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1 Introduction

The Two-Higgs-Doublet Model (2HDM) is one of the most studied minimalistic extensions

of the Standard Model (SM) of particle physics and serves as an effective theory for many

Beyond the SM (BSM) models. It offers a rich scalar sector with its three neutral plus a

charged pair of Higgs bosons. One of the neutral ones should make up the 125 GeV scalar

particle that has been discovered at the Large Hadron Collider (LHC) by the ATLAS [1]

and CMS [2] collaborations; that, so far, resembles the SM Higgs boson [3]. According

to the LHC data, it is ruled out that the discovered particle is a pure CP odd scalar [4];

however, there is still the possibility that it is a mixture of CP even and CP odd states.

While the 2HDM is well studied in the literature, it is most often the CP conserving

one even though the 2HDM exhibits the possibility of CP violation. It is well known that,

to fulfill the Sakharov’s criteria for baryogenesis [5], new sources of CP violation are needed

to sufficiently explain the excess of matter over anti-matter in the universe. The possibility

for CP violation in the 2HDM is therefore an intriguing feature, which was the original

motivation for studying the 2HDM in the first place [6].
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There are several experiments that limit the amount of CP violation one can have

in the 2HDM. One of the most troublesome observables is that one easily generates a

large Electric Dipole Moments (EDMs) for particles; which are severely constrained by

experiments. The electron’s EDM (eEDM) has recently received an upper limit from the

ACMEII collaboration [7],

|de| < 1.1× 10−29 e cm. (1.1)

Another well known problem of the general 2HDM, not exclusive to the CP violating

case, is the presence of Flavor-Changing-Neutral currents (FCNCs) and one popular solu-

tion is to impose a Z2 symmetry on the model [8, 9]; although, often one allows for a soft

Z2 symmetry breaking term.

In recent years, the softly broken Z2 symmetric 2HDM has been confronted with data

from the LHC as well as the limits coming from EDMs [10–18]. In this work, we investigate

the complex, CP violating, 2HDM by probing its behavior under Renormalization Group

(RG) evolution, while also revisiting the constraints from collider data and the eEDM. We

focus on RG effects such as how different choices of Z2 symmetry can affect the energy

range of validity and look for any symmetry breaking, or CP violation, that spreads across

the Yukawa and scalar sectors.

There are many studies that analyze the 2HDM using 1-loop RG Equations (RGEs),

e.g. refs. [19–25], but also some that use the 2-loop ones [26–28]. We use the code 2HDME

[29] to perform the RG evolution at 2-loop order. It is essential to go to 2-loop order if one

is interested in studying how all sectors affect each other during RG evolution; since the

quartic couplings enter the Yukawa couplings’ RG Equations (RGEs) first at this order.

To investigate the parameter space of the 2HDM, we set up numerical parameter scans

of different physical scenarios; each with their own level of Z2 symmetry in each sector. In

addition to looking for Landau poles in the RG evolution, we perform tree-level checks of

unitarity and stability. We also compute the oblique parameters S, T and U ; as well as

the branching ratios for all Higgs decays with a modified version of 2HDMC [30]. To check

whether a parameter point is excluded by collider data, we use the codes HiggsBounds

[31–33] and HiggsSignals [34]. Finally, we use the eEDM as an additional constraint on

the amount of CP violation. We calculate this observable by summing up all the relevant

Barr-Zee diagrams [35] that contribute. This calculation is also implemented in a recent

update of 2HDME.

This paper is structured as follows: we begin in section 2 by giving a brief review of

the 2HDM and present the notation that we use. We describe the different scenarios of

parameter scans in section 3. The constraints that we implement are listed in section 4. To

illustrate the characteristic change in behavior of the 2HDM when allowing for CP violation,

we vary the amount of CP violation in an example point in section 5 and look at various

observables. The main results of the parameter scans are presented in section 6 and we

subsequently summarize our conclusions in section 7. Some plots of the generic basis of

2HDM in the first scenario are collected in appendix A. In appendix B, we list all the

formulas for every Barr-Zee diagram that we use to calculate the eEDM.
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2 The 2HDM

Since 2HDM is one of the most studied BSM theories, we will only briefly describe it here

and for a full review we refer to ref. [36]. Throughout this work, we use the notation

employed in the basis independent treatment of the 2HDM in refs. [37–39].

The most general gauge invariant renormalizable scalar potential for two hypercharge

+1/2 Higgs doublets, Φ1,2, can be written

−LV =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c.) +

1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
1

2
λ5

(
Φ†1Φ2

)2
+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
, (2.1)

where m2
12 and λ5,6,7 are potentially complex while all the other parameters are real;

resulting in a total of 14 degrees of freedom.

After electroweak symmetry breaking, SU(2)×U(1)Y → U(1)em, both the scalar fields

acquire a Vacuum Expectation Value (VEV). Using global SU(2)L and U(1) rotations, the

fields’ VEV take the forms

〈Φ1〉 =
1√
2

(
0

v1

)
and 〈Φ2〉 =

1√
2

(
0

v2e
iξ

)
, (2.2)

where v =
√
v2

1 + v2
2 ≈ 246 GeV and we define tanβ ≡ tβ ≡ v2/v1. By convention, we take

0 ≤ β ≤ π/2 and 0 ≤ ξ ≤ 2π. Note that, if the two Higgs fields are identical by having

equal quantum numbers, one is free to perform a Higgs flavor basis transformation and

tanβ is an unphysical parameter [38].

Minimizing the potential results in the tadpole equations

m2
11 = m2

12e
iξtβ −

1

2
v2
[
λ1c

2
β + (λ3 + λ4 + λ5e

2iξ)s2
β

+(2λ6e
iξ + λ∗6e

−iξ)sβcβ + λ7s
2
βtβe

iξ
]
, (2.3)

m2
22 = m2

12e
iξt−1

β −
1

2
v2
[
λ2s

2
β + (λ3 + λ4 + λ∗5e

−2iξ)c2
β

+(λ7e
iξ + 2λ∗7e

−iξ)sβcβ + λ∗6c
2
βt
−1
β e−iξ

]
, (2.4)

Im(m2
12e

iξ) =
1

2
v2
[
Im(λ5e

2iξ)sβcβ + Im(λ6e
2iξ)c2

β + Im(λ7e
iξ)s2

β

]
. (2.5)

These are used to fix m2
11, m2

22 and ξ.

