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Abstract

The LHC has brought much new information on total, elastic and diffractive cross
sections, which is not always in agreement with extrapolations from lower energies.
The default framework in the Pythia event generator is one case in point. In this
article we study and implement two recent models, as more realistic alternatives.
Both describe total and elastic cross sections, whereas one also includes single
diffraction. Noting some issues at high energies, a variant of the latter is proposed,
and extended also to double and central diffraction. Further, the experimental
definition of diffraction is based on the presence of rapidity gaps, which however
also could be caused by colour reconnection in nondiffractive events, a phenomenon
that is studied in the context of a specific model. Throughout comparisons with
LHC and other data are presented.
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1 Introduction
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Figure 1: The squared matrix element for the total (a), elastic (b), single (c,d), double (e) and
central (f) diffractive cross sections.

The LHC has provided new information on any number of topics, including total, (differential)
elastic and (differential) diffractive cross sections, or σTED for short. The σTED kind of quantities
cannot be predicted from the QCD Lagrangian, although this is where they have their origin.
Therefore σTED results are often overshadowed by results from the perturbative domain, where
comparisons with the Standard Model, and searches for physics beyond it, are more directly related
to the underlying theory. Nevertheless, there are good reasons to study the old and new σTED

data now available. One is to assess how well different effective models can describe the data, and
implicitly or explicitly pave the way for better models and better understanding, ultimately to
form a stronger connection with the underlying QCD theory. Another is that diffractive events
form part of the “underlying event” and pileup backgrounds that have a direct impact e.g. on jet
energy scales and jet profiles, and thereby on many experimental studies. In this latter aspect
they combine with the inelastic nondiffractive events into the overall inelastic event class, with a
separation that is far from unambiguous.

Historically there are two main approaches to σTED in hadron–hadron collisions, the diagram-
matical and the geometrical, although both aspects may well be represented in a specific model
[1, 2, 3, 4]. In the diagrammatical approach new effective particles are introduced, specifically the
Pomeron(s) P and Reggeon(s) R, with associated propagators and vertex coupling strengths. A
Feynman-diagram-like expansion may be performed into different event classes, with higher-order
corrections. A subset of these are shown in fig. 1, with X = P,R and each of the couplings denoted
with a g. In the diagrammatical approach, the dashed line (the cut) represents the diagram at
amplitude level. A cut through a P or R thus represent particle formation at amplitude level,
while an uncut Pomeron or Reggeon represents an area void of particle production. In a geometri-
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cal approach the impact-parameter aspects are emphasized, where diffraction largely is related to
peripheral collisions. The analogy with wave scattering theory here is natural, and has given the
diffractive event class its name. Diffraction can also be viewed as a consequence of the interaction
eigenstates being different from the mass ones [5, 6].

Neither of these approaches address the detailed structure of diffractive events. In olden days,
at low energies, a diffractive system was simply viewed as an excited proton state that could decay
more-or-less isotropically, a “fireball” [7, 1]. This is clearly not a valid picture for higher-mass
diffractive states, where the same kind of longitudinal structure is observed as for nondiffractive
ones. The simplest partonic approach would then be for a P/R to kick out a single quark or gluon
from a proton, giving rise to one or two fragmenting colour strings. The Ingelman–Schlein picture
[8] takes it one step further and introduces an internal structure for the P, such that a Pp collision
may be viewed as an inelastic nondiffractive pp (or better π0p) one in miniature. Thereby also
hard jet activity and multiparton interactions (MPIs) become possible within a diffractive system,
as supported by data.

A key aspect of MPI modelling is the relation to colour reconnection (CR), whereby partons
in the final state may be related in colour so as to reduce the total string length relative to naive
expectations. This opens for another view on diffraction, where CR can generate rapidity gaps
dynamically [9, 10]. Then the diffractive and inelastic nondiffractive event classes have a common
partonic origin, and only differ by the event-by-event fluctuations in colour topologies. Even in
models that do not go quite as far, the dividing line between the two kinds of events may be fuzzy.
This is even more so since the experimental classification in terms of a rapidity gap allows for
misidentification in both directions, relative to the classification in a specific model. High-mass
diffraction need not give a gap in the central detector, while nondiffractive events by chance (CR
or not) can have a large rapidity gap.

What should now be clear is that description of the σTED physics, and especially the diffractive
part, is too multifaceted to be based purely on analytical calculations. The implementation into
Monte Carlo Event Generators is crucial to test different approaches. One of the most commonly
used generators is Pythia [11, 12], which by default is based on a rather old diagrammatical “tune”
for the σTED issues [13], combined with an Ingelman–Schlein-style approach to the diffractive event
structure [14]. In particular the first part does not agree well with LHC data, and so needs an
overhaul.

For the total and elastic cross sections we have chosen to implement two different parametriza-
tions, the parametrization from the COMPAS group as found in the Review of Particle Physics
2016 [15] and a model developed by Appleby and collaborators (ABMST) [16]. In addition to a
better fit to the integrated cross sections, these also include a more detailed description of the
differential elastic cross sections.

The ABMST model also addresses single diffraction. It is in an ambitious diagrammatical
approach, supplemented with a careful description of the resonance shape in the low-mass region,
based on comparisons with low-energy data. Unfortunately, as is common in such ansätze, the
diffractive cross section asymptotically grows faster with energy than the total one, making it
marginally acceptable already at LHC energies and definitely unacceptable for FCC ones. We
therefore study possible modifications that would give a more reasonable energy behaviour. Fur-
ther, while ABMST does not address double or central diffraction, we use the framework of the
model to extend it also to these event classes, and in the process need to make further adjustments.
Results for the ABMST-based modelling implemented in Pythia are compared with the already
existing default framework of Schuler-Sjöstrand (SaS) and Donnachie-Landshoff (DL) [17, 13], and
confronted with LHC data.

Furthermore we study the sensitivity to CR by comparing with the Christiansen–Skands QCD-
based CR model (CSCR) [18]. This model has no protection against “accidental” rapidity gaps in
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nondiffractive events, unlike the default CR framework. But it is also not intended to describe (the
bulk of) diffraction, and therefore it requires a retuning to provide a sensible combined description.
It therefore offers an interesting case study for a tuning task that is likely to become more common
in the future.

The plan of the article is as follows: In section 2 we begin by summarising the current status of
Pythia 8, the default cross section parametrizations along with the hadronic event properties of
diffractive events. In section 3 we describe the new models for total and elastic (differential) cross
sections. In section 4, 5, 6 we extend these to single-, double- and central diffractive (differential)
cross sections, respectively. In section 7 we provide some comparisons to LHC data and provide
new tunes of the default Pythia 8 model. We end with section 8, where we summarise and
provide an outlook to further studies.

2 The current status of Pythia 8

Pythia 8 is a multi-purpose event generator aimed at the generation of high-energy events. This
includes collisions both of a perturbative and a non-perturbative character, each of which gives
contributions to the total collision cross section. In perturbative collisions, the description begins
with the matrix element of the hard scattering process in combination with parton distribution
functions. This core is dressed up with several other elements such as multiparton interactions,
parton showers and hadronisation. In non-perturbative scattering collisions, on the other hand,
no standard formulation exists for the core process, and phenomenological models are needed.
After the model-dependent choices of the key kinematical variables have been made, the event
generation may be continued in a similar manner as for perturbative events, where relevant.

In this paper we focus on the non-perturbative scattering processes, and the generation of
these. To set the stage for further improvements, the purpose of this section is to describe the
current status of the event generator. This we have split into two parts, beginning with the
description of the default cross section models, the SaS/DL one, and then go on to describe the
event property aspects that are the same regardless of the choice of model.

2.1 Differential cross sections

In the current version of Pythia 8, the predictions for the total, elastic and diffractive cross sec-
tions do not agree so well with measurements performed at the LHC. The current implementation
is the parametrization of DL [17] for the total cross section,

σtot(s) =XABsε + Y ABs−η, (1)

with s = E2
CM, ε = 0.0808, η = 0.4525. A and B denote the initial-state particles, and XAB, Y AB

are specific to each such state. The elastic and diffractive cross sections are described using the
parametrization of SaS [13],

dσel

dt
=(1 + ρ2)

σ2
tot(s)

16π
exp(Bel(s) t) , (2)

dσXB(s)

dt dM2
X

=
g3P
16π

βAP(s)β2
BP(s)

M2
X

exp(BXB(s) t)FSD(M2
X , s) , (3)

dσAX(s)

dtdM2
X

=
g3P
16π

β2
AP(s)βBP(s)

M2
X

exp(BAX(s) t)FSD(M2
X , s) , (4)

dσXY (s)

dt dM2
X dM2

Y

=
g2

3P
16π

βAP(s)βBP(s)

M2
XM

2
Y

exp(BXY (s) t)FDD(M2
X ,M

2
Y , s) , (5)
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where indices X and Y here represent diffractive systems (not to be confused with the coefficients
of eq. (1)), ρ is the ratio of real to imaginary parts of the elastic scattering amplitude at t = 0 ,
βAP and βBP are hadron couplings strengths to the Pomeron, and g3P the triple-Pomeron vertex
strength. The slope parameters are defined as

Bel(s) =2bA + 2bB + 4sε − 4.2,

BXB(s) =2bB + 2α′P ln

(
s

M2
X

)
BAX(s) =2bA + 2α′P ln

(
s

M2
X

)
BXY (s) =2α′P ln

(
e4 +

s s0

M2
XM

2
Y

)
, (6)

where bi = 2.3 for i = p,p, α′P = 0.25 GeV−2, s0 = 1/α′P, and the term e4 is added by hand
in order to avoid BDD(s) to break down for large values of M2

XM
2
Y . Special care was taken to

avoid unphysical high-energy behaviours; e.g. a logarithmic s dependence of Bel would have lead
to σel(s) > σtot(s) for large s.

