 +
(

a2 + a3 log[ρ] + a4 log
2[ρ]
)

ρ

+
(

a5 + a6 log[ρ] + a7 log
2[ρ]
)

ρ2

+
(

a8 + a9 log[ρ] + a10 log
2[ρ]
)

ρ3

+
(

a11 + a12 log[ρ] + a13 log
2[ρ]
)

ρ4 +O
(

ρ5
)

(8)

The numerical values of the ai are:

a1 = 0.8740, a2 = −2.172, a3 = 0.8294,

a4 = −0.4583, a5 = 3.716, a6 = −0.1113,

a7 = 0.8776, a8 = −1.635, a9 = 1.4697,

a10 = −0.1406, a11 = −1.343, a12 = 0.2731,
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a13 = −0.2109, (9)

and their explicit analytic form is given by:

a1 = −6337

5184

(

Li2

[

3

4

]

+ log(4) log

[

4

3

])

+
41π2

192

− 11
√
2π

27
+

85957107031

27662342400
− 119π
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√
2
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62591
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log[3] +
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4
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8
√
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− 5 log[3]
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√
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3
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[√
3
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log2
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+
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√
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+
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√
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+
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+
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√
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+
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√
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√
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+
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+
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√
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√
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√
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]
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55296
√
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√
2
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√
2
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√
2

)
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[

4

3

]
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3
]

+

(
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+
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√
3

)
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[
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3

]

,

a6 =
17003
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− 176189π

110592
√
3
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log

[

4

3

]

+
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48
√
2
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,

a8 =
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4
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3
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9481096396800
+
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√
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√
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−
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+
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√
3
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4

3

]
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ψ

[

5

2

]
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[√
3
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]
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√
2
log

[

4

3

]

+
5π
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√
2
− 5341499

3538944
√
2
+

104075 log[3]
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√
2

)

,

a9 = − 8327

138240
+

804611π
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√
3
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log
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4
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]
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3072
√
2
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,

a11 = − 5
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(

Li2

[
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4

]

+ log[4] log

[

4

3

])

− 25π2
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− 1310311γ

6635520
− 10567863311827

10113169489920
+
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√
3π

65536

+

(

12616533707

45864714240
+
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√
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log[3]
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(
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+
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√
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√
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√
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+
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[
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1√
2

(
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3
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[√
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√
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1
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√
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[√
3
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, (10)

where γ is the Euler–Mascheroni constant, csc−1 is the
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FIG. 2. Comparison of the exact and approximate FF

arccosec function, Li2 is the dilogarithm function, and
ψ is the digamma function.
The range of validity of Eq.(10) is shown in Fig. 2,

in which the exact value of FF , calculated numerically,
is plotted against x =

√
ρ, as are the approximate FF

retained upto various orders of ρ. The expansion up
to O(ρ4) approximates the exact value of FF to 1%
for mπ/mK < 3 and to 6% for mπ/mK < 0.5. If
greater accuracy is required, the sunset MB series may
be truncated with a larger number of terms. This leads
to the same general analytic form of the ai, but with
different coefficients.

Lattice Fittings- We fit Eq.(5) with the data of the
lattice study [1] to determine best-fit values of the NLO
LEC Lr

5 and the NNLO LEC combinations Cr
14 + Cr

15

and Cr
15 + 2Cr

17. We perform the fit (using [10]) on
the mass sets for which mπ < 0.40GeV. We do the
fit with the exact FF , the approximate version gives
compatible results. We fix the renormalization scale µ
at mρ = 0.77GeV, and use the values of the BE14 fit
[11] for the other Lr

i , to obtain:

Lr
5 = (3.92± 0.55) 10−4

Cr
14 + Cr

15 = (2.59± 0.63) 10−6

Cr
15 + 2Cr

17 = (6.10± 1.41) 10−6. (11)

The uncertainties on the values derive from the er-
rors of the FK/Fπ data of the lattice study, but do
not take into account other uncertainties. In addi-
tion we fixed Fπ in the determination of ξπ and ξK to
92.2 MeV.
With these LEC values and the physical meson

masses as inputs, we get for the value of FK/Fπ:

FK/Fπ = 1.194, (12)

L5 C14 +C15

C14 + C15 −0.93 1.00
C15 + 2C17 0.35 −0.66

TABLE I. Correlation values of the fit in (11).

which agrees well with the literature value of [11].
The values of Eq.(11) differ from those of the BE14

exact fit (L5 = 10.1 × 10−4, C14 + C15 = −4.00 ×
10−6, C15+2C17 = −5.00×10−6), as well as from the fit
of [12] (L5 = 7.60×10−3, C14+C15 = 0.37×10−6, C15+
2C17 = 1.29×10−6) by a significant amount. However,
the strong correlation among these values values must
be taken into account. The correlation parameters are
given in Table I.
The quality of the fit is shown in Fig. 3(Left).

The correlation is shown graphically in Fig. 3(Middle,
Right) by plotting a number of random points in a
distribution given by the correlation matrix of the fit
projected on the two different planes.
A similar fit, but now with Fπ also varied in ξπ, ξK

requires the use of lattices common to [1] and [13] to
obtain the values of Fπ for each lattice. This fit leads
to:

Lr
5 = (0.49± 1.08) 10−4

Cr
14 + Cr

15 = (5.59± 1.08) 10−6

Cr
15 + 2Cr

17 = (39.7± 2.10) 10−6. (13)

The lattice data clearly have a significant impact on
fitting the LECs.

Conclusions- The ratio FK/Fπ is a quantity at
the heart of chiral symmetry breaking, a fundamental
property of the strong interactions that is measured
in ab initio calculations on the lattice. Tuning of the
quark masses to physical values is now possible. Thus
an analytic expansion for this in masses of the quarks
or the mesons is the order of the day. By suitably
adapting two-loop expansions for this in ChPT [14],
and using modern loop calculation techniques, we have
achieved this goal, and thereafter fit lattice data to the
expressions obtained.
This work is a product of combining techniques de-

veloped independently in various branches of elemen-
tary particle physics and field theory, and represents an
important advance on the results that appeared nearly
two decades ago, when many sunsets were evaluated
numerically. We hope this work will pave the way for
detailed comparisons of other similar quantities with
lattice simulations, and help improve our understand-
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ing of both ChPT and lattice studies.
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