2.1 The Higgs basis

In eq. (2.1) the general scalar potential for the 2HDM is written in the generic basis.

Another basis is the Higgs basis [37, 40], where only one Higgs field gets a VEV. The Higgs
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basis fields in terms of the previously defined generic basis fields are1

H1 ≡ v̂∗āΦa, H2 ≡ ŵ∗āΦa, (2.6)

where ŵb ≡ v̂∗āεab ( ε12 = −ε21 = 1) and

v̂a ≡

(
cβ

sβe
iξ

)
. (2.7)

These fields acquire the VEVs〈
H0

1

〉
= v/

√
2,

〈
H0

2

〉
= 0. (2.8)

The scalar potential in the Higgs basis takes a similar form as in the generic basis,

−LV = Y1H
†
1H1 + Y2H

†
2H2 +

(
Y3H

†
1H2 + h.c.

)
+

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2)2

+
1

2
Z3(H†1H1)(H†2H2) +

1

2
Z4(H†1H2)(H†2H1)

+

{
1

2
Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
, (2.9)

where Y3 and Z5,6,7 are potentially complex. The tree-level tadpole equations are given by

Y1 = −1

2
Z1v

2, Y3 = −1

2
Z6v

2. (2.10)

The Higgs basis is unique up to a rephasing of H2. During a Higgs flavor transformation

of the generic basis, Φa → Uab̄Φb, the Higgs fields transform as [38]

H1 → H1, H2 → (detU)H2. (2.11)

Thus from inspection of the Higgs potential in eq. (2.9), it follows that Y1,2, Z1−4 are

invariant, while

{Y3, Z6,7} → (detU)−1{Y3, Z6,7}, Z5 → (detU)−2Z5 (2.12)

are pseudo-invariants under the Higgs flavor transformation.

The Higgs doublets are expanded around the VEV and parameterized as

H1 =

(
G+

1√
2
(v + φ0

1 + iG0)

)
and H2 =

(
G+

1√
2
(φ0

2 + ia0)

)
, (2.13)

where G0,+ are Goldstone bosons that will be eaten by Z and W±. The physical scalar
degrees of freedom, after electroweak symmetry breaking, correspond to three neutral ones
that we will order according to their mass and denote as h1,2,3; and one U(1)em charged
pair of Higgs bosons that we will denote as H±. In the CP-conserving case, the neutral
mass eigenstates have definite CP properties; while all the neutral Higgs bosons mix and

1The bar notation keep tracks of complex conjugation. That is, replacing a barred index to an unbarred

corresponds to complex conjugation [37–39].
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have indefinite CP properties in the CP violating case. The neutral mass matrix in the
φ0

1 − φ0
2 − a0 basis is

M = v2

 Z1 Re (Z6) −Im (Z6)

Re (Z6) 1
2 [Z3 + Z4 + Re (Z5)] + Y2/v

2 − 1
2 Im (Z5)

−Im (Z6) − 1
2 Im (Z5) 1

2 [Z3 + Z4 − Re (Z5)] + Y2/v
2

 ,

(2.14)

which can be diagonalized with the rotation matrix

R =

 c12c13 −s12c23 − c12s13s23 −c12c23s13 + s12s23

s12c13 c12c23 − s12s13s23 −s12c23s13 − c12s23

s13 c13s23 c13c23

 , (2.15)

where sij(cij) denotes sin θij(cos θij). From these angles, one can construct the Higgs flavor

independent quantities qkl [37]:

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

,

which we will use to parametrize various couplings. The angle θ23 is however not invariant

under a U(2) Higgs flavor transformation, but instead obeys

eiθ23 → (detU)−1eiθ23 . (2.16)

2.2 The Yukawa sector

In this work, we do not include any mechanism to provide masses for the neutrinos. The

Yukawa sector that couples the Higgs fields to the fermion fields is in the generic basis

−LY =Q̄0
L · Φ̃āη

U,0
a U0

R + Q̄0
L · Φaη

D,0†
ā D0

R + L̄0
L · Φaη

L,0†
ā E0

R + h.c. , (2.17)

where the left-handed fermion fields in the weak eigenbasis are

Q0
L ≡

(
U0
L

D0
L

)
, L0

L ≡

(
ν0
L

E0
L

)
(2.18)

and Φ̃ ≡ iσ2Φ∗.

In the Higgs basis, the Yukawa sector takes the form

−LY = Q̄LH̃1κ
UUR + Q̄LH1κ

D†DR + L̄LH1κ
L†ER

+ Q̄LH̃2ρ
UUR + Q̄LH2ρ

D†DR + L̄LH2ρ
L†ER + h.c., (2.19)
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where we have performed a biunitary transformation to go to the fermion mass eigenbasis

such that the κF = V F
L κ

F,0V F †
R matrices are diagonal. In the end, the κF matrices are

related to ηF by

κU = v̂∗āη
U
a =

√
2

v
diag(mu,mc,mt),

κD = v̂∗āη
D
a =

√
2

v
diag(md,ms,mb),

κL = v̂∗āη
L
a =

√
2

v
diag(me,mµ,mτ ), (2.20)

and ρF = ŵ∗āη
F
a , where

ηFa ≡V F
L η

F,0
a V F †

R . (2.21)

The unitarity transformation matrices are defined by

FL ≡ V F
L F

0
L, FR ≡ V F

R F
0
R, (2.22)

where F ∈ {U,D,E} denotes each fermion species. The CKM matrix is composed out of

the left-handed transformation matrices, VCKM ≡ V U
L V

D†
L .

The κF matrices are, of course, invariant under Higgs flavor transformations, while ρF

transforms as

ρF → (detU)ρF . (2.23)

In general, each ρF is left as an arbitrary 3-by-3 complex matrix.