Fudge factors are introduced to dampen large (overlapping) mass systems as well as increasing
the low-mass “resonance” region, without describing the resonances individually,

FSD(M2
X , s) =

(
1− M2

X

s

)(
1 +

cresM
2
res

M2
res +M2

X

)
FDD(M2

X ,M
2
Y , s) =

(
1− (MX +MY )2

s

)(
sm2

p

sm2
p +M2

XM
2
Y

)
·(

1 +
cresM

2
res

M2
res +M2

X

)(
1 +

cresM
2
res

M2
res +M2

Y

)
, (7)

where cres = 2 and Mres = 2 GeV for pp and pp.
Central diffraction has been added to Pythia 8, but is not widely used in the experimental

communities, hence have not been maintained properly after its inclusion. It is off by default, and
is not included in any of the tunes performed by the Pythia 8 collaboration or the experimental
communities. Thus the results obtained with it included should not be trusted too far. The cross
section is

σCD(s) =σref
CD

ln1.5
(

0.06s
smin

)
ln1.5

(
0.06sref
smin

) , (8)

with σref
CD = 1.5 mb, sref = 4 TeV2 and smin = 1 GeV2. The diffractive mass is chosen from a

(1− ξ1)(dξ1/ξ1)(1− ξ2)(dξ2/ξ2) distribution, with ξ1,2 being the momentum fraction taken from
the respective incoming hadron, such that M2

X = ξ1ξ2s. The two t values are selected according
to exponentials with slope 2bA + α′P ln(1/ξ1) and 2bB + α′P ln(1/ξ2), respectively.

The expressions in eqs. (3) – (5) can be integrated to give the total elastic and diffractive cross
sections. This worked reasonably well up to Tevatron energies, but it overshot diffractive cross
sections observed at the LHC [19]. Simple overall modification factors were therefore introduced
[20] to dampen the growth of the diffractive cross sections (including the CD one in eq. (8)),

σmod
i (s) =

σold
i (s)σmax

i

σold
i (s) + σmax

i

, (9)
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where the σmax
i are free parameters. The ansatz allows phenomenology at lower energies to be

preserved while giving some reasonable freedom for LHC tunes. It gives asymptotically constant
diffractive cross sections, but typically with asymptotia so far away that it is not an issue for
current studies.

The kinematical limits for t are determined by all the masses in the system. We define the
scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

X/s, µ4 = M2
Y /s where MX = mA if A scatters

elastically and MY = mB if B scatters elastically. Thus the combinations

C1 =1− (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4)

C2 =
√

(1− µ1 − µ2)2 − 4µ1µ2

√
(1− µ3 − µ4)2 − 4µ3µ4

C3 =(µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3),

will lead to the kinematical limits tmin < t < tmax.

tmin =− s

2
(C1 + C2)

tmax =
s2C3

tmin
. (10)

These expressions are directly applicable for elastic scattering and for single and double diffraction.
For central diffraction AB → AXB they can be applied twice, with µ4 = M2

XB/s for t1 and
µ3 = M2

AX/s for t2.
An electromagnetic Coulomb term can be added to describe low-|t| elastic scattering. The

implementation is here based on the formalism as outlined e.g. in [21, 22]. Introducing an elec-
tromagnetic low-|t| form factor as

G(t) ≈ λ2

(λ− t)2
, λ ≈ 0.71 GeV2 , (11)

and a Coulomb term phase factor approximation [23, 24]

φ(t) ≈± αem

(
−γE − log

(
−Bel(s) t

2

))
, γE ≈ 0.577 , (12)

with + for pp and − for pp, Coulomb and interference terms are added to the hadronic dσel/dt
above

dσC+int
el

dt
=

4πα2
emG

4(t)

t2
± αemG

2(t)

t
(ρ cosφ(t) + sinφ(t)) σtot(s) exp

(
Bel(s) t

2

)
. (13)

The same expression can also be added to the Minimum Bias Rockefeller (MBR) model [25] (and a
flexible “set your own” one), while the ABMST and RPP formalisms each introduce the Coulomb
corrections as one extra amplitude term, with the full phase expressions of [24]. Numerically the
three implementations give very similar results.

2.2 Hadronic event properties

To model a diffractive system, it is convenient to view its internal structure as a consequence of the
interaction between two hadronlike objects, e.g. as a PB subcollision for the AB → AX process,
in the same spirit as a high-energy nondiffractive pp event, where perturbative processes largely
shape its structure. Such an approach is not viable for low-mass diffractive systems, however.
Therefore the diffractive event generation is split into two regimes, a high-mass and a low-mass
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one, with a smooth transition between the two. The probability for applying the high-mass
description is given by [14]

Ppert =1− exp

(
−max(0,MX −mmin)

mwidth

)
,

with mmin and mwidth free parameters, both by default 10 GeV. Note how Ppert vanishes when
below mmin.

For very low masses, MX ≤ mB+1 GeV for a PB subcollision, the diffractive system is allowed
to decay isotropically into a two-hadron state. Above this limit, but still in the nonperturbative
regime, the collision process is viewed as the P kicking out either a valence quark or a gluon from
the incoming hadron B. The relative rate of the two is is mass-dependent,

P (q)

P (g)
=
N

Mp
X

,

with N and p as free parameters, and MX in GeV. In the former case a single string will be
stretched between the kicked-out quark and the left-behind diquark, whereas the latter gives a
“hairpin” string topology, going from one remnant valence quark via the struck gluon and back to
the remnant diquark. These strings are then allowed to fragment using the Lund fragmentation
model [26]. The default values N = 5 and p = 1 ensures that the double-string topology wins out
at higher masses, consistent with what the exchange of a single gluon (a.k.a. a cut Pomeron) is
expected to give in pp collisions.

In the high-mass regime it is assumed that the diffractive cross section factorises into a Pomeron
flux, a Pomeron–proton cross section, and a proton form factor. Together these determine the
mass MX of the diffractive system and the squared momentum transfer t in the process. Neither
the P flux nor the Pp cross section are known from first principles; therefore seven similar but
somewhat different P flux options are available in Pythia 8.

The internal structure of the Pp system is then considered in an Ingelman–Schlein-inspired
picture. Thus perturbative processes are allowed, and P parton distribution functions (PDFs)
are introduced like for a hadron. Standard factorization can be assumed, i.e. cross sections are
given by hard-scattering matrix elements convoluted with the PDFs of two incoming partons.
Furthermore, the full interleaved shower machinery of Pythia 8 is enabled, giving rise both to
initial- and final-state showers and to multiparton interactions in the Pp system. This results in a
more complex colour string structure than in the low-mass regime, which can also be subjected to
additional colour reconnection, owing to overlap and crosstalk between the multiple subsystems.

The activity in the Pp system, as represented e.g. by the average charged multiplicity, can
be tuned to roughly reproduce that of a non-diffractive pp collision of the same mass. This
activity is closely related to the average number of MPIs per event, the calculation of which differs
between the two systems by a P vs. a p PDF in the numerator, and by σeff

Pp vs. σnondiffractive
pp in the

denominator. Given a P PDF, and assuming the same MPI-framework parameters as in pp, the
σeff
Pp thus becomes the main (mass-dependent) tuning parameter. In reality the two systems can be

different, however, so experimental information on diffractive mass and multiplicity distributions
can be used to refine the tune. Be aware that a different choice of PDFs is likely to require a
different σeff

Pp value. Ten different P PDF sets are implemented [27, 28, 29, 30], plus a few toy
ones for special purposes. Many of these have been fixed by some convention for the P flux
normalization, that in Pythia could be set differently. Hence all P PDFs are implemented with
the option to be rescaled, e.g. in order to approximately impose the momentum sum rule.

In the MPI framework [31] the joint probability distribution for extracting several partons
from a Pomeron needs to be defined. This is done in the same spirit as for protons [32]. MPIs are
ordered in a sequence of decreasing p⊥ scales, and for the hardest interaction the normal PDFs
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are used. For subsequent ones the x value is interpreted as a fraction of the then remaining P
momentum, thereby ensuring that the momentum sum is not violated. If a quark is kicked out,
flavour conservation ensures that a companion antiquark must also be present, and vice versa.
Such a companion is introduced as an extra component of the P PDF, with normalization to unity.
Overall momentum is preserved by scaling down the gluon and ordinary sea quark distributions to
compensate. If the companion is selected for a subsequent MPI, then that component is removed,
and gluon and sea are scaled up.

Also initial-state radiation (ISR) requires special attention in the MPI framework. ISR is gen-
erated starting from the hard interaction and then evolving backwards, to lower scales and larger
x values [33]. Such ISR branchings are combined with the MPI generation into one interleaved
sequence of falling p⊥ scales. As above special consideration has to be given to branchings that
change the flavour of the incoming parton, and that can either induce or remove a companion
(anti)quark.