Couplings to mass eigenstates

We parameterize the couplings of neutral Higgs bosons, k = 1, 2, 3, to fermions as

−L = F̄
(
cFk + c̃Fk iγ5

)
Fhk, (2.24)

where F corresponds to U , D and L, which are the Dirac fermions as vectors in generation

space. These couplings can be expressed in a basis-independent way as

cUk =
1√
2

[
κUqk1 +

1

2
(q∗k2e

iθ23ρU + qk2e
−iθ23ρU†)

]
, (2.25)

c̃Uk =
i

2
√

2

(
qk2e

−iθ23ρU† − q∗k2e
iθ23ρU

)
, (2.26)

cDk =
1√
2

[
κDqk1 +

1

2
(q∗k2e

iθ23ρD + qk2e
−iθ23ρD†)

]
, (2.27)

c̃Dk =
i

2
√

2

(
q∗k2e

iθ23ρD − qk2e
−iθ23ρD†

)
, (2.28)

cLk =
1√
2

[
κLqk1 +

1

2
(q∗k2e

iθ23ρL + qk2e
−iθ23ρL†)

]
, (2.29)

c̃Lk =
i

2
√

2

(
q∗k2e

iθ23ρL − qk2e
−iθ23ρL†

)
, (2.30)

– 6 –



The couplings of charged Higgs to fermions is of the form

−L = Ū
(
cQ
H+ + c̃Q

H+iγ5

)
DH+ + ν̄

(
cLH+ + c̃LH+iγ5

)
EH+ + h.c., (2.31)

where

cQ
H+ =

1

2

(
VCKMρ

D† − ρU†VCKM
)
, (2.32)

c̃Q
H+ = − i

2

(
VCKMρ

D† + ρU†VCKM

)
, (2.33)

cLH+ =
1

2
ρL†, (2.34)

c̃LH+ = − i

2
ρL†. (2.35)

The three scalar coupling of neutral to charged Higgs, is parameterized as

L = −λkH±vhkH
+H−, (2.36)

with

λkH± = qk1Z3 + Re
(
qk2e

−iθ23Z7

)
. (2.37)

Finally, we write the coupling of neutral Higgs to vector bosons as

L = gkV V hk

(
2m2

W

v
WµW

µ +
m2
Z

v
ZµZ

µ

)
, (2.38)

where gkV V = qk1.

Flavor-changing-neutral currents and Z2 symmetry

Since the ρF matrices are in general completely arbitrary, the 2HDM suffers from FCNCs

at tree-level. The most popular solution is to impose a Z2 symmetry on the 2HDM [8, 9].

By making one Higgs odd and the other even under the Z2 symmetry, there are four

different choices of charge assignments of the fermions as listed in table 1. With such a

symmetry, the ρF matrices become proportional to the diagonal κF matrices; hence solving

the problem of having tree-level FCNCs.

Type UR DR LR aU aD aL

I + + + cotβ cotβ cotβ

II + − − cotβ − tanβ − tanβ

Y + − + cotβ − tanβ cotβ

X + + − cotβ cotβ − tanβ

Table 1. Different Z2 symmetries that can be imposed on the 2HDM. Φ1 is odd(−1) and Φ2 is

even(+1). For every type of Z2 symmetry, the ρF matrices become proportional to the diagonal

mass matrices, ρF = aFκ
F .
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One can also make the ansatz of having an aligned Yukawa sector by itself [41]. Then

one has

ρF = aFκ
F , (2.39)

with aF being completely arbitrary complex coefficients. It is well known that this align-

ment ansatz is not stable during RG evolution [28, 42–44], but at one particular energy

scale it results in diagonal Yukawa couplings. Though, if one allows for complex aF coef-

ficients, one runs into the trouble of inducing a large eEDM [45]; as we will show in more

detail later.

Another solution is the Cheng-Sher ansatz [46], where one parameterizes the ρF

Yukawa couplings as

ρF ≡ λFij

√
2mimj

v
. (2.40)

This allows for mass suppressed FCNCs when the λFij are of the same magnitude. Neutral

meson oscillations sets a rough upper limit of λFi 6=j . 0.1 [25]. We will use this parameter-

ization when looking at the sizes of non-diagonal Yukawa couplings, since it gives a clear

estimate of how large they are.

3 CP violation scenarios

The scalar potential and vacuum are CP-conserving if and only if [37, 47–49]

Im
(
Z∗5Z

2
6

)
= Im

(
Z∗5Z

2
7

)
= Im (Z∗6Z7) = 0. (3.1)

These quantities are of course base invariant. Furthermore, we will use these as a measure

of the amount of CP violation in the scalar sector.

To get a quantitative estimate on the amount of CP violation that is allowed in the

2HDM and see how it affects the RG evolution, we set up parameter scans for a number of

physical scenarios with different levels of Z2 symmetry. In this work, we only investigate

bottom-up RG running; in that we impose different starting conditions at the EW scale

and then run up. One could also consider scenarios where the starting conditions are

fixed at some high energy UV scale and one instead run down to the EW scale. In a

way, that would seem more natural, since a more symmetric model at the UV scale might

be a more realistic scenario. However, we assume the RG effects to be symmetrical, e.g.

the symmetry breaking parameters spread in equal amounts in bottom-up and top-down

running. This has also been checked in some of the cases below. To perform top-down

running is computationally more expensive; since one has to fit the evolved parameters to

physical observables. This is the reason why we limit ourselves to bottom-up scenarios to

investigate the RG effects.

Imposing an exact Z2 symmetry fixes the Yukawa structure and forbids the m2
12 and

λ6,7 parameters in the scalar potential. With these being forbidden, the only potentially

complex parameter is λ5; which can be rendered real by a Higgs flavor transformation.
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Hence, the strict Z2 symmetric 2HDM does not allow for any explicit CP violation. One

can, however, allow for a softly Z2 breaking non-zero m2
12 term. Then, one cannot rotate

away all the complex phases and hence we will only investigate scenarios with at least a

softly broken Z2 symmetry. We will also require aligned VEVs, without loss of generality,

by setting ξ = 0 and we use one of the tadpole equations to fix the phase of m2
12.

When performing RG evolution of a complex 2HDM, an interesting question is how

the phases spread during the evolution. By inspection of the 2-loop RGEs2, one finds that

there is no parameter that depends on the phase of λ5 in the softly broken Z2 symmetry

case. One needs a hard Z2 breaking in either the Yukawa or scalar sector to allow for

parameters being rendered complex during the RG running.