Similar to a proton [32], the Pomeron will leave behind a remnant after the MPIs and showers
have removed momentum and removed or added partonic content. To begin, assume that only
one gluon is kicked out of the incoming P. The remnant will then be in a net colour octet state,
which means that two colour strings eventually are stretched to the outgoing partons of the hard
collision (or to the other beam remnant). The remnant could only consist of gluons and sea qq
pairs, since the P has no valence flavour content, so the simplest representation is as a single
gluon or a single qq pair. From a physical point of view the two options would give very closely
the same end result, since the hairpin string via a gluon remnant eventually would break by the
production of qq pairs. For convenience, the choice is therefore made to represent the remnant as
an octet uu or dd pair with equal probability. In the general case, further unmatched companion
quarks are added to represent the full flavour content needed in the remnant. Most MPI initiators
are gluons, however, which carry colour that should be compensated in the remnant. This is
addressed by attaching the gluon colour lines to the already defined remnants, which implicitly
introduces colour correlations between the initiator partons. Such initial-state correlations can be
further enhanced by colour reconnections in the final state. The final colour topology decides how
strings connect the outgoing partons after the collision, and thereby sets the stage for the hadron
production by string fragmentation.

2.3 Hard diffraction

Recently a framework for truly hard diffractive processes have been implemented into Pythia [34].
This allows for diffractive subprocesses to generate eg. hard jets, electroweak particles and other
internal Pythia processes, unlike the soft-to-medium QCD-only processes that were allowed in
the framework described above. This framework decides on whether or not a process is diffractive
by evaluating the diffractive part of the proton PDF,

fD
i/p(x,Q2) =

∫ 1

0
dxP fP/p(xP)

∫ 1

0
dx′ fi/P(x′, Q2) δ(x− xPx′)

=

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x

xP
, Q2

)
, (14)

where fP/p(xP) =
∫
fP/p(xP, t) dt, as t for the most part is not needed. The ratio fD

i/p/fi/p defines
the tentative probability for diffraction. A full evolution of the pp system is then performed and
only the fraction of events passing the evolution without any additional MPIs is kept as diffractive.
Additional MPIs between the two hadrons gives rise to hadronic activity, which could destroy the
rapidity gap between the elastically scattered hadron and the interaction subsystem, which is
one of the clear experimental signatures of a diffractive event. If the event survives the no-MPI
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criterion and is classified as diffractive, the partonic sub-collision is assumed to have happened in
a Pp sub-system. The Pp system is set up and a full evolution is performed in this subsystem,
similar to the method described above.

The no-MPI requirement introduces a gap survival probability determined on an event-by-
event basis, unlike other methods used in the literature. As MPIs only occur in hadron-hadron
collisions, the framework provides a simple explanation of the differences between the diffractive
event rates obtained at HERA and Tevatron. Diffractive fractions and survival probabilities
obtained with the new framework show good agreement with experiments, while some distributions
show less-than-perfect agreement, see [34] for a discussion. The model is currently only available
for single diffraction; future work would be to extend this to both double and central diffraction.

3 Total and elastic cross sections

The parametrizations of the total and elastic cross sections are related through the optical theorem.
The elastic cross section has historically been well described in the framework of Regge theory,
with varying complexity based on the number of exchanges included in the model. Up until
the LHC era the simple ansatz of DL [17] using only a Pomeron and an effective Reggeon has
described the total cross section surprisingly well. With a simple exponential t spectrum, the SaS
parametrization [13] extended this to the elastic cross section, and here at least the low-t data
was well described. But with the higher energies probed at the LHC it has become obvious that
these simple parametrizations fail. More complex trajectories have to be introduced in order to
describe both the rise of the total cross section and the t spectrum of the elastic cross section.

We have chosen to implement two additional models in Pythia 8. One, the model from the
COMPAS group as presented in the Review of Particle Physics 2016 [15], is of great complexity,
using six different single exchanges as well as some combinations of double exchanges, along with
the exchange of three gluons, the latter becoming important at high |t|. The other, the newly
developed ABMST model [16], is somewhat simpler, extending the original DL model to four
single trajectories and all possible combinations of double exchanges between these, along with
the triple-gluon exchange for high |t| values.

Recent TOTEM collaboration data on elastic scattering hint that none of the traditional
models describe all aspects of their data. Specifically, TOTEM obtains a decreasing ρ parameter
[35], and observes no structure in the high-|t| region (unpublished, but see eg. [36]). There is
an ongoing discussion in both the theoretical and experimental community on how to describe
all data simultaneously. None of the models implemented here do that, specifically they do not
predict a decreasing ρ value. Further, the ABMST model does not show any sign of structure at
high |t|, while the COMPAS one does. Models could be extended to include a maximal odderon,
similar to the work of Avila et al. [37, 38] (AGN) and Martynov et al. [39] (FMO), which would
be able to describe the decrease in ρ. At the time of writing the former has not been fitted to
the new TOTEM data and the latter has not been extended to t 6= 0. Thus, for now, we have
chosen not to implement either in Pythia 8, but we show the FMO model in the relevant figures
for completeness. Below we will give short descriptions of each of the fully implemented models.

3.1 The COMPAS model

For the Review of Particle Physics 2016 the COMPAS group [15] has fitted a parametrization of
the elastic differential cross section to all available pp (upper signs) and pp (lower signs) data,
using a set of 37 free parameters. The cross sections are functions of the nuclear and amplitude,
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T±, as well as the Coulomb amplitude, T c±,

σtot(
√
s) =

Im [T±(s, 0)]√
s(s− 4m2

p)

dσel

dt
(
√
s, t) =

|T±(s, t) + T c±|2
16π(~c)2 s(s− 4m2

p)

σel(
√
s) =

1

16π(~c)2 s(s− 4m2
p)

∫ tmax

tmin

dt |T±(s, t)|2. (15)

The Coulomb term, T c±, and the nuclear term, T±, are given as

T c±(s, t) =± 8π αem exp
(
∓i αem φ

NC
± (s, t)

) s
t

(
1− t

Λ2

)−4

T±(s, t) =F+(ŝ, t)± F−(ŝ, t)

F+(ŝ, t) =FH+ (ŝ, t) + FP+ (ŝ, t) + FPP+ (ŝ, t) + FR+ (ŝ, t) + FRP+ (ŝ, t) +N+(ŝ, t)

F−(ŝ, t) =FMO
− (ŝ, t) + FO− (ŝ, t) + FOP− (ŝ, t) + FR− (ŝ, t) + FRP− (ŝ, t) +N−(ŝ, t). (16)

with the exact definitions of the different terms given as stated in [15]. It should be noted that
earlier versions of the PDG contains misprints in the definitions above as well as in the crossing of
even and odd functions, and the current still contains sign errors for the Coulomb term, so these
should be used with care.

3.2 The ABMST model

A somewhat simpler scattering model was proposed by Appleby et al. describing pp and pp data
from ISR to Tevatron energies [16]. The model is based on work by Donnachie and Landshoff
[40, 41] describing both elastic scattering and single diffractive scattering, but includes new and
more sophisticated fits compared to the ones from Donnachie and Landshoff. In this section the
details on the elastic scattering will be given, while the single diffractive scatterings are presented
in Sec. 4.

The ABMST model includes both the Coulomb and nuclear amplitudes, as well as the inter-
ference between the two. The cross sections are given as

dσel

dt
=π |fc(s, t)eiαφ(t) + fn(s, t)|2

σel(s) =π

∫ tmax

tmin

dt |fn(s, t)|2

σtot(s) =Im [fn(s, 0)] , (17)

where the triple-gluon amplitude is left out of the nuclear amplitude [40] when evaluating the
total cross section. The Coulomb amplitude from [42] is used and the nuclear amplitude consists
of five terms: A hard Pomeron (Ph), a soft Pomeron (Ps), the f2, a2 Regge trajectory (R1), the
ρ, ω Regge trajectory (R2) and a triple-gluon exchange amplitude,

fn(s, t) =Aggg(t) +
∑

i=Ph,Ps,R1,R2

Ai(s, t). (18)

Also included is a double exchange term, where eg. two Pomerons are exchanged. Exact definitions
of the various terms are found in [16, 43]. It should be noted that that the cross sections are only
valid down to

√
s = 10 GeV, and that the fits have only been performed up to UA1 energies. We

thus expect good agreement in this energy range, whereas the fit might disagree with data outside
of it.
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3.3 The FMO model

The FMO model [39] includes the maximal odderon, excluded by hand in the COMPAS model.
The odderon has been a controversial subject ever since its introduction, and so far no signs of it
has been observed. The main feature of its introduction is that the difference between pp and pp
total cross sections is not vanishing at high energies. Similarly the ρ values will deviate at high
energies. The FMO model only includes the t = 0 contribution and can be written as

σtot(s) =
ImT±(s, 0)√
s(s− 4m2

p

T± =FH+ ± FMO
− + FR+ ± FR− , (19)

with the exact definitions of the crossing-odd and -even amplitudes found in [39].

3.4 Comparisons with data

In fig. 2a,b we show the above parametrizations of the total cross section and in fig. 2c,d the
ρ parameter, for pp and pp processes respectively. Note how the ABMST σpp

tot parametrization
rises at

√
s < 10 GeV, a consequence of it not being fitted to this range. We do not aim to

describe so low energies in Pythia 8, so this is not an issue. Both the ABMST and COMPAS
parametrizations well describe the LHC data points in pp, and seem to favour the higher of
the Tevatron data points in pp processes, unlike the original DL parametrization available in
Pythia 8. In fig. 2c the ρ is well described by all three parametrizations, below LHC energies.
But at LHC the latest TOTEM value [35] is described only by the FMO model, which explicitly
includes the maximal odderon term in order for ρ to decrease here. This term also gives rise to
the difference in ρ for pp and pp processes, as seen in figs. 2c,d, a difference not present in the
other two models.

In fig. 3 we show the available parametrizations of the elastic differential (a,b) and integrated
(c,d) cross sections for pp and pp processes. Here it is evident that the pure exponential description
used by SaS only makes sense for small |t|. Both the COMPAS and ABMST parametrizations have
been fitted to the

√
s = 23 GeV data, but not to the 7 TeV data. Here it seems that the COMPAS

parametrization prefers a larger dip than seen in data, while it captures the high-|t| region slightly
better than the ABMST parametrization. It is also evident that SaS underestimates the rise of
the total elastic cross section, whereas the other two do quite well.

4 Single diffractive cross sections

As we proceed to the topologies of diffraction, the situation is more complicated than for total
and elastic cross sections. The experimental definition of diffraction is based on the presence of
rapidity gaps, but such gaps are subject to random fluctuations in the hadronization process,
and therefore cannot be mapped one-to-one to an underlying colour-singlet-exchange mechanism.
Also the separation between single, double and central diffraction is not always so clearcut. Some
single-diffractive data is available at lower energies, but much of it is old and of varied quality.
This will of course affect any model trying to describe these topologies, as usually there are model
parameters that have to be fitted to data. To the best of our knowledge, only a few models actually
try to fit data fully differentially in both s, M2

X and t. The normal ansatz is instead to define an
s-independent P flux, with factorized ξ and t distributions, e.g. of the form (dξ/ξ1+δ) exp(b t) dt
[44, 45, 46, 27] where δ is a small number. The t-integrated ξ distribution is then directly mapped
on to an M2

X = ξs spectrum.
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Figure 2: The total cross section parametrizations in (a) pp and (b) pp processes. The ratio of
real to imaginary parts of the elastic amplitude at t = 0 for pp (c) and pp (d). Note that the SaS
model has been left out in (c) and (d), as ρ is a constant here, that can be set freely by the user.
Data from PDG [15].

The COMPAS group has not made any attempts to describe other topologies that the elastic,
neither has the FMO model. Hence, in addition to the already implemented SaS and MBR
models, we are left with the ABMST model as a new alternative, that gives a full description
of the single diffractive topologies. This model has been fitted to differential data in the energy
range 17.2 <

√
s < 546 GeV and in the t range 0.015 < |t| < 4.15 GeV2, and is thus expected to

give a reasonable prediction in this range. The model, however, has some unfortunate features,
which we will discuss in a later section. But first an introduction to the basics of the model itself.

4.1 The ABMST model

In [16] the authors present a model for single diffractive dissociation inspired by Donnachie and
Landshoff. They operate in two regimes, high and low mass diffraction, separated at

Mcut(s) =

{
3 s < 4000 GeV2

3 + 0.6 ln
(

s
4000

)
s > 4000 GeV2

. (20)
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Figure 3: The elastic differential cross section parametrizations in pp collisions at 53 GeV (a) and
7 TeV (b). The integrated elastic cross section parametrizations in (c) pp and (d) pp processes.
Data from PDG [15].

In the high mass regime, they use a triple-Regge model with two components; An effective Pomeron
and a degenerate Reggeon term. In order for the unknown phases of the propagators to vanish,
they require that the two t-dependent propagators in the diagrams contributing to the single
diffractive cross section are equal. This results in four diagrams; PPP, PPR, RRP, RRR. The

12



authors also include pion exchange in the differential cross section arriving at

d2σHM

dtdξ
(ξ, s, t) =fPPP(t)ξαP(0)−2αP(t)

(
s

s0

)αP(0)−1

+fPPR(t)ξαR(0)−2αP(t)

(
s

s0

)αR(0)−1

+fRRP(t)ξαP(0)−2αR(t)

(
s

s0

)αP(0)−1

+fRRR(t)ξαR(0)−2αR(t)

(
s

s0

)αR(0)−1

+
g2
ππp

16π2

|t|
(t−m2

π)2
F 2(t)ξ1−2απ(t)σπ0p(sξ), (21)

with trajectories and parameter choices found in [16]. Each of the effective three-Reggeon cou-
plings are given as

fkki(t) =Akkie
Bkkit + Ckki, (22)

except for the triple-Pomeron coupling, which is modified as

fPPP(t) =


0.4 + 0.5t −0.25 ≤ t < −10−4

(APPPe
BPPPt + CPPP)

(
t

t−0.05

)
−1.15 ≤ t < −0.25

(APPPe
BPPPt + CPPP)

(
t

t−0.05

)
×

×(1 + 0.4597(|t| − 1.15) + 5.7575(|t| − 1.15)2) −4 ≤ t < 1.15

. (23)

Four resonances are modelled in the low-mass regime, along with a background from the
high-mass regime and a contact term matching the two regimes smoothly. The resonances are
excited states of the proton, each a unit of angular momentum higher than the previous one. The
resonances are parametrized by Breit–Wigner shapes with masses mi, widths Γi and couplings ci,

d2σres

dtdξ
(ξ, s, t) =

e13.5(t+0.05)

ξ

4∑
i=1

[
cimiΓi

(ξs−m2
i )

2 + (miΓi)2

]
, (24)

with exact definitions found in the paper. The background is assumed quadratic and vanishes at

a threshold, ξth =
(mp+mπ)2

s ,

Abkg(ξ, s, t) =a(s, t)(ξ − ξth)2 + b(s, t)(ξ − ξth). (25)

A matching term between the high- and low-mass regions is subtracted from the resonances to
avoid any discontinuities at ξcut, and parametrized such that it is equal to the magnitude of the
resonance term at the matching point.

4.2 Comments on the ABMST model

In fig. 4a,b we show the different components of the ABMST model at an energy of
√
s = 7

TeV along with the integrated cross sections in fig. 4c,d. We have several comments to these
distributions, as they show some unexpected features.

To begin, consider the differential distribution in fig. 4a. Here the cross section (multiplied by
a factor of ξ for visibility) is shown as a function of ξ, displaying both the low-mass resonances
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Figure 4: The different components of the ABMST model for single diffraction as a function of
(a) ξ and (b) t at 7 TeV. The integrated single diffractive cross section as a function of

√
s for

ξ < 0.05 (c) and in the full single diffractive phase space (d). Data from references in [16].

and the high-mass Regge terms. Note, however, the dip between these two regimes, a decrease of
a factor of 10. This is a feature of the background modelling, whereas one would expect a more
smooth transition between the two regimes. There is no physical motivation as to why the Regge
trajectories should have a quadratic behaviour at low masses, since none of the terms show this
behaviour at higher masses. One could imagine a simple continuation of the high-mass background
to lower masses, with the resonances added on top. But this would likely cause too high a cross
section in the low-mass region, hence requiring a remodelling of the background description to
avoid too high a low-mass cross section.

Similarly unexpected is the increase of the cross section at higher masses (ξ ∼ 1), induced by
the triple-Reggeon and pion terms. The larger the mass of the system the smaller the rapidity
gap between the diffractive system and the elastically scattered proton. The rule of thumb is
that ∆ygap ≈ ln(ξ), so for large ξ there will essentially be no gap at all. The diffractive system
will simply look like a non-diffractive one, making it impossible to distinguish between the two
experimentally. The rise at ξ ∼ 1 also introduces a vast increase with energy in the integrated
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cross section, making the single-diffractive cross section dominate at large energies, which leaves
little room for other processes, see fig. 4d. The authors themselves have tried to dampen the
increase of the cross section by allowing the mass cut, separating the low- and high-mass regimes,
to vary with s, eq. (20). Unfortunately the introduced dampening gives rise to a kink in the
integrated cross section where the dampening kicks in, at

√
s ∼ 60 GeV, and does not dampen

the cross section sufficiently at high energies.
In fig. 4b we show the ABMST model differential in t. Noteworthy are the t-independent terms

Ckki and the sharp cutoff at t = −4 GeV2, both of which are unphysical on their own. That is, if
the sharp cutoff is disregarded, then all but the pion and triple-Pomeron terms become constant
at large |t|, lacking any form factor suppression for scattering a proton without breaking it up.
The choice of t parametrization shape was based on the goodness-of-fit, and not on any physical
grounds. The authors note that the parametrization as such gives too large a cross section at high
energies, hence the modification of the Pomeron coupling, as this dominates at high energies. The
t ansatz may also cause problems if used in other diagrams, e.g. in the extension to double and
central diffraction that we will introduce later.

As Pythia 8 aims to describe current and future colliders, the need for a more sensible high-
energy behaviour of the ABMST model is evident. It is not realistic to have a model where
single diffraction and elastic scattering almost saturates the total cross section at FCC energies
(at 105 GeV σtot − σel − σSD ≈ 145− 45− 80 ≈ 20 mb). At the same time we want to make use
of the effort already put into the careful tuning to low-energy and low-diffractive-mass data. We
have thus chosen to provide a modified version of the ABMST model, addressing the problems
discussed above, as described in the next section, while retaining the good aspects of the ABMST
model. Both the modified and the original version of the ABMST model are made available in
the latest Pythia 8 release.