We construct the following scenarios for investigation:

Scenario I: softly broken Z2 symmetry

The simplest scenario is the softly broken Z2 symmetric 2HDM. This is also the most

studied 2HDM. Here, we scan over the free parameters in the scalar potential. This is done

in the generic basis with a flat random distribution. The Yukawa sector is fixed to type I

or type II.

We will also restrict ourselves to scenarios where all |λi| . 2. The opposite case with

large scalar couplings is often problematic in that it exhibits large radiative corrections and

many tree-level calculations cannot be trusted [28, 50, 51]. In the CP conserving case, this

is related to the decoupling limit [52, 53], where the lightest Higgs boson resembles the 125

GeV SM one and the others are heavier.

The parameter ranges are:

λi ∈ [−2, 2], |m2
12| ∈ [102, 2× 105], β ∈ [atan(0.5), atan(50)], (3.2)

where λ5 has a random phase and the phase of m2
12 is fixed from one of the tadpole

equations.

Scenario II: hard Z2 symmetry breaking in the scalar potential

This is the same as scenario I, but with an addition of small hard Z2 symmetry breaking

complex parameters, λ6,7, in the scalar potential at the electroweak scale. We restrict these

to be in the range |λ6,7| < 0.5, with random phases.

Scenario III: hard Z2 symmetry breaking in the Yukawa sector

Here, we have a CP conserved scalar potential with a softly broken Z2 symmetry. The

parameters of the potential are distributed as in scenario I, but all are real. The Yukawa

sector will be aligned as in eq. (2.39) at the EW scale. The aF parameters are equal to

the Z2 symmetric values in magnitude; however, we let them be complex with independent

phases. We will investigate type I, II and X as listed in table 1.

This can be seen as a hard Z2 symmetry breaking in the Yukawa sector and conse-

quently λ6,7 and non-diagonal Yukawa couplings will be generated in the RG running.

2These can be found in C++ form in the source code of 2HDME [29]. Since they are very lengthy, we do

not show them in this article.
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4 Constraints

There is a considerable amount of freedom when choosing the parameters of the 2HDM.

To constrain the parameter space we will use a number of theoretical and experimental

constraints.

It is well known that the mass of mH± gets a lower bound from weak radiative B-

meson decays [54–58], e.g. from b → sγ interactions. With a type I Yukawa symmetry,

the bound is heavily tanβ dependent and becomes irrelevant for us when tanβ & 2. For a

type II 2HDM the bound is largely tanβ independent; with a conservative lower value of

580 GeV [58]. We will, however, not impose these constraints for the charged boson mass

in this paper.

Consistency

On the theoretical side, we make basic checks to ensure tree-level stability of the scalar

potential [59, 60] and that the VEV is in a global minimum [61]. We also check the

unitarity of the scattering matrix for scalar particles at high energies [62]. These tests are

implemented in 2HDME [29].

Collider data

The first check of each parameter point is that the lightest Higgs scalar falls in the range

mh1 ∈ [120, 130] GeV.

To check whether a parameter point is allowed by the current collider data from LEP,

the Tevatron and LHC, we make use of the codes HiggsBounds [31–33] and HiggsSignals

[34]. HiggsBounds excludes models at a 95 % confidence level by comparing to experimental

cross section limits and HiggsSignals ensures that the 125 GeV Higgs boson in the model

resembles the one observed at the LHC. These codes require the calculations of the decay

rates for each scalar particle, which we compute with 2HDMC [30]3.

Precision measurements

The oblique electroweak corrections to precision measurements, involving the W and Z

bosons, are tightly constrained and simultaneously sensitive to additional scalar particles.

We calculate the parameters S, T and U [63, 64] using the formulas for the 2HDM in

ref. [39] and make sure they are within the allowed 68 % confidence region of ref. [65].

Electric dipole moment of the electron

There is currently no direct evidence of an EDM for a fundamental particle and an obser-

vation would indicate a violation of CP. It is a very difficult task to perform an experiment

to measure the EDM of a charged particle. The electron serves as the easiest particle to

try to measure the EDM of and the current limit in eq. (1.1) are set by the ACMEII col-

laboration [7] using a system of ThO molecules. Even though the SM predicts a non-zero

3Although a modified version that generalizes the original 2HDMC code to the complex scenario with

CP violation.
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V S

e e

γ

Figure 1. The structure of Barr-Zee diagrams, where V = {γ, Z,W±} and S = {hi, H±}. Each

diagram is denoted by (de)
V S
l , where l is the loop particle in the blob.

eEDM, it is many orders of magnitude below the current limit. New scalar particles and

sources of CP violating phases in the 2HDM can quite easily generate EDMs of the order

of 10−30 to 10−26 e cm; making a check vital for the survivability of any model.

There have been many studies of EDMs in the 2HDM [10, 11, 13–16, 18]. It is a well

known phenomenon, that while in general there can be a large contribution to the eEDM

for a single Higgs boson, there are regions in parameter space which exhibit cancellations

among all the contributions; thus, making regions with large CP violating phases allowed.

Therefore we take into consideration all the Higgs bosons in the calculation of the EDM.

The largest contributions, and the only ones relevant for this study, are the 2-loop Barr-Zee

diagrams [35] illustrated in figure 1. We have collected the necessary formulas and details

of the calculation in appendix B. A numerical implementation of the computation is also

available in 2HDME.

Renormalization group evolution

By evolving the 2HDM in energy, we investigate the energy range where the model is valid

and thus probe the stability of the model. If the model is not complete and consequently

breaks down in the evolution, it would signal the need for new physics at a higher energy

scale. Sensitivity to starting conditions is also an indication of fine tuning in choosing the

parameters.

The RG evolution is performed at 2-loop order using 2HDME. For technical details, we

refer to refs. [28, 29].

In the RG evolution, we look for a breakdown of tree-level stability and unitarity as

mentioned above. We also check for the presence of Landau poles where a parameter of

the model goes to infinity; which we will refer to as a violation of perturbativity. This is

most effectively imposed as a limit of |λi| < 4π. It should, however, not be interpreted as

an exact perturbativity limit, but simply a numerical cut-off; evolving beyond this limit is

more computationally demanding and yield no additional information. The true Landau

pole will lie at a slightly higher energy scale.

5 Example of phase dependence

Allowing for CP violation can induce effects that are otherwise absent in a CP conserv-

ing 2HDM. The softly broken Z2 symmetric 2HDM contains only one phase in its scalar

potential. By a Higgs flavor transformation, one can therefore fix all parameters to be
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real except for λ5. Here, we show the phase dependence of different quantities by varying

arg(λ5) in a softly broken Z2 symmetric 2HDM of type I, using the fixed values

tanβ = 2.5, M2
12 = 73 000 GeV2,

λ1 = 0.47, λ2 = 0.40,

λ3 = − 0.17, λ4 = 0.16,

|λ5| = 0.25, λ6 = λ7 = 0. (5.1)

The Higgs boson masses are dependent on the phase of λ5 as can be seen in the left plot

in figure 2.

2 0 2
arg( 5)

200

300

400

Higgs masses

mh1

mh2

mh3

mH ±

2 0 2
arg( 5)

0.01

0.00

0.01

Oblique
S

T

U

Figure 2. Higgs boson masses(left) and oblique parameters (right) for the parameter point in

eq. (5.1) as a function of the phase of λ5.

Varying argλ5 has a large effect on the oblique parameters S, T and U , as can be

seen in the right plot in figure 2. In figure 3, it is shown how a non-zero phase quickly

induces a large EDM, de, for the electron. There can be non-trivial cancellations among

the many contributions to de; with the lightest Higgs boson usually dominating. Including

the (de)
γh2,3 diagram is however important since it is at the same order of magnitude.

In figure 4 we show the branching ratios of the Higgs bosons as a function of argλ5.

There are a number of new possible decays opening up when going to a CP violating

2HDM since the neutral Higgs bosons all mix together. For example, one can have h2 and

h3 simultaneously decaying into Zh1 as well as to h1h1.

6 Results

In the parameter scan, we perform the RG evolution from the top mass scale until the

evolution breaks down. We define the energy scale Λ as the breakdown energy scale;

meaning the energy where either perturbativity, stability or unitarity is violated.

If nothing else if mentioned, the figures presented below are constructed from the

parameter points that are allowed by HiggsBounds and HiggsSignals as well as within

the limits of S, T and U .
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Figure 3. The eEDM as a function of argλ5 for the parameter point in eq. (5.1). The different

contributions, V S, refers to the individual Barr-Zee diagrams, as in figure 1, summed over all

different loop particles.
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Figure 4. Branching ratios for the most important decays of the Higgs particles.
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Scenario Z2 Pass HB Pass HS Pass ST Pass eEDM Pass all

I type I 43% 9% 80% 9% 1.3%

I type II 39% 7% 80% 6% 0.5%

II type I 38% 8% 74% 5% 0.7%

II type II 36% 6% 74% 2% 0.2%

III type I 44% 9% 80% 3% 0.4%

III type II 44% 8% 79% 1% 0.01%

III type X 43% 8% 79% 1% 0.01%

Table 2. Statistics of the parameter scans of scenario I-III. HB (HS) refers to HiggsBounds

(HiggSignals). There is a total of 50 000 points in each scenario. The Z2 symmetry for scenario

III sets the magnitude for the complex aF coefficients.

The fraction of points that survives the different constraints at the starting scale of

the parameter scans is shown in table 2 for all the scenarios. In table 3, we also list the

three largest contributions to the eEDM.

Scenario Z2 1st 2nd 3rd

I type I γh1(W ): 85 % γh2(W ): 10 % γh2(t): 3 %

I type II γh1(W ): 60 % γh1(t): 24 % γh2(t): 5 %

II type I γh1(W ): 79 % γh2(W ): 12 % γh2(t): 5 %

II type II γh1(W ): 58 % γh1(t): 20 % γh2(t): 11 %

III type I γh2(t): 31 % γh3(t): 22 % γh1(W ): 19 %

III type II γh2(t): 31 % γh1(W ): 25 % γh3(t): 22 %

III type X γh2(t): 31 % γh2(W ): 25 % γh3(t): 23 %

Table 3. Statistics of the top three largest contributions to the eEDM for all 50 000 parameter

points in each scenario. The notation is according to figure 1, i.e. V S(loop particle).

6.1 Scenario I

Because of the small quartic couplings, the mass spectrum falls easily into an aligned

scenario with q11 ∼ 1. It is easy to find parameter points with heavy h2,3 and H± as can

be seen in figure 5; however, heavier masses implies that the model is more aligned, i.e. q11

goes to 1 as the masses increase. In the figure, the maximum breakdown energy in each

bin is shown as a function of the masses, mass differences as well as q11. From the figure,

it is also clear that only models with small mass differences between the heavy Higgses can

be evolved to high scales. There is also a preference for q11 being very close to 1.

The general property that only very aligned models are viable at the starting scale is

because these are the only ones allowed by HiggsBounds and HiggsSignals. To illustrate

this, we show the eEDM as a function of the angles s12 and c13 in figure 6. There, two

figures for each Yukawa symmetry are displayed: one before running the parameter points

through HiggsBounds and HiggsSignals and one with only the points allowed by these
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Figure 5. The maximum breakdown energy Λ as a function of masses, mass differences and the

q11 parameter for type I (left) and type II (right).

programs. The allowed points with a small eEDM all fall in the aligned region of s12 ∼ 0

and c13 ∼ 1.

To see if a small eEDM also implies a 2HDM that can be evolved to high energies, we

show a scatter plot of the breakdown energy and eEDM in figure 7. As can be seen from

the figure, this is not the case; there is no definite correlation saying that small eEDM gives

a high Λ. Most points have a too high eEDM and points that are valid up to the Planck

scale exist, presumably, in the entire region.