4.3 The modified ABMST model

To smoothen the dip between the low-mass and high-mass regions, several background terms
have been studied, such as a linear background becoming constant at threshold, a combination
of the linear and the quadratic background and, as an extreme, a continuation of the high-mass
background. The best results was found with the combination of the linear and quadratic,

Abkg(s) =

{
Aquadratic

bkg MX < M4

Alinear
bkg M4 < MX < Mcut

, (26)

where M4 is the mass of the fourth resonance.
The new parametrization of the high-mass background in the low-mass region does smoothen

the decrease between the two regions, but in itself does increase the integrated cross section. We
tame the integrated cross section by introducing a multiplicative rescaling of the high-mass region,
as well as a different Mcut parametrization. Again several possibilities have been tried, and best
results were obtained for a ln2(s)-dependent Mcut and rescaling. That is, Mcut = 3 + c ln2(s/s0)
GeV and the rescaling factor is 3/(3 + c ln2(s/s0)), with c a free parameter and s0 = 100 GeV2,
which is also where the rescaling begins, so as to avoid kinks in the distributions.

While this change reduces the cross section at intermediate ξ values, it does not address the
strong rise near ξ = 1. This is an unobservable behaviour, as already argued, and therefore we
also introduce a dampening factor 1/(1+(ξ exp(ymin))p) for the high-mass region. Here ymin is the
gap size where the dampening factor is 1/2 and p regulates how steeply this factor drops around
ymin; by default ymin = 2 and p = 5.

Separately, we wish to remove the artificial cut at t = −4 GeV2, in favour of a shape that is

15



valid at all t scales. To this end, couplings are modified as

fABMST
kki (t)→fmod

kki (t) = (Akki + Cmod
kki )eB

mod
kki t, (27)

where two new parameters Cmod
kki and Bmod

kki are introduced. These are fixed by the two require-
ments that the integral over t and the average t value should remain unchanged relative to the
original ABMST values. Note, however, that we do not modify the PPP part, as this already has
the desired decreasing behaviour at high |t|. Besides these modifications, a minimum diffractive
slope BSD = 2 is introduced, to avoid any unphysical situations where the slope could become
negative.

10−8 10−6 10−4 10−2 100

ξ

10−4

10−2

100

102

104

ξ
d
σ

S
D
/d
ξ

(m
b

)

Total

PPP

PPR

RRP

RRR

Pion

Resonances

Background

√
s = 7 TeV

(a)

0 1 2 3 4 5
−t (GeV2)

10−4

10−2

100

102

104

d
σ

S
D
/d
t

(m
b

/G
eV

2
)

Total

PPP

PPR

RRP

RRR

Pion

Resonances

Background

√
s = 7 TeV

(b)

10−8 10−6 10−4 10−2 100

ξ

10−2

100

102

ξ
d
σ

S
D
/d
ξ

(m
b

)

SaS

ABMST

ABMST modified

√
s = 7 TeV

(c)

0 1 2 3 4 5
−t (GeV2)

10−2

100

102

d
σ

S
D
/d
t

(m
b

/G
eV

2
)

SaS

ABMST

ABMST modified

√
s = 7 TeV

(d)

Figure 5: The different components of the modified ABMST model for single diffraction as a
function of (a) ξ and (b) t at 7 TeV. The same distributions are shown in (c) and (d), where we
compare the two models ABMST and ABMST modified to the SaS model.

In fig. 5 we show the components of the modified ABMST model as a function of ξ (a) and
t (b). The improvements of the modifications are clearly seen, as the dip between the low-
and high-mass description has decreased, the high-ξ region has been dampened and none of the
components become constant at large |t|. In figs. 5c,d the two ABMST models are compared to
the SaS model available in Pythia 8 as default. We note that the modified ABMST model shows
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better agreement with the SaS model at intermediate ξ values, where SaS is in rough agreement
with data, while retaining some features of the ABMST model, such as the detailed resonance
structure.

In fig. 6 we show the comparison between the implemented models and the low-energy data
used in [16]. It is clear that the SaS model does not agree with data, while both the original
and the modified ABMST model describe data reasonably well. In figs. 7a,b the integrated cross
sections of all three models are shown in the restricted (a) and full (b) phase space. The growth
of the ABMST model has been tamed by our modifications. Insofar as the SaS model seems to
be on the high side relative to data, and the modified ABMST is slightly higher, it may become
necessary to finetune further for LHC applications. To this end we have introduced an optional
overall scaling factor k(s/m2

p)
p, with k, p being tuneable parameters.
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Figure 6: The single diffractive differential cross section parametrizations in pp collisions at
√
s

17.57 GeV with t = −0.131 GeV2 (a) and 53.66 GeV with t = −0.52 GeV2 (b). The mass-
spectrum showing the resonances at

√
s = GeV and t = − GeV2 (c). The integrated t spectrum

at
√
s = GeV (d). Data from references in [16].

The bulk of the modifications applied to the ABMST framework are intended to tame the
high-energy behaviour of the model. One could have used an eikonal approach to the same end,
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Figure 7: The integrated single diffractive cross section at different energies for ξ < 0.05 (a) and
in the full phase space (b). Data from references in [16].

e.g. in the spirit of [47]. This would require a different set of assumptions, however, such as
the impact-parameter shape of the different diffractive topologies, and therefore not be any less
arbitrary. For now we therefore stay with the current framework and instead proceed to address
other shortcomings of the ABMST model, namely the lack of double and central diffraction.

5 Double diffractive cross sections

The ABMST model only provides a description of the single diffractive differential cross section.
We can extend this to double diffractive systems, by extracting the vertices and propagators from
the single diffractive framework and using them in double diffractive diagrams. Fig. 1e shows a
double diffractive diagram, where X is one of the Reggeons used in the single diffractive framework.
Thus several diagrams are obtained with Reggeons i, j, k (where i, j are connected to the proton
and k are in the loop). Similar as for single diffraction, in order for the unknown phases in the
propagators to vanish, the requirement of equal Reggeons is enforced in the loop. The fact that
there are two different mass regimes (low and high) for the two diffractive systems X and Y gives
four different combinations.

If both systems have high mass, MX,Y > Mcut, the diagram of fig. 1e implies a cross section

16πM2
XM

2
Y

d3σ

dtdM2
XdM2

Y

=
∑
ijk

gip(0)gkki (t)gjp(0)gkkj (t)

(
M2
X

s0

)αi(0)−1(
ss0

M2
XM

2
Y

)2αk(t)−2(M2
Y

s0

)αj(0)−1

. (28)

Changing variables to ξ = M2/s and collecting the terms one obtains

16π
d3σ

dtdξXdξY
=
∑
ijk

[
gip(0)gkki (t)ξ

αi(0)−2αk(t)
X

(
s

s0

)αi(0)−1
]

[
gjp(0)gkkj (t)ξ

αj(0)−2αk(t)
Y

(
s

s0

)αj(0)−1
](

s

s0

)2−2αk(t)

. (29)
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From the single diffractive framework one has that

16π
d2σHM

dtdξ
=
∑
ik

g2
kp(t)gip(0)gkki (t)ξαi(0)−2αk(t)

(
s

s0

)αi(0)−1

, (30)

where we can recognise a part of the single diffractive cross section in the double diffractive cross
section,

16π
d3σ

dtdξXdξY
=
∑
k

[
16π

g2
kp(t)

dσHM

dtdξX

][
16π

g2
kp(t)

dσHM

dtdξY

](
s

s0

)2−2αk(t)

=
dσHM

dtdξX

dσHM

dtdξY

∑
k

(16π)2

g4
kp(t)

(
s

s0

)2−2αk(t)

. (31)

A similar diagrammatic method can be used for the low-mass region, so all four (MX ,MY ) regions
can generically be described as

d3σ

dtdξXdξY
=

dσSD

dtdξX

dσSD

dtdξY

∑
k=P,R

16π

g4
kp(t)

(
s

s0

)2−2αk(t)

→ dσSD

dtdξX

dσSD

dtdξY

16π

g4
Pp(t)

(
s

s0

)2−2αP(t)

. (32)

In the last step we have taken the high-energy limit, where the Pomeron term dominates. The
last term can then be recognised as the inverse of the elastic cross section in the same limit, and
hence [4]

d3σDD

dtdξXdξY
≈d2σSD

dtdξX

d2σSD

dtdξY
/

dσPel

dt
. (33)

In principle this formulation holds only at high energies, and only when using the Pomeron as
exchanged particle in all parts of the diagram in fig. 1e. Nevertheless it offers the best way to
introduce double diffraction as a natural extension of the ABMST single diffractive machinery,
and is the one we will choose.