Even though there is only one phase in scenario I, arg λ5, that is the source of CP vi-

olation in the scalar potential, we find that the base invariant quantities in eq. (3.1) are

better measures of the amount of CP violation in the 2HDM. This is because they are also

dependent on tanβ and other quartic couplings that for example also influence the eEDM;

in addition, it also simplifies the comparison between different scenarios. All parameter

points that pass the ACMEII bound have these quantities at the order of 0.1. The eEDM

as a function of Im(Z∗5Z
2
6 ) and Im(Z∗6Z7) is shown in figure 8. In figure 9, we show the

maximum breakdown energy as a function of the same CP violating quantities and there

one can see that all parameter points that are valid all the way to the Planck scale have

Im(Z∗5Z
2
6 ) ∼Im(Z∗6Z7) ∼ 10−2, thus constraining these parameters even further.
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Figure 6. The minimum eEDM as a function of the angles s12 and c13 for type I (left) and type

II (right). The top figures are all parameter points, while the bottom figures contain only points

allowed by HiggsBounds and HiggsSignals. Red denotes eEDM below 10−29 e cm.
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Figure 7. The relation between breakdown energy and eEDM for type I (left) and type II (right).

The red line is the ACMEII eEDM limit, 1.1× 10−29 e cm.
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Figure 8. The minimum eEDM as a function of the base invariant quantities Z∗
5Z

2
6 and Z∗

6Z7 for

type I (left) and type II (right).
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Figure 9. The maximum breakdown energy as a function of the base invariant quantities Z∗
5Z

2
6

and Z∗
6Z7 for type I (left) and type II (right).
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6.2 Scenario II

Scenario II
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Figure 10. The minimum eEDM as a function of the base invariant quantities Z∗
5Z

2
6 and Z∗

6Z7

for type I (left) and type II (right).

The results of scenario II are largely following that of scenario I; one gets the same mass

spectrum characteristics and the parameter points that survive are aligned in a similar way

as in figure 5. The addition of non-zero λ6,7 parameters does, however, have some effects.

We first note that base-invariant quantities Z∗5Z
2
6 and Z∗6Z7 get additional contribu-

tions from λ6 and λ7. In figure 10 we see that this increases the allowed range of the

imaginary parts of these quantities, while still having an allowed eEDM.
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Figure 11. The maximum induced non-diagonal Yukawa element in the Cheng-Sher parameteri-

zation as a function of the base invariant quantities Z∗
5Z

2
6 and Z∗

6Z7 for type I (left) and type II

(right).

Since the λ6,7 parameters break the Z2 symmetry hard, the symmetry breaking spreads

in the RG running to the Yukawa sector as well. This does not have a huge impact, however,

since the quartic couplings enter the Yukawa couplings RGEs first at 2-loop order. The

maximum induced non-diagonal Yukawa coupling as a function of the imaginary parts of
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Figure 12. The maximum induced imaginary part of λL33λ
U∗
33 at the breakdown energy scale as a

function of the base invariant quantities Z∗
5Z

2
6 and Z∗

6Z7 for type I (left) and type II (right).

Z∗5Z
2
6 and Z∗6Z7 is shown in figure 11. There we see that although the effect is much larger

with a type II Yukawa sector, one does not get size-able FCNCs after RG running. For type

I (type II) the maximum generated non-diagonal Yukawa element is λFi 6=j ∼ 10−3(10−2) at

the breakdown energy scale. Similar findings are presented in ref. [28] in the CP conserving

case. In this CP violating case, one can generate a non-trivial amount of CP violation in

the Yukawa sector though. To see this, we show the maximum generated imaginary part of

the base invariant quantity λL11λ
U∗
33 in figure 12. This parameter is chosen because it needs

to be small to not yield a too large eEDM; as is discussed in scenario III.

Scenario II
type I type II

-4.5 -3.0 -1.5 0.0
log10|Im(Z6Z

∗
7 )|

-6

-4

-2

0

lo
g 1

0
|Im

(Z
∗ 5
Z

2 6
)|

103
104
105
106
107
108
109
1010
1011
1012

m
ax

 Λ

-4.5 -3.0 -1.5 0.0
log10|Im(Z6Z

∗
7 )|

-6

-4

-2

0

lo
g 1

0
|Im

(Z
∗ 5
Z

2 6
)|

103
104
105
106
107
108
109
1010
1011
1012

m
ax

 Λ

Figure 13. The maximum breakdown energy as a function of the base invariant quantities Z∗
5Z

2
6

and Z∗
6Z7 for type I (left) and type II (right).

The imaginary parts of Z∗5Z
2
6 and Z∗6Z7 serves as good measures of the amount of

CP violation in the 2HDM as seen in figure 10; all the points that satisfy the eEDM bound

are centered around them being zero. The parameter points that are valid up to the highest

energies also exhibit small Im(Z∗5Z
2
6 ) and Im(Z∗6Z7) as can be seen in figure 13.
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6.3 Scenario III

Scenario III
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-1 0 1
Re(aU)

-1

0

1

Im
(a
U
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-1 0 1
Re(aU)

-1

0

1

Im
(a
U
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-1 0 1
Re(aU)

-1

0

1

Im
(a
U
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-1 0 1
Re(aD)

-1

0

1

Im
(a
D
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-15 0 15
Re(aD)

-20

0

20

40

Im
(a
D
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-1 0 1
Re(aD)

-1

0

1

Im
(a
D
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-1 0 1
Re(aL)

-1

0

1

Im
(a
L
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-20 0 20
Re(aL)

-25

0

25

Im
(a
L
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

-20 0 20
Re(aL)

-25

0

25

Im
(a
L
)

104
106
108
1010
1012
1014
1016
1018

m
ax

 Λ
 [G

eV
]

Figure 14. The maximum breakdown energy as a function of aU , aD and aL for type I (left), type

II (middle) and type X (right).

The maximum breakdown energy as function of the aligned coefficients aF is shown

in figure 14 for the three different types. The results are largely independent on the phase

of each aF , while the regions around zero tend to be better for higher breakdown energies.

For type I, this means that tanβ has to be quite large since |aF | = 1/ tanβ, whereas for

type II and X there is a balance between |aU | = 1/ tanβ being small and at the same time

|aD| = tanβ and/or |aL| = tanβ not being too large (. 10).

As measure of the CP violation, we use the base invariant quantities Im(aLa
∗
U ) and

Im(aLa
∗
D). These give the contribution (de)

WH
tb in eq. (B.5); which is the largest contri-

bution in ∼ 10 % of the parameter points. The term involving aU is the dominant one

because of the top mass and therefore one gets a very clear limit on Im(aLa
∗
U ) as can be

seen in figure 15, where the single contribution (de)
WH
tb is shown as a function of Im(aLa

∗
U )

and Im(aLa
∗
D). There, the Im(aLa

∗
U ) needs to be below ∼ 0.01 for all types to be within
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Figure 15. The minimum contribution from (de)
WH
tb to the eEDM as a function of the imaginary

parts of aLa
∗
U and aLa

∗
D for type I (left), type II (middle) and type X (right).
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Figure 16. The minimum eEDM as a function of the imaginary parts of aLa
∗
U and aLa

∗
D for type

I (left), type II (middle) and type X (right).

the limits of ACMEII4. In figure 16 we show the total eEDM as a function of the same pa-

rameters. Although, there are some cancellations that make the limit on Im(aLa
∗
U ) fuzzier,

the eEDM still gives quite a severe constraint; especially for type I, although for type II

and X we are facing the problem of running out of statistics. For type II and X there are

some points with large Im(aLa
∗
U ) and Im(aLa

∗
D) that still give an allowed eEDM. There

could even be regions for these last types that could pass all constraints and still be valid

all the way to the Planck scale; although this requires more study.

Breaking the Z2 symmetry in the Yukawa sector can give rise to non-diagonal Yukawa

couplings. In figure 17, this is shown as a function of Im(aLa
∗
U ) and Im(aLa

∗
D). Similarly

as in scenario II, type II is generating the most FCNCs in the RG evolution. The regions

in type I that are within the eEDM limits generate a very low amount of FCNCs.

4The hard limits on aLa
∗
U and aLa

∗
D for type II and X arise from the ansatz |aU | = 1/ tanβ and

|aD,L| = tanβ.
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Figure 17. The maximum induced non-diagonal Yukawa couplings in the Cheng-Sher ansatz as a

function of the imaginary parts of aLa
∗
U and aLa

∗
D for type I (left), type II (middle) and type X

(right).
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Figure 18. The maximum induced hard Z2 symmetry breaking parameters λ6,7 as a function of

the imaginary parts of aLa
∗
U and aLa

∗
D for type I (left), type II (middle) and type X (right).

The hard Z2 symmetry breaking quartic couplings λ6,7 are also generated in general;

as seen in figure 18, where max(λ6,7) as a function of Im(aLa
∗
U ) and Im(aLa

∗
D) is plotted.

All scenarios generate size-able λ6,7 easily.

7 Conclusions

We have analyzed the CP violating 2HDM by performing numerical parameter scans in

three different physical scenarios. Using 2HDME, we have performed 2-loop RG running to

study the properties under RG evolution looking for Landau poles as well as a breakdown of

unitarity or stability. Experimental collider data has been used to restrict the parameter

space with the codes HiggsBounds and HiggsSignals and we also checked the oblique

parameters S, T and U . The amount of CP violation was constrained by calculating the

eEDM; which now is an implemented feature of 2HDME.
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Figure 19. The maximum breakdown energy as a function of the imaginary parts of aLa
∗
U and

aLa
∗
D for type I (left), type II (middle) and type X (right).

The physical scenarios we have investigated start from a 2HDM with a softly broken

Z2 symmetry and quartic couplings |λi| ≤ 2, to which we add additional sources of (hard)

Z2 breaking.

With a softly broken Z2 symmetry and CP violation in the scalar potential, we found

that having |λi| ≤ 2 gives an aligned 2HDM with the alignment parameter q11 → 1 as the

BSM Higgs masses become heavy. We also find that the amount of CP violation is severely

constrained by the eEDM. The limit from ACMEII requires the base invariant quantities

Im(Z∗5Z
2
6 ) and Im(Z6Z

∗
7 ) to be ∼ 0.1 for parameter points to be allowed. For the points

that are valid up to the Planck scale, these quantities are even further constrained, ∼ 0.01.

We also investigated the complex 2HDM with a small hard breaking of the Z2 symmetry

in the scalar potential by having non-zero λ6,7 at the EW scale. While finding similar

findings as the softly broken symmetry case, one also gets the effect of inducing a Z2

symmetry breaking in the Yukawa sector during the RG running. Although, we found that

there are no sizeable FCNCs being produced, the CP violation in the scalar sector can

spread to the Yukawa sector by a non-trivial amount.

Lastly, we investigated three scenarios of aligned Yukawa sector based on type I, II

and X, but with complex coefficients. For the type I based scenario, we find that it is

severely constrained by the eEDM, which requires Im(aLa
∗
U ) . 10−2. This is most easily

satisfied if tanβ is large. For the type II and X based scenarios, the constraint on Im(aLa
∗
U )

tends to be weaker due to cancellations between different contributions to the eEDM. At

the same time, these scenarios are in general much worse than that of type I. During RG

running, the symmetry breaking spreads to the scalar sector and induces complex λ6,7 as

well as FCNCs. The FCNCs are, however, not very large for parameter points that have

an allowed eEDM.
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A Generic basis in scenario I
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Figure 20. The maximum breakdown energy as a function of the parameters in the generic basis

in scenario I with a type I Z2 symmetry.

The parameter scans are generating the scalar potential in the generic basis with flat

random distributions. The breakdown energy scale as a function of the quartic couplings

and m2
12 is shown in figure 20.

B Barr-Zee diagrams for EDM

The largest contributions to light fermions’ EDM comes from 2-loop Barr-Zee diagrams

[35], as shown in figure 1. The computation of these diagrams in the context of the

2HDM was first done in ref. [66]. A general framework to compute them is presented in

ref. [67]. The results for the 2HDM can be found in various sources, e.g. ref. [12]. Most
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of the literature, however, deal with a softly broken Z2 symmetry. We found that these

results are incomplete, e.g. when investigating the 2HDM with a complex aligned Yukawa

sector, and therefore compliment the EDM computation with diagrams involving W±, H±

and a fermion loop. This additional contribution as well as all other contributions, for

completeness, are presented below.