One of the drawbacks of this approach is that accidental dips in the elastic cross section
denominator can come to blow up the double diffractive cross section beyond what reasonably
should be expected. Therefore a slightly modified elastic cross section is called for in this context.
In fig. 8a,b the different Pomeron contributions to the elastic differential cross section are shown
at two energies, along with the full description and an interference-free description of the form

dσel

dt
=
|∑iAi(s, t)|2

16π
'
∑

i |Ai(s, t)|2
16π

(34)

where i runs over all four terms. Notice that the hard and soft Pomeron contributions dominate
in two different regions. Hence a reasonable approximation would be to use the soft Pomeron
term in the low-|t| range and the hard Pomeron term in the high-|t| range. In practise we use the
combination of the hard and soft Pomerons, so as to avoid splitting eq. (33) into two different t
ranges.

Figs. 8c,d show the effect of the various elastic parametrizations on the double diffractive
distributions. Note the normalisation difference between the hard-Pomeron-only description and
the others, a difference that arises since the hard Pomeron term is not the dominant one in the
low-|t| region, where most of the cross section is. On the other hand, the soft-Pomeron-only t
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spectrum is much wider than the other distributions shown, since the soft Pomeron contribution
to elastic scattering falls off much steeper with t. The “Pure ABMST”, interference-free ABMST
and “ABMST both Poms” appear to have the same shapes in figs. 8c,d. They differ somewhat
in normalisation, as is expected given that the two latter correspond to somewhat larger elastic
cross sections.
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Figure 8: The effect of using only a subset of the available Pomerons in the elastic parametrisation,
as used in the expression for the double diffractive cross section, eq. (33). In (a) and (b) the elastic
differential cross section is shown as a function of t at two energies. In (c) and (d) the effect of
these on the double diffractive distributions are shown as a function of ξ = ξ1ξ2 and t, respectively.
Note that the “Pure ABMST” has a minimal slope of BDD = 2 such as to avoid the dip structure
of the elastic description.

To correct for the possible suppressions arising from the chosen approximation of the elastic
cross section, and from the underestimation implied by the step taken in eq. (32), we introduce
a scaling factor similar to the one introduced in the single diffractive framework. A minimal
double diffractive slope can also be enforced, such as to avoid any unphysical situations. As a
final modification, an option to reduce topologies without a rapidity gap is applied in the region
where both of the systems are of very large masses. Again, this is to be able to distinguish the
double-diffractive system from the non-diffractive ones.
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As two different parametrizations are available in the ABMST framework for single diffraction,
several choices for the double diffractive framework exists. Presented here are results with three
choices:

• Pure ABMST: the original ABMST single diffractive model together with the elastic cross
sections using only Pomerons, with the minimal double diffractive slope and with reduced
vanishing-gap topologies.

• Model 1: The modified ABMST model for the single diffractive cross section, with the only-
Pomerons elastic cross section. A minimal slope is used and the vanishing-gap topologies
are also reduced here.

• Model 2: Model 1 scaled with the tuneable factor k(s/m2
p)
p, where by default k = 2 and

p = 0.1.

0 1 2 3 4 5
−t (GeV−2)

10−2

100

102

d
σ

D
D
/d
t

(m
b

/G
eV
−

2
) Pure ABMST

Model 1

Model 2

SaS

√
s = 104 GeV

(a)

10−16 10−12 10−8

ξ

10−2

100

102
ξ

d
σ

D
D
/d
ξ(

m
b

)
Pure ABMST

Model 1

Model 2

SaS

√
s = 104 GeV

(b)

Figure 9: Some of the DD models available in Pythia 8. In (a) and (b) we show the differential
cross section as a function of t and ξ = ξ1ξ2, respectively.

Fig. 9a shows the t spectrum of the different models compared to the SaS model. It is evident
that three models vanish faster than the SaS model. This is a result of the modest falloff of
the elastic t-spectrum in ABMST, as this affects the double diffractive slope less than a sharply
falling elastic t-spectrum in SaS, through the relation BXY = BAY +BXB−Bel. Fig. 9b shows the
differential cross section as a function of ξ = ξ1ξ2. Here, the ABMST models show an approximate
1/ξ-behaviour, while the SaS model indicates a 1/ξ(1+p) behaviour with p > 0, favouring high-
mass diffractive systems. The results of these effects are visible in the integrated cross section,
fig. 10, where both “Pure ABMST” and “Model 1” are significantly suppressed compared to the
SaS model. The scaled version, “Model 2”, gives more reasonable estimates of the cross sections,
around 10 mb at LHC energies, but because of the choice of the power, p = 0.1, in the scaling,
it does not rise as steeply as the SaS prediction. Similarly to the single-diffractive case, the SaS
model predicts slightly larger cross sections than measured, so one might expect that the scaling
chosen in Model 2 could be more in agreement with measurements.
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Figure 10: The integrated double diffractive cross section as a function of energy of some of the
models available in Pythia 8.

6 Central diffractive cross sections

The central diffractive framework has long been neglected in general-purpose event generators.
Dedicated event-generators exist for exclusive central diffractive processes, such as SuperChic [48]
and ExHume [49], but these only work with a limited set of final states. Pythia 8 provides a
description for inclusive high-mass central diffraction, but does not provide any such description
for the exclusive processes. As stated earlier, we stress that the framework has not been tuned
and thus is not to be trusted too far.

In this work we wish to extend the present description of central diffraction to include the
high-mass description of the ABMST model. We have not made any attempt to include any
low-mass resonances of central diffraction, as some of these are still not well established. The
low-mass resonances used in ABMST are baryonic resonances, hence they cannot be extended to
the central diffractive framework, as one expects scalar mesons, possibly scalar glueballs, to be
produced in the collision of two Reggeons. Future work would be to extend the model to such
low-mass resonances, eg. by including a low-mass resonance description similar to what has been
developed in [50]. There the central exclusive production of a pion pair is considered and data
is used to fit a model of the scalar resonances using complex Breit–Wigner shapes. Lacking a
model for all such exclusive states, and since some of the resonances and their decays still are not
experimentally under control, we have decided not to include any of the low-mass states in this
framework.

The new central diffractive cross section presented here is again mainly based on the ABMST
single-diffractive model. By examining the rapidity of the different components in the central
diffractive system, one obtains the following relations,

∆ytot = ln
s

s0
, ∆yX = ln

ξ1ξ2 s

s0
, ∆y1 = ln

1

ξ1
, ∆y2 = ln

1

ξ2
, (35)

where M2
X = ξ1ξ2s, ∆yX is the rapidity span of the diffractive system X, and ∆y1,2 are the sizes

of the two rapidity gaps. Thus, after some algebra, we obtain a central diffractive cross section of
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the form

256π3 d4σCD

dξ1dξ2dt1dt2
=
∑
ijk

[
g2
ip(t1)giik (t1)(ξ1)αk(0)−2αi(t1)

]
[
g2
jp(t2)gjjk (t2)(ξ2)αk(0)−2αj(t2)

]( s

s0

)αk(0)−1

(36)

Again we recognise the high-mass single diffractive cross sections and write [3]

π
d4σCD

dξ1dξ2dt1dt2
=

d2σHM

dt1dξ1

d2σHM

dt2dξ2

∑
k

1

g2
kp(0)

(
s

s0

)1−αk(0)

→d2σHM

dt1dξ1

d2σHM

dt2dξ2

1

g2
Pp(0)

(
s

s0

)1−αP(0)

,

=
d2σHM

dt1dξ1

d2σHM

dt2dξ2
/ σtot, (37)

where the high-energy limit is taken in the second step and recognised as the total cross section.
Similar arguments on the validity of eq. (37) applies as for the validity of eq. (33), i.e. eq. (37)
is only valid in the high-energy limit, where the Pomeron term dominates. In practise, however,
the expression is used over the entire energy range, using the sum of both the soft and the hard
Pomeron term from the total cross section. A scaling factor similar to the scaling for single
and double diffraction can be applied, to compensate for the approximations, and the same non-
vanishing gap suppression can be applied as in the single-diffractive framework. Finally, a minimal
central diffractive slope can also be applied.

Similar to the double diffractive framework, the central diffractive framework will depend on
the choice of single diffractive framework, thus several options exist. Fig. 11 shows three choices
of models with the same name conventions as used in the double diffractive framework. Note,
however, that the t spectrum is not shown, as this is exactly that of the single diffractive model.
The mass of the diffractive system is shown in fig. 11a, where the sharp cut at MX = Mcut is
present for all ABMST variants. The SaS model has a similar sharp cutoff, but at MX = 1 GeV.
Lacking both model and data in the low-mass region, the cut allows for a clear distinction between
what is included and not, albeit being unphysical.

Fig. 11b shows the integrated cross section as a function of energy. Here all ABMST models
lie below the SaS prediction, although “Model 2” exceeds it at around LHC energies. The lack
of a low-mass model is evident at low energies (

√
s < 30 GeV), where all three models decrease

rapidly. In this energy-range the low-mass states make up a large part of the cross section, hence
should not be neglected.

7 Results

In this section the models are confronted with more recent LHC data. Several experiments have
performed measurements on integrated cross sections and diffractive fractions, but not many
provide results on differential distributions. We focus on the analyses available in Rivet [51],
where only two analyses provide differential results. First we provide a discussion of the available
data and the tuning prospects, and end with results obtained with the SaS model, the CSCR
model and the ABMST models.
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Figure 11: Some of the CD models available in Pythia 8. In (a) we show the mass of the diffractive
system produced at central rapidity and in (b) the integrated cross section as a function of energy.