We denote each contribution to the electrons EDM as

(de)
V S
l , (B.1)

where l denotes the particles of the 1-loop blob in figure 1. Although some formulas below

are written for a general loop particle, diagrams with light particles participating in the

loops are very suppressed. Therefore we only include the third generation in the total

electron EDM; which then reduces to

de =
∑
h

 ∑
f=t,b,τ

[
(de)

γh
f + (de)

Zh
f

]
+ (de)

γh
W + (de)

γh
H + (de)

Zh
H + (de)

WH
hH

+ (de)
WH
tb ,

(B.2)

where H denotes the charged Higgs.

The tree-level Higgs masses vary with renormalization scale. To circumvent this, we

always use the Higgs mass which satisfies mh(µ) = µ, which is independent on renormal-

ization scale.

All the couplings in each contribution are defined at the mass scale of the heaviest

particle participating in the loop diagram and we use full 2-loop RGEs to run between

the energy scales. The theoretical uncertainty in the calculation is rather high since the

running of couplings change some quantities rather dramatically and the choice of renor-

malization scale for each diagram is somewhat arbitrary. To get an estimate, we varied the

renormalization scale for each diagram to be twice or half the highest participating mass

in the loop, which can change de by a factor of 2. This is, however, good enough for any

conclusions we make in this work.

Fermion loops

For each fermion f , the contribution to the electrons EDM is

(de)
γh
f =

NcQ
2
fe

3

32π4mf
×

3∑
k=1

[
f(zkf )(cFk )ff (c̃Lk )ee + g(zkf )(c̃Fk )ff (cLk )ee

]
, (B.3)

where the loop functions are listed at the end of this section. We define the ratio of masses

as zkx ≡ m2
x/m

2
hk

.

The similar diagram with a Z boson instead of the internal γ is

(de)
Zh
f =

Nceg
V
Zeeg

V
Zff

32π4mf
×

3∑
k=1

[
f̃(zkf ,m

2
f/m

2
Z)(cFk )ff (c̃Lk )ee + g̃(zkf ,m

2
f/m

2
Z)(c̃Fk )ff (cLk )ee

]
,

(B.4)
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where gVZff = g(T f3 − 2Qf sin2 θW )/(2 cos θW ).

For a general Yukawa sector, there is also an important contribution coming from a

W±−H± diagram with a fermion loop. This single contribution is investigated in ref. [45],

where they only keep the term proportional ρU . We have computed this again with the

framework in ref. [67] and kept also the ρD term. The result for the third generation

fermions is

(de)
WH
tb =

Nce
3|(VCKM )tb|2

512π4 sin2 θW (m2
H± −m2

W )

∫ 1

0
dx [Qtx+Qb(1− x)]

×
{

Im
[
(ρL)ee(ρ

U )∗tt
]
mtx(1 + x) + Im

[
(ρL)ee(ρ

D)∗bb
]
mbx(1− x)

}
×
[
G

(
m2
t

m2
H±

,
m2
b

m2
H±

)
−G

(
m2
t

m2
W

,
m2
b

m2
W

)]
. (B.5)

This is the same formula as one gets for the case of magnetic dipole moment, derived in

ref. [68]; except that it is the imaginary part of the couplings instead of the real part.

W loops

With a W internal gauge boson, one gets the contributions

(de)
γh
W = − e3

128π4v

3∑
k=1

[(
6 +

1

zkW

)
f(zkW ) +

(
10− 1

zkW

)
g(zkW )

]
gkV V (c̃Lk )ee. (B.6)

and

(de)
Zh
W =

egZWW g
V
Zee

128π4v

3∑
k=1

[(
6− sec2θW +

2− sec2θW

2zkW

)
f̃(zkW , cos2 θW )

+

(
10− 3sec2θW −

2− sec2θW

2zkW

)
g̃(zkW , cos2 θW )

]
gkV V (c̃Lk )ee, (B.7)

where gZWW ≡ e cot θW .

Scalar loops

The charged scalar contribution is

(de)
γh
H = − e3v

128π4m2
H±

3∑
k=1

[
f(zkH)− g(zkH)

]
λkH±(c̃Lk )ee (B.8)

and

(de)
Zh
H = −

evgVZeegZH±

128π4m2
H±

3∑
k=1

[
f̃(zkH ,m

2
H±/m

2
Z)− g̃(zkH ,m

2
H±/m

2
Z)
]
λkH±(c̃Lk )ee, (B.9)

where gZH± ≡ e cot θW (1− tan2 θW )/2.

The gauge invariant contribution from charged and neutral scalars has been calculated

in ref. [69],

(de)
WH
hH =

e

256π4v
×

3∑
k=1

[
e2

2 sin2 θW
I4(m2

hk
,m2

H±)gkV V − I5(m2
hk
,m2

H±)λkH±

]
(c̃Lk )ee.

(B.10)
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Miscellaneous functions

f(z) =
z

2

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
log

(
x(1− x)

z

)
, (B.11)

g(z) =
z

2

∫ 1

0
dx

1

x(1− x)− z
log

(
x(1− x)

z

)
, (B.12)

f̃(x, y) =
yf(x)

y − x
+
xf(y)

x− y
, (B.13)

g̃(x, y) =
yg(x)

y − x
+
xg(y)

x− y
, (B.14)

G(r1, r2) =
log
(
r1x+r2(1−x)

x(1−x)

)
x(1− x)− r1x− r2(1− x)

, (B.15)

I4,5(m2
1,m

2
2) =

m2
W

m2
H± −m2

W

[
I4,5(m2

W ,m
2
1)− I4,5(m2

2,m
2
1)
]
, (B.16)

I4(m2
1,m

2
2) =

∫ 1

0
dz(1− z)2

(
z − 4 + z

m2
H± −m2

2

m2
W

)
× m2

1

m2
W (1− z) +m2

2z −m2
1z(1− z)

log

(
m2
W (1− z) +m2

2z

m2
1z(1− z)

)
, (B.17)

I5(m2
1,m

2
2) =

∫ 1

0
dz

m2
1z(1− z)2

m2
W (1− z) +m2

2z −m2
1z(1− z)

log

(
m2
W (1− z) +m2

2z

m2
1z(1− z)

)
.

(B.18)
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