7.1 The 7 TeV LHC data and tuning prospects

In 2012 and 2015 ATLAS [52] and CMS [53] presented results on 7 TeV events with rapidity gaps.
Both experiments measure all particles with transverse momenta larger than 200 MeV in pseudo-
rapidity ranges of |η| < 4.9 (4.7) for ATLAS (CMS), and define the measured gap ∆ηF as the
largest distance between either detector edge and the particle nearest to it. The two experiments,
however, obtain different results for the shape of the distribution.

In fig. 12a, we show the results obtained with default Pythia 8 using the SaS model and
the MBR model when comparing to either the ATLAS or CMS Rivet analyses. Both models are
shown, since ATLAS uses the SaS model for unfolding, while CMS uses the MBR one, but model
agreement is sufficiently close that unfolding differences should not be an issue. Further, from
fig. 12a it is evident that the different experimental η cuts gives at most a 5% effect on either
model. This does not account for the approximately 25% difference seen in data, see fig. 12b.
A tune to both datasets will not be able to describe either perfectly, as they so clearly disagree.
Experiment-specific tunes would likely improve the description of that particular dataset, hence
worsening the description of the other. As we cannot decide which of the two is the preferred one,
we instead aim for the middle ground.

Besides the above mentioned datasets measurements of the inelastic and diffractive cross sec-
tions have been performed by both ATLAS, CMS and ALICE. We include the following measure-
ments: the inelastic cross section from ATLAS 2011 [54], the inelastic cross section from CMS
2012 [55] and the inelastic and diffractive cross sections from ALICE 2012 [56].

None of the datasets available in the Rivet framework are able to constrain the parameters
related to the hadronic event properties. This includes both the low-to-high-mass transition prob-
ability parameters as well as the parameters of the non-perturbative and perturbative description
of the evolution of the diffractive system. In particular, the non-perturbative description is left as
is in this study, while the effects of changing the Pp cross section is shown in figs. 13 and 14. This
cross section determines the amount of multiparton interactions activity in a high-mass diffractive
event, and thereby e.g. the charged multiplicity distribution. It is interesting because of discrep-
ancies between uncorrected ATLAS data and the Pythia 4C tune (figs. 3a-d in [52]). A direct
comparison cannot be made, since the ATLAS distributions show the number of electromagnetic
clusters rather than that of charged particles, but the two clearly are related.
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Figure 12: (a) The SaS and MBR models using either ATLAS or CMS cuts along with the ratio
of ATLAS to CMS cuts for both models. (b) The ATLAS [52] and CMS [53] data along with the
ratio of ATLAS to CMS data, showing significant differences in the entire range.

Figs. 13 and 14 show the effects of changing the Pp cross section on the charged particle
distributions in the different ∆ηF bins compared to the 4C tune. In [52] the 4C tune generally
was seen to undershoot the low cluster-multiplicities, while overshooting the mid to high cluster
multiplicities. In the highest ∆ηF bin, dominated by the diffractive events, Tune 4C undershoots
both the low- and high-multiplicity activity. Reducing the Pp cross increases the multiplicity, and
vice versa. Thus, to describe the high-multiplicity events, a smaller Pp cross section would be
preferred. This could be compensated by allowing the perturbative description to go below MX =
mmin = 10 GeV, thus allowing slightly more activity in low-mass systems, possibly increasing the
number of low-multiplicity events. The effects of including a mass dependence in the Pp cross
section is seen in fig. 14. A parametrization has been chosen as σeff

Pp(MX) = σref
Pp (MX/Mref)

p,
with Mref = 100 GeV. Here, an increase of p slightly decreases the high-multiplicity region, albeit
more subtly than with an increase of the Pp cross section. Recall that the mass of the diffractive
system is related to the collision energy, such that a value of p ∼ 0.2 − 0.3 is not unreasonable,
corresponding to a rise of the cross section with energy of s0.1 − s0.15.

A full study of particle production in diffractive events with Pythia 8, Herwig 7 [57, 58],
Sherpa [59, 60] and Phojet [61] could provide further valuable information on the hadronic event
properties of diffractive systems, as the generators differ in how they describe such production.
The effects of colour reconnection in a diffractive system is also of interest, as the amount of
“accidental” gaps could be constrained in these systems, if one assumes that the CR scheme is
the same in both diffractive and non-diffractive systems. At present we leave the Pp cross section
as is at 10 mb, and show the results with the models presented so far in fig. 15.

The bulk of the cross section arises from nondiffractive events. These tend to only give rise to
small rapidity gaps, as the phase space is more or less evenly filled by multiparton interactions.
Gaps of intermediate or large size can occur, however, e.g. by colour reconnection between the
partons [9, 62]. The default Pythia CR framework has been designed to avoid accidental gaps,
so as to keep a clean separation between diffractive and nondiffractive topologies. In other mod-
els, e.g. the CSCR one [18], the colour reshuffling tends to give somewhat larger probability for
intermediate gaps. A combination of the CSCR model and the default SaS diffractive setup then
results in too large a cross section in the intermediate-gap range, cf. figs. 15a,b.
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Figure 13: The effects of changing the reference Pp cross section on the charged multiplicity
distribution using the SaS model at 7 TeV in the four gap ranges: 0 to 2 (a), 2 to 4 (b), 4 to 6
(c) and 6 to 8 (d).

Diffractive events are more likely to give rise to intermediate to large gaps. Hence, depending
on colour-reconnection model used, they will dominate from gap sizes of approximately two and
larger. The size of the gap is closely connected to the mass of the diffractive system. Thus a model
with a dM2

X/M
2
X ansatz, like the SaS one (modulo some corrections), will give an approximately

flat distribution of measured gap sizes. This can be modified by the recent inclusion of the mass-
correction factor εSaS, which introduces an additional 1/M2εSaS

X factor to the differential model.
Depending on the sign of εSaS, it will either increase or decrease the high-mass cross section. In
both the ATLAS and CMS datasets an increase of the large-gap cross section is seen. Thus we
expect a positive sign for εSaS, as this will enhance the activity at low masses. For simplicity,
adding the mass correction will not affect the integrated diffractive cross section.

The ABMST models show slightly better agreement with the shape of the rapidity gap distri-
butions, although the original ABMST model overshoots both datasets. This was to be expected,
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Figure 14: The effects of changing the power of the mass dependence in the Pp cross section on
the charged multiplicity distribution using the SaS model at 7 TeV in the four gap ranges: 0 to 2
(a), 2 to 4 (b), 4 to 6 (c) and 6 to 8 (d).

as the model had trouble with the increase of the single diffractive cross section at LHC ener-
gies. The modified version of the ABMST model shows very nice agreement with both datasets,
except for an undershoot of the high-mass region of the double-diffractive-dominated region in
fig. 15d. This behaviour closely correlates with the flatness of the ξdσ/dξ-spectrum, fig. 9b. Both
the ABMST models have a mass spectrum shape comparable to data in the single-diffraction-
dominated region, unlike the SaS model, which overshoots the high-mass systems.

7.2 The tuned models

The tunes provided here are performed with the Professor framework [63], varying the high-mass
diffractive parameters given in table 1. All non-diffractive parameters are left at their default
values, as given by the Monash tune [64], except for the CSCR-specific changes in that setup. The
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Figure 15: The cross section as a function of gap size for the default SaS model, the SaS+CSCR
model and the untuned ABMST models compared to ATLAS [52] (a) and CMS [53] (b) data.
The cross section as a function of log10ξX in a single-diffraction dominated region (c) and double
diffraction dominated region (d) compared to CMS [53] data.

H1 leading order Pomeron PDF [27] is used in all the tunes.
Fig. 16 shows the three SaS-based models tuned to the above-mentioned data. Neither of the

three models are able to describe the shape of the gap data perfectly, figs. 16a,b. The tune has
decreased the amount of activity in the mid- to large-gap region by a decrease of the σmax

i values
used in eq. (9). The inclusion of εSaS has shifted some of the activity from intermediate-gaps to
larger ones, while keeping the integrated cross section fixed. Unfortunately this is at the expense of
an undershoot in the transition region ∆ηF ∼ 2 between diffractive and nondiffractive topologies.
This is the region where CSCR does better, so a combination of CSCR with an εSaS > 0 could
provide a flatter MC/data distribution in fig. 16a,b.

For the mass spectra measured by CMS, fig. 16c,d, evidently only the SaS+εSaS model is
able to describe the single-diffraction-dominated mass spectrum, whereas it undershoots the high-
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ε α′ σmax
SD σmax

DD σmax
CD εSaS

SaS 0.06 0.4 22.31 39.83 0. 0.
SaS+CSCR 0.15 0.26 20.81 13.13 0. 0.
SaS+εSaS 0.04 0.30 24.78 52.49 0. 0.08

kSD kDD kCD pSD pDD pCD

ABMST 0.58 2.45 1.0 0. 0.05 0.03
ABMST modified 0.92 1.72 1.38 0. 0.1 0.04

Table 1: The parameters used in the tunes for the different models.

mass double diffraction region since, relative to the original SaS model, it has shifted some of the
high-mass activity to lower masses.

Fig. 17 shows the tuned ABMST models. The tune has a hard time improving the modi-
fied ABMST model, as this gave a good agreement with data already to begin with. The original
ABMST model, however, is significantly improved by rescaling, and is now very similar to the mod-
ified ABMST model developed in this paper. Note that the mass spectrum of the single-diffraction-
dominated region, fig. 17c, shows the proper shape, while the double-diffraction-dominated one,
fig. 17d, seems to overestimate the low-mass region and underestimate the high-mass one. This
is a result of the reduction of the vanishing-gap topologies of double-diffractive systems, that has
been kept unchanged in this tune. Combining the ABMST models with the CSCR model has
potential also here, as the ABMST models underestimate data in the intermediate gap range, cf.
figs. 17a,b.

Fig. 18 shows the CMS inelastic cross section obtained with two different approaches. One
uses forward calorimetry (3 < |η| < 5), to measure protons with fractional momentum loss greater
than ξ > 5 · 10−6, corresponding to everything but low-mass diffractive systems (MX > 16 GeV).
The other uses the central tracker, requiring either one, two or three tracks. The SaS+εSaS and
the modified ABMST models perform better than the others, with a maximum 5% deviation from
CMS data. The SaS and the CSCR models has the same model for diffractive systems, and hence
it is not expected that these differ in the measured inelastic cross section. With the SaS+εSaS

model, however, some of the activity has been shifted to lower diffractive masses, resulting in a
lower inelastic cross section. For ABMST, the reduction of the high-mass systems in the modified
model results in a reduction of the inelastic cross section relative to the original one.

Table 2 shows the integrated cross sections obtained with the ALICE and ATLAS 2011 analyses
mentioned above. The ALICE results have been obtained for MX < 200 GeV (ξ < 0.0008) for
single diffraction, for gap sizes larger than ∆η > 3 for double diffraction, and with a van der Meer
scan using diffractive events adjusted to data for the inelastic cross section. In the Rivet analysis,
this corresponds to at least two tracks in the final state, i.e. effectively without any experimental
cuts and hence returning the generator-level cross section. The SaS+εSaS model gives a better
prediction for the single diffractive data, because of the increased low-mass cross section. The
CSCR model predicts a larger double diffractive cross section, because of the larger probability
for “accidental” gaps. The inelastic cross section, however, is the same for all three SaS-based
models when compared with the ALICE data, as all have the same generator-level integrated cross
section. In the ATLAS measurement of the inelastic cross section (for ξ > 5 · 10−6) the SaS+εSaS

model predicts a lower inelastic cross section, again because of the larger low-mass cross section.
Both the ABMST models give larger single-diffractive cross sections than SaS, having improved

in the low-mass region. But both underestimate the double-diffractive cross section as they both
underestimate the medium-sized gaps, compared with SaS and data. An addition of the CSCR
model would be likely to improve this prediction. The ABMST models predict the same inelastic
cross section for ALICE, since the generator-level inelastic cross section is the same for the two
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Figure 16: The cross section as a function of gap size for the three SaS-based models compared
to ATLAS [52] (a) and CMS [53] (b) data. The cross section as a function of log10ξX in a single-
diffraction dominated region (c) and double diffractive dominated region (d) compared to CMS
[53] data.

models. They differ for the ATLAS analysis, again because of the reduced high-mass systems of
the modified ABMST model.

In general, however, all models fail to describe the measured integrated cross sections, al-
though some of the more sophisticated models do improve in some respects. Similarly, it seems
that neither of the models describe well the transition from a non-diffractive-dominated region
to a diffraction-dominated one. Including a colour-reconnection model that allows for larger gaps
in the non-diffractive events, like CSCR, is likely to improve the description in the mid-sized-
gap range, if combined with a model that predicts a lower diffractive cross section there, like
the ABMST models and SaS+εSaS. The overall question of how to combine the descriptions of
non-diffractive and diffractive topologies, however, will still exist even if the CR model “acciden-
tally” (i.e. by “accidental” gaps) improves the description of data. All this highlights our still
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Figure 17: The cross section as a function of gap size for the two ABMST-based models compared
to ATLAS [52] (a) and CMS [53] (b) data. The cross section as a function of log10ξX in a single-
diffraction dominated region (c) and double diffractive dominated region (d) compared to CMS
[53] data. For reference the tuned SaS model is also shown.

limited understanding of nonperturbative QCD, which forces us to work with models e.g. rooted
in Regge theory. This may be good enough for an overall understanding, but still not for a precise
reproduction of all relevant data.

8 Conclusions

In this paper we provide an updated description of the cross sections and hadronic event shapes
in the event generator Pythia 8. The update has been required since the first results appeared
from the LHC experiments, showing significant discrepancies between the models provided by
Donnachie and Landshoff for the total cross section, as well as the elastic and diffractive cross
sections by Schuler and Sjöstrand. By chance the DL undershooting of the total cross section
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Figure 18: The inelastic cross section as a function of method described in the text compared to
CMS [55] data.

σSD (mb) σDD (mb) σinel (mb) σinel (mb)
(ALICE) (ALICE) (ALICE) (ATLAS)

data 14.9 ± 5.90 9.00 ± 2.60 73.20 ± 5.28 60.33 ± 2.10
SaS 6.13 ± 0.01 5.72 ± 0.01 71.06 ± 0.02 66.48 ± 0.02

SaS + CSCR 6.15 ± 0.01 6.19 ± 0.01 71.06 ± 0.02 66.43 ± 0.02
SaS + εSaS 7.98 ± 0.01 5.62 ± 0.01 71.06 ± 0.02 63.69 ± 0.02
ABMST 7.24 ± 0.01 4.69 ± 0.01 71.62 ± 0.02 67.44 ± 0.02

ABMST mod 9.41 ± 0.01 5.09 ± 0.01 71.62 ± 0.02 63.72 ± 0.02

Table 2: The integrated cross section obtained with the three aforementioned Rivet analyses for
the tuned models. For ALICE [56], the SD cross section is for MX < 200 GeV, the double
diffractive for gaps larger than 3, the inelastic using a van der Meer scan using diffractive events
adjusted to data. The ATLAS [54] inelastic cross section is for ξ > 5 · 10−6.

and the SaS undershooting of the elastic cross section partly cancel in the inelastic cross section.
Further to that, the SaS overshooting of the diffractive cross sections gave rise to a reasonable
agreement between Pythia 8 and LHC measurements on the observable non-diffractive cross
section, which is the relevant one for many of the measurements performed at the LHC. Thus, in
spite of these shortfalls, the default Pythia 8 cross sections usually were good enough, notably
when diffractive cross sections had been reduced somewhat (eq. 9).

The discrepancies became largely evident with the precision measurements of the elastic and
total cross sections performed by both TOTEM and ATLAS+ALFA. Here the exponential shape of
the t spectrum in Pythia 8 is too simplistic, and other models have to be used for comparisons.
Some of these models have now been implemented into Pythia 8, thereby providing a more
sophisticated framework for elastic scattering and total cross sections.

For diffractive topologies the precision is less. The studies are marred by non-diffractive events
mimicking diffractive ones, and vice versa, making the explicit distinction between the various
diffractive and non-diffractive event topologies hard. The possibility of tagging the elastically
scattered protons would greatly improve the separation of the samples, but so far no analyses on
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diffraction with tagged protons have appeared from CMS+TOTEM or ATLAS+ALFA. Thus we
are left with measurements only using the central general-purpose detectors. Unfortunately these
do not give fully consistent answers. Notably the CMS and ATLAS rapidity-gap measurements
disagree in the diffraction-dominated region, making it hard to compare models with data. Lacking
any further guidance, we have here aimed for a middle ground between the two data sets.

The situation is even worse for of hadronic event shapes. Single diffractive data is available for
very low energies, most of which goes into the ABMST model, but rather little for higher energies.
This means that, even if integrated cross sections were provided for diffractive topologies from
the LHC experiments, no constraints are put on the internal structure of diffractive systems. The
ansatz of Pythia 8, that the diffractive system properties are similar to those of non-diffractive
events, could be wrong. A future study of these event shapes, and of the different strategies under-
lying commonly used event generators, would help provide a guideline what would be interesting
distributions to see measured at the LHC.

In conclusion, we provide an updated and extended framework for elastic and diffractive topolo-
gies, as well as an update for all parts of the total cross section. We rely on previous work provided
by several other authors, but have corrected and extended the models where need be. Each of
the models have been tuned to available data, thus providing an upgrade of the already present
models in Pythia 8. We have discussed some of the consequences of different approaches for
creating rapidity gaps, such as the CSCR model, and how this affects the predictions for LHC.
Still, the lack of data or the discrepancies of present data, leaves us with imperfect descriptions
and predictions, in particular for diffraction. The situation may be “good enough” for current
needs, but will hopefully improve with new data in the future. At present we are not able to
decide which model is “the better one” for diffraction, but in the case of total and elastic cross
section the new models, COMPAS and ABMST, offer an improved description as compared to
the SaS model. As the COMPAS model offers no description of diffraction, we propose to use the
ABMST model for total and elastic cross section and the modified ABMST model for diffraction,
with the tuned parameters as provided in this paper. We expect to change the default behaviour
in the next Pythia release.

Foreseeable further work could include a low-mass description for central diffractive topologies,
possibly modelling the resonances present there. Other work would be an extensive study of the
diffractive event shapes as discussed above. A study on eikonalisation aspects, e.g. of events with
both diffractive and nondiffractive Pomeron exchanges, could also provide more insight on both
cross sections and event topologies. Finally, the diffractive framework could be extended also to
other processes, such as γp and γγ collisions.
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